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Püren Güler, Karl Pauwels, Alessandro Pieropan, Hedvig Kjellström and Danica Kragic

Abstract— Knowledge of the physical properties of objects
is essential in a wide range of robotic manipulation scenarios.
A robot may not always be aware of such properties prior
to interaction. If an object is incorrectly assumed to be rigid,
it may exhibit unpredictable behavior when grasped. In this
paper, we use vision based observation of the behavior of
an object a robot is interacting with and use it as the basis
for estimation of its elastic deformability. This is estimated in
a local region around the interaction point using a physics
simulator. We use optical flow to estimate the parameters of
a position-based dynamics simulation using meshless shape
matching (MSM). MSM has been widely used in computer
graphics due to its computational efficiency, which is also
important for closed-loop control in robotics. In a controlled
experiment we demonstrate that our method can qualitatively
estimate the physical properties of objects with different degrees
of deformability.

I. INTRODUCTION

The ability to interact with and grasp objects is an integral
part of an autonomous robot system. To handle an object
appropriately and predict its behavior during interaction,
it is of great importance to know its physical properties.
Interactions with non-rigid objects are especially not easy
to predict unless their deformation properties are known.
Without this information, a robot may break or permanently
deform an object, e.g. when grasping a milk container, a
robot can break the container or spill the content. However,
due to the large variability among objects, object properties
cannot always be assumed to be known beforehand. It is
therefore crucial to have a mechanism that enables the robot
to learn such properties by observing the behavior of the
object during the interaction.

To this end, we present a method that employs visual
observation together with a physical simulation to estimate
the deformability of objects. This is in the spirit of [1], where
it is shown that in order to properly manipulate deformable
objects, a robot needs to observe its environment, and predict
the objects’ deformation by modeling their behavior through
simulation.

In our previous work [2], we showed that the content of
a container can be inferred by observing the deformation
of the object using multi-sensor fusion of visual and tactile
data. However the visual tracking component of the system
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Fig. 1. Motion information is used to advect a set of particles (green
circles) in accordance with deformations observed in real-world images from
an initial state (a) to a deformed state (c). The particles are positioned
on a regular grid in the area surrounding the manipulator. Our approach
enables the configuration of a physics simulation so that it replicates the
same observed behavior when deforming a virtual object (b,d).

relied on a model of the object that assumes rigidity [3] and
the divergence of the observed data from this rigid model
was used to define deformability. The rigid model used by
the tracker limited the amount of deformation the tracking
system could handle. Here we use a deformable model that
provides a better match with the observed scene and that
enables us to model the temporal change in the shape more
effectively.

We observe the behavior of an object using a dense
optical flow algorithm [4] (see Fig. 1a,c) and match the
observed motion to a position-based physics simulation that
uses meshless shape matching (MSM) [5] (see Fig. 1b,d).
This particular simulation method has been widely used due
to its computational efficiency, which is a crucial requirement
for a wide range of robotics applications. We show through
experiments that the proposed method can correctly estimate
the deformability of the foams with different stiffness.

Apart from being complementary to haptic sensors, our
purely visual method can also be used to learn meaning-
ful object state changes from demonstration [6], to track
unknown objects without a rigidity assumption [7], and to
interact with non-graspable objects, such as liquids.

The main contributions are:
• a framework to estimate the deformability of objects

based on visual observation and physics simulation,
• a method to match visual observation with a position-

based dynamics simulation algorithm.
The paper is structured as follows. In Section II we give

an overview of related work. In Section III we describe the



method in detail. Next, in Section IV, we present a qualitative
evaluation of the proposed framework. Finally, we conclude
in Section V.

II. RELATED WORK

There has been tremendous effort within the computer
graphics and computer vision communities in simulating the
deformation of objects [8], [9]. The most commonly used
simulation techniques are mesh-based methods such as Finite
Element Method (FEM) [10], [11], [12], mass-spring [13]
and boundary element method (BEM) [14], [15]. FEM is able
to model the deformation with high physical accuracy but
it is computationally expensive and complex, which makes
it unsuitable for many time-critical applications [5]. On the
other hand, BEM and mass-spring methods are more efficient
but limited in the realism of the simulation. The former
can be applied only to objects with a homogeneous interior,
whereas the latter do not guarantee physically accurate
results [9].

In recent years, simulation techniques based on position-
based dynamics have received more attention. They update
the behavior of objects relying solely on positional infor-
mation unlike force-based approaches such as FEM and
mass-spring methods [16]. They are designed to be fast,
controllable and stable in simulating interactive graphical
environments such as clothes, deformable solids and fluids
[17]. All those properties are desirable assets for active
perception in robotics applications. MSM is one of the key
works in the area of position-based methods and allows
the simulation of deformable objects [5]. It has been used
in a wide range of interactive graphical applications [18],
particularly for modeling the deformation of human body
parts [15]. However in none of these approaches, real world
observations are taken into account and the parameters are
defined manually. There have been some previous attempts
in the spirit of our method. For example, [19] estimates the
deformability of mesh-based objects but does so in a purely
virtual environment. Alternatively, [20], [21], [22] take real
world observations into account to simulate plausible defor-
mations in a virtual environment but the object properties
are again defined manually. We instead propose to learn the
parameters by simulating the observed behavior.

There exists a wide spectrum of approaches in robotics for
learning object properties. The predominant methodology is
based on haptic sensors [23], [24], [25], [26]. An interesting
work [27], proposes the design of feature descriptors to
capture the properties of semi-solid objects and to recognize
objects from haptic observation in a supervised manner.
In addition, some work has been done on extracting such
properties using visual perception alone [28], [29]. There
are also methods that combine visual perception with haptic
feedback to estimate deformable object properties [30]. All
these methods rely on direct interaction with the objects.
However, the robot interaction may result in an undesirable
permanent deformation of the object. We are convinced that
this can be avoided by incorporating a simulation component
that can learn the properties of the object by observing a

human or another robot and predict its future behavior by
using this knowledge. Frank et al. [31] move in this direction
by incorporating a FEM method in their framework. The
robot is able to learn the elasticity of an object by interacting
with it and can plan an action using the deformation of the
object as predicted by the simulation. Since FEM simulations
are time-consuming, [31] uses Gaussian process regression
to approximate the deformation. Instead, we propose a
framework that employs position-based methods to arrive
at fast and reliable simulation algorithms that are suitable
for interactive perception scenarios. Moreover, [32] tracks
deformable objects from RGB-D data based on the observed
force by integrating a physics simulator and probabilistic
generative model. Unlike the proposed method, they do not
explicitly estimate object properties such as deformability.

III. METHODOLOGY

We use a physics simulation based on position-based
dynamics, i.e. MSM, to relate the visually observed deformed
object configuration to the initial object configuration. To
estimate deformation parameter in the simulation, we min-
imize the difference between the observed 2D shape of
the object that deforms and the deformed shape obtained
using the simulation approach. We use a dense optical flow
algorithm [4] to establish the correspondences between the
shape in consecutive image frames and track the motion of
the deformed object. This motion information is used as the
basis for comparing the simulation results to the observed
deformations.

Our current method models deformations in the image
plane only. However, the method can be extended to 3D
using e.g. 3D flow extracted from RGB-D imagery [33].

We next provide a detailed description of the physics
simulation itself, how it is coupled with the observations and
how we estimate deformability.

A. Deformation Simulation

MSM is a method that is used in position-based physics
simulators to simulate elastic and plastic deformation in a
visually plausible manner [5]. It represents the shape of
simulated objects by a configuration of elementary nodes
or particles, as depicted by green circles in the example
of Fig. 1a,c. Unlike mesh-based methods, MSM does not
require connectivity information between nodes to define an
object’s configuration. Instead the configuration at time t
is fully defined by the particle positions xti ∈ R2 where
i = 1, 2, 3, ...N , with N the number of particles in the
configuration.

In each time step, the positions and velocities of the
particles are first updated without considering interactions
or any other internal constraints between the particles inside
the object. Instead only external forces such as gravity or
collisions with the environment are considered. Figure 2
illustrates the effect of this initial update where the initial
particle configuration x0

i , see Fig. 2A, is transformed into
an intermediate configuration x̄i, see Fig. 2B.



Fig. 2. Meshless shape matching applied to a simple object consisting
of four particles. Starting from an initial configuration (A), the particles
are moved due to some external force. The updated positions are shown in
blue in (B). MSM estimates the optimal transformation that preserves the
shape of the initial configuration, as shown in red in (C). In a subsequent
integration stage, the particles are moved towards these goal positions (D).

Since these updated particle positions do not incorporate
our knowledge of the object shape and its deformability,
internal shape constraints are enforced in a subsequent step.
Assuming for the sake of exposition that we simply want
to maintain the rigidity of the initial shape, as shown in
Fig. 2A, we first compute an optimal linear transformation
between x0

i and x̄i and subsequently extract its rotational
and translational component. This rotation and translation
are then the basis for a rigid transform that is used to move
the particles towards a goal position gi, as illustrated in
Figs. 2C,D, that is close to the intermediate configuration,
while also respecting the shape constraints. We next discuss
these stages in more detail.

The simulation starts by updating the velocity and position
of the particles as a result of the force exerted at the current
time t

v̄i = vt−1
i +

f text ∆t

mi
, (1)

x̄i = xt−1
i + v̄i ∆t , (2)

where f text is the external gravitational force at t, mi the
particle mass, and ∆t the time step between t and t− 1.

To find an appropriate transformation between the initial
configuration x0

i and the intermediate deformed configura-
tion x̄i, the optimal rotation matrix R ∈ R2×2 is determined
by minimizing

∑
i

mi||R(x0
i − t0) + (x̄i − t̄)||2 , (3)

where the optimal translation vectors t̄ ∈ R2 and t0 ∈ R2

are equal to the center of mass of the respective particle

configurations

t0 =
1

mc

N∑
i

mix
0
i , (4)

t̄ =
1

mc

N∑
i

mix̄i , (5)

mc =

N∑
i

mi . (6)

To minimize (3), first the optimal linear transformation
between the initial and intermediate configuration, A ∈
R2×2, is calculated as in [5]

A =

(∑
i

mipiqi
>

)(∑
i

miqiqi
>

)−1

= ArAs , (7)

where pi = x̄i− t̄ and qi = x0
i −t0 are the particle locations

relative to the center of mass. The matrix As is symmetric
and contains only scaling, no rotation. The rotational part
can be obtained by decomposing Ar into the rotation matrix
R and symmetric matrix S using polar decomposition as in
[5]

Ar = RS . (8)

The goal positions, see Fig. 2C, can now be determined as

gi = Rqi + t̄ . (9)

The shape constraints are incorporated into the simulation
by correcting the intermediate particle positions as follows:

xti = x̄i + α(gi − x̄i) , (10)

vti =
xti − xt−1

i

∆t
, (11)

where α controls the speed at which the particles converge
to the goal positions. The α value affects the stiffness
of the model. If α = 1, the goal positions immediately
become the corrected positions. If α < 1, the configuration
gradually converges to its goal shape in each time step. In
our experiments, α = 1.

To increase the deformability of the models, [5] introduces
linear deformation such as shear and stretch. A linear defor-
mation can be obtained by combining R and A in the goal
position computation:

gi = ((1− β)R + βA)qi + t̄ , (12)

where β represents the degree of deformation, ranging from
0 to 1. The presence of R in the sum ensures that there is still
a tendency towards the undeformed shape. If β approaches 1,
the range of deformation increases, whereas if β is close to 0,
the object behaves like a rigid object. Figure 3 demonstrates
how different values of β affect the behavior of a virtual
object. This β parameter is our parameter of interest for
defining an object’s deformability. Our goal is to estimate
it on the basis of the object’s observed motion.

To further extend the range of motion, we use a technique
called cluster based shape matching [5] and divide the



Fig. 3. Effects of the deformation parameter β on the final configuration
of a simulated object undergoing a downward external force applied to
the center region. Circles and stars correspond to the deformed state with
β = 0.1 and β = 0.9 respectively. Larger β’s result in more deformation.

Fig. 4. Example particle cluster configuration with overlapping clusters of
size 3×3. Particle i belongs to all three clusters c1, c2, and c3. Consequently
its goal position gi is set to be the average of the goal positions computed
for each cluster separately, namely g1

i , g2
i , and g3

i .

particles into overlapping clusters as shown in Fig. 4. At
each integration step, each cluster’s initial configuration is
matched with its current shape. For each particle which has
more than one goal position, the average of the goal positions
is computed before the integration to calculate velocity and
position [34]

gi =
1

Ni

∑
j∈ci

gji , (13)

where Ni is the number of clusters that particle i belongs to,
ci is the set of clusters particle i belongs to, and gji is the
goal position which is associated with cluster j ∈ ci. The
cluster size in our implementation is set to 3× 2 particles.

In this work we investigate the effects of specific manipu-
lations exerted on a particular part of the object, as illustrated
in Fig. 5. To simulate the effects of such manipulations, we
select the particle closest to the manipulated part, pf , and fix
its position in accordance with the disturbance, xf . We do not
consider the problem of collision detection between the tip

pf

(a)

xf

(b)

Fig. 5. A specific manipulation applied on a particular particle in the
simulation environment. The manipulated particle is labeled as pf (a). The
particle position is constrained by fixing it to a specific position xf (b).

of the manipulator and the object. Instead xf is determined
from the position of pf in the final frame, after the particle
advection step. See for example the particle marked with
a cross in Fig. 5(a). As a result of the manipulation, its
position will be fixed to xf as shown in Fig. 5(b). We also
increase the mass of particle pf in order to pull the center
of mass of the particle cluster towards xf . Although pf is
included in the shape matching, its goal position is fixed at
xf . Algorithm 1 provides an overview of a single time step
of the simulation. For clarity, we omitted the clustering part.
Our implementation is based on Müller’s publicly available
2D implementation of MSM [35].

B. Coupling Observation and Simulation

To observe the deformation of a real-world object, we
estimate its motion in consecutive frames of a manipulation
video using a dense optical flow algorithm [4], as imple-
mented in [36].

We use the optical flow to advect a set of particles spread
across the object surface. The particles are initiated on a
regular 4×8 grid, spaced 100 pixels apart, in accordance with
the object boundary as observed in the initial frame, before
deformation, as depicted in Fig. 6(a). Note that we only focus
on a small area around the contact point of the manipulator
and the object. Since the foam objects that we use in the
experiments have primitive rectangular shapes, we selected
the boundaries of this region in an ad-hoc manner. The object
is segmented manually and the particles are placed uniformly
in the segmented region. We depict the observed particle
positions in this initial configuration by x̃0

i ∈ R2.
To estimate the trajectory of each particle over the image

sequence, we use a particle advection approach similar to
[37]. A particle’s observed position at frame t, x̃ti, is advected
to the next frame position x̃t+1

i according to the estimated
optical flow:

x̃t+1
i = x̃ti + oti , (14)

with oti ∈ R2 the optical flow averaged in a 10×10 region
around the particle. By repeating this advection for each
frame, we arrive at the final observed deformed configuration
x̃di , as depicted by the red circles in Fig. 6b,c.

The inputs for the simulation now consist of the initial
configuration x0

i = x̃0
i together with the particle pf to which

our manipulation is applied and whose position is fixed to



Algorithm 1: Simulation time step (without clustering)

Input: x0
i : initial configuration, xt−1

i : configuration at
previous time, vt−1

i : velocity at previous time,
mi: mass, pf : fixed particle index, xf :
constraining position, N : number of particles,
∆t: time step, α: stiffness, β: deformability

Output: xti,v
t
i

: configuration and velocity at current time
begin

// external force, Fig. 2B
for i = 1 to N do

if (i = pf ) then
// the particle is fixed
x̄i = xf ;

else
v̄i = vt−1

i +
f text ∆t
mi

;
x̄i = xt−1

i + v̄i ∆t;

// shape matching, Fig. 2C
compute t0, the center of mass of x0

i ;
compute t̄, the center of mass of x̄i;
compute the relative positions
pi = x̄i − t̄ and qi = x0

i − t0;
estimate the optimal linear transform
A = (

∑N
i mipiq

>
i )(
∑N
i miqiq

>
i )−1 = ArAs;

compute the polar decomposition Ar = RS with
S =

√
A>r Ar and R = ArS

−1;
// goal positions
for i = 1 to N do

if i = pf then
// the particle is fixed
gi = xf ;

else
gi = ((1− β)R + βA)qi + t̄;

// integration, Fig. 2D
for i = 1 to N do

xti = x̄i + α(gi − x̄i);
vti = (xti − xt−1

i )/∆t;

xf . The particle pf is selected as the one closest to the tip
of the tool, see Fig. 6(a). Its position is fixed to the final
position observed in the image after deformation.

Since we do not include friction force into the model, the
simulated object can move in response to the manipulation.
To avoid this, we also fix the simulation particles that are
on the support surface under the tip and keep the simulated
object in the same place as the observed foam. We then
run the simulation for a specific β-value until it reaches an
equilibrium state with final deformed configuration xβi .

C. Deformability Estimation

To estimate the deformability parameter β that best de-
scribes the deformed object, we minimize an error function
that measures the distance between the observed and simu-

(a)

(b)

(c)

Fig. 6. The undeformed object state is shown in (a), with the initial particle
configuration depicted by the green circles. The red circles in (b) and (c)
correspond to the observed particle positions, advected through the optical
flow measurements. The blue crosses are the final deformed configurations
obtained from simulating with different β values. In (b), a β value equal to
0.0 was used, whereas in (c), β was set equal to 0.58 as estimated by our
approach. The observed and simulated particles are much closer together in
(c) than in (b).

lated particles in the final deformed state:

E(β) =
1

N

N∑
i=1

‖x̃di − xβi ‖ . (15)

To find the minimum, we ran the simulation for a number
of β values uniformly sampled from the interval [0, 1]. The
β with the lowest residual in (15) is selected as representing
the objects’ deformability.

IV. EXPERIMENTAL EVALUATION

To validate that an approach that combines visual per-
ception with MSM simulation is suitable to characterize the
deformability of objects, we investigate the deformations of a
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Fig. 7. The flat edge of the clamp’s screw is moved to the same end
position for each foam.

TABLE I
FOAM PROPERTIES AND ESTIMATED DEFORMABILITY

Foam 1 2 3 4 5

Density 24 28 39 39 50

Hardness 80 150 120 200 230

beta 0.78 0.69 0.60 0.58 0.51

set of foams that are equal in size, but differ in density and
hardness. The density is expressed in kg/m3 whereas the
hardness is defined in terms of the force (in N) required to
compress the foam to 40%. Together, these parameters deter-
mine the firmness. Higher density and hardness imply higher
firmness. For instance, 24/80 —with 24 kg/m3 density and
80 N hardness —is softer than 50/230. Table I contains the
density and hardness of all foams used in the experiments.

To ensure that we squeeze each foam to the same end
position, we use a clamp to control the push level, as depicted
in Fig. 7. We position a Logitech HD Pro Webcam C920
camera 30 cm away from the foam, to record videos of
the manipulations. This particular camera provides a high
resolution, a wide field of view, and is adequate to accurately
estimate the optical flow of textured objects. The camera’s
frame rate is 30 Hz and the frame size is 1920×1080 pixels.
We apply only normal force using the flat edge of the clamp’s
screw to capture the 2D motion better. The optical flow is
calculated at 10 Hz. The particles are initialized on a 4×8
grid of particles with 100 pixels spacing, see Fig. 6(a), and
then advected using the estimated optical flow field. The
parameter search is performed as described in section III.C.

A. Experimental Results

Table I contains the deformability values β as estimated by
our approach for the different foams. We can observe a 0.23
difference between the deformability estimated for the softest
(24/80) and the firmest (50/230) foams. Figure 9 shows
these same values as a function of increasing firmness. This
figure clearly illustrates that our estimate of deformability is
in accordance with the actual characteristics of the foams,
and decreases with increasing firmness. This validates that
object deformability can be estimated solely using motion

Fig. 8. The error between the observed and simulated particles in the final
deformed state of foam 39/200 for different β values. We observe a global
minimum around 0.58.

Fig. 9. The optimal β as a function of firmness. The estimated deforma-
bility consistently decreases with increasing firmness across all foams.

information and a position-based dynamics simulation using
MSM.

We also observe that although the hardness of 28/150 is
larger than 39/120’s, we obtain a larger β for 28/150, sug-
gesting that our measure of deformability is more sensitive
to density than hardness.

We finally show the evolution of the error as a function
of β over the [0, 1] interval in Fig. 8. This clearly indicates
that there is a single global minimum for the deformability.

V. CONCLUSION

We have presented a framework to estimate the deforma-
bility of an object. It relies on optical flow and physics
simulation to observe and simulate the behavior of real-
world objects and to characterize their deformability. The
main novelty of this paper is the use of position-based
dynamics using MSM to estimate the deformability of real-
world objects based solely on visual perception, thus without
knowing the exact force applied. We demonstrated that the
framework can correctly distinguish foams with different
physical properties.

The estimated deformability can be used directly to adjust
the physical properties of a virtual object in the simulation



environment so that the real-world object’s behavior can be
more accurately simulated. This then allows to predict the
outcome of an interaction with this object and to avoid un-
desired behaviors such as permanently deforming or breaking
it.

Similar to [38] and [39], we relied on a highly-controlled
experimental setup with good visibility and where the ob-
ject is unoccluded. In our future work, we plan to use a
probabilistic approach, such as particle filtering, to consider
more realistic scenarios where e.g. human hands or robotic
grippers occlude the object and the camera viewpoint can be
arbitrary.
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