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Distributed key-value stores provide scalable, fault-
tolerant, and self-organizing storage services, but fall
short of guaranteeing linearizable consistency in partially
synchronous, lossy, partitionable, and dynamic networks,
when data is distributed and replicated automatically by
the principle of consistent hashing [14]. This work in-
troduces consistent quorums as a solution for achieving
atomic consistency. We present the design and implemen-
tation of CATS, a key-value store which uses consistent
quorums to guarantee linearizability and partition toler-
ance in such adverse and dynamic network conditions.
CATS is scalable, elastic, and self-organizing; key prop-
erties for modern cloud storage middleware. Our system
evaluation shows that consistency can be achieved with
practical performance and modest overhead: 5% decrease
in throughput for read-intensive workloads, and 25%
throughput loss for write-intensive workloads. CATS de-
livers submillisecond operation latencies under light load,
single-digit millisecond operation latencies at 50% load,
and it sustains a throughput of one thousand operations
per second, per server, while scaling linearly to hundreds
of servers.

Distributed key-value stores, such as Cassandra [15]
and Dynamo [8], employ principles from DHTs [21]
to build scalable and self-managing data stores. In con-
trast to CATS, these systems chose availability over
atomic consistency, hence only providing eventual con-
sistency [22]. While eventual consistency is sufficient for
some applications, the complexities of merging divergent
replicas can be non-trivial. We avoid the complexities
entailed by eventual consistency while providing scalable
storage for critical applications which need atomic con-
sistency, guaranteeing it at the cost of a modest decrease
in throughput.
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To handle dynamic networks, atomic registers were
extended by protocols such as RAMBO [17], RAMBO
II [9], RDS [7] and DynaStore [1] to be reconfigurable.
Similarly, SMART [16] enabled reconfiguration in repli-
cated state machines. With consistent quorums we pro-
vide high-throughput read/write operations without pay-
ing the full cost of state machine replication which needs
coordination for every operation. Moreover, our design
does not depend on electing a single leader and the com-
plexities that come with that [5]. While these systems can
handle dynamism and provide atomic consistency, they
are not scalable as they were not designed to partition
the data across a large number of machines. The novelty
of CATS is in extending the reconfiguration techniques
contributed by these works, such that they can be used at
large scale, in order to build a system that is completely
decentralized and self-managing.

Distributed coordination systems such as Chubby [4]
and ZooKeeper [11, 13], provide linearizability and crash-
recovery, but are not scalable. Master-based key-value
stores, such as Bigtable [6], HBase [12], and Mon-
goDB [18], rely on a central server for coordination
and data partitioning. Similarly, Spinnaker [19] uses
Zookeeper [11]. Since these systems are centralized, their
scalability is limited. In contrast, CATS is decentralized
and all nodes are symmetric, allowing for unlimited scal-
ability.

Similar to CATS, Scatter [10] is a scalable and consis-
tent key-value store. Scatter employs an extra subsystem
and policies to decide when to reconfigure replication
groups. In contrast, CATS has a simpler and more effi-
cient reconfiguration protocol – both in the number of
messages and message delays – which does not require
distributed transactions. We focus on consistent-hashing
at the node level, which makes our approach directly
implementable in existing key-value stores like Cassan-
dra [15]. The main distinguishing advantage of CATS
over Scatter is CATS’ ability to handle network partitions
and mergers, an aspect largely ignored in Scatter. Once
network partitions cease, CATS merges partitioned sub-
systems into a single overlay, while Scatter will continue
to operate as separate overlays. Where Scatter provides
scalability and consistency, CATS provides scalability,
consistency, and partition tolerance.

The design, implementation, and evaluation of CATS
are available in a separate technical report [3, 2, 20].
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