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ABSTRACT. We consider the question of future global non-linear stability in
the case of Einstein’s equations coupled to a non-linear scalar field. The class
of potentials V' to which our results apply is defined by the conditions V (0) >
0, V/(0) = 0 and V”(0) > 0. Thus Einstein’s equations with a positive
cosmological constant represents a special case, obtained by demanding that
the scalar field be zero. In that context, there are stability results due to
Helmut Friedrich, the methods of which are, however, not so easy to adapt to
the presence of matter. The goal of the present paper is to develop methods
that are more easily adaptable. Due to the extreme nature of the causal
structure in models of this type, it is possible to prove a stability result which
only makes local assumptions concerning the initial data and yields global
conclusions in time. To be more specific, we make assumptions in a set of
the form Bar,(p) for some r9 > 0 on the initial hypersurface, and obtain
the conclusion that all causal geodesics in the maximal globally hyperbolic
development that start in B, (p) are future complete. Furthermore, we derive
expansions for the unknowns in a set that contains the future of By, (p). The
advantage of such a result is that it can be applied regardless of the global
topology of the initial hypersurface. As an application, we prove future global
non-linear stability of a large class of spatially locally homogeneous spacetimes
with compact spatial topology.

1. INTRODUCTION

1.1. Background, previous results. This paper is concerned with cosmological
solutions to Einstein’s equations with accelerated expansion, one motivation being
that, at present, physicists use such solutions to model the universe. The prob-
lem we wish to study is that of stability. What we mean by stability here is the
question of whether a cosmological solution, which is future causally geodesically
complete, has the property that if we make small perturbations of the initial data
of this solution, then the resulting spacetimes are also future causally geodesically
complete. In other words, we do not concern ourselves with the question of whether
the perturbed solution decays to the background solution, though we shall derive
asymptotic expansions in the cases where we prove future causal geodesic com-
pleteness. The first results on stability were obtained by Helmut Friedrich in [15] in
the 3 + 1-dimensional case. These were later extended by Michael Anderson in [1]
to the n + 1-dimensional case for n odd. The specific situation the above authors
consider is Einstein’s equations with a positive cosmological constant, though the
methods can also be generalized to include matter of Maxwell and Yang-Mills type,
cf. [17]. Let us try to sketch the ideas on which [15] is based. The first important
result is that a solution to Einstein’s vacuum equations with a positive cosmological
1
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constant A in 4 spacetime dimensions,
(1) Ric[g] = Ag,

can be considered to be a solution to the conformal field equations, developed
by Helmut Friedrich, the variables of which include a conformal factor €1, and
conversely, a solution to the conformal field equations gives a solution to Einstein’s
equations on the region where €2 > 0. Given the metric g produced by the conformal
field equations, the metric solving (1) is given by § = Q72g. In fact, the set defined
by Q = 0 corresponds to “infinity” from the point of the Lorentz manifold with
metric ¢ in some suitable sense, cf. [15], [16] and references cited therein. On the
other hand, from the point of view of the conformal field equations, there are no
complications associated with € being zero. The de Sitter metric

(2) —dt? + cosh? (t)g1,

where ¢t € R and g; is the standard metric on S3, allows a rescaling by a conformal
factor so that it becomes —ds? 4+ g1 where s € (—7/2,7/2), cf. [1]. The question
of stability of the de Sitter metric, which from a PDE point of view would seem
to be a global in time question, can then be reduced to local in time stability of a
specific solution to the conformal field equations. Since the local stability follows
from the fact that the conformal field equations, after suitable gauge choices, form
a symmetric hyperbolic system, the stability of de Sitter space follows immediately.
Another very interesting result which follows from [15] is that one can specify data at
“infinity”, and that there are no topological restrictions for doing so. Thus one gets
a large family of solutions to (1) with arbitrary spatial topology which are future
causally geodesically complete and, furthermore, future stable. Note that in the case
of 0 cosmological constant, there are no results of this type, and perhaps one should
not even expect the corresponding statement to be true. To conclude, the method is
very elegant and geometric in nature and makes it possible to avoid proving global
existence of solutions to a non-linear hyperbolic PDE. However, it does suffer from
a lack of robustness. A first indication of this is the fact that the conformal field
equations developed by Friedrich are specific to 3 + 1 dimensions. However, in the
n + 1 dimensional case, n odd, Anderson [1] showed that the equation H = 0,
where H is the ambient obstruction tensor of Fefferman and Graham, cf. [13], has
properties analogous to the conformal field equations. Consequently, for constants
H > 0, metrics of the form

(3) —dt? + cosh®(Ht)gs,

on R x 3, where (X, gs) is a compact odd dimensional Riemannian manifold with
Riclgs] = (n — 1)H?gyx, are stable solutions to Einstein’s vacuum equations with
a positive cosmological constant A = n(n — 1)H?/2. One can also specify data at
“infinity” on odd dimensional manifolds of arbitrary topology.

1.2. Motivation. The question then arises why any further consideration of the
question of stability in the context of accelerated expansion should be of inter-
est. The answer lies in the lack of robustness of the above method; if one wants
to go beyond Einstein’s equations with a positive cosmological constant, possibly
coupled to Maxwell or Yang-Mills type matter, the method does not give clear in-
dications concerning how to proceed. At present, many different mechanisms that
yield accelerated expansion are being considered, the simplest one being a positive
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cosmological constant. Other mechanisms of interest involve a scalar field with a
non-linear potential, whence the desire to understand the stability properties of
such models. Furthermore, in order to be able to say something concerning the
models of the universe physicists consider, one does in the end need to study the
stability of models which include matter. The motivation for developing the meth-
ods described in this paper is the hope that they will be of use in the treatment of
the above mentioned problems.

The formulation of the main result is non-standard in the sense that we do not
make assumptions concerning an entire initial hypersurface, but only concerning a
subset. Let us motivate this type of formulation. Consider the metric

(4) —dt* +e*M'gg

on M = R x R” (or R x T"), where go is the ordinary Euclidean metric. This
is a solution to Einstein’s equations with a positive cosmological constant A =
n(n — 1)H?/2. Consider a future directed causal curve 7 : [0,a] — M (we always
assume 0; to be future oriented) such that v(0) € {to} x R™. The length of the
projection of this curve to R™, measured with respect to the Riemannian metric
induced on {to} x R", is bounded from above by H~!. Say now, for the sake of
argument, that we wish to determine a solution to the wave equation with respect
to the metric (4) in the causal future of {¢o} x By-1(p), where the radius of the ball
is measured with respect to the Riemannian metric induced on {¢g} x R™. Then all
we need to know is what the initial data look like on the set {to} x Bzg-1(p). In
other words

() I {to} x By-1(p)] € D [{to} x Bz (p)],

using the notation of Subsection 3.2. This should be compared with Minkowski
space, for which it is only possible to determine a solution to the wave equation
on the causal future of a point if one controls the initial data on an entire Cauchy
hypersurface. The above example indicates that it might be enough to make local
assumptions concerning the initial data in order to get global in time conclusions
concerning the solution. The advantage of such a formulation is that it could be
applied regardless of the topology of the initial hypersurface.

The above observations suggest that in the context of accelerated expansion, the
connection between the global topology of the Cauchy hypersurfaces and the dy-
namics is less strong than in the context of non-accelerated expansion. In fact, it
is tempting to make the following conjecture. Let (M, g) be a globally hyperbolic
and future causally geodesically complete Lorentz manifold. We shall say that late
time observers are oblivious to topology if there is a Cauchy hypersurface 3 such
that there is no causal curve whose past contains 3 and we shall say that late time
observers are not oblivious to topology if for every Cauchy hypersurface 3 there is
a causal curve whose past contains ¥.. A stronger version would be to say that
late time observers in M are completely oblivious to topology if there is a Cauchy
hypersurface ¥ such that for every causal curve ~y, the intersection of the causal
past of v with ¥ is contained in a coordinate chart on X, the domain of which
is diffeomorphic to a ball in R™. The conjecture is then that if (M,g) is a fu-
ture causally geodesically complete vacuum solution to Einstein’s equations with a
positive cosmological constant and compact Cauchy hypersurfaces, then late time
observers in M are oblivious to topology. That the corresponding conjecture with
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the word “oblivious” replaced by “completely oblivious” is incorrect follows by an
important example which is due to an anonymous referee. The example is given by
the metric

(6) gr = —dt* + cosh?(Ht)dz® + H 2gse

on Mr =R xS!xS?, where A > 0, H = A'/? and gs> is the standard metric on the
unit 2-sphere. Then (Mg, gr) is causally geodesically complete, satisfies Einstein’s
vacuum equations with a cosmological constant A and if ¥ is an arbitrary Cauchy
hypersurface in (Mpg,gr) and 7 is an arbitrary inextendible causal curve, then
the intersection of the causal past of v with ¥ is not contained in a subset of %
homeomorphic to a 3-ball, c¢f. Lemma 21. The spacetime (Mg, gr) is sometimes
referred to as the Nariai spacetime. It is also of interest to note that the conjecture
that late time observers are oblivious to topology is false in the class of solutions to
the Einstein-Maxwell equations with a positive cosmological constant (again, the
example is due to an anonymous referee). In fact, let A > 0, Ag = 2A, 7o = (2A)'/?
and

(7) g = —dt? +dz? + Ajlgs:, F =(dt ®de—dr®dt).

Then gsx is a Lorentz metric and F' a 2-form on Mpg. Furthermore, one can compute
that

VaoFu =0,
where V is the Levi-Civita connection associated with gg. Consequently, F' satisfies
Maxwell’s equations without sources:

V‘)‘Faﬁ =0, V[QFM,] =0,

cf. [32], p. 70. Furthemore gx and F satisfy Einstein’s equations with a positive
cosmological constant A:

Gaﬁ + Agag = Taﬁ,
where the stress energy tensor 7' is given by

1
Tozﬁ = FOzuFﬁ# — ZgaﬁFuuF#V~

To conclude, (Mg, g, F) is a globally hyperbolic and geodesically complete solution
to the Einstein-Maxwell equations with a positive cosmological constant A but late
time observers are not oblivious to topology, cf. Corollary 57, p. 89, of [24] and
the arguments presented in the proof of Lemma 21.

In view of the above conjecture, there is reason to expect that the global topology
should not play an important role when studying the stability of future causally
geodesically complete vacuum models with a positive cosmological constant, since
one can restrict one’s attention to the future of any fixed Cauchy hypersurface when
doing the analysis. Nevertheless, the example (6) should be kept in mind; if the
Cauchy hypersurfaces are such that they allow a metric of positive scalar curva-
ture, the situation might be more complicated. If one instead considers vacuum
solutions to Einstein’s equations without a cosmological constant, the situation is,
however, quite different, cf. [14], [2] and references cited therein. In fact, the ex-
isting conjectures, with which all understood solutions conform, imply that in the
vacuum context without a cosmological constant, the global spatial topology plays
a crucial role in the asymptotic behaviour. Furthermore, it is natural to conjec-
ture that if (M,g) is a future causally geodesically complete vacuum solution to
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FEinstein’s equations with a vanishing cosmological constant and compact Cauchy
hypersurfaces, then late time observers in M are not oblivious to topology.

1.3. Matter models, initial value problem. Let us be more specific concerning
the models we wish to study. We are interested in Einstein’s equations

(8) Guv =Ty,
where
Coar = Ry~ 3030,
R,,, is the Ricci tensor of a Lorentz metric g on an n + 1 dimensional manifold M,

and S is the associated scalar curvature. Concerning the stress energy tensor, we
assume it to be of the form

(9) T;w = Vp¢vu¢ - %V’quv'yqs + V(¢) Juv>

where ¢ € C*®(M) and V € C*(R) is a function such that V(0) = V5 > 0,
V’(0) = 0 and V" (0) > 0. For the sake of future convenience, let us define H to be
the positive solution to

2

n—1

and define y by
(11) x=V"(0)/H?.

By assumption H,y > 0. With this choice of H, (3) and (4) are solutions to (8)
with ¢ = 0 since they are both solutions to Einstein’s equations with a positive
cosmological constant A = n(n — 1)H?/2. Note that (8) is equivalent to

2
(12) R,uu = V/_L(bvu(b + mv(¢)guu~
It should of course be coupled to a matter equation for ¢, which is given by
(13) VIV ,.6 — V/(9) = 0.

As a consequence, V*T,, = 0, i.e. T}, is divergence free. Thus this equation
ensures the compatibility of a stress energy tensor of the form (9) with (8), since
the Bianchi identities imply that V#G,, = 0. Note, however, that V#T),,, = 0 does
not imply (13), since if ¢ = ¢ is a constant such that V'(¢g) # 0, then V#T),,, = 0,
but (13) is not satisfied. The system of equations of interest is thus (12)-(13). The
main motivation for studying these equations comes from the n = 3 case, but since
the dimension does not play any significant role in the arguments, we shall only
assume 1 > 3 in what follows.

Let us recall some basic facts concerning spacelike hypersurfaces in Lorentz man-
ifolds that we shall need in what follows. Assume we have an n + 1-dimensional
Lorentz manifold (M,g) and a scalar function ¢ satisfying (12)-(13). If ¥ is a
spacelike hypersurface in M, and the future directed unit normal to this surface is
N, then

(14) NENYG, = %[r — kiK' 4 (trk)?],



6 HANS RINGSTROM

where all the objects that appear on the right hand side are intrinsic to the hyper-
surface X: if h is the Riemannian metric induced on ¥ by g, then r is the scalar
curvature of h, k is the second fundamental form, defined by

E(X,Y)=(VxN,Y),

for vectors X,Y tangent to the surface ¥ (where V is the Levi-Civita connection
associated with g), and indices are raised and lowered by h. For a derivation of
(14), see [32]. Combining (14) with (8), we obtain

1 y 1 ,
(15) Sl = kighid + (6rk)%) = [(N)? + DgDig] + V (9)
where D is the Levi-Civita connection on ¥ induced by h. We refer to (15) as the
Hamiltonian constraint. For any vector X tangent to >, we have

XENYG,,, = [D7kji — D;(trk)] X,
cf. [32]. Combining this with (8), we obtain
(16) D'ky; — Dy(trk) = N(¢) Dy,

the so-called momentum constraint. This leads to the following initial value prob-
lem.

Definition 1. Initial data for (12)-(13) consist of an n dimensional manifold ¥, a
Riemannian metric h, a covariant 2-tensor k and two functions ¢y and ¢, on X, all
assumed to be smooth and to satisfy

(17) r—kyk" + (trk)? = ¢f 4+ D'¢oD;go + 2V (o),
(18) Djkji*Di(trk) = ¢1D;¢o,

where D is the Levi-Civita connection of h, r is the associated scalar curvature and
indices are raised and lowered by h. Given initial data, the initial value problem
is that of finding an n + 1 dimensional manifold M with a Lorentz metric g and a
¢ € C*°(M) such that (12) and (13) are satisfied, and an embedding i : ¥ — M
such that ¢(X) is a Cauchy hypersurface in (M, g), i*g = h, ¢ o i = ¢, and if N
is the future directed unit normal and x is the second fundamental form of (%),
then i*x = k and (N¢) o i = ¢1. Such a triple (M, g, ¢) is referred to as a globally
hyperbolic development of the initial data, the existence of an embedding ¢ being
tacit.

Remark. The concept of a Cauchy hypersurface is defined in Subsection 3.2. One
can of course define the concept of initial data and development for a lower degree
of regularity. We shall, however, restrict our attention to the smooth case in this
paper.

For results concerning the existence of initial data in the current setting, we refer
the reader to [9].

Definition 2. Given initial data for (12)-(13), a mazimal globally hyperbolic devel-
opment of the data is a globally hyperbolic development (M, g, ¢), with embedding
i: 3 — M, such that if (M’,¢’, ") is any other globally hyperbolic development of
the same data, with embedding i’ : ¥ — M’, then there is a map ¢ : M’ — M which
is a diffeomorphism onto its image such that ¥*g = ¢’, ¥v*¢ = ¢’ and 1) o i’ = 3.
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Theorem 1. Given initial data for (12)-(13), there is a mazimal globally hyperbolic
development of the data which is unique up to isometry.

Remark. When we say that (M, g, ¢) is unique up to isometry, we mean that if
(M',q',¢") is another maximal globally hyperbolic development, then there is a
diffeomorphism 1 : M — M’ such that ¢*¢’ = g, ¥*¢' = ¢ and 1 o7 = ¢/, where ¢
and ¢/ are the embeddings of ¥ into M and M’ respectively.

The proof is as in [8]. This is an important result and will be of use to us in this
paper. However, it does not yield any conclusions concerning e.g. causal geodesic
completeness.

1.4. Results. Recall that the constants H > 0 and x > 0 are determined by the
potential V' through the equations (10) and (11). Before we state the main result,
we need to introduce some terminology. Let ¥ be an n dimensional manifold.
We shall be interested in coordinate systems x on open subsets U of ¥ such that
x : U — B1(0) is a diffeomorphism. If S is a tensor field on X, we shall use the
notation

1S m vy
1/2
212 dl
- Xy S erseatpat |
01,05 =1 J1,.., 00 =1 |a|<I
where the components of .S are computed with respect to = and the derivatives are
with respect to x. When we write ||S|| ;1(1), we shall take it to be understood that

there are coordinates x as above. Below, we shall use ¢ to denote the Kronecker
delta with respect to the x coordinates. In particular, we shall use the notation

||9—G5HH1(U)
1/2

= / “(gi5 — ady;) o o H2dat - - da”
Gg= 1 o<t ¥ =)

Theorem 2. Let V' be a smooth function such that V(0) = Vo >0, V/(0) =0 and
V"(0) > 0. Let H,x > 0 be defined by (10) and (11) respectively and let n > 3.
There is an € > 0, depending on n and V, such that if (3, h, k, ¢o, ¢1) are initial
data for (12) and (13) with dim% = n, x : U — B1(0) are coordinates as above and

||h— 16H_26||Hk0+1(U) + HK,_ 16H_16||Hk0(U)
(19) + ol arotrwy + 11l oy < €
where ko is the smallest integer satisfying ko > n/2 + 1, the mazimal globally hy-
perbolic development (M, g, $) has the property that if i : ¥ — M is the associated
embedding, then all causal geodesics that start in i{x~*[B1,4(0)]} are future com-
plete. Furthermore, there is a t_ < 0 and a smooth map
(20) ¢ : (t,,OO) X B5/8(0) - M7

which is a diffeomorphism onto its image such that all causal curves that start in
i{z~1[B1,4(0)]} remain in the image of ¥ to the future and g and ¢ have expansions
(21)-(31) in the solid cylinder [0,00) x Bs,s(0) when pulled back by . Finally,
¥(0,p) =iox~Y(p) forp € Bs/5(0). In the formulas below, Latin indices refer to
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the natural Buclidean coordinates on Bs/5(0) and t is the natural time coordinate
on the solid cylinder. Define ¢ = 4x/n?, A\ = n[l — (1 — )Y/?]/2 for ¢ € (0,1),
A =mn/2 for ( > 1 and Ay, = min{l,A\}. There is a smooth Riemannian metric p
on Bs5(0) and constants K; such that

(21) (g (2, ) = pYllen + lle 2 gy (L) — pijllen
(22) le™ 0,945 (t, ) — 2H pil|
for every 1 > 0, where p¥ are the components of the inverse. Here C' denotes the

C' norm on Bs/5(0). Concerning gom, there is an o > 0 and constants K; such
that for all 1 > 0,

S K1672)\mHt’
< Kleiz)\mHt,

1

(23) ‘ gom(t,) = mpij%mj

+ ”aOQOm(ta ')HC’ < KleiaHa
ol

where Yim; are the Christoffel symbols of the metric p. Let k(t,-) be the second
fundamental form induced on {t} x Bs;s5(0). The estimates for goo and k;; depend
on the value of Ay. If Ay < 1, we have

(24) lgoo(t. ) + Ller + [ogoo(t, Mier < EKye 2 n o,
(25) le 2 ki (t,) — Hpyjllor < Kje 2 Ht,

but for Am = 1, we have

(26) 1180900 + 2AmH (goo + D](t,)||cr < Kje 2H1,

(27) lgoo(t, ) + 1l < Kj(1+ ) /2720,
(28) le 2tk (t,) — Hpijllow < Ko(1+£2)/2e2Ht,

Concerning ¢ there are three cases to consider. Let us define p = eMtp. If ( < 1,
then there is a smooth function @y such that

(29) let,) = wollor + |opllcn < Kie™ .
If ( =1, there are smooth functions pg and w1 such that
(30) 180 (t, ) = ¢uller + llp(t, ) — 1t — pollor < Kiem M.

Finally, if { > 1, there is an anti symmetric matriz A, given by
0 0H
A= ( —0H 0 ) ’
where § = n(¢ — 1)1/2/2, and smooth functions po and p1 such that

@ (e ) er-(2)

Remark. Since the metric h is essentially 16 H ~26§ with respect to the x-coordinates,
the ball of radius 1 with respect to the z-coordinates is approximately a ball of
radius 4H ! with respect to h. Recall the discussion concerning the linear wave
equation on a background of the form (4). In order to predict what happens to
geodesics that start inside a ball of radius H !, we need to control the initial data in
a ball of radius 3H 1, cf. (5). In fact, we then control the behaviour in a cylinder
of radius 2H 1, ¢t > ty3. In our case, we make assumptions on a ball of radius
4H~1, the reason being that we need a margin, which we have arbitrarily chosen
to be H~! in the above statement. If one is interested in having a smaller margin
or only interested in getting conclusions in a smaller region, one can reformulate

S Kle_aHt.
Cl
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the theorem accordingly. It would be nice to have a result with purely geometric
conditions and it should be possible to reformulate the theorem in such a way using
harmonic coordinates. However, that would require an unwarranted effort, since
the statement is technical anyway and a geometric formulation is not needed in the
applications. It is of interest to note that the estimates break down as y — 0+;
in this limit, { — 0+ so that A\, A\,,,— 0+4. In other words, we certainly need
the condition V”(0) > 0. The reason the condition on the initial data involves
more than n/2 + 2 derivatives of the metric is that we need this condition in the
global existence proof. Let us note that the expansions obtained here are not
complete in the sense that the number of free functions appearing in the expansions
is less than the number of free functions one gets to specify as initial data. For a
thorough analysis of the question of asymptotic expansions in the case of a positive
cosmological constant, we refer the reader to the work of Alan Rendall [28]. Note,
however, that this analysis is based on a Gaussian foliation, which is not the type
of foliation we obtain in the above result, cf. (23). For a discussion of asymptotics
on a formal level in the case of curvature coupled scalar field models, we refer the
reader to [7]. Finally, let us observe that the example (6) is such that regardless
of the choice of Cauchy hypersurface ¥ in (Mg, gr) and of the choice of open set
U in X, the above theorem is not applicable to U and the initial data induced on
Y by gr. The reason is as follows. Assume the theorem were applicable and let v
be an inextendible causal curve in (Mg, gr), i.e. the maximal globally hyperbolic
development of ¥ with the appropriate induced initial data, passing through the
subset of U corresponding to By,4(0) under z. Then the proof of the theorem
implies that J~(y) N X would be contained in a set diffeomorphic to a 3-ball, in
contradiction with Lemma 21.

The proof of the above theorem is to be found in Section 16. In [15], no results
of the above form were stated, but it should be possible to derive a result such as
Theorem 2, possibly with more detailed information concerning the asymptotics,
for Einstein’s equations with a positive cosmological constant using the results of
[15]. The reason it should be possible is that the main tool that is needed is the
stability of metrics of the form (4) to the future. In fact, one needs to have a
hyperbolic reduction of the equations which is such that one can prove stability
even for data that do not satisfy the constraints. Since global non-linear stability
from the point of view of Friedrich’s conformal field equations corresponds to local
stability, this is not a problem.

One consequence of the above result is that if one perturbs initial data correspond-
ing to solutions of the form (3), for any dimension n > 3, inside the class of models
we are considering, one gets a causally geodesically complete spacetime with as-
ymptotic behaviour of the form given in the statement of Theorem 2 both to the
future and to the past.

Theorem 3. Let V be a smooth function such that V(0) =V, >0, V'(0) =0 and
V"(0) > 0. Let H,x > 0 be defined by (10) and (11) respectively. Finally, let ¥ be
an n > 3 dimensional compact manifold and assume that it admits a Riemannian
metric gs. such that Riclgs] = (n — 1)H?%gs. Given tg and a fized choice of Sobolev
norms || « || e on tensors on X, there is an € > 0 such that if (X, h,k, ¢o, ¢1) are
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initial data for (12)-(13) satisfying

Ih = cosh®(Hto)gs|| zrro+r + l|doll zrro+r
+||¢1||Hk0 + ||K? - HSlnh(Hto) COSh(Hto)ggnHko S €

where ko is the smallest integer satisfying ko > n/2 + 1, then the mazimal globally
hyperbolic development associated with (X, h, k, ¢o, 1) is causally geodesically com-
plete and admits expansions as stated in Theorem 2 both to the future and to the
past.

Remark. The metric (3) is a solution to (12)-(13) with ¢ = 0. Concerning the
definition of Sobolev norms on tensorfields on manifolds, we refer the reader to
Subsection 3.4. The above statement constitutes a generalization of some of the
stability results of [15] and [1], but we are of course not able to prove any results
starting at infinity. The statement that there are expansions to the future should
be interpreted as saying that there is a Cauchy hypersurface S in the maximal
globally hyperbolic development of (X, h, k, ¢g, ¢1) such that for every p € S, there
is a neighbourhood of p to which Theorem 2 applies. The statement concerning
the past is similar. In particular, all the spacetimes M constructed in the above
theorem have the property that late time observers in M are completely oblivious
to topology.

The proof of the above theorem is to be found at the end of Section 17.

Let us consider spatially locally homogeneous solutions to Einstein’s equations with
a positive cosmological constant. Concerning this situation, there are results due
to Wald, cf. [33], in the case of n = 3. Since the next theorem is partly based on
the results of [33], we shall thus restrict our attention to the dimension n = 3 for
the remainder of this subsection. Due to the analysis presented in [33], one would
expect most spatially locally homogeneous solutions to Einstein’s equations with a
positive cosmological constant to have the property that at a “late enough” Cauchy
hypersurface, Theorem 2 would be applicable in a neighourhood of every point. The
possible exceptions would be spacetimes whose Cauchy hypersurfaces have universal
covering spaces diffeomorphic to S® or S? x R, cf. (6) and the remark made after
the statement of Theorem 2. In this paper, we shall only consider spatially locally
homogeneous spacetimes that have compact spatial topology, and we shall exclude
solutions whose Cauchy hypersurfaces have universal covering spaces diffeomorphic
to S? or S? x R. One could of course also consider the case of non-compact spatial
topology, but as far as we know, there are no methods that would guarantee the
existence of suitable non-trivial perturbations of homogeneous initial data that do
not admit a compact quotient.

Theorem 4. Let V be a smooth function such that V(0) = Vo > 0, V'(0) = 0
and V"(0) > 0. Let H,x > 0 be defined by (10) and (11) respectively, let M
be a connected and simply connected 3-dimensional manifold and let (M, g,k) be
initial data for Einstein’s equations with a positive cosmological constant A = 3H?.
Assume, furthermore, that one of the following conditions are satisfied:

o M is a unimodular Lie group different from SU(2) and g and k are left
invariant under the action of this group.

o M = H3, where H" is n-dimensional hyperbolic space, and the initial data
are invariant under the full isometry group of the standard metric on H3.
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o M =H?xR and the initial data are invariant under the full isometry group
of the standard metric on H? x R.

Assume finally that trgk > 0. Let I' be a cocompact subgroup of M in the case
that M is a unimodular Lie group and a cocompact subgroup of the isometry group
otherwise. Let 3 be the compact quotient. Then (X,g,k) are initial data. Make a
choice of Sobolev norms || - ||z on tensorfields on X. Then there is an € > 0 such

that if (3, p, k, @0, 1) are initial data for (12)-(13) satisfying

1o = gllzxorr + 1k = Kllmro + G0l zroer + [ @rllmro < e,

where kg is the smallest integer satisfying ko > n/2+1, then the mazimal globally hy-
perbolic development corresponding to (X, p, K, ¢1, o) is future causally geodesically
complete and there are expansions of the form given in the statement of Theorem
2 to the future.

Remark. If M is a 3-dimensional unimodular Lie group it contains a cocompact
subgroup I, cf. [26]. Concerning the definition of Sobolev norms on tensorfields
on manifolds, we refer the reader to Subsection 3.4. The statement that there are
expansions to the future should be interpreted as saying that there is a Cauchy
hypersurface S in the maximal globally hyperbolic development of (%, p, &, ¢g, ¢1)
such that for every p € S, there is a neighbourhood of p to which Theorem 2 applies.
As a consequence, all the spacetimes M constructed in the above theorem have the
property that late time observers in M are completely oblivious to topology.

The proof of the above theorem is to be found in Section 17.

The proof of Theorem 4 is based on Theorem 2 and illustrates the usefulness of
a result in which local (in space) assumptions yield global (in time) conclusions;
one can ignore the global topology of the compact spacelike hypersurfaces in the
argument. Since Theorem 2 could probably have been proved in the case of a pos-
itive cosmological constant using the methods of [15], Theorem 4 could reasonably
also have been proved in that context quite some time ago. The latter theorem
constitutes a quite general stability result for spatially locally homogeneous solu-
tions to Einstein’s equations with a positive cosmological constant and compact
Cauchy hypersurfaces. It should also be noted that the spacetimes resulting from
the perturbed initial data are not only future causally geodesically complete; they
also have asymptotics “similar” to those of the spacetimes around which one is
perturbing, cf. the asymptotics obtained as a result of Theorem 2. Note that the
corresponding result is not to be expected in the case of a vanishing cosmological
constant. As a justification for this statement, let us quote the following result
from [31] (based on the results of [29]). Consider the maximal globally hyperbolic
development (M, g) of left invariant vacuum initial data on §1(2, R), the universal
covering group of SI(2,R) (which is a unimodular Lie group). Let ¥ be a Cauchy
hypersurface of homogeneity and for p € M, let ts(p) be the proper time distance
from X to p. Define

ng =sup{a >0 | 3C < 00 : |[(tE Rap s R)(p)| < C Vp € JT (D)}

Then 7y, = 6 if the initial data have an extra rotational symmetry and ny = 2 if
not. In particular, s, does not depend on . This proves that the initial data with
an additional rotational symmetry lead to developments with radically different
behaviour from those corresponding to initial data without this symmetry.
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Let us make a brief comment concerning the topologies allowed in Theorem 4. In
the case of H? x R, the resulting topologies are trivial circle bundles over a higher
genus surface, in the case of H? one gets compact 3-dimensional hyperbolic mani-
folds, and in the case that the initial data are left invariant under the group action of
a unimodular Lie group, we refer the reader to [26] for a discussion of the resulting
topologies. The restriction to cocompact subgroups of unimodular Lie groups is in
a sense artificial. Most unimodular Lie groups admit metrics with a 4-dimensional
isometry group, and such metrics admit a much larger class of cocompact subgroups
of the isometry group. The reason we have excluded these possibilities is mainly
technical; complications arise when analyzing how isometries of the development
resulting from isometries of the data relate to the specific foliation under consider-
ation. Since these technical issues are not the main subject of this paper, we shall
not treat them here, though there is no reason to believe that it could not be done.
Note, however, that restricting one’s attention to more symmetric metrics reduces
the freedom in specifying initial data.

The above result is only intended to give an example of results that follow from
Theorem 2. As another example, Alan Rendall has obtained results concerning
spatially homogeneous solutions to exactly the type of model considered in this
paper, cf. [27]. Combining those results with the ones obtained in this paper,
it should be possible to prove stability results for spatially locally homogeneous
spacetimes with compact spatial Cauchy hypersurfaces for which the scalar field is
not necessarily small initially.

In Section 18 we demonstrate that there are initial data on manifolds of arbitrary
compact topology that yield future causally geodesically complete maximal globally
hyperbolic developments.

1.5. Outline of the proof of Theorem 2. As we shall explain in more detail
below, the essential problem is that of proving stability of the metric (4) on R x T".
In order to obtain a hyperbolic problem, we shall use gauge source functions, cf.
[18]. The idea is to replace Ry, in the equation (12) with RW given by (47), where
F,, are the gauge source functions. In other words, we have the relations (49)-(50).
The F), are allowed to depend on the spacetime coordinates and on the metric, but
not on any derivatives of the metric. The modified system, obtained by replacing
Ry, with R;w in (12)-(13), is then a system of hyperbolic PDE’s. If the constraint
equations are satisfied originally and the initial data for the modified system are
set up in the right way, one can prove that D,,, defined in (50), vanishes where the
solution is defined so that one obtains solutions to the original equations by solving
the modified system, cf. Section 4 for the details. However, for practical reasons,
we shall be interested in initial data that do not satisfy the constraint equations.
The most naive choice of gauge source functions would be the contracted Christoffel
symbols of the background. When considering a solution such as Minkowski space,
there is a natural candidate, namely F,, = 0. In the case of the metric (4), there
are, however, at least two choices. For (4), Tg = —nH and T'; = 0 with respect to
the standard coordinates on R x T™. As a consequence, there are two naive choices;
either one fixes F'* to be the contracted Christoffel symbols of the background with
indices upstairs or one fixes F}, to be the contracted Christoffel symbols of the
background with indices downstairs. It turns out to be useful to choose the former
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of these possibilities; our choice F), = nHgg, yields
1
V(MFV) = inHaoglw,

cf. the proof of Lemma 4 (for the case under discussion here, w = H), which
acts as a damping term. Unfortunately, it turns out to be insufficient to only use
gauge source functions, we need to add corrections as well, cf. (53)-(54), where the
M,,, and My vanish when D,, vanishes and contain at most first derivatives of the
metric and scalar field. The reason we need to add these corrections is because we
are interested in initial data that violate the constraints. The specific choices we
make, cf. (51)-(52), lead to the equations (144)-(147), where u = goo + 1, u; = goi
and h;; = e 2H tg;;. In order to indicate on a heuristic level why these equations
are to be preferred over the ones obtained without using the corrections, let us
consider the equations that result, starting with (144)-(147), when we ignore terms
that are quadratic in expressions that vanish for the background solution and when
we replace g*°9,05 with —02 + e 2H*A, where A is the ordinary Laplace operator
on T™ (these equations give a rough impression of the asymptotic behaviour, but
they do not give the correct decay rates). The corresponding equations for u, h;;
and ¢ then decouple and we obtain exponential decay for v and ¢ and convergence
for h using straightforward energy estimates. Let us illustrate how one obtains
decay by considering the idealized equation for w:

(32) gy — e 2H AU+ (n + 2)HOgu + 2nH?u = 0.

One can find positive constants, v, d, ¢, 7 such that
&= %/ﬂ [u? 4 e 2H! |\ Vu|? 4+ 2y Huuy + 0 H*u?]dz,
where V is the ordinary gradient on T", satisfies
HE < —mHE, E£>(¢ [ [u?+e?MVu? + H*u?)dx.
Tn

The argument to prove this is similar to, but simpler than, the proof of Lemma
15. As a consequence, £ decays exponentially and by applying spatial derivatives
to (32), we can use the same argument to obtain exponential decay of u in any
C! norm. The equation for u; does not decouple, but it is possible to use the
information already obtained concerning the other components of the metric to
analyze its behaviour. If we had not added the corrections, we would not have
obtained this structure. Considering the proof of Lemma 6, we see that if we had
not added the term Mg, then the equation for u obtained after ignoring quadratic
terms etc. would have coupled to both u,, and h;;. Similarly, had we not added
My;, the equation for u; resulting after the above idealizations would have been
even less decoupled than before. However, the worst aspect of not adding the
corrections would be that the “damping structure” of the equations for u and wu;
would be lost, where by “damping structure” we mean the second and third terms
on the left hand side of (144) and (145) (note also that in order to get this damping
structure, we need to have n > 3 due to (145)).

When proving future global existence of solutions to (144)-(147), the main problem
is of course to find bootstrap assumptions that
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e make it easy to estimate the non-linear terms that are quadratic in ex-
pressions that vanish on the background (in the end we devise a method
whereby it is enough to compute the number of spatial indices of a such a
term and the number of derivatives it contains in order to estimate it in
the Sobolev space of interest),

e can be expressed naturally in terms of energies that, in their turn, fit to-
gether naturally with the structure of the equations (144)-(147).

Ideally, one would like the bootstrap assumptions to be such that they yield optimal
control of the solutions. However, it is difficult to see how that could be achieved
in the present situation due to the fact that the leading order part of the energies
naturally associated with the equations is, up to some factor, equivalent to

(33) E = Z /

laj<t VT

[(0%0w)? + gij(aiaav)(0]-80‘1;)](1107

where v should be thought of as one of u, u;, h;; and ¢. The problem arises due
to the fact that g% is of the order of magnitude e~2#*. This has as a consequence
that for a given bound on Ej,;, we typically obtain a much worse estimate for
the highest order spatial derivatives of v than for the spatial derivatives of v of
order ! (in the latter case, integration of the estimate for the first part of the
integrand in (33) typically produces an improved estimate). However, there is no
reason to expect the spatial derivatives of order [ + 1 to have worse decay than the
spatial derivatives of order [, and, in the end, this is of course not the case. The
bootstrap assumptions are therefore not optimal and, in particular, they allow for
an exponentially increasing go;, even though gg; can be proved to converge after
global existence has been proved. In fact, the main motivation for the particular
bootstrap assumptions we have chosen is that they ensure that it is easy to estimate
the non-linear terms, as opposed to bootstrap assumptions chosen to fit the actual
behaviour.

The essence of the proof of global existence is in proving that the bootstrap assump-
tions can be improved if the initial data are close enough to what one is perturbing
around. The means by which one achieves this goal are the equations (144)-(147).
It is very important to note that, given the bootstrap assumptions, these equations
have a hierarchical structure. The bootstrap assumptions can be used to estimate
Aoo,...,Ap appearing in (144)-(147), to estimate the commutators that appear when
differentiating these equations with respect to the spatial variables and to estimate
various terms arising in connection with the time differentiation of the energies. As
a consequence, the equations for u, h;; and ¢ can in practice be treated as if though
they were decoupled, and it is possible to improve the bootstrap assumptions for
the energies associated with these quantities before turning to the improvement of
the energy associated with u;. In other words, it is here crucial that we are dealing
with a system of hyperbolic equations as opposed to a scalar hyperbolic equation.

Concerning the asymptotics, let us note that it is necessary to improve what one
obtains in the bootstrap argument significantly after having proved global existence,
cf. Section 14.

The rough idea of the proof of Theorem 2 is to take the given initial data with
respect to the local coordinates assumed to exist and to interpret them as the
components of initial data on a subset of T™ with respect to standard coordinates.
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By using a cut-off function, one obtains a metric and a second fundamental form on
T™ coinciding with the original data on an open subset, say U, and which are close
to the initial data corresponding to (4). As a consequence of the construction, the
constraints will typically be violated outside of U. However, the stability argument
on T™ described above works even for initial data violating the constraints, so that
one obtains a global solution to the future, and this is the main step. In the Cauchy
development of U, one obtains a solution to the Einstein-scalar field equations,
and this can be used as one patch in the construction of a globally hyperbolic
development of the initial data given in the statement of Theorem 2. This globally
hyperbolic development can then be embedded into the maximal globally hyperbolic
development (MGHD) by the abstract properties of the MGHD.

Let us compare the arguments carried out here with other proofs of stability in
the case of Einstein’s equations. Beyond the work of Helmut Friedrich, which has
already been mentioned, it is natural to mention the work of Christodoulou and
Klainerman [11], the work of Andersson and Moncrief [3] and the work of Lindblad
and Rodnianski [22, 23]. The methods used in the work of Friedrich, in [11] and
in [3] are very different from the ones used in the present work and consequently,
making a comparison is not very fruitful. In the case of [22], the situation studied is
very different. In particular, [22] represents a more subtle situation due to the fact
that the rate of decay is on the borderline of what can be handled; it is necessary
to find additional structure in the non-linearity such as a null-condition, cf. [10, 21]
or weak null condition, cf. [22, 23]. Consequently, as far as the rate of decay
is concerned, the present situation is easier to deal with. Nevertheless, there are
similarities between the present argument and the one presented in [22]. Let us
focus on two aspects: the fact that the equations under consideration are systems,
as opposed to scalar equations, and the use of the wave coordinate condition in the
case of [22]. In [22], the metrics of interest are close to that of Minkowski space,
and it turns out that derivatives tangential to the future Minkowski light cones
have better decay than the derivatives transverse to these cones. As a consequence,
it is natural to divide the equation for the components of the metric into different
parts with respect to a null frame and pay special attention to the terms that
correspond to two vectors transverse to the future light cone. In this process, two
important observations are made in [22]. First, the solutions obtained obey not
only the Einstein equations but also the wave coordinate condition; this can be
used to improve the decay estimates for certain components of the metric. Second,
the components can be divided into two groups, let us call them “good” and “bad”.
Acting with the wave operator on the good components yields terms for which there
are good estimates, and acting with the wave operator on the bad components
yields terms for which there are good estimates and terms that can be estimated
in terms of the good components. In other words, there is a hierarchy similar to
the one described above; one can improve one’s knowledge concerning the good
components first, and then turn to the bad components. We refer the reader to
[22] for a careful discussion of these issues, cf. in particular (2.19)-(2.20) of [22].
There are also some similarities as far as the importance of the wave coordinate
condition is concerned. In our case, we wish to study the equations in a setting
where the constraint equations are violated, and consequently, we cannot assume
that we have the condition analogous to the wave coordinates gauge. However, the
corrections fill a function similar to that of using the wave coordinates condition.
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If we were to solve the equations on T" and were to assume that the constraints
were satisfied, it would not be necessary to add the corrections; we could simply
use the fact that the gauge source functions in that case would equal the contracted
Christoffel symbols. It would be of interest to know if one could add corrections to
the equations in [22], similar to the ones used in the present paper, in such a way
that one could avoid using the wave coordinates condition and prove a stability
result for initial data violating the constraints. Such a result might be of interest to
numerical analysts. Finally, let us note that in recent numerical work concerning
Einstein’s equations, methods similar to the use of gauge source functions have
been employed, cf. [25]. However, there is one significant difference; in the present
paper, as well as in [22], the gauge source functions are given explicitly in terms of
the metric whereas in [25], the gauge source functions obey certain equations, so
that one obtains a coupled system for the metric components, the scalar field and
the gauge source functions.

1.6. Further applications. In this paper we discuss the case of a non-linear scalar
field with a potential satisfying V' (0) > 0, V/(0) = 0 and V”(0) > 0. The methods
developed here can, however, be used as a basis for proving similar stability results
in the case that the potential is of the form V(¢) = Vi exp(—\¢) where A < v/2 for
n = 3, as we shall demonstrate in a future paper. These types of scalar fields have
been used by physicists as a mechanism for generating accelerated expansion.

2. LINEAR ALGEBRA

The proof that certain causal geodesics are future complete is based on a PDE
argument in which the basic unknowns are the scalar field and the components of
the metric. It will be natural to divide the latter part of the unknowns into three
different types according to their asymptotic behaviour, and in the present section,
we wish to specify the notation and make some observations that will be of use in
making this division.

Let g be a symmetric (n+ 1) x (n+ 1)-dimensional real valued matrix with compo-
nents gu., p,v = 0,...,n. We shall denote the n x n matrix with components g;;,
i,7 =1,...,n, by g, and if g is invertible, we shall denote the components of the in-
verse by g"*, pi,v = 0, ...,n and the n x n matrix with components ¢/, i,7 = 1, ..., n,
by g*. We shall use v[g] to denote the n-vector with components go;, i = 1,...,n
and for any symmetric and positive definite n x n-matrix £ and any n-vector v, we

shall write
1/2

n
ole = | D &yo'e?
i,j=1
We shall also use the notation |v| = |v|s, where 0;; is the Kronecker delta. Fur-
thermore, if A is an n X n real valued matrix (not necessarily symmetric), we shall
denote the (n + 1) x (n 4+ 1)-dimensional matrix with 00-component 1, 0i and i0-
components 0 and 5 components given by A;; by M 4. Finally, if p is a symmetric,
real valued (n + 1) x (n 4 1)-matrix with one negative eigenvalue and n positive
ones, we shall say that it is a Lorentz matriz.

Lemma 1. Let p be a symmetric (n+ 1) x (n+ 1) real valued matriz. Assume that
poo < 0 and that p, is positive definite. Then p is a Lorentz matriz.
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Proof. Let A be an orthogonal n x n-matrix diagonalizing p, and h = M%pM4.
Then h, = Ap, A is diagonal, with diagonal elements A\; > 0, i = 1,...,n. Further-
more hgg = poo < 0 and the eigenvalues of p and h coincide. If we compute the
determinant of h — AId, we obtain

héy hg
p(A) = (poo—)\— SV Y _")\) A=A (A —A).
Let us define
h2 h2
A =poo—A— 2o — -
f() P00 VY W
If we differentiate this function, we obtain
h2 h2
"N=-1—-—9___ "0
f ()\) ()\1 _ )\)2 ()‘n _ )\)2

Note that Aq,..., A, are all positive. Let us denote the smallest of the A; by Amin-
For A belonging to the interval (—o00, Amin ), we obtain the conclusion that f/(A) < 0.
Furthermore, f(—o00) = oo and f(0) < 0. Thus there is a unique negative value
of A\, say Ao, for which f(\) = 0. This is clearly an eigenvalue of h. Since it is
easy to see that p’(Ag) # 0, we see that )¢ is a root with multiplicity one to the
polynomial equation p(A) = 0. There is in other words only one eigenvalue in the
interval (—o0, Amin). Since h is a symmetric matrix, it only has real eigenvalues, so
the remaining n eigenvalues have to be positive. O

Lemma 2. Let g be a symmetric (n + 1) X (n + 1) real valued matriz. Assume
goo < 0 and that g, is positive definite. Then g is a Lorentz matrix,

1
34 00 =
(34) g p—

where d = |'U[g]|g—1, g* is positive definite, with
b
g

00 2 2 2
mhﬂgb—l < Jwlge < |w|gfl

(35)

for any w € R™ and

1
36 v[g7l = ———g; 'v[g].
(36) l97"] - (]

Note that g°° is negative, since goo is negative, and that there is an upper bound on
this quantity depending only on goo and d.

Proof. The first statement of the lemma is a direct consequence of Lemma 1. To
prove the remaining statements, let A be the square root of g~ L ie. the positive
definite, symmetric matrix with the property that A% = g, ! Then Atg,A = Id.
Consider h = M4gM4. Then hoo = goo, hy = Id and v[h] = A'v[g]. Let B be an
orthogonal matrix such that

(37) B'Av[g] = |A"v[g]les,

where e; = (1,0, ...,0)t. Note that

(38) A"v[g]| = olg]l,o = d.
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Consider p = MM gMaMp. Then poo = goo, p» = Id and v[p] = de;. Note that
the inverse of the 2 X 2-matrix with components p,,, u,v = 0,1 is given by

1 (1 d)
goo—d> \ —d goo )’

g~ = MaMpp~ ' MpMj,
and the matrices M4 and Mp preserve the 00-component of a matrix, we obtain
(34). Furthermore

Since

g* = ABp* Bt A,
We are interested in the supremum and infimum, for w # 0, of

w2 (gfww) | (pBAMw, Bt Atw)

|w|§_1 - (Aw,Aw)  (BtAtw, BtAtw) ’
9y

where we have used the fact that B is orthogonal and A is symmetric. Since pf
is diagonal with 11-component equal to goo/(goo — d?) < 1 and the ii-components
equal 1 for i > 1, we obtain (35). Since

d
17 _
U[p ] - goo — d2 €1,

where we have used (37), (38) and the fact that B is orthogonal to obtain the
second equality, we obtain

dBe; = A'v[g],

1 1
-1 -1 2 —1
v = ABv =-——A%[g| = ——g, vlgl,
[g ] [p ] goo — d2 [g] goo — d2 gb [g}
which implies (36). Note that one could also have obtained this equality by applying
g, Lto
9" g9i5+9%90; =0
and using the fact that (34) holds. O

3. BACKGROUND MATERIAL

In this section we state the background material we shall be needing. For most
statements, we shall not provide any proofs, but we wish to make precise statements.
Let us start by local existence of non-linear wave equations.

3.1. Standard local existence. Let g be a smooth function from R?N+2N+n+1
to the set of symmetric real valued (n+ 1) x (n 4 1)-matrices. We shall denote the
components g,,, and assume that for every multiindex o = (a1, ..., opNt2Ntnt1)
and compact interval I = [T, T3], there is a continuous, increasing function hy 4 :
R — R such that

(39) [(0%gpuw) (8, 2, E)| < hra(l€])

for all y,v = 0,..,n, t € I, z € R™ and £ € R™™*2N_ Assume that there are
constants a1, as,ag > 0 such that goo < —ai1, g, > as and |g,,| < as, with notation
as in Section 2. Then g is a Lorentz matrix valued function due to Lemma 1 and
we shall denote the components of the inverse by ¢g*”. As a consequence of our
assumptions, the components of the inverse are bounded, and there are constants
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bi,by > 0 such that ¢°© < —b; and g# > by. Given a C' function v : Q@ — RY for
some 2 C R™"" we define g[u] to be the function on Q given by

glu)(t,x) = g{t, z,u(t, x), Oou(t, x), ..., Opu(t,z)}.

Let f be a smooth function from R*V+2N+n+1 to RV satisfying an estimate of the
form (39). We shall use similar conventions concerning f as we do concerning g,
in particular we shall write f[u], the meaning being analogous to the case of g.
Sometimes it will be convenient to view f as the sum of two functions, f = f, + f,
where f, only depends on ¢ and x and f, has the property that f,(¢,z,0,...,0) = 0.
Given the above division, we shall assume that fj is of locally z-compact support; a
function h : R"*! — R™ is said to be of locally z-compact support if for any compact
interval [T1, T3] there is a compact set K such that h(t,z) = 0 if t € [T}, T»] and
x ¢ K. Note that a smooth function u : R**! — R™ of locally z-compact support
can be viewed as an element of C![R, H*(R",R™)] for any I, k. This is no longer
true if we consider smooth functions with the property that for every fixed ¢, u(t,-)
has compact support. A simple counterexample is obtained by taking ¢ € C§°(R™)
which is not identically zero and defining u(t,z) = ¢(x! — 1/t, 2%, ...,2") for t > 0
and u(t,z) =0 for ¢ < 0.

Consider the initial value problem

(40) gwjauauu = fv
(41) u(0,:) = Uo
(42) ou(0,) = Uy,

where we write g instead of g[u] and f instead of f[u].

Theorem 5. Let Uy, Uy € C(R™,RN). Then there are T- < 0 < Ty and a
unique solution u € C°[(T_, Ty) x R*,RY] to (40)-(42). The solution is of locally
x-compact support and T can be chosen so that either T, = oo or

lim sup g sup 090 u(t,z)| = oo,
=T —o<t<r lal17<2 zER™

where the a are spatial multiindices o = (a1, ..., ). The statement concerning T—
s similar.

This can be proved e.g. along the lines of [20], Theorem 6.4.11.

3.2. Causality. Let us remind the reader of the basic causality concepts in Lorentz
geometry, cf. [24], Chapter 14. If (M, g) is a time oriented Lorentz manifold, we
shall use the notation that p < ¢ if there is a future pointing causal curve from p
to g and p < qif p<qorp=gq. Given a subset A of M, define

JYA) = {peM|IqgeA:q<p},

J(A) = {peM|[IqeA:p<gqj
The sets J*(A) and J~(A) are called the causal future and past of A respectively.
The strong causality condition is said to hold at p € M provided that given any
neighbourhood U of p there is a neighbourhood V' C U of p such that every causal
curve segment with endpoints in V' lies entirely in U. A Lorentz manifold is said to
be globally hyperbolic if the strong causality condition holds at each of its points and
if for each pair p < ¢, the set J(p,q) = JT(p) N J~(q) is compact. The assumption
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that a Lorentz manifold M be globally hyperbolic has many consequences, e.g. if
p,q € M and p < q, then there is a causal geodesic from p to ¢ such that no
causal curve from p to ¢ can have greater length, cf. Proposition 19, p. 411 of [24].
Furthermore, the causality relation < is closed on M, i.e. if p, — p, ¢, — ¢ and
Pn < Gn, then p < g, cf. Lemma 22, p. 412 of [24].

A subset A of a Lorentz manifold (M, g) is said to be achronal if there is no pair
of points p,q € A that can be connected by a timelike curve and it is said to be
acausal if no pair of points in A can be connected by a causal curve. Given an
achronal subset A of M, the future Cauchy development of A is the set DV (A) of
all points p of M such that every past inextendible causal curve through p meets
A. The past Cauchy development D~ (A) is defined analogously and we write
D(A) = DY(A)U D~ (A). A Cauchy hypersurface in M is a subset S that is met
exactly once by every inextendible timelike curve in M. Then D(S) = M due
to Lemma 29, p. 415 of [24]. One can prove that a Lorentz manifold is globally
hyperbolic if and only if it admits a Cauchy hypersurface, cf. Corollary 39, p. 422
of [24] and [19]. Furthermore, a globally hyperbolic Lorentz manifold admits a
smooth spacelike Cauchy hypersurface, cf. [4]-[6].

In the end, we shall need the following, somewhat more technical, statements.

Lemma 3. Let (M, g) be a Lorentz manifold and assume it admits a smooth space-
like Cauchy hypersurface S. Then, for p € J*(S), J~(p) N J(S) is compact. If S
is compact and Q C S is open, with respect to the topology induced on S, then D(Q)
is open. If U C M s open, g € JT(S) and J~(q) N JT(S) C U, then if ¢; € J*(95)
are such that ¢; — q, we have J~(g;) N J*(S) C U for i large enough. If Q C S is
closed, then D(Q) is closed. If ¢; < q, q € I+(S) and q; — q, then the closure of

the union of the J~(q;) N J+(S) is J=(q¢) N JF(9).

Proof. The first statement follows from Lemma 40 p. 423 of [24]. Assume Q C S is
open with respect to the topology induced on S and that D(Q) is not open. Then
there is a ¢ € D(Q) and ¢; — ¢ such that ¢; ¢ D(Q2). We conclude that there are
r; € S —Q such that r; < ¢; or vice versa. Assume, without loss of generality, that
r; < q; for all i. Since S — () is compact, we can assume r; — r € S — ). Since the
relation < is closed on a globally hyperbolic manifold, r» < ¢, contradicting the fact
that ¢ € D(2). In order to prove the third statement, let p be such that there is
a future directed timelike curve from ¢ to p. Then J~(p) N J*(S) is compact and
J~ (p) contains ¢ in its interior, cf. Lemma 3, p. 403 of [24]. Since ¢; — ¢, J (g;) C
J~(p) for i large enough. Assuming the desired statement is not true, there is a
subsequence ¢;, and points r;, € J(g;,) N J*(S) such that r;, ¢ U. Since the r;,
are in the compact set J~(p) N JT(S) — U for k large enough, we can assume that
they converge to a point r. Then r € J~(q)NJ+(S)—U, a contradiction. To prove
the fourth statement, assume, in order to obtain a contradiction, that ¢; € D(9)
and ¢; — q ¢ D(2). Assume, without loss of generality, that ¢,¢; € J*(S) and let
p € S— be such that p < ¢q. Then, due to the time reversal of the third statement,
there is an r in the timelike past of p such that J*(r) does not intersect Q. Thus
q is in the timelike future of r, cf. Corollary 1, p. 402 of [24], so that ¢; € J*(r)
for ¢ large enough, so that ¢; ¢ D(2), contradicting the assumptions. To prove the
last statement, let p € J=(q). If p € I(S), let pr — p be such that p, € JT(S)
is in the timelike past of p. Then ¢ is in the timelike future of py. Thus there is
an iy such that g;, is in the timelike future of p;. Thus all the p; are in the union
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of the J~(g;), so that p is in the closure of the union of J~(g;) N JT(S). Assume
p e SNJ (q). Let pp < p be such that p, — p, let i, be such that g;, is in the
timelike future of p, and let v, be a timelike curve from pj to ¢;,. Denote the
point of intersection between ~y;, and S by pj.. Since pj, € J~(¢) N JT(S), which is
compact, we can choose a subsequence so that it converges to, say, 7. Since pi < pj,
and pg converges to p, we conclude that p < r. Since p € S and S is a spacelike
Cauchy hypersurface, we have to have p = r. The conclusion follows. (I

3.3. Uniqueness. We shall need the following uniqueness result.

Theorem 6. Let (M, g) be a globally hyperbolic n+1-dimensional Lorentz manifold
and let S be a smooth spacelike Cauchy hypersurface. Let Q2 C S and assume that
U is an open set containing D+ (). Assume u : U — R! is a smooth solution to
the equation

ViV ou 4+ Xu + cu =0,

where X is an I x 1 matriz of smooth vectorfields on U and c is a smooth | x| matriz
valued function on U. Assume furthermore that v and gradu vanish on Q. Then u
and gradu vanish on DT (Q).

Remark. The equation need only be satisfied in DT (Q). There is a similar statement
concerning D~ ().

3.4. Stability. In order to prove Theorems 3 and 4, we need to have a Cauchy
stability result. Let us start by specifying the topology we shall be using.

Definition 3. Let M be a compact n dimensional manifold, and assume ¢;, i =
., 1 is a finite partition of unity such that supp¢; C U; for open sets U;. Assume
furthermore that (z;,U;) are coordinates. Given T' € 7] (M), define

T[]z

(43) = Z z Z Z/@aafrh

=1 j1,..,jr=141,...,is=1 |a|<k

1/2

1 n
dz; - - dx;

where TJ 'J7 are the components of T relative to the coordinates x; and 9% signifies
dlfferentlatlon with respect to x;.

Remark. In order not to get too cumbersome notation we abuse notation by not
clearly indicating with respect to which coordinates we compute components of
tensors etc.

Note that (43) defines a norm on the space of smooth tensorfields 7, (M). If one
uses a different partition of unity one clearly gets a different norm, but they are all
equivalent. Consequently, they define the same topology, and it makes sense to say
that T; — T with respect to H* without any reference to a partition of unity.

In order to make a precise statement concerning stability, we need to be specific
concerning the requirements of the background solution.

Definition 4. Let M be a compact n dimensional manifold. Let g be a smooth
Lorentz metric on I x M where I = (T_,Ty). Assume that 9; is timelike and that
the hypersurfaces {7} x M are spacelike with respect to g for 7 € I. Finally, assume
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that there is a ¢ € C*°(I x M) such that ¢ and g satisfy (12)-(13). Then we shall
call (I x M, g, @) a background solution.

Definition 5. Let g be a Lorentz metric on I x M, with [ = (T_,T4), let ¢ €
C>™(I x M) and let 7 € I. Assume {7} x M is spacelike with respect to g and let
i: M — I x M be defined by i(p) = (7,p). Let h be the Riemannian metric on
M obtained by using ¢ to pull back the Riemannian metric induced on {7} x M
by g, let k be the covariant 2-tensor obtained by using ¢ to pull back the second
fundamental form induced on {7} x M by g, let ¢pg = ¢ oi and let ¢p1 = (N¢) o4,
where N is the future directed unit normal to {7} x M with respect to g. Then
we shall refer to (h, k, ¢o, ¢1) as the initial data induced on {1} x M by (g, ), or
simply the initial data induced on {7} x M if the solution is understood from the
context.

Theorem 7. Let (I x M,g,$) be a background solution. Let (p, &, b, ¢1) be the
initial data induced on {To} x M by (g, ¢). Assume p; is a sequence of Riemannian
metrics on M, k; a sequence of covariant 2-tensors and 1y ; and 11 ; are a sequence
of smooth functions such that p; and 1o ; converge to p and ¢q respectively in H'+1
and k; and 1y ; converge to K and ¢y respectively in H', wherel > n/2+1. Assume
furthermore that (pj, Kj,%0,5,%1,;) satisfy the constraint equations (17)-(18) with
(h, k, @0, ¢1) replaced by (p;,kj,%0,,Y1,5). Then there are T;— < Ty < T 1, a
Lorentz metric h; on M; = (T;,—,T; 1) x M and a smooth function ; on M;
such that (hj,;) satisfy (12)-(13) on M;. Furthermore, the initial data induced
on {To} x M by (hj, ;) are (pj, kj,%0,5,%1,5), Or is timelike with respect to h; and
{T}xM is a spacelike Cauchy hypersurface with respect to h; for allT € (T}, -, Tj 1).
IfT eI, thenT € (T3 _,T;+) for j large enough and the initial data induced on
{T} x M by (hj,;) converge to the corresponding initial data of (g, ).

Remark. The topology we have in mind when we speak of convergence of the initial
data induced on {T'} x M is the same as we used for the data induced on {Tp} x M.
In other words, H't! for the induced metric and scalar field and H' for the second
fundamental form and time derivative of the scalar field.

4. EQUATIONS ON T"

In the introduction, we formulated the initial value problem for a general . In
practice, due to the causal structure of the type of spacetimes we are interested in,
the global topology of ¥ will turn out to be irrelevant. For convenience we shall
thus assume ¥ = T™ and consider the equations on R x T™. On this manifold, we
have coordinates z = (2°,...,2™); o giving the u:th coordinate. Strictly speaking,
these coordinates are of course not globally well defined, but in the end, we are only
interested in O,» = 0., and these vectorfields are globally well defined. In what
follows, we shall take for granted that everything is computed with respect to these
coordinates, or, to be more precise, with respect to the frame given by 9,,.

Let us start by describing the type of metric around which we wish to perturb. The
model metric is given by

(44) g = —dt* + e*?5;;da’ ® dad

where €2 is a smooth function of ¢. For the purposes of the present paper, it is
enough to think of Q) as being Ht where H is a constant, but in a later paper, we
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shall apply the same methods to the case 2 = plnt, where p > 1 is constant. We
shall also use the notation

(45) W=
A metric of the form (44) has the property that ' = nw and I'? = 0, where, as

always, Latin indices range from 1 to n, Greek indices range from 0 to n and where

1 1%
' = §gaﬁgu (aag,@l/ + aﬁgau - augaﬁ)~
Let us define
(46) F,, = nwgo,

and, following the ideas of [18], let

N 1 o
(47) R, = -39 00089 + V (uFy
+gaﬁg'y5 [Favurﬂéu + Fa'yyrﬁué + Pa’yurﬂpﬁ]a
where
1
PQ%B = §(aagﬁ"/ + 8ﬁga'y - a’yga,ﬁ)7
(48) V.F, = 8,F,—T,F,

and a parenthesis denotes symmetrization, i.e.
1
V(HFV) = §(quv + V,,F#).

In other words,

(49) R#V = R#l’ + V(H'Dy),
where
(50) D,=F,-T,.

Observe that the notation (48) is somewhat questionable since F), will not in gen-
eral be the components of a covector. We shall, however, use it. Note that R,
considered as a differential operator acting on the metric, is hyperbolic.

Let us define

(51) MOO = —QMQO#DM, MOi = ZOJDi,
(52) Mz = O, M¢ = —g““D#8V¢7
and consider the equations
- 2
(53) RHV — VH(;SVV(ZS — EV((ZS)QMV + Ml“’ = 0
(54) 970,050 — T4 9,6 —V'(¢) + My = 0.

Note that the system (53)-(54) is a quasi-linear system of hyperbolic PDE’s for the
metric and the scalar field. In other words, if we specify g,., Goguv, ¢ and dy¢ at
t = 0, we obtain a unique local solution to the system (at least if we assume ggg < 0
and g;; to be the components of a positive definite matrix initially). Let us assume
we have solutions to (53)-(54). Due to (53), we have

1 1, .
(55) Gy — T = 7V(MDV) + §(v7Dw)g;w — M + 5(9 BM@B)Q/W-
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Furthermore, G, is divergence free due to the Bianchi identities and T}, satisfies
VHT, = —MyV,6

due to (54). Consequently, taking the divergence of (55), we obtain

(56) V.V'D, + R,'D, = —2MyV,¢ — 2V* M, + g*°V, M.

Assuming that there are smooth solutions to (53)-(54) on some set (T_,7T) x R”
with T_ < 0 < Ty, we see that there are smooth functions A,g, and B, such
that D satisfies

(57) 9*%0,05D,, + A,*?8, D + B, D, = 0.

If it is possible to set up initial data for (53) and (54) in such a way that D, and
00D, are zero for t = 0, we are thus allowed to conclude that D,, is zero where the
solution is defined. Consequently, M, and M are also zero, and we get a solution
o (12)-(13).

4.1. Initial data. In practice, we shall be interested in initial data that do not
satisfy the constraint equations on the entire initial manifold. We shall thus assume
that we are given (h,k, g, ¢1) on T", where h is a Riemannian metric, £ is a
covariant 2-tensor and ¢q, ¢1 are smooth functions on T™. Furthermore, we shall
assume that (17)-(18) are satisfied on S C T". Starting with these initial data,
let us construct initial data for (53)-(54). The spatial part of the metric, g;; is
determined by h:

(58) Gijlt=0 = h(0;,0;),

for i,5 = 1,...,n. However, goo and go; are not specified by the initial data. Let us
choose them to satisfy

(59) goolt=0 = =1, goilt=0 = 0.

Due to this choice, the future directed unit normal to the hypersurface ¢t = 0 is 0,
so that if we had a metric g whose second fundamental form were , we would have
1
Kij = 5009i;-

It is thus natural to require that

(60) D09ijlt=0 = 2k(0;, 95).
Concerning ¢, we require

(61) Pli=o = ¢o, (0td)]t=0 = ¢1,

since 0; is the future directed unit normal to {0} x T™. The only objects that
remain to be determined are dygoo and dogo;. We shall let the condition D, |i—o = 0
determine these quantities. Assuming we had a metric g, we would obtain, for ¢t = 0,

1
FO = —580‘900 — trk.

where we have used (59) and (60). We thus require
(62) 00900|t=0 = —2Fp|t=0 — 2trk.
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Note that since Fy only depends on the coordinates and on the metric, the right
hand side has already been defined for t = 0. We also have, assuming we had a
metric g,

1
'y = —0ogar + 59”(231931 — 019ij)-

Consequently we require

1 .
(63) dogot|t=0 = |—F; + 59”(2@'9]'1 - 319@')]

t=0

4.2. Development of the data. Due to (62) and (63), we know that D,, = 0 for
t = 0. However, in order to be allowed to conclude that D, is zero, we need to
know that doD,, is zero for t = 0. On the other hand, we have no more freedom
left in specifying initial data. However, it will turn out that the last condition is a
consequence of the constraint equations. We thus obtain the following result.

Proposition 1. Let (h, k, ¢g, 1) be given on T™, where h is a Riemannian metric,
K 18 a covariant 2-tensor and ¢g, ¢1 are functions. Assume

(h,x) € H*TT", M, (R)] x H*[T", M, (R)],
(¢07¢1) € Hk+1(Tn) X Hk(Tn)v

where k > n/2 + 1. Define guuli—o0 by (58)-(59), (Otguv)li=0 by (60) and (62)-(63)
and define @li=o, (0t®)|i=0 by (61). Then there are T— < 0 < Ty and a unique
solution

(64) ge 02 [] X Tn7 Mn+1<R)]7 d) € 02 [] X T7L>R]

to (563)-(54), where I = (T_,T}), such that goo < 0 and g;; are the components of
a positive definite matriz. Furthermore

(65) g € L¥{I,H*""T" My1(R)]}, ¢ € L1, H*(T")]
(66) dg € L¥{I,H*[T", M, ;1(R)]}, 8¢ € LI, H*(T™)].

Let Tnax be the supremum of the times Ty > 0 such that there is a solution (g, @)
on [0, T4) satisfying the above conditions. If Tyax < 00 one of the following two
statements have to be true. 1. There is a sequence (t;,x;) € [0, Tmax) X T™ such
that either goo(ti, 1) — 0 or the smallest eigenvalue of {g;;(t;, x;)} tends to zero as
l tends to infinity. 2. We have the following limit:
lim  sup Z sup [[|0°07 g(7, z)|| + |0%0] p(7, z)|] = 0.
t=Tmax— 0<r<t < z€Tn
lal+5<2

There is an analogous statement concerning Tyin which is defined analogously to
Thax- In particular, Tmax and Ty, are independent of k. If we assume the initial
data to be smooth, we get a unique smooth solution (g,d) to (53)-(54) on Imax =
(Tmins Tmax) such that goo < 0 and g;; are the components of a positive definite
matriz. Then g is a smooth Lorentz metric on M = L. X T™ and {t} x T™ are
Cauchy hypersurfaces in the Lorentz manifold (M, g) fort € Inax. If we furthermore
assume that (17)-(18) are satisfied on an open subset S C T", then (g,$) satisfy
(12)-(18) on D(S), where D(S) is defined with respect to the metric g.

Remark. Here M, (R) denotes the set of n x n matrices and we think of h and k
as such matrices whose elements are given by the corresponding components with
respect to the standard basis {0;} of the tangent space of T™. Furthermore, we
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think of g as being M, 1 (R) valued, the elements of the matrix being the the
components of g with respect to {0,}. The regularity condition in the existence
statement is of course far from optimal. However, with the methods we use to close
the bootstrap, we need this degree of regularity. When we write D(S), we, strictly
speaking, mean D({0} x S), cf. the notation of Subsection 3.2.

Proof. The existence result and continuation criterion can, up to small modifica-
tions, be found in standard textbooks on non-linear hyperbolic PDE’s, so we shall
take this for granted. Since gog < 0 and g;; are the components of a positive definite
metric, a linear algebra argument suffices to conclude that g, are the components
of a Lorentz metric and that g% < 0, cf. Lemma 2. This means that the gradient of
the function t : M — R defined by #(2°,...,2") = 2V is past directed timelike (here
we use the convention that 9y is future directed). Consequently, if vy : (s_,s4) = M
is a future directed causal curve, to-y is a strictly monotonically increasing function.
Thus a causal curve can intersect the hypersurfaces {t} x T™ at most once. If the
image of v is contained in the past of, say, {¢t} x T™, then ([so, s+)) is contained
in a compact subset of M for sg € (s_, s ). Using this fact, the causality of v, the
fact that goo < 0 and the fact that g;; are the components of a positive definite
metric, one can conclude that v is extendible to the future. We conclude that all
the hypersurfaces {t} x T™ are Cauchy hypersurfaces.

In order to prove that (g,¢) satisfy (12)-(13) on D(S), all we need to prove is
that D, and 0yD, equal zero on S. The reason for this is that on M, we have
the equation (57). Given that the initial data for D, are zero on S, standard
uniqueness results for linear equations on globally hyperbolic Lorentz manifolds
yield the desired conclusion, cf. Theorem 6. We already know that D,, = 0 initially
due to our choice of initial data, but we need to prove that JyD,, = 0 initially.
The solution we obtain solves (55). Note that in this equation, M,z = 0 initially,
since D,, = 0 initially. Let us contract (55) with N#X" for t = 0, where X is
orthogonal to N. Then, on S, the left hand side is zero since the constraints are
fulfilled and the right hand side is

1 L v
—5 NHXY(0,Dy +0,Dy).

Note that the part of the covariant derivative involving Christoffel symbols vanishes
due to the fact that D, = 0 initially. Since X0, D,, = 0 for ¢t = 0, we obtain

00D; =0
on S fort =0,i=1,..,n. If we contract (55) with N*N", we obtain
00Dy =0

on S by a similar argument. The proposition follows. O
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4.3. The equations. To sum up, we shall in the end restrict our attention to the
equations

(67) Roo + 20T — 2nw? — (0,0)* — %V(d))goo =0
(68) ROi — 2w(Fi - nngi) — atd)az(b - LV(QZ))QQI =0
(69) zg Z¢aj¢ - 7V(¢)92] = 0
(70) 9*P0a050 — nwdop —V'(¢) = 0,

where the indices 7, j run from 1 to n and RW is given by (47). Furthermore, we
shall only consider these equations on R x T™ and one should not think of any of
the objects appearing as tensors but rather as the components with respect to the
standard basis for the tangent space of R x T". The advantage of this system is
that it behaves well even when the initial data do not satisfy the constraints, cf.
the comments made in the introduction.

5. THE MODIFIED RICCI TENSOR
Lemma 4. Let RW be given by (47), where F,, is defined in (46). Then

. 1, 1
RHV = —§g 58(16[39;“/ + ngO(;Lau)w + 571&)609“1/ + AMV’

where
A;w = goc,(i’g'yé [aozgwyaﬁg,u(; - Fau'y]-—‘ﬂ,ué]-

Proof. Consider

V,F, =0,F, —T%F,.

uu

Note that
1
I‘;’L‘VFQ = nngQFgU = nwl' o, = inw(aﬂgoy + 0ugou — OoGuv)-

Since
OuF, = nw(0,w)gor + nwdyugou,
we obtain )
Vuty)y = ngowuyw + inwaogw,.

Let us turn to the squares of the Christoffel symbols. The expression of interest is

A = 90‘5976 [Favurﬁév + Laypl'gus + Fawrﬁw}-

Since
Tgsy + T'gus = 08950,
we have
Aw = 9*P9°[Caru0s9s0 + TaruT s
= ¢*P9"°[T55u0a9+ + Taywl susl
= 90‘5976 [8ﬂgu5aagw + (Faw - 8ozgw)FﬁM5]

= ga,ﬁg [8ﬁgu58ag'yu - Fau’yrﬁgé]y

where the second step only involves a renaming of indices. The lemma follows. [
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Note that we can write

A/LV = I/w + II/u/ + III/LV + IV/LV + V;u/ + VI/Wa

where

(71) Lo = 9% ¢"(9090.00900 — Topolowo)

(72) H;w = googOp [aOQOM (609pu + 8p90u) + 8090u(809pu + ap.‘]Ou)
—2T 00T 0vp — 2T 000 0pup)

(73) I, = ¢%°¢"(309pu0g1 + 0pgoudigor — 2L0upTout)

(74) IV = 9600900590 + 009pu0igor + 9590100 Gpw
+0;9pp0090r — Lopol jup — 2Louplov — T'juplovo]

(75) Vi = gplng(aogpuajglu + ajgpuaoglu + algOuapgjy
+0195.0p900 — 2L 0upL vt — 21T 0u1)

(76) VI = 9769 (0i9pu0ig1 — Tippliui)-

Before we start separating the relevant parts from the irrelevant ones in these terms,
let us comment on what can be considered to be small and what has to be taken
into account. In the end, we shall be perturbing around a metric of the form (44).
For the metric (44), 0:g;; = 2wg;;. Consequently, from a perturbation point of
view, all terms that involve spatial derivatives can be considered to be small, as
well as goo + 1, " + 1, goi, 9%, Jogoo, Dogoi and ogi; — 2wg;j. The relevant part of
A, is the one which involves terms consisting of at most one small factor. From
this point of view, we see that I,,,,, II,,, and IV, do not contain any relevant terms.

Lemma 5. Given the definitions (71)-(76), we have

1
(77) My, = 2wg® (5090m - 25m900> + Anr,om,
(78) IL; = 2wg™0gi; — 2w?9"gi; + Amij,
(79) VOm = _2w290090m + AV,Oma
(80) Vlpy = nw? —wg”dogij + 2wy ;50 + Avi,oo,
(81) Vipm = wg"Timj + Aviom,

where Amr,om, Ariij, Av.om Avieo and Aviom are given by (82)-(86) respectively.

Remark. In the end, we shall not need to know much concerning the structure of
the non-linear terms in order to be able to estimate them in H*. In fact, it will be
enough to count that the number of factors that are “small”, cf. the discussion prior
to the statement of the lemma, is two or greater, something which is automatically
true due to our definition of error terms, and to count the number of downstairs
spatial indices minus the number of upstairs spatial indices, something which is
also clear from the context, in order to be able to write down the estimate in H*
immediately.
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Proof. The result is obtained by straightforward computations. The irrelevant
terms are given by

1
(82) Anrom = 9%(9" 0ogim — 2wé?,) (309p0 - 23;1900)
1
+§g°°g’”3pgoo(3190m + Omdol),
for 1Ily,,,
1
(83) A = 96" |0,90i0190; — 5(5;:901' — 0ig0p) (01905 — jQOI)]

— 59" (6" 00giy — 280) (D190 — Dign)
+(g" Bogji — 2wb¥) (Dpg0i — Digop)]
+wg™ (919" — 6%)Dogip
+%900(9pl509ip — 2w6;)(Dogji — 2wgj1),
for II1;; (note that g; g — o0y = —gj09"°),

(84) Avom = 979" (009p00jGim + 9;9p000Gim + 019000y Gim
+019500p90m — 2Lo0pL jmi) — 67 9% [(8;9p0 + 0pgjo)Comi

1
5009 (O1gom — Omgo)] + wg® (OoGmi — 2wgmi)

1 ..
+§QOJ ("' ogip — 2w85)Dogmi

for Vom,
3 1 y .
Avigo = 97¢"0:9,00;910 + §9pl (9" Qogip — 2w63) (05910 + O1g50)
1 .
(85) _Eg”gpl(aigpo + 9p9i0) (95910 + 1g;0)
71(g1j80gip - 2w5]]))(gplaggjl — 2(4)5;7)
for VIQO and
. 1
(86) Aviom = 99" |0:9p00;91m — 5(0igpo + Opgi0)L'jmi
1 .
+§g” (9" Bogpi — 2w8)T i
for VIg,,. O
Let
ALMV I;,Llja AII,;UJ = Iluuv AIV,HV = Ivuuv AIII,OO = III007
Avoo = Voo, Avij= Vi, Ay = Vlj,
and

(87) AA,,ul/ = AI,'U,I/ + ...+ AVL[LV'
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Then

A = nw®—wg”dgij +2wg” digjo + Aa o

Ao = 2wg"0gom — 2w? 9% gom — wg™ Omgoo + wg Tims + Aaom
(88) Ay = 2wg®dogij — 20?9 gi; + Aa iy

Let us turn our attention to the correction terms introduced.

Lemma 6. We have

(89) Ago + 20T — 2nw? = wdogoo + nw?(goo + 1) + nw?goo
+A 400+ Acoo
(90) AOm - 2W(Fm - ntom) = 2(77’ - 1)W290m - wgijrimj

+AA,Om + AC’,Oﬂ%
where Acoo and Acom are given by (92) and (93) respectively.

Proof. Note that
(9% + Dgoo = 6900 + 9% 90i — 9°" 90i + 900 = goo + 1 — 9" goi,
so that

1 4
(91) g0 +1=—/(goo+1—9%goi).
goo

Using this observation, one can compute that
2wl = wdygoo + wg Bogi; + 2nw?(goo + 1) — 2wy d;gi0 + Ac, 00,
where
2nw? .
(92) Acoo = — [(1+ g00)* — 9" g04]
goo
—w(g” +1)(g"” dogi; — 2nw) + 2w (g + 1)g" 8,950
+w(g%¢% — 1)dogoo + 2wg°°% (Toio + 2C00:)
+4wg0igojfgji + 2wgijg0pl“,;pj.

Thus we obtain (89). Let us compute

20T — nwgom) = —2wg”°gom + wg*0mgoo + 20?9 gom
—2wg" T ipns + 2(n — Dw?gom + Acom,
where
(93) Acom = 209" + 1)gom — 209" (Bogmi — 2wgmi + Oigmo — OmGio)-
Consequently, (90) holds. O

6. ROUGH CONTROL

The precise form of the equations depends on the particular potential, and therefore
we wish to postpone writing down the equations for as long as possible. Some of the
bootstrap assumptions we shall make in the end do, however, have consequences
independent of the potential, and so we wish to begin with them.

Assume we have a solution to (67)-(70) on some time interval [tg,7"). On this
interval we make the following bootstrap assumptions. Assume that there are
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constants K and ¢; > 1 such that, using the notation u[g] = goo+1 and the notation
of Section 2,

(94) et < el < afwl?,
(95) ulg]l <
(96) |v[g]|2 < ,,761—1625272r+2K7

for all w € R™, and all (¢,2) € [to,T") x T™. Here Q and r are non-negative functions
of t in [tp,00) and i € (0,1) is a constant. At a later stage, we shall impose more
strict conditions on these quantities. Due to the bootstrap assumptions (94)-(95)
and Lemma 1, we conclude that g, are the components of a Lorentz metric. Thus
we can speak of the inverse of g and we denote the components of the inverse by
g

Lemma 7. Let g, be the components of a matriz valued function on [to,T) x T"
satisfying the conditions (94)-(96) where Q,r > 0 for t > to. Then g is a Lorentz
metric and there is a numerical constant ng > 0 such that if we assume n < ngy in
(95)-(96), we have

—2Q-2K |’U[

(97) g™l < 2ee ql|
(98) ((wlgl,vlg D < 2e1e7 P ug]?
(99) lulg7'| < 4n,

2 2 20+2K [, 12 31, 1o
(100) ol < AT, < S

for allw € R", t € [tg,T) and x € T™. Here we use the notation (£,() for the
ordinary scalar product of €,¢ € R™.

Proof. Let A be the square root of g;l. Using (94), we get

T Y e e [
However, multiplying (36) with A=! and taking absolute values, we get
1 e e—20-2K
—1712 2 1 2
vlg = ——|Avlg]|* £ ——|v[g]|%,
‘ [ ]gb (d2—900)2| [” (d2_900)2| []'
where we have also used (94). Combining these two inequalities, we get
2 ,—40—4K
-2 .~ &€ 2
vlg < —1v[g]]*.
llg™]| & _g00)2| [4]]

Since 1/(d? — goo)? < 1/g2,, which can be assumed to be arbitrarily close to 1 by
imposing conditions on 79, we get (97). The estimate (98) is then an immediate
consequence of this.

In order to prove (99), let us first note that

(101) d* = [olgl5 1 = [Av[g]|* < cre™* 22 w[g]|* <,
where we have used (94), (96) and the fact that » > 0. Using (34) we get
+ d?
oy ol
ulg ) < AL

Combining this estimate with (95) and (101), we see that for 7y small enough, (99)
holds.
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Finally, note that due to (35) and (94), we have

[wlge < Jwl} 2 = [Aw]* < ce7* 7 w2,

Similarly,
2 goo 2 goo —1,-20-2K|, |2
Wiy > ———|w|°1 2 ————c; € wl|”.
‘ gﬁ—goo_d2| |gb1—goo_d2 1 | ‘
Since goo/(d? — goo) can be assumed to be arbitrarily close to 1 by demanding that
1o be small enough, the lemma follows. O

7. ENERGIES

The exact form of the energies will in the end depend on the particular potential, but
in the cases we are interested in, they will be equivalent to objects we now define.
In some cases, the background scalar field converges to zero, but in others it tends
to infinity. Consequently, it is sometimes necessary to subtract the background
solution.

Definition 6. Assume that the scalar field corresponding to the background solu-
tion around which we are perturbing is ¢g. Then we let

(102) Y = - do.

Furthermore, we define

(103) u=goo+1, ui=goi, hiy= e_mgij-
Let us also introduce the notation
1/2
Il = | 3 [ @)

o<k 1"

where
oled
oy =

a<x1)a1 .. .a(xn)ocn

and « is a multiindex, a = (ay, ..., ) for non-negative integers ;. Even when

f € C=(I x T") for some interval I, we shall take it to be understood that 90> f
only means differentiation with respect to the last n variables. When we write 9, f
on the other hand, we take it to be understood that y is a number from 0 to n.

We shall express the estimates in terms of the following quantities
1
Prw = 5 3 [ 4@ 02+ @00y
’H"n
la] <k
+9" (0°0u0” Oju + 0° 00 ;) + wW?[(0%u)* + (97¥)*]}dx
1
Esr = 9 Z Z/"[(@O‘&sui)2 + ¢"™ 0% 0w 0% O + w?(0%u;)?dx

jal<k i

5
B
I

1
, 5 E E / [(8a8thij)2+glm8a81hij8a8mhij
< JTn

la|<k 7
tagw?e?"(0%hy;)?]dz,
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where a, = 0 for @« = 0 and a, = 1 otherwise. The reason we have to introduce
aq is that we want all of these quantities to be zero for the solution around which
we are perturbing. The reason we include the factor e=2" is that we want Fy, to
decay, which is also not to be expected without this added factor. It will be more
natural to express the bootstrap assumptions in terms of the following quantities:

(104) Elpk = w2 By, E&k _ w726729+27"72KES7k,
Eln,k = WK E
We shall also use the notation
Ey = Epg + Esj + Enp.
The main bootstrap assumption we shall be making in the end is that
(105) Bt < e
for some kg >n/2+ 1, e <1 and for all ¢ in some time interval [to, T).

Lemma 8. Assuming (94)-(96) hold on [to,T) x T™ where n < ng, n > 3 and
Q,r >0 fort >ty, we have, on [tg,T) x T":

(106) ([l e + w0l + e Ko 9] < CEY?

(107)  llulge + o Oullgs + e Ko ull] < CEY2
eI | e+ 0™ Oyt 110

(108) +e O E Y O | ] < OB
e~ 20+ —2K [W71‘|atgij — 2wg5;|| e

(109) +e Ky oyl m] < CEYR

(110) 22K gog s < CEYG

where the last estimate is valid for 0 < |a| < k and the constants depend on c;.

Remark. The constant 7 is the one appearing in the statement of Lemma 7. There
is structure in the above estimates which is worth keeping in mind. The number of
—Q — K:s appearing in the exponent corresponds to the number of spatial indices
downstairs inside the H* norm, including spatial derivatives. Note also that there is
a gain of €” in all the estimates except one, namely (110). All the norms appearing
on the left hand side are on a fixed time slice. In other words, when we write
||| v, we strictly speaking mean |4 (¢, )| g+. Below, we shall quite consistently
abuse notation in this fashion.

Proof. Using (100), the estimates are immediate consequences of the definitions.
Note for instance that

Ophij = e > (Drgij — 2wgij)-
The lemma follows. (]

8. SOBOLEV ESTIMATES FOR THE INVERSE

Let us turn to estimating the derivatives of the components of the inverse of the
metric. We shall use the following standard result, where || - ||, signifies the L?
norm of a measurable function defined on T™.
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Theorem 8. Assume f1,..., f; € H™(T™) N L*°(T™). Then there is a constant C
depending on n, m and l such that if 81, ..., B are multiindices with |B1|+...+ |01 =
m, then

l
0% fr--- 0% file < C Y TTfille D 107 fille.

i=1j#i |Bl=m

Due to this theorem and the bootstrap assumptions, we obtain estimates for the
inverse of the metric.

Lemma 9. Let g,, be the components of a matriz valued function on [to,T) x T™
satisfying the conditions (94)-(96), where n <mng and Q,7 > 0 fort > tyg. Then g is
a Lorentz metric, and if we denote the components of the inverse by g", we have,
for 0 < |a| <k,

(111) ovg™. < CEY?,
(112) 62Q+2KH8aglm”2 S CEA;/Q,

. 1/2
(113) TR g0 L < CEY

Proof. Note that
8i9" = —g" g7 Digyu-
In general, 9%¢g*? is, up to numerical factors, a sum of terms of the form

(114) gu1>\guzl/1 . _gmuzflngaalgmul . ,aazgmw,

where ag + ... + ay = «, and «; # 0 (note that here aj,...,q; are multiindices,
not the components of ). Let us introduce the notation that the number of g%
factors in (114) is l,, the number of g% factors is I, and the number of ¢g* factors
is l.. Furthermore, let us denote the number of factors of the form 9%gg, for some
multiindex 3 by Iy, the number of factors of the form 9°go; by Iy and the number of
factors of the form 9” gij by ls. It is of interest to analyze how these numbers change
when we apply 0; to (114). If 9; hits a factor of the form 97g,,,, then the numbers
do not change. If 9; hits a factor of the form ¢%°°, there are three possibilities for
how the numbers can change

(115) (ol)) = (a+1,0+1)
(116) (lp,l2) = (pb+1,12+1)
(117) (la,lb,lg) — (la —1,lb+2,l3+1).

By this notation we mean that only the numbers that appear on the left hand side
are changed. Thus in the first case, lo,l3,[p,l. remain unchanged. Consider the
case when 0; hits a g% factor. There are four cases to consider:

(118) (la,l1) — (la+1,0L+1)
(119) (lp,l2) = (pb+1,02+1)
(120) Uosls) — (et 1,03+1)
(121) Uy lorls) > (la+ 1,0 — 1,00+ 1,1+ 1).
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Finally, let us assume 9; hits a ¢!™ factor. We have

(122) (lb,lc,ll) = (lb+2,lc— 1,11 +1)
(123) (lba l2) = (lb + 1a 12 + 1)
(124) (le)l3) = (le+1l3+1).

Note that [y, 5,13 are monotonically increasing, but that I, [, [. are not.
Let us estimate an expression of the form (114) using Theorem 8. Due to (96),
(97), (99) and (100), we have the estimates

”900”00 <59, ||90i||oo < Ce T, ||ginoo < Ce 207K
where C' is a constant depending on ¢;. For this reason, we rewrite the factors of
the form g*” in the following way:

QOi _ e—Q—r—K(eQ—i-r—i-KgOi)7 gij _ 6_2Q_2K(€2Q+2Kgij).

Since we have the estimates
lgool <2, |goi| < Ce? K gyy| < C2MTK

due to (94)-(96), we shall also rewrite the factors of the form 9°g,,, according to

Q*TJrK(e*QJrT*Kaﬁ — 62Q+2K(672972K8B

aﬁ.QOi =€ QOi), 3ﬁ9¢j gij)-

We get the estimate

lg* e gherr - ght g MO gy O g
< Cexp{—(Q+K)[2(lc = Il3)+ 1l — L] —r(lp + 12)}

> <11|8ﬁ900||2 + e TN 107 gou 2

1Bl=lal l

Hae 22K 0P gumll2 |

lm

where @ = a3 + ... + o (note that before applying Theorem 8, we take out all the
g"” factors in the L>-norm). The reason we have included the factors I; is that we
wish to distinguish between the cases [; = 0 and [; > 0. The point is to consider
how the expressions

(125) lH:lb—l2+2(lc—l3), Ip=1+1s

change when applying 9; to (114). Due to (115)-(124), we conclude that [y is
conserved, but that [p is monotonically increasing. That [z is conserved is not
so surprising since it simply counts the number of upstairs spatial indices minus
the number of downstairs spatial indices (disregarding derivatives). Note that the
operations that increase Ip are (116), (117), (119), (122) and (123).

Let us estimate 9%¢% for some a # 0. Note that
(126) 9:9" = —g" 9" digoo — 29" 9” igor — 9° 9" Vi gim-

Let us start with ¢°°¢%°9;g00. In this case, Iy = Ip = 0. However, if, when
differentiating, we are supposed to obtain a term with a factor of the form 9;gu
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or 9jgim, then we have to go through one of the processes (116) or (117) both of
which increase Ip by 2. Consequently, we get an estimate

1099 Digoo)ll < C > (56900||2+€_Q_T_KZ||35901|2
1Bl=lal+1 l

+672972r72K Z ”a,ﬁglm”2

lm

For the other two terms in the right hand side of (126), [ = 0 initially and Ip = 2.
The estimates for the last two terms are thus better than the estimate for the first
term. Adding up, we obtain

e"[[0%g™ 2 < CSk,

where

Sp = Z <€T|aﬁgoo||2 e K Z 10” gou|2

0<|B|<k !

e 202K Z 10 girm|l2

l,m

In fact, we obtain a somewhat better result as far as the factors of e” in front of

different terms are concerned, but we shall have no reason to use this improvement.

Using (107), (108) and (110), this proves (111). Let us turn to 9%g". We have
9ig™ = —9" 9" 9i900 — 5" 9" Digom — 9°° 9" Digom — 9™ 9" Digjm.-

For all the terms in the right hand side except for the second one, we have g =1

and Ip = 1. For the second term, we have [ = 1 and Ip = 3, but this improvement
will not be of any use to us. We thus obtain

eQ+K+rHaag0l”2 S CSk,

which, in combination with (97) and (108) (note that these are necessary to deal
with the case o = 0), implies (113). Finally,

2ig"™ = —g"°g™° D900 — 9Pg™°0;gp0 — 9"° 9" Digpo — 9P g™ DiGpq.

We obtain (112) by arguments similar to ones presented above. O

9. ESTIMATES FOR THE NON-LINEARITY

In this section we shall be making the bootstrap assumptions that (105) holds as
well as (94)-(96), where n < ng and 2,7 > 0 for ¢ > ;. Before we write down the
consequences of these assumptions, let us observe that due to Theorem 8, we have
an estimate of the form

(A27) [Ifr--- fill e

-1
< o 2 S0 Al T loe + 1 lloe - il L fill o

0<la|<k i=1 i
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The point of this estimate is that the only function we estimate in L? is f;, cf. (111)
and (112), which are only valid for || > 0. It will be of interest to estimate e.g.
1/goo in H* and in order to be able to do that, we need the following result.

Lemma 10. Let F € C*(I) for some open interval I and let f € H*(T™) N
L>(T™), where k > 0. Let J = [a,b], where a is the essential infimum and b is
the essential supremum of f and assume that J C I. Then there is a constant,
depending on k, the supremum of F' and its derivatives up to order k on J and on
I flleo such that for any o with |a| = k,

j0°F ol <C S 07 ]l
|8|=Fk

Remark. The case a = 0 is special. If F(0) = 0, it can be dealt with similarly, but
not otherwise.

Proof. The result follows from the fact that 9*F o f is, up to numerical factors, a
sum of terms of the form

(' F)o forf---0f,

where a1 + ... + o = . O

Lemma 11. Let g, be the components of a matriz valued function satisfying (105)
and (94)-(96) where n < ng and Q,r > 0 fort > ty. Then g,, are the components
of a Lorentz metric and we have the following estimates:

(128) e 2Ky g ler <O,
(129) e 22K 0% gim |l < C’EArln/i,
the last inequality being valid for 0 < |o| < k. Furthermore,
(130) e"w 970 gjm — 2w le < Ce,
(131) "W g Orgim — 2w || e < CELZ
(132) g™ + e < CEYZ,
(133) 9" + 1w < Ce

T o 1 1/2
(134) e |10 <) =< CEIP/va

goo 2

for 0 < |a| < k. Note that the constants in the estimates are allowed to depend on
c1. Finally,

(135) e W M|Ohis e + € Ew T | O || e

(136) e KW 0dthijll oo + e W T |Om i)

CE1/2

m,k’

Ce.

IN

IN

Proof. The estimate (128) follows from (94), (105), (109), (110) and Sobolev em-
bedding (note that kg > n/2 + 1). The inequality (129) follows from (110) and
(109). Note that

97 0cgjm — 23, = g7 (Oegjm — 2wGjm) — 2wg" gmo-
Using (100), (105), (108), (109), (112), (113) and (127), we obtain (130) and (131).

If we apply Lemma 10 with F(f) = 1/f and f = goo, keeping (95) in mind, we
obtain (134) for 0 < |a| < k. Due to (91), we conclude that (132) and (133) hold.
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Finally, (135)-(136) are immediate consequences of the definition of the energies
and (105). O

9.1. Algorithm for estimating the non-linear terms. Let us write down a
general algorithm for dealing with the non-linear terms, assuming the bootstrap
assumptions hold as stated in the beginning of the present section. A general term
will consist of factors of the form F(goo), G(¢°°) and R(z), where F, G and R
are smooth in the intervals goo, ¢g°° and 1 belong to. Furthermore, there will be
lay lpy ley lay e and lf factors of the form ¢, g%, 1+ goo, 1 + ¢°°, go; and gi;
respectively. Finally, let us denote the number of 0:g;;, 0:g00, 9igoo, Ocgoi, 0igo;,
0igjts 99 0rgj1—2w8}, 0 Gjm—2wgjm, ¥, Oy and ;1 factors by Iy, ..., l11 respectively.

Step 1. Rescale all the factors. The relevant factor to take out is
(672972K)la (efﬂfer)lb (efr)lC (67r)ld (6§27'r‘+K)lE (62Q+2K)lf

(w€2&'2+2K)l1 (wefr)lg (weﬂfrJrK)lg (w€S2*T+K)l4 (w€297r+2K)15

(weSQ—r+3K)lg (we—r)l7 (weQQ—H—QK)ls (e—'f‘)lg (we—r)lw (weQ—r+K)l11 )
Note that F(goo), G(9°°), R(v)), e2?2K gii  e=22=2K g, ag well as e =22~ 2K =19, g,
are bounded in L. All the remaining factors are bounded by Ce in L* and by
CE;/Q in H* after rescaling. Let us define

le = L4l.+lg+le+la+...+111
l, = —2la—lb+le-‘rQZf—|—2l1+l3+l4+2l5+3l6+2l8+111,
lo = li+...+1ls+lo+ .

Note that [; coincides with the number of downstairs spatial indices minus the
number of upstairs spatial indices, including derivatives, and that 5 is the number of
factors that are derivatives (note that we e.g. regard terms of the form 0,g;; —2wg;;
as derivatives). With this notation, the factor we have taken out is

wla elh(Q“!‘K)_ler.

Step 2. Assume [, > 1 and € < 1. Then the rescaled quantity is bounded in the
H*-norm by CR},, where

(137) Ry, = E}/%1.

In order to prove this statement, let us apply (127) to the rescaled quantity with
fi chosen to be one of the factors that contribute to l.. In other words, if we have
to estimate one of

F(900)7 G(gO()), R(’l/J>7 eQQ+2Kgij7 G_QQ_QKQZ']‘, 6_29_2Kw_18tgij

in anything but L°°, there will always be a derivative hitting these factors. If the
derivatives hit one of

F(QOO)) G(goo)v RW%

we can estimate the result by Ce ™ "eRy. If the derivatives hit one of

2Q4+2K 17 —20-2K —20—-2K, —1
€ g, e Gij, € w atgija

we get an estimate C'eRy. The remaining terms are bounded by C'Rj. Since € <1
and r > 0, we obtain the desired conclusion.
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Step 3. The estimate we obtain in the end is
(138) Culo elh(Q—&-K)—lgrEAv;/Qele—l.
Assuming [, > 2 and € < 1, we obtain

(139) Cewlael’L(Q+K)_lfrEA;1/2.

Algorithm. Given a term of the above type, compute that [ > 1. Note that one
obtains I, simply by adding all the factors that are assumed small in the pertur-
bation argument. After that, compute I, i.e. the number of downstairs spatial
indices minus the number of upstairs spatial indices, including derivatives. Finally,
compute ly, the number of derivatives. The estimate for the corresponding term is
then of the form (138) if [. = 1 and of the form (139) if [, > 2.

9.2. Estimates for the non-linearity. The algorithm we have developed makes
it trivial to estimate A4 ., Ac,00 and Ac om.

Lemma 12. Let g, be the components of a smooth matriz valued function on
[to,T) x T™ satisfying (105) and (94)-(96) where n < ng and Q,r > 0 for t > t,.
Then
|Anoollme + 1Acoollm < Ca’e™ B/
|Anomllae + I8¢ omllne < Ca?e® K2 B/

1Aaijllae < Cew?e?H2K—2rpl/2

IN

where A, Acoo and Acom are given by (87), (92) and (93) respectively.

Proof. By construction, for any term appearing in A4, or Ac ,, I is simply the
number of spatial indices in the set {x, v}. That [ > 2 is again true by construction.
The reason for the factor w? on the right hand side is that whenever a derivative is
missing it is compensated for by a factor of w. O

One object one has to estimate is the commutator between [J, = —¢"¥0,0, and
0%, acting on some suitable function, say v. In order to be able to do so one needs
to know something about [J,v. However, since we do not wish to write down the
equations, we shall make assumptions on ﬂgv in the statement of the lemma.

Lemma 13. Let g,, be the components of a smooth matriz valued function on
[to, T) x T™ satisfying (105) and (94)-(96) where n < ng and Q,r > 0 for t > to.
Let v be a smooth function on [tg, T) x T™ such that

(140)  w |0l + e KW G0 e + w2 Oyl e < Celn @B

for some k >n/2+ 1. Then, for 0 < |a|] <k,

(141) I[85, 0%J0||2 < Cew?eln(@HE)=2r 12
where the constant depends on
(142) sup w le KA

te(to,T)

which we assume to be finite.
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Proof. Note that
[0%, g 0,0, ]v
is, up to constant factors, a sum of terms of the form
0%10;g"* 0%?0,,0,v,

where |ay| 4 |a2| = |a| — 1. Tt is natural to divide these terms into two different
categories. Either = v = 0 or one of u,v # 0. Let us consider the second case
first. Assuming |o| < k, we have the estimate

(143) ||8“18igj”8"28j&,v||2
< CY 10ig7 llsollOnvll e + 1105000100 ]|Dig” [|1rr1],

J

where we take it to be understood that we sum over v and over j in the left hand
side. Due to (112) and (113), we obtain

||8“16¢gj”8°‘28j8yv||2
< Cem KN le(e [0l e + e 0| ge)
il

10,0000 + =K 05010 00) By

where we have used the bootstrap assumptions and Sobolev embedding, in view of
the fact that ko > n/2 4+ 1. Due to (140), the fact that » > 0 and the fact that
(142) is bounded, we obtain an estimate of the form (141).

In order to deal with the case u = v = 0, we rewrite the corresponding term
0°10;9°°0"2 020 = —919;¢°°9** L}i()@gofajatv + 70,0 + F)] :
where F' = 0,v and |a; 4+ as| = |a| — 1 <k — 1. Let us consider the term
0°10;¢°° 02 [giog()jajﬁtv} = wellh =@+ K)—3r
81 (e7 9;g%°) 2 |:gi0(€Q+T+K90j)(w—le—lh(Q+K)+rajat,U):| _

We can estimate this expression in L? by

we(l;L—l)(Q-i-K)—SreQE;/Q.

Using the fact that € < 1, that » > 0 and that we allow the constants to depend on
an upper bound of (142), we get the desired estimate. The argument to deal with

9°19;g° 0> [g}mgﬂajaw}

is similar, though the estimate is somewhat worse. Finally, using (127), (111), (140)
and the bootstrap assumptions, we can estimate

‘ 2

as desired. O

0°19;g°° 0 [g})oF]
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10. EQUATIONS

From now on, we shall restrict our attention to potentials of the form described in
connection with (10)-(11). In the general setup we have been considering up till
now, the background metric is given by (44) with Q = Ht, where H > 0 is defined
by (10). Consequently w = H is constant. We shall choose r = aHt for some
constant a > 0, which is to be determined. From now on, we shall also let ¢ty = 0,
so that the conditions that r, 2 > 0 will be satisfied automatically. The background
¢ around which we are perturbing is 0, and we shall use the variables defined in
(102) and (103).

Lemma 14. Let V € C*(R) be such that V(0) > 0, V'(0) =0 and V”(0) > 0 and
define H > 0 and x by (10) and (11). Then (67)-(70) are equivalent to

(144) Ogu+ (n+2)Hdyu + 2nH?*u + Ay = 0,
Ijgum + nHgty, + 2(n — 2)H?u,,
(145) —2H¢"Lipmj + Dom = 0,
(146) Oghi; +nHohij + Ay = 0,
(147) Oy6 +nHdyp + H>xp+ Ay = 0,
where Agg, ..., Ay are given by (151)-(154) and we use the notation
0, = —¢*%8,9;.
Proof. Let us define
(149) Do = ~0u80,6 — —=[V(6) ~ Vilguw
(149) Ay = V'(9) - H?,
where x was defined in (11). Letting A¢;; =0,
(150) A;u/ =Auu +ACuw + Dg s
and using Lemma 4, Lemma 6 and (88), the equations (67)-(70) take the form
*%gaﬁaaaﬁgoo + %(n +2)Hdogoo + nH(goo + 1) + Agg = 0

1 1
7§gaﬁaa8590m + inHaOQOm + (n — Q)Hzgom

_Hgijrimj + A0171 =0
1 1
_igaﬁaaaﬁgij + §nHaogij +2H g% 009
—2H?¢%g;; —nH?gi; + Ay =
—9*%0,05¢ + nHOyp + H*xp + Ay =
We obtain (144)-(147), where Agg,..., Ay are given by

(151) Aoy = 2Ag0
(152) Aoy = 2Agm
(153) Aij = 74Hg0p8ph,-j + 2672HtAij
(154) Ay = A,
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Here A, is defined in (150), in which Ay ,,, is defined by (148), and Ay is defined
by (149). O

11. ENERGY ESTIMATES

Lemma 15. Consider a solution to the equation
(155) O,v + aHdov + fH?*v = F,

where a > 0 and 8 > 0. Then there are constants 0., > 0 and v, > 0, depending
on a and 3, such that if

(156) 9% + 1] < e,

and

(157) &y slv]l = %/n [—g% (9pv)? + g7 0;v0;v — 2vH g*vdov + 6 H?v?|dx,
then

(158) &5l > ¢ ; [(Dov)? + g diwdjv + 15 H*v?d,

where tg =0 if 3 =0 and 1g =1 if B > 0. Furthermore

d€.
15 < s+ [ (@9 HF + Bl
'H‘n

where Ag  5v] is given by (159).

Remark. If 8 =0, then v =49 = 0.

Proof. If 3 > 0, choose v = /2 and § = 3+ a?/2. Then 4? < §, and it is clear
that there is a constant ¢ > 0 such that (158) holds, assuming g% is close enough
to 1. If 8 = 0, we simply let v = § = 0, and the existence of a ¢ > 0 such that (158)
holds again follows from the assumption that g% is close enough to 1. Compute

Los [ (o= H @) + (65— 8~ 7o) H2udow — iy H*?
T’VL
—(1+v)Hg" 9;v0;v + (dov + vHv)F + Ag -, s[v]}dx,
where
Ap~slv] = —yH(0;9")vd;0 — 2vH (9;9°)vdyv — 2vH g% 0;v0pv
(159) (019" (@00)? ~ (2397 )Divdov — 3 (D0g™) v

1 . .
+ (2809” + Hg”) 0;v05v — vH 09" vdyv
—vH (g% + 1)(8pv)>.
Due to our choices, we have, assuming 3 > 0,

dfl;’d = —%H [(9ov)? + (o + 2)g" 9ivdjv + afH?v?]dx
TTL

+ {(8ov +~vHv)F + AE’%(;[U]}dm.
TTL
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Since the opposite inequality to (158) also holds, provided we replace ¢ by ¢~ for
¢ small enough, we obtain the conclusion of the lemma for 3 > 0. The conclusion
in the case § = 0 follows for similar reasons. O

Corollary 1. Under the assumptions of Lemma 15, let
E= Y &40
|| <k

Then

de&y,

— < —.H

dt = Tlc ek

+ Y [ {(000%v + YHO)(0°F + [y, 0°Jv) + Ap.5[0°0] Ha.

laf<k /™"

Proof. Given that v satisfies (155), 0%v satisfies
0, (8%) + aHdy(0%) + BH(0%) = 9°F + [, 9.

The statement follows from Lemma 15. g
We are now in a position to define the energies with which we shall be working.
Note that all the equations (144)-(147) are of the form considered in Lemma 15.
In the case of (144), (145) and (147), we simply identify the first three terms on
the left hand side with the terms on the left hand side of (155) and identify the
remaining terms with —F. In the case of (146), we proceed similarly, but in this
case, § = 0. With w, un, h;; and ¢, we can thus associate constants (cu, 3),
(s, Bs), (om, Bm) and (ast, Bst) respectively. Due to Lemma 15 we get v, 0, 7. and
¢ with corresponding indices (we replace the index ¢ with the corresponding index
as well). Note that all these constants only depend on n and x. From now on we
shall assume 7 < nyiy in (95)-(96), where

(160) Nmin 2= min{1, 1o, 71, Ns, Nm, Nst } /4-

Note that if (94)-(96) are satisfied with 1 < Mpin, then (156) is satisfied with 7,
replaced by 7,,...,1s¢ due to (99). Note also that 7y, only depends on n and x. Let

us define
Hy = Z 8V1,51[8au]’ Hgp = Z Z Ex,,5,[0% i,

la|<k i |al<k
Hyp = Y Eo.l00).
la|<k
Since there is no advantage in separating u and ¢, let us introduce
Hy, = Hyp + Het g,

and 7, = min{n, 75 }. Finally, let us introduce

1
(161) Hup =) > [5%,,51,,[8"%“] + 5/ agH?e 21 (0% i) dz |,
i |al<k "
where a, = 0 if « = 0 and a, = 1 otherwise, 7, = 0,y = 0, cf. the proof of Lemma
15, and a is given by
2f’]nlin
a:=—.

(162) ;
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Note that, since nfmin < 1/4, we have a < 1/6. Note also that E, ; and Hy, i are

equivalent in the sense that there is a constant cg > 1 depending on n and x such
that

¢ Bip g < Hipr < cpBip i
assuming (94)-(96) are satisfied with 7 < nyin. Similarly, Es , and Hyy are equiv-

alent and E,, ;, and Hy, ; are equivalent. Let us rescale similarly to (104). Since
w=H, r=aHt and Q = Ht, we define

ﬁlp,k — HﬁZBzaHtHlp,ky Hs,k — H72672Ht+2aHt72KHs,k7
ﬂ' p = H72€2aHt74KH k-

Finally, we let

(163) ﬁk = Hlp,k + Hs,k + IjIm,k-

Note that in the current context, E), and Hj are equivalent.

12. DIFFERENTIAL INEQUALITIES

The purpose of this section is to prove the differential inequalities that will be the
essential tools for proving future global existence. When we say that the bootstrap
assumptions hold, we here mean that we have smooth solutions g,, and ¢ to
(144)-(147) such that (94)-(96) hold on some time interval [0,T), where 1 < Npin,
cf. (160), and that

(164) () < e

on the same time interval for some € and kg such that € <1 and kg > n/2+1. Note
that under these assumptions, Hy and Ej, are equivalent, the relevant constants
only depending on n and Y, so that we, for all practical purposes, can assume that
(105) holds. Recall that r,Q > 0 for ¢ > 0 by construction in the current setting.
Let us write down the estimates that will be of relevance.

Lemma 16. Assume that the bootstrap assumptions hold. Then

|Agollge < CHQEB—QaHtH;/27

[Aomllae < CH2eth+K*2aHtH;/2’
1Aijllge < CHQEeQK—QaHtI_AI;/27
1Agllge < CH2€672aHtf{;/27

where the constants depend on n, k, x, ¢1 and the C*+3 norm of V/Vy in a neigh-
bourhood of 0.

Remark. The bootstrap assumptions, via Sobolev embedding, imply a bound for
¢ only depending on n and y (recall that ¢ < 1). This bound corresponds to the
neighbourhood mentioned in the lemma.

Proof. Let us first consider Aw- The terms arising from Ay, and Ac ., are
already under control due to Lemma 12. Concerning Ay ., note that

V(¢) — Vo = H*¢"R(¢),
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n(n — 1 s
R(¢) = (2‘/01)/0 /0 V" (r¢)drds.

Since R is a smooth function, we can use the algorithm for estimating Ag ... The
argument to deal with Ay is similar. This yields all the estimates except the one
for A;;. The first term on the right hand side of (153) is the only term we have not
yet estimated, but it can be dealt with using the algorithm. O

where

Lemma 17. Assume that the bootstrap assumptions hold. Then

10y, 0%ulls < CHZee g/,
H[Ijg»aa]umHZ < CH2€6Ht+K_2aHtI;[;/27
1[0y, 0% hijlls < CHZee?K-2Htfl?)
1[0,,0%¢lla < CHZee 2Ht[)/?,

for all |a| < k, where the constants depend on n, k, x, c1, the C*+3 norm of V/V;
in a neighbourhood of 0 and on an upper bound on H 'e= K.

Proof. This follows from Lemma 13, Lemma 16, (144)-(147), (106)-(110) and the
algorithm (138) (note that we have used a < 1). Strictly speaking, the estimate for
[y, 0%]hsj is obtained by applying Lemma 13 to e 2K h;;. O

In preparation for the final estimate, let us note that the following estimates hold.

Lemma 18. Assume that the bootstrap assumptions hold. Then

S CH6672Ht72K67aHt’

1 L .
H2809” + Hg"

oo

1009%|0e < CHee @,

Proof. The estimates follow in a straightforward way from estimates we have already
written down. O

Finally, we need the following estimates.

Lemma 19. Assume that the bootstrap assumptions hold. Then

(165) AR~ 6[0%]1 < CHee “"'H,,
166) ||AE,%, [ m]Hl < CHG@_aHtH&k,
(167) |AE A 6. [0%hislh < CHee “M'Hy, .,
(168) 1AE A5, [0%0)lln < CHee *""Hy

for |a| < k, where Ag s is defined in (159) and the constants depend on n, x and
an upper bound for H e K

Proof. Let £, 5 be defined as in Lemma 15, Ag ., s be defined as in (159) and recall
that v, = 6y = 0. If the bootstrap assumptions hold, we see that

|AE~.50]|1 < CHee e, 5[v].

This proves the lemma. (Il
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Lemma 20. Assume that the bootstrap assumptions hold. Then

(169) (ﬂi[ilf’k < —4aHfIlp,k + CHee_aHth;/2f111})<i,

(170) dlz;”“ < —daHH, )+ CHHY AL
—I—C’Hee_“Htf{;/szsl’{f,

(171) dffl;“”“ < He MHy o+ CHee M ALY

where the constants depend an upper bound on H 'e ™ n, k, x, c1, and the C*+3
norm of V/Vy in a neighbourhood of 0.

Proof. Recall that a is defined by (162), so that e.g. 7, > 6a, a fact we shall use.
The inequalities (169) and (171) follow from the estimates we have written down
so far. In the derivation of (171), recall that v, = 6, = 0 and note that when 0,
hits the last factor in the last term of (161), the estimate

aaHQe_QaHtaahijataahij
1
< 5I_Ie—aHtaa[];126—2¢1Ht(aozhij)2 _QOO(ataahij>2
+(g” +1)(0:0%hi;)?]
is of use. If the second to last term on the left hand side of (145) did not exist, we

would get (170) without the middle term on the right hand side. What remains to
be estimated is a constant times

H—2e—2Ht+2aHt—2KH31’§€2 | H g™ T iy || v

_ K £51/2
— o HttaHt KHS;c

9" T |l £
Note that

19 ol < C |97 ool Tamgll e+ D 107 21 Tim; lloo
0<|a|<k

In order to estimate the right hand side, let us use (110), (109) and (112). We
use (110), the bootstrap assumptions and the fact that kg > n/2 + 1 to estimate
ITimj oo We then obtain

”gijrimj”Hk < Ce(lia)HtJrKHﬁil/,i + Cef{;/2,

The lemma follows. O

13. GLOBAL EXISTENCE

We are now in a position to prove global existence of solutions to (144)-(147), given
that the initial energy is small enough.

Theorem 9. Let V be a smooth function such that V(0) =V, >0, V'(0) =0 and
V"(0) > 0. Let H,x > 0 be defined by (10) and (11) respectively. Let (p, K, do, P1)
be given on T™, where p is a smooth Riemannian metric, Kk is a smooth covariant 2-
tensor and ¢, ¢1 are smooth functions. Define g, |i=o0 by (58)-(59) (with h replaced
by p), (0rguw)|t=0 by (60) and (62)-(63) (with F,, given by (46) where w = H), and
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define Pli—o, (019)|t=0 by (61). This defines initial data for (144)-(147). Assume
that there are constants ¢; > 2 and K such that

2 o
(172) =l < e gi5(0,2)0"7 < Spo?,

C1 2
for allv € R and = € T". Let ko > n/2 + 1 and define Hy, by (163). There
are €g,co € (0,1), where €9 and co should be small enough, depending on an upper
bound on H e % on x, n, ko, ¢; and the sup norm of V(i)/VO, t1=1,...,k0+3
in a neighbourhood of zero, such that if

(173) H,7%(0) < eoe,

for some € < €, then the solution to (144)-(147) with initial data specified as above
exists for all future times, (94)-(96) are satisfied with n = Nmin for allt > 0 and

(174) (1) < e
for allt > 0.

Remark. The size of the neighbourhood on which we need to estimate V/Vj is
determined by n and x, cf. the remark following Lemma 16.

Proof. Let A denote the set of s € [0,00) such that

e there exists a smooth solution to (144)-(147) on [0, s),
e (94)-(96) are satisfied on [0, s) with n = Nmin,
e (174) is satisfied on [0, s).

Note that if s € A, then the conditions necessary for deriving the different inequal-
ities above are satisfied on [0, s). In particular, (169)-(171) hold. Note also that
(144)-(147) are equivalent to (67)-(70), which, in their turn, are equivalent to (53)-
(54), given the choices (46) and (51)-(52). Thus, due to Proposition 1, we have
a unique smooth solution to (144)-(147) on some interval (Tinin, Tmax). Assume
co < 1/2. Then (174) is satisfied with a margin for ¢ = 0 and so it will be satisfied
on an open interval containing 0. Since (172) holds, as well as goo = —1 and gg; = 0
for t = 0, (94)-(96) are satisfied on an open interval containing 0. We conclude that
there is a T' > 0 such that 7" € A. That A is closed and connected follows from the
definition. What remains to be proved is that it is open.

Assume 0 < T' < oo is such that T' € A. Note that the bootstrap assumptions
together with the equations ensure that the C? norms of g and ¢ do not blow up
and that goo and the smallest eigenvalue of {g;;} stay bounded well away from zero
on [0,T). Consequently, T' < Tihax due to Proposition 1. We thus have a smooth
solution beyond T', and we conclude that (94)-(96), with 7 = i, and (174) hold
on [0,7]. In order to go beyond T, let us first prove that an improvement of
(94)-(96) holds in [0,T]. Due to (174) and Sobolev embedding, we obtain

HﬁleaHtizK”aohij Hoo < CG.

Consequently,
(175) le 2K gi5(t,) — e 2K gi5(0, )l < Ca™'e

for all t € [0, T]. By assuming € to be small enough, we obtain (94) with ¢; replaced
by 2¢;1/3. By assuming € to be small enough, we also obtain (95) and (96) with 9min
replaced by 7min/2, due to the definition of the energies and Sobolev embedding.



48 HANS RINGSTROM

Thus (94)-(96) hold in an open neighbourhood of T'. In the interval [0, T], we have,
due to (169) and (174),

dHlPJCO < CHESB_aHt
dt
Integrating this inequality and assuming e to be small enough, we get,
(176) A3 (1) < 2coe

for all t € [0,T]. Note that the bound on e depends on ¢y which we have not
specified. We shall, however, specify ¢y in the end and it will only depend on the
mentioned constants, so that this is not a problem. In order to get an estimate for

Hy, 1y, let us define
1
f=exp [(e_“m - 1)} .
a

Note that exp(—1/a) < f <1 for all ¢t € [0,T]. Defining Hm,ko = fﬁm,ko, we get,
using (171) and (174),
dHyp 1,

ZTmyro - CH€367aHt,
dt  —

so that

Hun oo (1) < €Y Hyy 1y (0) + €/Ca™t e,
Assuming e to be small enough, depending on the quantities mentioned and cg, we
obtain

(177) A3 (1) < Cucoe,
where Cy, = 2exp[1/(2a)]. Consider (170). In the last term, there is one part which
can be written

CHee “H'H, .
By assuming € to be small enough, we can absorb this term in the first one, at the
price of reducing the constant. All that remains of the last two terms in (170) can
be estimated by

CSHC()EI:IS{Q?)

due to (176) and (177). We get

dﬁs,ko
dt

Thus ﬁs_,ko decays as soon as Saﬁsljj) (t) > Cscpe. Assuming ¢y to be small enough,
only depending on a, Cs and Cy, and € to be small enough only depending on the
stated quantities, we obtain (174) with € in the right hand side replaced by €/2.
Thus A is open. O

The conclusions of Theorem 9 are global existence and that we have estimates of the
form (174). It is, however, of interest to obtain estimates for the higher derivatives.

< —3aH H, g, + CoHegeH2 )2

Theorem 10. Consider a solution to (144)-(147) corresponding to smooth initial
data satisfying the conditions of Theorem 9. Then for every k, there is a constant
C} such that

(178) (1) < Gy
for allt > 0.
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Proof. Since we have (174) and (94)-(96), with = fmin, for all ¢ > 0, we have
(169)-(171) for all k and all t > 0. Let us define

—aHt 1]
Hsk:e @ Hs,k.

3

Then
dH, - " 172 g
d{k < —baHH,y + CHe M2 212 + CHee 2 (1,2 {12,
Due to this inequality, (169) and (171), we obtain
% < CHefaHt/ZHk’
dt
where

Hk = ‘E[Lk; + I:Is,k + I;[m}k + ﬁsf,k'

Consequently Hy is bounded. This leads to the conclusion that Hlp,k, and Hm, L are
both bounded. If we insert this information into (170), we get

dH

dt
By assuming ¢ to be great enough, the second term on the right hand side can be
absorbed in the first. The inequality that results immediately implies that I:IS,;,C is

< —4aHH, )+ CHe “M'[,,, + CHA’.

bounded, since it implies that ﬁs’k decays as soon as it exceeds a certain value.
The theorem follows. O

14. ASYMPTOTICS

The estimates we have obtained so far, i.e. (178), are what naturally comes out of
the bootstrap assumptions, and they are far from optimal. Let us try to improve
them.

Proposition 2. Consider a solution to (144)-(147) corresponding to smooth initial
data satisfying the conditions of Theorem 9. Let us define ¢ = 4x/n? and

A= G- (-0

for ¢ € (0,1) and A = n/2 for ¢ > 1. We shall also need the notation Ay, =
min{1, \}. There is a smooth Riemannian metric p on T™ and constants K; such
that

et g (2, ) = p|
(179) Hle 2 gi5(t,-) = pijllen
(180) le™ 0945 (t, ) — 2H pil|
for every | > 0 and t > 0, where p¥ are the components of the inverse. Here and

below, we shall, for the sake of brevity, write C' instead of C'(T™). Concerning
Jom, there is an a > 0 and constants K; such that for alll >0 and t > 0,

1 ii
Gom (t, ") — mp  Yim

—2Am Ht
Kle s

<
S Kl€72)\mHt’

(181) ’

+ ||8090m(t> ‘)”Cl < KleiaHt,
cl

where Yim; are the Christoffel symbols of the metric p. The estimates for goo and
kij, the components of the second fundamental form induced on the hypersurfaces



50 HANS RINGSTROM

t = const. with respect to the standard coordinates on T™, depend on the value of
Am- If Am < 1, there are constants K; such that for everyl >0 and t > 0,

lgoo(t, ) + Lt + 10ogoo(t, ler < Kpe 2 =M1,
le™kij(t, ) — Hpyjller < Kyem 2=t
and if Am =1, there are constants K; such that for everyl >0 and t > 1,
1180900 + 2AmH (g0 + D](t,)er < Kie 27,
lgoo(t,) +1cr < Kyte?,
le Mk (t,-) — Hpijller < Kpte .
Concerning ¢ there are three cases to consider. Let us define p = eMtp, If ¢ < 1,

then there is a smooth function ¢y and constants K;,a > 0 such that for alll > 0
andt >0,

(182) lo(t,) — wollct + |00l < Kiem®H*.

If ¢ = 1, there are smooth functions ¢g and @1 and constants Kj,a > 0 such that
foralll >0 andt >0,

(183) [90(t, ) = @1l + lo(ts ) = prt — poller < Kie™.
Finally, if ¢ > 1, there is an anti symmetric matriz A, given in (193), where

8 =n(C —1)Y2/2, smooth functions wo and @1 and constants K;, o > 0 such that
foralll >0 andt > 0,

e () (2)

Remark. In the above proposition all constants are allowed to depend on H. The
statement is certainly not a complete result concerning the asymptotics; it is possi-
ble to get more information. However, we shall be content with the above estimates.

Proof. Note that due to (178), we have
(185)  e*|gY[lor + e lgijllcr + e |g% o + e T | gog | o0 < K,

and similarly for other quantities. Note in particular that we do not lose any decay
by taking derivatives; in order to bound 9;go,, in H', we use the fact that fIlH is
bounded. Our first goal is to prove that H; is bounded. Let us estimate Ag,,. We
wish to prove that

(186) Aol < Ce™E(1+ HY),

A

< Kleiat.
boL

for some b > 0. Since ¢, 9;¢ and 9;¢ are decaying exponentially in any C! norm,
we have this sort of estimate for Ay ., (in this case we can in fact choose b = 2a).
Using the fact that

(187) gm‘ = —igijg()j,

9oo

we obtain a similar estimate for Ag o,,. Before we turn to estimating A4 gy, let
us consider the case that we have the type of term dealt with by the algorithm for
estimating the non-linearity with I, > 2 and [, = 1, and let us assume that the
term includes a factor g%, By rewriting g* according to (187) and considering what
remains after taking away the factor go;, we get a term such as the ones estimated
by the algorithm with I, > 1 and [;, = 0. In other words, the term we started
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with is go; times something which decays exponentially in any C! norm, cf. (138).
This allows us to estimate Ilo,,, IVon, and Ay g, by the right hand side of (186).
That Lo, Arrom and Ay g, satisfy the same sort of estimate follows from (178).
Consequently (186) holds. We conclude that

|0yl e < C+ CHL.

By arguments similar to, but simpler than, the proof of Lemma 13, we conclude
that for |o| <1,

118y, 0%l < CeP (1 + HLP?).
Finally note that we have (166) and that

| Fom | e < C + Ce ™ H2,

S

where — Fy,, is given by the last two terms on the left hand side of (145), cf. (185).
Combining these observations with Corollary 1, we conclude that

dH, _
dt’l < —nHHsy + CHY? + Ce "My,

which proves that Hy; remains bounded to the future. Note that as a consequence,
e2Ht||g%| 1 is bounded.

Let us turn to ¢. Note that if we introduce ¢ = e’ !¢, (147) can be rewritten

(188) —g%0 0+ (n—2X\)Hdop + (A —nA + x\)H?*p = R,

where
R = (¢% +1)(=2X\H8pp + N2 H?p) — MtA,
+2¢%0; (80 — NHp) + g"19,0;¢.
Let us introduce the quantity

1
Li=35 > [(07000)* + e *(0°¢)7),

o] <1

where b is a positive constant such that for every m > 0, there are constants C,,
such that

llgoo(t, ) + Ulem +1g°°(t,-) + Llem + [[6(t,-) + L em < Crpe™ 2
for all ¢ > 0. Assume furthermore that there are constants C,,, ¢ such that
(189) lellem + |0ollcm < CrpeletDH?
for all m and ¢ > 0. Then, for all |a| <1,

(190) 0°R| < Ce ML} 4 Cectt,
Note that, due to (188), for |a| <,
‘3a33<p| < C«ethLll/2 + CecHt.

Thus 0%[(g° + 1)03¢] can be estimated by the right hand side of (190) for |a| <1
and (188) turns into

(191) 0o+ (n—2\)Hpp + (N2 —nA + x)H?p = R,
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where we have modified R in an obvious way in order to obtain R and R satisfies an
estimate of the form (190). Let us introduce ¢ by n?¢/4 = x. Then the solutions
to the equation A\?> — nA 4+ x = 0 are given by

Ay = 2[1 +£(1-0)Y2.

If we consider the ODE that results by putting the right hand side of (191) to zero,
the behaviour is quite different depending on whether ¢ € (0,1), ( =1 or ¢ > 1.
Let A be defined as in the statement of the proposition and let us consider the first
case. Letting 6 = n(1 — ¢)Y/2, (191) turns into

R+ 6Hdyp = R.

Consequently

(192) % < —2min{8,b} HL; + Ce "HtL; + C’e“HtLll/ 2

Since ¢ and b are positive, the second term on the right hand side can be absorbed
by the first. We conclude that for ¢ > 0, L; can be estimated by Ce2¢*, and for
¢ < 0, L; is exponentially decaying. If ¢ > 0, Oy can be estimated by Ce®t in
any C! norm. By integrating this estimate, we get the same conclusion for . In
other words, if ¢ > 0 and we have the estimate (189), we can improve this estimate
and replace ¢ by ¢ — 2. By carrying out this argument a finite number of times,
we get the conclusion that L; decays exponentially. Thus dy¢ decays exponentially
in any C! norm and there is a smooth function ¢ such that (182) holds. In the
case ¢ = 1, we still have (192), but in that case, § = 0. All the same, for ¢ > 0,
we get the conclusion that L; can be estimated by Ce?*H*. Thus we can improve
the estimate (189) until ¢ becomes negative. Since § = 0, (192) only yields the
conclusion that L; is bounded for ¢ < 0. Consequently e**¢ may grow linearly.
This is, however, not a great surprise, since ¢ is a solution of the ODE resulting by
putting the right hand side of (191) to zero. On the other hand, by inserting the
fact that L; is bounded into the equation, we get the conclusion that 93y converges
to zero exponentially in any C' norm, so that there are smooth ¢ and ¢; such
that (183) holds. Let us turn to the case ¢ > 1. Letting 6 = n(¢ — 1)%/2/2, (191)
turns into

o+ 0*H?*p = R.
Defining ug = 0 Hp and u; = 0y, we obtain

Opu=Au+ R,
where
o ac( S ) e () o (3),
Letting @t = e~ “*u, we obtain
(194) Ot = e 'R,

Note that e=4? is an orthogonal matrix and define
1 it .
M; = 3 Z (0%)" (0*0).

laf<I
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Assuming that (189) holds, we obtain
0eM; < Ce ™M, + CecT M2,

by arguments similar to ones given above. After using this a finite number of times,
we conclude that we can assume ¢ in (189) to be negative. After a finite number of
iterates, we thus get the conclusion that M; is bounded. Consequently (189) holds
with ¢ = —2. Inserting this information into (194), we obtain the existence of two
smooth functions g and ¢; such that (184) holds.

Let us improve our control of u,,. Note that since dyh;; converges to zero expo-
nentially in any C! norm, there are smooth functions pi;j such that

(195) le=*"gi;(t, ) = pijller < Kye™ .

Note that for a given z, p;j(x) are necessarily the components of a symmetric
positive semi definite matrix. One can also check that 9y (e2/tg*/) converges to zero
exponentially in any C! norm. Consequently, we have an estimate similar to (195),
and we shall use the notation p* for the limit of e2#¢g%. Since g g;1. + g°gor =
5t and g*%goy converges to zero exponentially in any C! norm, we conclude that
ppjr = &i. In other words, p;; must be the components of a positive definite
matrix and p* are the components of its inverse. If we let

1
Vigk = 5(0iprg + Okpij — jpin),

we thus get

109" Timy)(t,-) = P Yimgjllcr < Kie™ .
Note that due to (186) and the fact that Hy; is bounded for any I, Ag,, decays
exponentially in any C! norm. By (145), we conclude that D31,y is bounded in any
C' norm, which leads to the conclusion that (¢°° +1)92u,, is exponentially decaying
in any C! norm. The same is true of g%/ 0;0;umy, and g% 0y0;tty,. We conclude from
(145) that

2ty + nHO0 0y, + 2(n — 2)H 4y, = R,
where R decays exponentially in any C! norm and

1 ij

(n—2)m” ™

Consequently i, and dyi,, converge to zero exponentially, so that (181) holds.

Uy, = Um —

Let us study the behaviour of h;; in greater detail. The contribution of the scalar
field to A;j is 2e72HIA, ;2. If we let Ay, = min{1, A}, we get

eith”Aqb,ij”Cl S Klef2)\mHt

for any {. Since Ac,;; = 0, let us turn to A4 ;;. It is clear that VI;; is bounded in
any C! norm, but there is no better bound. It is easy to see that L, IL;;, IV;; and
V;; are bounded in any C' norm as well. What remains is A, given by (83).
The only term we do not already know to be bounded in any C* norm is the last
one. However, this term can be written as a factor times dph;; where the factor
can be bounded by e2#t=tH* in any C! norm. We conclude that if we define

N, = % > (0%0hi;)?,

lal<l i
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we get, for |o| <1,
(196) 0% Aij| < CePmbt L CembHEN2

since the first term on the right hand side of (153) is, up to constants, bounded by
e~ 2Ht with respect to any C! norm. We conclude from (146) that

—gooaghij + TLHaohij = Rij,
where R,;; satisfies an estimate of the form (196). From this we conclude that
(g% + 1)03h;; satisfies the same sort of estimate so that

83}7,” + TLHaohij = ﬁij,
where 7A2¢j satisfies the same sort of estimate as R;;. Consequently,
O N; < —2nHN, + Ce~Pm N2 4 CembHIN,

As a consequence,

In particular, (179) and (180) hold.
Let us turn to ggo. Letting
Pi= ) [(0%00u)* + H(0%u)?),
lev <l

one can, by arguments similar to ones given above, prove that

Opu + (n +2)Hoyu + 2nH?u = Ry,
where, for |a| <1,

10°Ro| < Ce=PmHt 4 Oe—thPll/Q_

AmHt

Changing variables to v = e u, we obtain

(197) DRv+ (n+2 = 2Xn)HOgv + [N2, — (n + 2)An + 2n]H?v = ARy,

Note that if we consider the factor in front of H?v as a polynomial in ), it has
zeros at 2 and at n. Below and above it is positive and in between it is negative.
Since Ay, < 1, the factor in front of H?v is thus positive. Consequently, there are
~v and ¢ such that

- 1
B=3 > [(0%0gv)? + 2yHO 00 dgv + SH?(0%v)?]
la| <1
is equivalent to e**»H#*P; and

8t151 < _anl+Ce—x,nHtlsll/2+Ce—th15l

for some n > 0. We conclude that P, is bounded (in fact we're allowed to conclude
that it decays to zero exponentially). This leads to the improved estimate

|Rollci < Ce 2 HE,

Changing variables again to © = e**=H*y we obtain (197) with A\, replaced by
2 m. Since Ay < 1, the factor in front of H?v is still non-negative, but if A, = 1 it
is zero. The factor in front of Hdyv is, however, always positive, assuming n > 3.
Regardless of whether A, = 1 or not, we get the conclusion that

100 (e u)||on < K.
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In the case that Ay < 1, we get the additional conclusion that
|2 by < K.
Finally, let us turn to the second fundamental form. Note that the future directed

unit normal is given by
N = _(_gOO)—l/ZgO;AaH.

Thus
kij = (Vo,N,0;) = —0i[(—g™) /%" g5 — (—g"™) /2% T,
so that
H [k‘ij - ;(900)1/230%] (t,-) g < K.
The proposition follows from the inequalities already derived. (I

15. CAUSAL STRUCTURE

Let us first prove the statements made in the introduction concerning the metric
(6).

Lemma 21. Let A > 0, H = AY? and let gr be the metric given by (6) and defined
on Mr = RxS!'xS2. Then (Mg, gr) is causally geodesically complete and satisfies
FEinstein’s vacuum equations with a cosmological constant A. Furthermore, if X is
an arbitrary Cauchy hypersurface in (Mg, gr) and v is an arbitrary inextendible
causal curve, then the intersection of the causal past of v with ¥ is not contained
in a subset of X homeomorphic to a 3-ball.

Proof. That (Mg, gr) solves Einstein’s vacuum equations with a positive cos-
mological constant A follows by a computation. Furthermore, for every t € R,
S; = {t} x S' x §? is a Cauchy hypersurface in (Mg, gr). Let 7 be a future directed
causal geodesic and let sy be such that v(sg) = 0. The zeroth component of the
geodesic equation then implies that 4°(s) < 0 when s > so and 4%(s) > 0 when
5 < sp. Thus 0 < 5°%(s) < 4%sp), i.e. Y is bounded. This implies that « is
complete, since v has to intersect every S;. Let ¥ and v be as in the statement
of the lemma. Then ¥ is homeomorphic to S! x S§? due to Corollary 32, p. 417 of
[24]. In particular, ¥ is compact, so that there is a 7 such that S, is strictly to the
future of 3. Considering the metric (6), it is clear that there is 0 < T € R such
that if (t,p,q) € Mg, then {t — T} x {p} x S C J~({(¢,p,q)}). Thus, since v and
S, intersect, J~(y) contains {7} x {p} x S? for some p € St. Assume J~(y)NT
is contained in a set B, homeomorphic to a 3-ball. Let fi : S? — {7} x {p} x S?
be defined by f1(q) = (7,p,q). Let fo: {7} x {p} x S* — B be defined by follow-
ing the flow lines of J;; note that following the flow lines of 0; to the past from
{7} x {p} x $? to ¥ implies that we end up in N J~(7), i.e. in a subset of B. Let
f3: B — S? be defined by projection onto the S? factor in M. Due to Proposition
31, p. 417 of O’Neill, f, is continuous. Furthermore f3o fyo f; is the identity on S2,
so that our assumptions lead to the conclusion that we have factored the identity
map from S? to itself through the 3-ball. Since the second homology group of S? is
Z and the second homology group of B is {0}, we obtain a contradiction, and the
lemma follows. O

Let us turn to the causal structure of the metrics constructed in Theorem 9.
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Proposition 3. Consider a future directed causal curve v with domain [Sg, Smax) in
the Lorentz manifold constructed in Theorem 9 such that v°(sq) = 0. Let y* denote
the coordinates of this curve in the universal covering space of the spacetime, i.e.
[0,00) x R™. Assuming € to be small enough (independent of K, H and ~y), ° > 0
and the length of the spatial part of the curve with respect to the metric at t = 0
satisfies

(198) [ a0 s < aton
so

where d(e) — 1 as € — 0 and 7, = woy where 7 : [0,00) x T" — T™ is given by
7(t,x) = x. Finally, if v is future inextendible, v°(s) — 00 as s — Smax-

Remark. The timelike vectorfield 9; is defined to be future directed.

Proof. Due to causality, we have

(199) ¥y <0,
and the condition that the curve be future directed is equivalent to
(200) 900¥° + goy* < 0.

Let us work out the consequences of this. Due to (96), we have
2 e I b e P
< 2012 4 nl/2017162Ht+2K72aHt5ij;yi;yj.
Note that when we write ¢ in this equation, we of course mean ~9. Since the last
term can be bounded by 1'/2g;;4*47, due to (94), we obtain
(201) iy < e(n)i3°,

where ¢(n) — 1 as n — 0 and we have used (95) and (199). Due to (94), we conclude
that

(202) 35 4'37 < exe(n)e” 224050,

Combining (175) and (202), we obtain

6—2Ht ~0-O.

19i5 (0, %)5'4) — e 21 g, 4" | < Ca™teere(n) 404

This observation, together with (201), yields

(203) 9i3 (0,575 < d*(e)e™* 44",

where d(e) — 1 as ¢ — 0 (note that n — 0 as € — 0). Consider (200). Note that
190" | < [e™ 271725 6% goigo, '/ 2[e AR 6,54 492 < €(e) 1),

where £(e) — 0 as € — 0, due to (96) and (202). Assuming e to be small enough
we conclude that 4° > 0, which yields the first conclusion of the proposition.
Combining this observation with (203), we obtain (198). Finally, let v be future
inextendible and assume +° does not tend to co. Since 4% > 0, 4Y has to converge
to a finite number and since we have (202), the same holds for v*. We have a
contradiction. (]

Proposition 4. Consider a spacetime of the type constructed in Theorem 9. As-
suming € to be small enough (independent of K and H ), this spacetime is future
causally geodesically complete.
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Proof. Let v be a future directed causal geodesic (i.e. a map + from an open inter-
val into the spacetime satisfying 4" = 0) and assume that the maximal existence
interval is given by (Smin, Smax). We shall use the notation ¢t = 4%(s). Due to the
equation for a geodesic, we have

(204) 50 4+ 19, 444" = 0.
Due to (174),

Tl < CeHe "', |IY — Hg,;| < CeHe?MtH2K—allt,
|F82| S CEHth+K7aHt.
Consequently, F?j"yi"yj > 0 for ¢ large enough. Due to (202), we conclude that

I0805%3°] + 2IT6,4°4'| < CeHe M50 P2,
Combining these pieces of information with (204), we obtain
;}'/0 S CEHe—aHt,yO;yO

for s > s1. Since 4 > 0 assuming ¢ is small enough (independent of 7), we can
divide by 4° in this equation and integrate in order to obtain, for s > s,

-0 s =0 s
77 (s) /7(0) / —aH~%(0) 20
n - = : do < CeH e AN (g)do
Y0(s1) s ¥°(0) 5 )
7%(s)
C’eH/ e M7 dr < Cea ' exp[y°(s1)]
¥

O(s1)

(recall that t = 4%(s)) so that 4 is bounded for s > s;. Thus

20(s) —4%(s1) = /swa)da < Cls — 5],

Since 7°(s) — 00 as s — Smax, We conclude that sy, = co. O

16. PROOF OF THE MAIN THEOREM

Proof of Theorem 2. Consider T™ to be [—m, 7]™ with the ends identified.

Construction of a global in time patch. Let us start by constructing a patch of
spacetime which is essentially the development of the piece of the data over which
we have some control. Let f. € C§°[B1(0)] be such that f.(p) =1 for |p| < 15/16
and 0 < f. < 1. Define initial data for a Lorentz metric g and a function ® on
{0} x T™ by

Goo(0,-) = -1
Goi(0,) = 0
Gij(0,) = fehyox ' +16H (1 — f.)6;;
0:Gi;(0,) = 2fekgox P+ 32H (1 — f.)dy
(0,) = fepooa!
0,®(0,-) = feprozl,

where the indices on the right hand side refer to the coordinates x assumed to exist
in the statement of the theorem, ¢;; are the components of the Kronecker delta and
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the indices on the left hand side refer to the standard coordinates on T". Define,
furthermore,

d0Goo(0,) = [—2nHgoo — 5" 0:5:5](0, ")
1 .. _ _
00goi(0,-) = |—nHgy + 5?”(2@‘%1 —919i;) | (0,-).

Note that the last two equations are simply (62) and (63) given that we define
Eij = 0,g;j/2. For € small enough, Theorem 9 applies to these initial data and we
get solutions to (144)-(147) on (t—,00) x T™ for some t_ < 0. Let us justify this
statement and check that the bound only depends on n and V. By the assumptions,
Gij — 16H 25, is small in H**+1(T™). Assuming € to be small enough, we get (172)
with ¢; = 4 and e~ 25 = H?/16. In our case, ko is determined by n, so that the
constants ¢y and ¢y appearing in the statement of Theorem 9 only depend on n and
V. If we can prove that ﬁko(()) < Ce for some C depending only on n and V', we
are thus done. However, for t = 0, fIkO is equivalent to the sum of Hip ., Hs i,
and Hy, i,, with the constant only depending on H. On the other hand, by the
arguments given in Section 11, this sum is equivalent to the sum of Eip i, Es i,
and Ey, , (recall that in the expressions for these quantities, r = aHt, w = H and
¥ = ¢). However, for t = 0, one sees that this sum is bounded by Ce, where the
constant only depends on n and V. The statement follows. Note that we also get
asymptotics as in the statement of Proposition 2. Furthermore, on Bjs5,14(0), the
constraint equations are satisfied, and we have chosen 9yggg and 9y go; in such a way
that D,|;—o = 0. Due to Proposition 1, we conclude that in D[{0} x By5/16(0)],
(g, @) satisfy (12)-(13). If € is small enough, Proposition 3 implies that

(205) (t—,00) X Bs/s(0) € D[{0} x Bag32(0)],

where we increase t_ if necessary. The reason for this is that, first of all, the
assumptions concerning h and Sobolev embedding yield

16H 20| < d2(e)3i; (0, -)o'v?
for all v € R, where dy(€) — 1 as ¢ — 0. Due to (198), we then obtain
4H—1/ [6:4'491H%ds < d(e)d: () H
S0
For € small enough we thus get
Smax L 9
84301 2 ds < =
/50 [G557'4']7ds < o,
which implies (205). Note that due to Lemma 3,
Upexe = D[{0} X Bi5/16(0)], Ut,exc = D[{0} x Bag32(0)],
U2,exc - D[{O} X B29/32(0)]

are open, open and closed subsets of R x z(U) respectively. Consequently, W exc =
(Id x 271 (Uj exc) for i = 0,1,2 are also open, open and closed respectively.

Construction of a reference metric. In order to prove that the patches that we
construct fit together to form a globally hyperbolic development, it is convenient
to construct a reference metric. Let

G=(1— foox)(—dt* + h) + (foox)(Id x 2)*g.



FUTURE STABILITY OF THE EINSTEIN-NON-LINEAR SCALAR FIELD SYSTEM 59

Here h is the Riemannian metric on X given by the initial data. Note that 0; is
timelike with respect to g so that 0; is timelike with respect to §. The hypersurfaces
{7} x ¥ are spacelike with respect to —dt> + h and with respect to (Id x x)*g for
T € (t_,0), so that they are spacelike with respect to g. As a consequence, g is a
Lorentz metric on (t_,00) x X, cf. Lemma 1.

Construction of local patches. In order to construct a globally hyperbolic
development, we need to have patches starting with open subsets of the initial data
for which we have no control beyond the fact that the constraints are satisfied. Let
p € ¥. Let O 3 p be an open subset of ¥ such that we have coordinates y', ..., y"
on O and define coordinates 3, ...,y™ on R x O by 3° = ¢. Consider the equations

. 2
(206) Ry =VuoVi¢ = ———V(0)gw = 0,

(207) VAV, —V'(p) = 0,

where

(208) R =R +VyD,, D.=F,-T, F,=g.g""T%;,

f‘g 5 are the Christoffel symbols of the background metric g, the curvature is com-
puted for the unknown metric g, all indices are raised and lowered by g, etc. We
would like to apply the local existence result given in Theorem 5, but this result
does not immediately apply to the present situation due to the global restrictions
on g made and the fact that a Lorentz metric on R™*! can never have compact
support. Let @ 5 p be an open set such that its closure is compact and contained
in O. Let A,, be the components of a Lorentz matrix valued function depend-
ing smoothly on the components gog of g with respect to the coordinates y. Let
Ago = goo for all ggg € [—3/2, —1/2] and have the property that the range of Ag is
contained in [—2, —1/4]. Let Ag; = go; for go; € [—1,1] and have the property that
the range of Ap; is contained in [—2,2]. Let U be an open subset of the set of sym-
metric n X n matrices such that the matrices with components h;;(g) for ¢ € Q are
contained in U and that the closure of U/ in the set of all n x n matrices is compact
and contained in the set of positive definite ones. Let A;; be such that A;; = g;; for
{9i;} € U and A;; is everywhere positive definite with a positive lower bound and
an upper bound. Finally, assume that A, is constant outside of a compact set.
Note that A satisfies the conditions described in Subsection 3.1 (with g replaced
by A). In particular, the derivative estimates follow easily from the fact that the
derivatives of A with respect to the metric coefficients have compact support. Let
01 € C5°[(—1,1) x O] be such that 6;(q) = 1 for ¢ € [-1/2,1/2] x Q. In considering
(206)-(207), we replace g"¥, wherever it appears, with A*  the components of the
inverse of A and we replace f‘ﬁy by 91f‘ﬁy. With these modifications, the resulting
f, using the terminology of Subsection 3.1, has the properties required for applying
Theorem 5. The reason is that f is a sum of terms that are smooth functions of
¢ times functions of ¢ and x that have compact support. Since V'(0) =0, f, =0
using the terminology of Subsection 3.1. As initial data we would ideally like to
prescribe that (58)-(63) hold. However, that does not lead to an equation of the
type considered in Theorem 5. Let 6y € C§°(O) be such that 6y(¢) = 1 for all
q¢ € Q. Modify all the initial data by multiplying them with 6. Let u be the
vector which collects ¢ and g, for p,v = 0,...,n. We can consider the resulting
equation as an equation on R™*!. Furthermore, it is of such a form that Theorem
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5 is applicable. We thus get a smooth local solution. Due to the smoothness of the
solution, there is an open neighbourhood W of p in R x ¥ with the property that
01 =1 and gng are such that A,, = g,,, in W. Furthermore, we can assume that
Y, :=Wn{0} xX C {0} x Q and that every inextendible causal curve in W inter-
sects X,,. Thus, (W, g) is globally hyperbolic with a Cauchy hypersurface ¥, (note
that since g% is negative, gradt is timelike on W and the time coordinate is strictly
monotonically increasing along any causal curve so that causal curves intersect 3,
at most once). Consequently, J~(¢) N J*(X,) is compact and contained in W for
every ¢ € W with positive t-coordinate and similarly for points of W with negative
t-coordinate, cf. Lemma 3. If we let D,, = F,, — I',, then D, = 6D, = 0 on 3,
by an argument similar to the one presented at the end of the proof of Proposition
1 (in the present setting M,, = M, = 0, which only simplifies the argument).
Furthermore, D,, satisfies (56) with M, and My set to zero. Applying Theorem
6 on (W, g), which is globally hyperbolic, we conclude that D, = 0 in all of W.
Let W, be an open neighbourhood of p with the same properties as W and whose
closure is compact and contained in W.

Patching together. We would like to define the manifold M to be the union of all
the W), and Wi exc. The first problem we are confronted with is that of constructing
a metric on M. In other words, proving that the metrics we have constructed on
the different patches coincide in the intersection. Let us consider the intersection
of W, and W, and comment on the changes one has to make if one replaces W,
by Wi exc as we go along. Say that W, N W, # (. The closures of W, and W,
are compact and contained in open sets Wy, Wy, with properties as above, on
which we have coordinates z = (2°,...,2") and y = (3°, ..., y") respectively, where
29 =40 = ¢t. In the exceptional case, note that W1 exc is contained in Wy ey, which
is closed. Consequently, we shall in the exceptional case replace Wp with Wa exc.
Furthermore, W3 cxc € Wy exc and the latter set is open, so that in the exceptional
case, we replace W1 with Wy exc. On W7 and Ws, we have metrics g; and go and
smooth functions ¢, and ¢, respectively, both satisfying (206)-(207) when expressed
with respect to the coordinates z and y respectively. Let us express both ¢g; and g
with respect to the coordinates z in Wi N Wy and refer to the components as g1,
and go,,, respectively. Let us also use the notation ¥, = W; N {0} x X.

Both are solutions. Note that the equations (206)-(207) are geometric, i.e. coordi-

nate invariant. The reason is the following. Let V be the Levi-Civita connection
associated with the reference metric g. Define A by

(209) A(X,Y,n) =n(VxY = VxY),

for vectorfields X,Y and a 1-form field n. We see that A is multilinear over the
functions, so that it is a tensor field. Writing it out in components, we get

Agﬁ = A(Oq, 0, dz*) = Fgﬁ — f‘gﬂ,
where )
Fgg = 5?1”1/(3(1!561/ + aﬁgau - augaﬁ)-
Compute
guz/gaﬁAgﬁ =T, - guugaﬁrgg =0, -F,=-D,.

The left hand side is clearly the components of a covector, so that D, are the
components of a covector as well. Due to (208), we conclude that the left hand sides
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of (206)-(207) transform as tensors under a change of coordinates. We conclude
that both gi..,¢q and gopw, ¢p satisfy (206)-(207). Furthermore, since D;,, are
the components of a covector and vanishes with respect to one of the coordinate
systems, it vanishes with respect to the other coordinate system.

The initial data coincide. By the construction and the specific form of the coor-
dinate systems, it is clear that 91i5 = 92i5, 9100 = G200 and that g920i = 910i for
t = 0. Since D;, = 0 and the metrics coincide for ¢ = 0, the contracted Christoffel
symbols for g; and go with respect to the z-coordinates have to coincide. Since
kij = O0gij /2, and the coordinates have the above special form, we conclude that
Otg1uy = Orgauy for t = 0. Finally, it is clear that ¢, = ¢y and Or¢p, = 0y for
t=0.

The solutions coincide. We wish to prove that the solutions coincide in Wp N Wq.
For t > 0, let

S =[0,t] xXNW,NW,.

Note that S; is compact, and this is still the case if we replace Wp by W3 exc. Let
A be the set of ¢ € [0,00) such that g; = g2 and ¢, = ¢, in S; and that for r € S,

(210) Ty (r) Ny (81) = Ty (r) N T3 (52),

where J; (r) is the causal past of r with respect to the metric g; in Wj etc. Note
that 0 € A, so that A is non-empty. Assume t € A and r € S; with r = (¢, ¢).
Note that J; (r) N J;H(2;) € Wy N Wa. If 7 > t is close enough to ¢, the same is
true with r replaced by (7, &) due to Lemma 3. Taking the difference of (206)-(207)
for the two solutions, keeping in mind that sg; + (1 — s)g2 is a Lorentz metric for
s € [0,1] due to the fact that g;po < 0 and g;, is positive definite for ¢ = 1,2, we
conclude that Theorem 6 is applicable with two choices for the coefficients of the
highest order derivatives; either gi"” or g4”. We conclude that g; = g2 and ¢, = ¢y
in
(I [(nOIN T (Z)} U {5 (1] N T3 (22)}-

Consequently (210) holds with r replaced by (7,£). This proves that A is open,
due to the following argument. Assume there is no € > 0 such that [t,t + €] C A.
Then there is a sequence r; = (¢;,p;) such that t; — t+ and either g1 (r;) # g2(rs),
oo (i) # dp(r;) or (210) does not hold for r = r;. Due to compactness, we can
assume p; to converge to, say, p. Applying the above argument with & = p, i.e.
r = (t,p), we arrive at a contradiction for ¢ large enough. We conclude that
[t,t + €] C A for € > 0 small enough. The closedness is less complicated to prove,
though some care is required in the proof of (210). However, (210) follows from
Lemma 3. Since A is connected, we conclude that A = [0,00) so that g1 = g2
and ¢, = ¢ in W, N W, for t > 0. Due to the same argument in the opposite
time direction, we conclude that we have a solution to (12)-(13) on M, defined to
be the union of all the W, and Wi ¢xc.. The embedding i : ¥ — M is simply the
inclusion i(p) = (0,p). By construction, it is clear that if K is the induced second
fundamental form, i*g = h, ©*K =k, ¢oi = ¢ and (N¢) oi = ¢1. Let v be
an inextendible causal curve in M. Then the image of v has to intersect some W),
and 7[,-1(w,) is an inextendible causal curve in W, which by construction has to
intersect 2. Since gradt is timelike by construction, the ¢-coordinate of +y is strictly
monotone, so that ~ intersects ¥ exactly once.
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Embedding into the maximal globally hyperbolic development. Above, we
have constructed a globally hyperbolic development of the initial data, say (M, g, @).
Furthermore, all causal geodesics that start in {0} x By,4(0) are future complete in
M due to Proposition 4 and there is an embedding % of the form (20) due to the
inclusion (205). Finally, this embedding has the properties stated in the theorem.
To get the desired conclusion, we need only observe that by the definition of a
maximal globally hyperbolic development, there is an embedding of (M, g, ¢) into
the maximal globally hyperbolic development (M, g, ¢). |

17. STABILITY OF LOCALLY SPATIALLY HOMOGENEOUS SPACETIMES

Proof of Theorem 4. Given the initial data, let us start by constructing a develop-
ment.

Construction of a development. Let us first consider the case in which the
background initial data are (G, g, k), where G is a simply connected unimodular
Lie group and the isometry group of the initial data contains the left translations
in G. The arguments presented below are based on a formulation of Einstein’s
equations, in the context of interest, that was introduced by Ellis and MacCallum,
cf. [12]. Our presentation, however, follows the presentation given in the appendix
of [30] quite closely. Let e, be an orthonormal basis of the Lie algebra and define
the structure constants 'y;- . by the relation

[} €] = Vjwei-
The fact that G is unimodular is equivalent to 7;1 = 0 which is equivalent to the

statement that there is a symmetric matrix v such that fyji.k = ¢!, where €123 = 1

and €5 is antisymmetric in all its indices. In fact, one can compute v/ by the
formula
1

(211) v = Sy
where the parenthesis signifies symmetrization. According to Lemma 21.1 of [30],
one can apply an orthogonal matrix to the basis e}, so that v with respect to
this new basis is diagonal. Let us denote this new basis by e} as well and let
kij = k(e},e’). The content of the momentum constraint (18) is that {k;;} and

i1 &5
{vi;} commute:

(212) kilvy — vk =0

7

(note that ¢g = ¢ = 0 when we apply (18) here). In the above equation, and
below, we raise and lower indices with d;;. In other words, there is no difference
between upstairs and downstairs indices, and the only reason for making a distinc-
tion is aesthetical. As a consequence, we can assume €; to be such that k;; are
the components of a diagonal matrix as well. Define n(0) = v, §(0) = tryk and
0:j(0) = k;; — 6(0)d;;/3. Define n,§, 0 to be the solution to

(213) ’flij = 2nk(iaj)k — fGnij
(214) 0” = —Goij — sij

. . 1
(215) 0 = —o407 — 592 +A.
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In these equations s;; = b;; —tr(b)d;;/3, where b;; = 2n,'ny; —tr(n)n;;. Let (t_,t4)
be the maximal existence interval. Note that, since V' (0) = A, (17) is equivalent to

.. .. 1 2
(216) oo + (nijn” — 2(trn)2> +2A = §92

at t = 0. Due to (213)-(215) and the fact that (216) holds at ¢ = 0, (216) is satisfied
at all times. The reason is that if you move all the terms in (216) to the left hand
side and denote the resulting expression by f, then (213)-(215) imply f=—20f /3.
Let v be a vector collecting all the off-diagonal components of n and o. Using
(213) and (214) one can derive an equation of the form ¥ = C'v for some matrix
C' depending on the unknowns. Since v(0) = 0, we conclude that v(t) = 0 for all
t € (t_,t4). In other words n and o remain diagonal. As a consequence, (212)
holds for all t € (¢t_,t4) if we replace k with o and v with n.

Let us define f; by the condition that f;(0) = 1 and f,» = (20; — 0/3) f;, where o;
denotes the diagonal components of o. Define
—1_/

a; = (W f;) "2,
i G

define e; = a; "€, (no summation on i) and eg = 9;. The point of this definition
is that the matrix n obtained from the basis e; using the right hand side of (211),
where 7}, are the structure constants associated with the basis e;, coincides with
n. Let M = (t_,t;) X G and define a metric on M by requiring that e, be an
orthonormal basis with ey timelike and e; spacelike. In other words,

3
(217) g=—dt’+» al(t)f' ¢,
=1

where the ' are the duals of the e;. Let V be the associated Levi-Civita connection
and compute (V¢ e;,e;) =0. If

0(X,Y)=(Vxeo,Y), 0,, = é(eu,ey),
then 500 = t%i = 91-0 = 0. Furthermore,
ajeo(a;)dij = —05
(no summation over j) so that éij is diagonal and trf = 6. Finally,
~ 1
—04 = =0 + -0 = —0;.
o 3 o

Let us now check that (M, g) is a globally hyperbolic development of the initial
data we started with. That the metric and second fundamental form induced on
{0} x G correspond to the initial data is clear from the construction. That (M, g) is
globally hyperbolic and that all the hypersurfaces {t} x G are Cauchy hypersurfaces
follows by an argument which is identical to the proof of Lemma 21.4 of [30]. What
remains to be checked is that the equations,

Ric[g] = Ag,

are satisfied. However, (212), with k;; replaced by 6;; and v;; replaced by n;;, is
equivalent to the 0i components of Einstein’s equations, (215) is the 00 component
of the equations, (214) is the traceless part of the ij components of the equations
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and the trace part of the ij equations satisfy the correct equation due to (215)-
(216). We conclude that the constructed metric satisfies Einstein’s equations with
a positive cosmological constant.

Let us consider the case that the initial data are invariant under the full isometry
group of the standard metric on H?. Let ¢ be a symmetric covariant 2-tensor field
on H? with such invariance properties and assume that at p = 0 € B3,

Qp = bijd.’L‘i|p X dl‘j‘p,

where z° are the standard coordinates in the ball model. Since, for each 4 € O(3),
there is an isometry of the standard metric of H? that fixes p and maps Oilp to
A/ d;l,, we conclude that b = AbA! for all A € O(3). As a consequence, b has to
be a multiple of the identity (since b is symmetric there is an orthogonal matrix
diagonalizing it, so that b has to be diagonal, and the fact that the diagonal com-
ponents have to coincide then follows by applying permutation matrices) . Using
the full isometry group, we see that there must be a number 3 such that

dz? + dy? + dz?
1—a2 — 2 — 222

q = Bgus, gus :4(

We conclude that the initial data are given by g = a?gys and k = Bagys where
o, 3 are constants such that o, 3 > 0 since trgk > 0. The Hamiltonian constraint

(17) is equivalent to
1 2
S vo(2) o
o et

and the momentum constraint (18) is automatically satisfied. Let a satisfy

(218) a = éAa
a(0) = «
a(0) = p.

Then f = —2af/a, so that f = 0 on I, since it is zero initially. As a consequence,
a satisfies
.\ 2 ..
a 2 a
219 2({—-) —=+-=A.
(219) (a) a? + a

Using (218), (219) and the formulas (1)-(3) on p. 211 of [24], we conclude that
(220) —dt? 4 a®(t)gus

is a solution to Einstein’s vacuum equations with a cosmological constant A. Fur-
thermore, the induced metric and second fundamental form on the ¢ = 0 hypersur-
face give the initial data when pulled back to H? using the standard embedding.
Note that

a(t) = acosh(Ht) + BH ' sinh(Ht),
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where H = (A/3)*/? and that I contains [0, 00). Consequently

tlggo etha(t) = (05 + ﬂHil)/2 > 0’ tlggo Zgg -

Let us consider the case that the initial data are invariant under the full isometry
group of H? x R. Let ¢ be a symmetric covariant 2-tensor field on H? x R with such
invariance properties and assume that at p =0 € B? x R,
@ = a;jdz’|, @ da?|, + b;(dz'], ® dz|, + dz|, ® d2*|,) + cdz|, ® dz],

where 2!, 22 are the standard coordinates on the open unit disc and z is the standard
coordinate on R. Due to the invariance properties of ¢, we see that b; = 0 and that
a;; must be the components of a multiple of the identity matrix. Using the full
isometry group, we conclude that

dz? + dy?
2
q = cuegmz + crdz®, ggp2 =4-———%=
(1— a2 —y2)2

for some constants cyz and cg. As a consequence of the above observation, we can
assume that the initial data are given by

g = aggHz + b%dZQ, k = ajaoggz + bibodz?,

where ag, bg > 0. That the initial data satisfy the Hamiltonian constraint is equiv-

alent to )
b 1
ao CL()bO ag
Let the functions a and b be determined by

(221) 2d+<d)2 S

(222) Z+Z+Z§ = A
(223) (a(0),5(0)) = (ao,bo)

(224) ((0.50)) = (a1,b)

and let I be the intersection of the maximal existence interval and the maximal
interval containing 0 on which a and b are both positive. Let

LN\ 2 .7 H .
1
f:(a> I W I P LY
a

a ab a2 b

Then f = —6f so that f(t) =0Vt € I, since f(0) = 0. Define the metric g on
I x H? x R by
(225) G = —dt® + a*(t)gue + b*(t)dz2.

Then g satisfies Einstein’s equations with a cosmological constant A and the metric
and second fundamental form induced on the hypersurface ¢ = 0 yield the initial
data when pulled back to H? x R by the standard embedding. The fact that f = 0
can be reformulated to

o\ 2
1, 1 1(a b
(226) G _A+a2+3<a_b>'
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Note that € is the trace of the second fundamental form of the hypersurfaces of
constant ¢ and that as a consequence of (226) and the assumption that 6(0) > 0,
we have 6 > 3H, where H = (A/3)'/2. Furthermore, as long as # remains finite,
the solution to (221)-(224) cannot blow up, so that the only obstruction to global
existence to the future is finite in time blow up of 6. The reason is as follows.
Assume 6 is bounded on [0,7) C I for some T < oo. Then a/a and b/b are
bounded on [0,7) due to (226). As a consequence, a and b are bounded and thus
a and b are bounded. That a is bounded away from 0 is clear from (226) and that
b cannot converge to zero as t — T— follows from the fact that there is a uniform
bound on b/b on [0, T); the assumption that b does converge to zero would lead to
the conclusion that b = 0 in all of [0,7). We conclude that the solution can be
extended beyond T. Combining (221) with the fact that f = 0 yields @ = ab/b.
Combining this with (222) yields b/b 4 2é/a = A, which implies

.\ 2
. 1 2({a b

22 =A—Z2_Z|Z_Z

(227) b 39 3(@ b)

Since #?/3 > A, we conclude that 6 is strictly monotonically decreasing. Conse-
quently, it is bounded to the future, so that we have future global existence. By an
argument which is identical to one given below in the Bianchi class A case (unimod-
ular Lie groups), cf. (230) and the two equations following it, we can use (226) and
(227) to conclude that § — 3H converges to zero exponentially. As a consequence
of (226), we conclude that a/a — b/b converges to zero exponentially, whence

a(t) .. bt

Jim 2 = Jim 55 = H. Jim e a(t) =0, Jim e (1) = fo

for some constants aq, Gy > 0.

Note that the n dimensional hyperbolic space can be viewed as a Lie group. Let S,
be the set of n x n matrices of the following form: the first row is any = € R™ such
that the first element of x is positive and the remaining rows are the second to n:th
rows of the n x n identity matrix. Then S, is a group under matrix multiplication
and we can identify it with the upper half plane. If x and y are elements of the
n dimensional upper half plane, so that the first components x1,y; are positive,
then the corresponding product xy is given by first multiplying y by x; and then
translating the last n — 1 components of the result by the last n — 1 components of
z. Thus the hyperbolic metric is a left invariant metric on the Lie group S,. As a
consequence, (225) and (220) can be considered to be of the form (217), where the
a;:s satisfy (231). As in the unimodular case, we can then use an argument which
is identical to the proof of Lemma 21.4 of [30] in order to prove that the metrics
(220) and (225) yield globally hyperbolic spacetimes.

Analyzing the asymptotics. The analysis of the asymptotics of solutions to
(213)-(216) follows as in Wald [33]. Note first of all that n;;n" — (trn)?/2 > 0
unless all the n; (the diagonal components of n;;) are non-zero and have the same
sign. However, all the n; being non-zero and having the same sign corresponds to a
universal covering group of SU(2), which we have excluded. Since we assume that
6(0) > 0, (216) then implies that

(228) 0(t) > (30)1/2 =:
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for all ¢. Combining this with (215), we get the conclusion that
. 1
(229) 0 < —592 +A<o0.

Due to this equation, € is bounded to the future. Combining this fact with (216)
and the fact that the expression involving the n;; is non-negative, we conclude that
0;5(t) is bounded to the future. Thus n;; cannot blow up in finite time to the future
due to (213). Since none of 6, 0;; and n;; can blow up in a finite time to the future,
we conclude that ¢4 = co. Concerning 6, we have two possibilities. Either 0(t) > «
for all t € (t_,t4), or there is a ¢y € (t—,t;) such that 0(¢tg) = a. Let us consider
the second case first. Then, due to (228) and (229), we conclude that 0(t) = « for
all t € [to,t4). Combining this fact with (216) and the fact that the expression
involving the n;; is non-negative, we conclude that o;;(t) = 0 for t > ¢y. In the
case that 6(t) > « for all ¢, we can proceed as in [33]. Due to (229), we have

0 1
230 e
(230) 02 -2~ 3
Integrating this inequality, we get
0—« 2«
< = ——t+C
TP
where C is an integration constant. For ¢ large enough, ¥ < 1, and then we get
1 2
0 < aﬂ 0<f—-a<a v

11—y’ 1—9°

As a consequence, § — « and the error is exponentially small. Combining this
observation with (216), we conclude that o;; converges to zero exponentially. Going
through the definitions above, one then sees that a;(t) = «; explat/3 + p;(t)], for
some functions p; that converge to zero exponentially and that d;/a; — H. Note
that this statement also holds if §(tg) = « for some tg € (t—,t4).

Stability. Let us assume we have a metric of the form
3
g=—dt’+) at)Eed,
i=1

on I x G, where G is a 3-dimensional Lie group, I is an open interval containing
(tg, 00) for ty large enough and &' are the duals of a basis {e;} for the Lie algebra.
Assume furthermore that
(231) lim e #ta;(t) = o, lim % H,

t—o0o t—oo a;
where H is as in the statement of the theorem, and some «; > 0. Assume finally that
there is a group of diffeomorphisms I' acting freely and properly discontinuously
on G such that Id x T' is a group of isometries of g and such that the quotient
of G under T is compact (it is clear that the groups under consideration in the
theorem are of this type in the unimodular case, due to our assumptions, and in
the remaining cases due to the fact that the metrics are either of the form (225) or
of the form (220)). Let ¥ denote the quotient and let 7 : G — ¥ be the covering
projection. Let us define a reference metric

3
h=> ol

i=1
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on GG. Note that since

h— _thZa )i @ ¢

converges to the metric h as t — oo and I is a group of isometries of iz, I' is a group
of isometries of h. Consequently, h induces a metric on ¥. In what follows it will
be useful to compare 9, for some coordinates y with the basis e;. Unfortunately,
we cannot assume that the e; are well defined on X, since the group I may contain
diffeomorphisms that do not map e; to itself. On the other hand, there is an
€0 > 0 such that if € < ¢y and p € 3, then B.(p) (measured with respect to the
metric h) is such that 7= 1[B.(p)] consists of a disjoint collection of open sets such
that 7, restricted to any connected member of the disjoint union, is an isometry
onto Be(p). One can use one of these isometries to push the basis e; (and thus
¢ forward to B.(p). However, the result will in general depend on the choice of
connected member of 7~ 1[B.(p)]; below we shall speak of a choice of £ on Bc(p).
We now wish to prove that there is an € > 0 and a K > 0 such that for every p € X,
there are normal coordinates y® on B.(p) with respect to the metric h, and a choice
of £ such that if ¢} = £*(9,), then all the derivatives of ¢} with respect to y' up
to order ko + 1 are bounded by K in the sup norm on B.(p). In order to obtain
a contradiction, let us assume that the statement is not true. Given any n > 0
such that 1/n < € is smaller than the injectivity radius of (X,h), there is thus
a p, such that regardless of the choice of £ and normal coordinates on B; /n(Pn),
there is a multiindex o with |a| < ko 4 1 such that |[9(}| exceeds n on By (pn).
Since Y is compact, there is a subsequence of the p,, which we shall also denote
by p,, converging to a point p € ¥. There is an € > 0 such that ¢ < ¢y and B,(p)
is contained in a convex neighbourhood U of p. Let v; be an orthonormal basis of
the tangent space on U. For n large enough, B; /n(Pn) C U. We can define normal
coordinates z, on U by letting 7, (¢) be the coefficients of exp,*(¢) with respect to
Vilp, . We define normal coordinates z* on U similarly by replacing p,, by p. Since
exp,, 1(g) is a smooth function in both coordinates on a convex set, cf. Lemma 9, p.
131 of [24], we conclude that x?, considered as smooth functions on B (p), converge
to o' with respect to any C* norm and coordinates that contain the closure of B, (p)
in their domain of definition. For any choice of & on B(p), €%(0,s) is bounded in
the C*o+1 norm with respect to the coordinates z° on Bc/5(p). Fix a choice of £,
For n large enough, this also corresponds to a choice of ¢ on By /n(Pn), and by the
above observation concerning the relation between the coordinate systems z° and
, we conclude that £(9, ;) is bounded with respect to the Cko+1 norm in the z?,
coordlnates This contradlcts the assumption.

Let e > 0 and K > 0 be as above and p € ¥. Let y' be normal coordinates on B (p)
with respect to the metric h, and make a choice of £ such that if C} = £i(ayj ), then
all the derivatives of (j} with respect to y' up to order ko + 1 are bounded by K in

the sup norm on B(p). The initial data induced on the hypersurface {t} x G is
given by

3 3
g=Y (M@, k=) ah)at)E
=1 i=1
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Let us introduce coordinates x' = He'!y'/4. For t large enough, the range of '
contain the ball of radius 1. Note that

3

9ij = 9(0zt,0ys) = 16H 2> e M af(t)(¢' ® £)(9yr, 0 ).

1=1
Since e~ fta;(t) — a; as t — oo, h(9,:,0,:) = &;; at p, the derivatives of £(9,:)
with respect to ¢/ are bounded by K on B.(p) and the ball of radius 1 with respect
to the xi_coordinates corresponds to a ball of an arbitrarily small radius with respect
to the y* coordinates for ¢ large enough, we conclude that for ¢ large enough (the
bound being independent of p), ¢;; — 16H *25”- is arbitrarily small in the ball of

radius 1 with respect to the z* coordinates. Since

5" =4H e H! 8,,

oz’ oy*
and §i(8yj) is bounded in C*o*! the spatial derivatives of gij With respect to xt
are arbitrarily small for ¢ large enough (independent of p). Similarly,

3
kij = k(Oyi, 0ys) = 16H 2 Z eiQthl(t)al(t)(fl & fl)(ayL, Oyi)-

=1

Since, in addition to the above observations, e~2#%q,;(t) — Ha;, we conclude that
kij — 16H’15ij is arbitrarily small in a ball of radius 1 with respect to the x’-
coordinates. Furthermore, the derivatives of k;; with respect to 0,: are arbitrarily
small. To conclude, there is a ¢y such that (g, k,0,0) for ¢t = ¢, satisfy (19) with e
replaced by €/2, where the coordinates are of the form described above (regardless
of the point p). Using Theorem 7, we get the desired stability statement. ([

Proof of Theorem 3. The proof is similar to the end of the proof of Theorem 4, but
easier. Let ¥ and gs; be as in the statement of the theorem. The metric we wish to
consider is of the form (3). Similarly to the above proof, one can prove that there
isan € > 0 and a K > 0 such that for every p € ¥, there are normal coordinates
y" on B.(p) with the property that all derivatives up to order kg + 1 of g5 (8y:,0,,)
with respect to the y-coordinates are bounded by K. Given this observation, the
end of the proof is essentially the same as the end of the above proof. O

18. APPROPRIATE INITIAL DATA ON AN ARBITRARY MANIFOLD

Let (M, g) be a closed n dimensional Riemannian manifold such that g has constant
scalar curvature. Let g, = e%g for « € R. Then, if r is the scalar curvature of g,
ro = €~ “r is the scalar curvature of g,. Let kg = Bgo. Then, assuming all indices
are raised and lowered with g,, we have

To — kgijkg + (trkg)? — 2V (0) = e *r — nB* + n?B* —n(n — 1)H?.
Choose 3 to be the positive solution to
1
2 _ H2 -
p nin—1) ¢
which exists, assuming a to be big enough. Then (gq, ks, 0,0) satisfy (17)-(18).

Furthermore, for « large enough, the data will be such that Theorem 2 is applicable
in a neighbourhood of each p € M, the argument being similar to the end of

_a/n
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the proof of Theorem 4. Thus they yield future causally geodesically complete
spacetimes and we have the expansions stated in Theorem 2 to the future.

Assuming ¢ is a Riemannian metric on a closed n dimensional manifold M with
associated scalar curvature r (which is not necessarily constant), let g, and kg be
as above. Let
€ = SUp |7 (p)| + e~
peM
Define
. 1/2
¢1,a = (604 + ra)1/27 ¢0,a = 07 6 = |:H2 + a:| .
nin —1)

Then (ga, k3, 0,0, P1,o) satisfy (17)-(18), and if « is large enough, there is a neigh-
bourhood of each p € M such that Theorem 2 applies to that neighbourhood,
the argument being similar to the end of the proof of Theorem 4. In particular,
the resulting spacetimes are future causally geodesically complete and we obtain
expansions to the future as stated in Theorem 2.

ACKNOWLEDGMENTS

Part of this work was carried out while the author was enjoying the hospitality of
the Isaac Newton Institute for Mathematical Sciences and the Max Planck Institute
for Gravitational Physics. Thanks are due to an anonymous referee for providing
the important examples (6) and (7). The research was supported by the Swedish
Research Council and the Goran Gustafsson Foundation. The author is a Royal
Swedish Academy of Sciences Research Fellow supported by a grant from the Knut
and Alice Wallenberg Foundation.

REFERENCES

[1] Anderson, M. T.: Existence and Stability of even-dimensional asymptotically de Sitter spaces.
Ann. Henri Poincaré 6, 801-820 (2005)

[2] Anderson, M. T.: Asymptotic behaviour of future-complete cosmological spacetimes. A space-
time safari: essays in honour of Vincent Moncrief. Class. Quantum Grav. 21 no. 3, S11-S27
(2004)

[3] Andersson, L., Moncrief, V.: Future complete vacuum spacetimes. In: The Einstein equations
and the large scale behaviour of gravitational fields. Birkhduser, Basel (2004)

[4] Bernal, A. N., Sédnchez, M.: On smooth Cauchy surfaces and Geroch’s splitting theorem.
Commun. Math. Phys. 243, 461-470 (2003)

[5] Bernal, A. N., Sdnchez, M.: Smoothness of time functions and the metric splitting of globally
hyperbolic spacetimes. Commun. Math. Phys. 257, 43-50 (2005)

(6] Bernal, A. N., Sdnchez, M.: Further results on the smoothability of Cauchy hypersurfaces and
Cauchy time functions. Lett. Math. Phys. 77, 183-197 (2006)

[7] Bieli, R.: Algebraic expansions for curvature coupled scalar field models. Class.Quant.Grav.
22, 4363-4376 (2005)

[8] Choquet-Bruhat, Y., Geroch R.: Global aspects of the Cauchy problem in General Relativity.
Commun. Math. Phys. 14, 329-335 (1969)

[9] Choquet-Bruhat, Y., Isenberg, J., Pollack, D.: The constraint equations for the Einstein-scalar
field system on compact manifolds. Class. Quantum Grav. 24, 809-828 (2007)

[10] Christodoulou, D.: Global solutions of nonlinear hyperbolic equations for small initial data.
Commun. Pure Appl. Math. 39, 267-282 (1986)

[11] Christodoulou, D., Klainerman, S.: The global non-linear stability of the Minkowski space.
Princeton University Press, Princeton (1993)

[12] Ellis, G., MacCallum, M.: A class of homogeneous cosmological models. Comm. Math. Phys.
12, 108-141 (1969)



FUTURE STABILITY OF THE EINSTEIN-NON-LINEAR SCALAR FIELD SYSTEM 71

[13] Fefferman, C., Graham, C.R.: Conformal invariants, in Elie Cartan et les Mathématiques
d’Ajourd’hui. Astérisque, numero hors série, Soc. Math. France, Paris, 95-116 (1985)

[14] Fischer, A. E., Moncrief, V.: The reduced Einstein equations and the conformal volume
collapse of 3-manifolds. Class. Quantum Grav. 18, no. 21, 4493-4515 (2001)

[15] Friedrich, H.: On the existence of n-geodesically complete or future complete solutions of
Einstein’s field equations with smooth asymptotic structure. Commun. Math. Phys. 107, 587—
609 (1986)

[16] Friedrich, H.: Conformal Einstein evolution. In: The Conformal Structure of Space-Time, J.
Frauendiener and H. Friedrich, Eds., Lecture Notes in Physics 604, Springer Verlag, Berlin,
1-50 (2002)

[17] Friedrich, H.: On the global existence and the asymptotic behavior of solutions to the
Einstein-Maxwell-Yang-Mills equations. J. Differential Geom. 34, no. 2, 275-345 (1991)

[18] Friedrich, H., Rendall, A. D.: The Cauchy problem for the Einstein equations. In: Einstein’s
field equations and their physical implications. Lecture Notes in Phys. 540, Springer, Berlin
(2000)

[19] Geroch, R.: Domain of dependence. J. Math. Phys. 11, 437-439 (1970)

[20] Hormander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer-Verlag,
Berlin Heidelberg New York (1997)

[21] Klainerman, S.: The null condition and global existence to nonlinear wave equations. Lect.
Appl. Math. 23, 293-326 (1986)

[22] Lindblad, H., Rodnianski, I.: Global existence for the Einstein vacuum equations in wave
coordinates. Commun. Math. Phys. 256, 43-110 (2005)

[23] Lindblad, H., Rodnianski, I.: The global stability of Minkowski space-time in harmonic gauge.
Ann. of Math., accepted

[24] O’Neill, B.: Semi Riemannian Geometry. Academic Press, Orlando (1983)

[25] Pretorius, F.: Numerical relativity using a generalized harmonic decomposition. Class. Quan-
tum Grav. 22, 425451 (2005)

[26] Raymond, F., Vasquez, T.: 3-manifolds whose universal coverings are Lie groups. Topology
and its applications 12, 161-179 (1981)

[27] Rendall, A. D.: Accelerated cosmological expansion due to a scalar field whose potential has
a positive lower bound. Class.Quant.Grav. 21, 2445-2454 (2004)

[28] Rendall, A. D.: Asymptotics of solutions of the Einstein equations with positive cosmological
constant. Ann. Henri Poincaré 5, 1041-1064 (2004)

[29] Ringstrom, H.: Future asymptotic expansions of Bianchi VIII vacuum metrics. Class. Quant.
Grav. 20, 1943-1990 (2003)

[30] Ringstrom, H.: The Bianchi IX attractor. Annales Henri Poincaré 2, 405-500 (2001)

[31] Ringstrom, H.: On curvature decay in expanding cosmological models. Commun. Math. Phys.
264, 613-630 (2006)

[32] Wald, R.: General Relativity. University of Chicago Press, Chicago (1984)

[33] Wald, R.: Asymptotic behaviour of homogeneous cosmological models in the presence of a
positive cosmological constant. Phys. Rev. D 28, 2118-2120 (1983)

DEPARTMENT OF MATHEMATICS, KTH, 100 44 STOCKHOLM, SWEDEN

E-mail address: hansr@kth.se



