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Abstract. The subject of this paper is Einstein’s equations coupled to a non-
linear scalar field with an exponential potential. The problem we consider is
that of proving future global non-linear stability of a class of spatially locally
homogeneous solutions to the equations. There are solutions on R+×Rn with
accelerated expansion of power law type. We prove a result stating that if we
have initial data that are close enough to those of such a solution on a ball
of a certain radius, say B4R0 (p), then all causal geodesics starting in BR0 (p)
are complete to the future in the maximal globally hyperbolic development of
the data we started with. In other words, we only make local assumptions
in space and obtain global conclusions in time. We also obtain asymptotic
expansions in the region over which we have control. As a consequence of this
result and the fact that one can analyze the asymptotic behaviour in most of
the spatially homogeneous cases, we obtain quite a general stability statement
in the spatially locally homogeneous setting.
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1. Introduction

1.1. Background and motivation. The spacetimes currently used by physicists
to model the universe are ones with accelerated expansion. However, such expan-
sion can be achieved by many different mechanisms, and which one to choose is
not completely clear. Some examples of candidates are a positive cosmological con-
stant, quintessence and k-essence, cf. e.g. [16, 17, 18]. Due to this uncertainty,
it seems reasonable to try to understand the behaviour of solutions under as gen-
eral assumptions on the model as possible. One particular question of interest is
that of future global non-linear stability, i.e., for the purposes of the present dis-
cussion, the following question: given initial data for the equations such that the
corresponding maximal globally hyperbolic development (MGHD) is future causally
geodesically complete, do small perturbations of the initial data also yield future
causally geodesically complete MGHD’s? It is of course also of interest to analyze
the asymptotics in the causally geodesically complete direction, but that the answer
to the above question be yes is a minimum requirement for stating that the MGHD
of the given initial data is future stable. In [20], we built a framework for con-
sidering the question of future global non-linear stability for Einstein’s equations
coupled to a non-linear scalar field. The actual case considered in [20] was that
of a potential with a non-degenerate positive local minimum, Einstein’s vacuum
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equations with a positive cosmological constant being contained as a special case,
and the resulting expansion being exponential. As a test of the framework of [20],
and of the preconception that situations with accelerated expansion are stable, it
is of interest to use it to prove stability in some other context. Here we study
the behaviour in the case of an exponential potential. There are solutions of the
corresponding equations on R+ × Rn such that the metric is of the form

(1) −dt2 + t2pδijdx
i ⊗ dxj ,

where p > 1 is a real number, δ is the Kronecker delta and t and xi are standard
coordinates on R+ and Rn respectively. In other words, the expansion is of power
law type, and in the limiting case, p = 1, it is not accelerated. One might thus
expect the problem of proving stability to be harder in this setting, and, in fact, it
is more difficult to analyze the behaviour of the solutions to the PDE’s that result
in the end. To our knowledge, the first author to study an exponential potential
was Halliwell, cf. [7], who considered the spatially homogeneous and isotropic case.
Later, the spatially homogeneous but non-isotropic case was studied in [10]. The
question of stability in the case of 3+1 dimensions has also been considered, see [9].
In [9], Heinzle and Rendall used the results of Michael Anderson on the stability
of even dimensional de Sitter space, cf. [1], together with Kaluza Klein reduction
techniques, in order to obtain stability of the metrics (1) and the corresponding
scalar fields, for a discrete set of values of p converging to 1. It is of interest to
note that the methods used in [1] avoid the problem of proving global existence
of a system of PDE’s by an intelligent and geometric choice of equations, see also
[5]. In other words, the arguments used to prove the stability results of [9] are
essentially geometric in flavour. In the present paper, the focus is rather on the
analysis aspect, and though the perspective taken is less geometric, the results are
more robust; we get stability in n+1 dimensions of the metrics (1) together with the
corresponding scalar fields for any p > 1. We also formulate a result which makes
local assumptions in space and yields global conclusions in time. From a conceptual
point of view, this is the natural type of result to prove due to the extreme nature
of the causal structure in the case of accelerated expansion. However, it is also
very convenient in practice to have such a statement; combining it with the results
concerning the asymptotic behaviour in the spatially homogeneous setting, we get a
non-linear stability result for quite general spatially locally homogeneous solutions
to the equations under consideration.

1.2. Equations. The subject of this paper is Einstein’s equations, given by

(2) Gµν = Tµν ,

where

Gµν = Rµν −
1
2
Sgµν ,

Rµν are the components of the Ricci tensor of a Lorentz metric g on an n + 1-
dimensional manifold M , and S is the associated scalar curvature. In this paper,
we shall be interested in stress energy tensors of the form

(3) Tµν = ∇µφ∇νφ−
[
1
2
∇γφ∇γφ+ V (φ)

]
gµν ,
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where ∇ is the Levi-Civita connection associated with the metric g, φ is a smooth
function on M ,

(4) V (φ) = V0e
−λφ,

and V0 and λ are positive constants. We shall refer to the matter model defined
by (3) as the non-linear scalar field model, to V as the potential and to φ as the
scalar field. Note that in this situation, (2) is equivalent to

(5) Rµν = ∇µφ∇νφ+
2

n− 1
V (φ)gµν .

It should of course be coupled to a matter equation for φ, which is given by

(6) ∇µ∇µφ− V ′(φ) = 0.

Observe that this equation is a sufficient, but not necessary, condition for the stress
energy tensor to be divergence free. We do, however, impose it. The system of
equations of interest is thus (5)-(6).

1.3. Initial value problem. Concerning the system of equations under considera-
tion, there is a natural initial value problem. The idea is to specify initial data that
would correspond to the metric, second fundamental form, scalar field and normal
derivative of the scalar field induced on a spacelike hypersurface in the Lorentz
manifold one wishes to construct. However, in order for this to make sense, the ini-
tial data cannot be specified freely; they have to satisfy certain constraint equations
that are implied by the Gauß and Codazzi equations, cf. [20] for more details.

Definition 1. Initial data for (5) and (6) consist of an n dimensional manifold Σ,
a Riemannian metric h, a symmetric covariant 2-tensor k and two functions φa and
φb on Σ, all assumed to be smooth and to satisfy

r − kijk
ij + (trhk)2 = φ2

b +DiφaDiφa + 2V (φa),(7)

Djkji −Di(trhk) = φbDiφa,(8)

where D is the Levi-Civita connection of h, r is the associated scalar curvature and
indices are raised and lowered by h. Given initial data, the initial value problem is
that of finding

• an n+1 dimensional manifoldM with a Lorentz metric g and a φ ∈ C∞(M)
such that (5) and (6) are satisfied, and

• an embedding i : Σ →M

such that i(Σ) is a Cauchy hypersurface in (M, g), i∗g = h, φ ◦ i = φa, and if N
is the future directed unit normal and κ is the second fundamental form of i(Σ),
then i∗κ = k and (Nφ) ◦ i = φb. Such a triple (M, g, φ) is referred to as a globally
hyperbolic development of the initial data, the existence of an embedding i being
tacit.

Remark. A Cauchy hypersurface is a set in a Lorentz manifold which is intersected
exactly once by every inextendible timelike curve, see [14] or [20] for more details.
In the above definition, and below, we assume all Lorentz manifolds to be time
oriented. One can of course define the concept of initial data and development for
a lower degree of regularity. We shall, however, restrict our attention to the smooth
case in this paper.
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For results concerning the existence of initial data in the current setting, we refer
the reader to [3] and [8].

Definition 2. Given initial data (Σ, h, k, φa, φb) for (5) and (6), a maximal globally
hyperbolic development of the data is a globally hyperbolic development (M, g, φ),
with embedding i : Σ →M , such that if (M ′, g′, φ′) is any other globally hyperbolic
development of the same data, with embedding i′ : Σ → M ′, then there is a map
ψ : M ′ →M which is a diffeomorphism onto its image such that ψ∗g = g′, ψ∗φ = φ′

and ψ ◦ i′ = i.

Theorem 1. Given initial data for (5) and (6), there is a maximal globally hyper-
bolic development of the data which is unique up to isometry.

Remark. When we say that (M, g, φ) is unique up to isometry, we mean that if
(M ′, g′, φ′) is another maximal globally hyperbolic development, then there is a
diffeomorphism ψ : M → M ′ such that ψ∗g′ = g, ψ∗φ′ = φ and ψ ◦ i = i′, where i
and i′ are the embeddings of Σ into M and M ′ respectively.

The proof is as in [2]. This is an important result and will be of use to us in this
paper. However, it does not yield any conclusions concerning e.g. causal geodesic
completeness.

1.4. Background solution. The basic background solution we are interested in
is (in Lemma 1 below, we shall prove that it is a solution)

g0 = −dt2 + e2K(t/t0)2pδijdxi ⊗ dxj ,(9)

φ0 =
2
λ

ln t− 1
λ
c0,(10)

on R+ × Tn, where R+ = (0,∞), t0 > 0, K and p > 1 are constants and

λ =
2

[(n− 1)p]1/2
,(11)

c0 = ln
[
(n− 1)(np− 1)p

2V0

]
.(12)

Note that given the dimension n, there is a one to one correspondence between p
and λ, and we shall prefer to specify p rather than λ. The above constructions
make sense for p > 1/n, but in order for us to get accelerated expansion, we need
to have p > 1.

Consider the metric (9) on R+×Rn. Let h denote the Riemannian metric induced
on {t0} × Rn by g0 and let γ : [0, T ) → R+ × Rn be a future directed causal curve
with γ(0) ∈ {t0} × Rn. Then, if γ[ is the projection of γ to Rn,

lh[γ[] :=
∫ T

0

[hij γ̇iγ̇j ]1/2ds ≤
t0

p− 1
,

where Latin indices run from 1 to n, a convention that will be used consistently in
what follows, as well as the convention that Greek indices run from 0 to n. Further-
more, the indices used on R+ × Tn and R+ × Rn will be the ones associated with
the standard frame ∂0 = ∂t and ∂i unless otherwise specified. As a consequence, if
we define

(13) `(t0) :=
t0

p− 1
,
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then

(14) J+[{t0} ×B`(t0)(ξ)] ⊆ D+[{t0} ×B3`(t0)(ξ)],

where J+(A) is the causal future of a set A and D+(A) is the future Cauchy
development of a set A, cf. [14] or [20] for detailed definitions. This demonstrates
that `(t0) is a fundamental length scale and, similarly to the case studied in [20],
that if we want to control the behaviour of a solution to the linear wave equation
(on R+×Tn with metric given by (9)) to the future of {t0}×B`(t0)(ξ), then we only
need to control the initial data on {t0} ×B3`(t0)(ξ). However, it also demonstrates
that there is a difference between the case considered in the present paper and
the case considered in [20]. In [20], the fundamental length scale was a constant,
determined by the dimension and the minimum of the scalar field. In the present
case, it depends on the starting time and tends to infinity with the starting time.
As a consequence, the size of the ball over which it is necessary to have control in
order to predict what happens along causal geodesics that start at the center tends
to infinity with time. However, if we consider the above situation on R+ × Tn,
then we see that the size of the torus grows even more rapidly if p > 1, so that the
fraction of the volume of the torus that the ball constitutes tends to zero. Another
problem that arises in the present setting is the fact that it is necessary to make
a choice of t0 given initial data (Σ, ρ, κ, φa, φb). We shall here do so by using the
relation (10), in which we shall replace φ0 by the mean value of φa in the ball of
interest, cf. Theorem 2 (in particular (15)) for a more precise statement.

1.5. Results. Before we state the main result, we need to introduce some termi-
nology. Let Σ be an n dimensional manifold. We shall be interested in coordinate
systems x on open subsets U of Σ such that x : U → B1(0) is a diffeomorphism. If
s is a tensor field on Σ, we shall use the notation

‖s‖Hl(U) =

 n∑
i1,...,iq=1

n∑
j1,...,jr=1

∑
|α|≤l

∫
x(U)

|∂αsi1···iqj1···jr ◦ x
−1|2dx1 · · · dxn

1/2

,

where the components of s are computed with respect to x and the derivatives are
with respect to x. When we write ‖s‖Hl(U), we shall take it to be understood that
there are coordinates x as above. Below, we shall use δ to denote the Kronecker
delta with respect to the x coordinates. In particular, we shall use the notation

‖g − aδ‖Hl(U) =

 n∑
i,j=1

∑
|α|≤l

∫
x(U)

|∂α(gij − aδij) ◦ x−1|2dx1 · · · dxn
1/2

.

Theorem 2. Let V be given by (4), where V0 is a positive number and λ is given
by (11) in which n ≥ 3 is an integer and 1 < p ∈ R. There is an ε > 0, depending
on n and p, such that if

• (Σ, ρ, κ, φa, φb) are initial data for (5) and (6), with dimΣ = n,
• x : U → B1(0) is a diffeomorphism, where U ⊆ Σ,
• the objects 〈φa〉, t0 and K are defined by

(15) 〈φa〉 :=
1
ωn

∫
B1(0)

φa ◦ x−1dx, t0 := exp
[
1
2
(λ〈φa〉+ c0)

]
, K := ln[4`(t0)],
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where ωn is the volume of the unit ball in Rn with respect to the ordinary
Euclidean metric, c0 is defined in (12) and `(t0) is defined in (13), and

• the inequality

‖e−2Kρ− δ‖Hk0+1(U) +
∥∥e−2Kt0κ− pδ

∥∥
Hk0 (U)

+‖φa − φ0(t0)‖Hk0+1(U) + ‖t0φb − t0(∂tφ0)(t0)‖Hk0 (U) ≤ ε(16)

holds, where k0 is the smallest integer satisfying k0 > n/2 + 1,

then the maximal globally hyperbolic development (M, g, φ) of (Σ, ρ, κ, φa, φb) has
the property that if i : Σ →M is the associated embedding, then all causal geodesics
that start in i{x−1[B1/4(0)]} are future complete. Furthermore, there is a t− ∈
(0, t0) and a smooth map,

(17) Ψ : (t−,∞)×B5/8(0) →M,

which is a diffeomorphism onto its image, such that all causal curves that start in
i{x−1[B1/4(0)]} remain in the image of Ψ to the future, and g and φ have expansions
(18)-(23) in the solid cylinder [0,∞) × B5/8(0) when pulled back by Ψ. Finally,
Ψ(0, p) = i ◦ x−1(p) for p ∈ B5/8(0). In the formulas below, Latin indices refer to
the natural Euclidean coordinates on B5/8(0) and t is the natural time coordinate
on the solid cylinder. There is a positive constant α, a Riemannian metric χ on
B5/8(0) and constants Kl such that if ‖ · ‖Cl denotes the Cl norm on B5/8(0), we
have, for t ≥ t0,

‖φ(t, ·)− φ0(t)‖Cl + ‖(t∂tφ)(t, ·)− t∂tφ0(t)‖Cl ≤ Kl (t/t0)
−α(18)

‖(g00 + 1)(t, ·)‖Cl + ‖(t∂tg00)(t, ·)‖Cl ≤ Kl (t/t0)
−α(19) ∥∥∥∥t−1g0i(t, ·)−

1
np− 2p+ 1

χjmγjim

∥∥∥∥
Cl

(20)

+‖[t∂t(t−1g0i)](t, ·)‖Cl ≤ Kl (t/t0)
−α

‖(t/t0)−2pe−2Kgij(t, ·)− χij‖Cl(21)

+‖(t/t0)−2pe−2Kt∂tgij(t, ·)− 2pχij‖Cl ≤ Kl (t/t0)
−α

,

‖(t/t0)2pe2Kgij(t, ·)− χij‖Cl ≤ Kl (t/t0)
−α

,(22)

‖(t/t0)−2pe−2Ktkij(t, ·)− pχij‖Cl ≤ Kl (t/t0)
−α

,(23)

where γjim are the Christoffel symbols associated with the metric χ and k is the
second fundamental form of the hypersurfaces {t} ×B5/8(0).

Remark. Remarks similar to those made in connection with the analogous theorem
in [20] remain valid and need not be repeated here. Let us simply point out that
t0 is chosen so that φ0(t0) = 〈φa〉, a choice which is essentially necessary, and that
K is chosen so that the ball of radius 1 with respect to the x-coordinates roughly
corresponds to a ball of radius 4`(t0) with respect to ρ. The latter choice should
be compared with (14); if we replace 3`(t0) with 4`(t0) on the right hand side, the
inclusion still holds, but with a margin, so that the corresponding statement can
be expected to hold in the MGHD’s corresponding to perturbed initial data. Due
to (22) and (23), we have, for t ≥ t0,

‖t(gijkjl)(t, ·)− pδil‖Cl ≤ Kl (t/t0)
−α

,
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and in this sense, we have isotropization. The expansions are incomplete but with
more work it should be possible to obtain more detailed information. In [9], more
detailed asymptotic expansions were provided, though it should be pointed out
that the foliation considered here differs from that considered in [9]. Note that as
a consequence of Theorem 2 and Cauchy stability, cf. Theorem 7 of [20], we get
future global non-linear stability of the solutions (9) and (10) on R+×Tn for n ≥ 3,
since we can apply Theorem 2 in a neighbourhood of every point at late enough
times. The reason for this is that [4`(t)]−2e2K(t/t0)2p tends to infinity, so that a
ball in Tn of fixed positive radius ε > 0 with respect to fixed coordinates will sooner
or later contain a ball of radius 4`(t) with respect to the metric induced on {t}×Tn
by the metric g0.

The proof of the above theorem is to be found in Section 11.

Let us consider the 4-dimensional spatially homogeneous case. In other words, let
us restrict our attention to 3-dimensional initial data with a transitive isometry
group. Due to the work of Kitada and Maeda, cf. [10], it is reasonable to hope that
Theorem 2 will be applicable in a neighbourhood of every point on a late enough
hypersurface of spatial homogeneity, with some exceptions. If Σ is S3, S2 × R
or quotients thereof, then it is not clear that the corresponding solution needs to
expand; it might recollapse. The reason for this is that S3 and S2 × R admit
homogeneous metrics with positive scalar curvature. To simplify the statement, we
shall thus exclude this possibility. Furthermore, we are only interested in the case
that the isometry group admits a cocompact subgroup.

Theorem 3. Let V be given by (4), where V0 is a positive number and λ is given
by (11) in which n = 3 and p > 1. Let M be a connected and simply connected
3-dimensional manifold and let (M,h, k, φa, φb) be initial data for (5) and (6).
Assume, furthermore, that one of the following conditions is satisfied:

• M is a unimodular Lie group different from SU(2) and the isometry group
of the initial data contains the left translations.

• M = H3, where Hn is the n-dimensional hyperbolic space, and the initial
data are invariant under the full isometry group of the standard metric on
H3.

• M = H2×R and the initial data are invariant under the full isometry group
of the standard metric on H2 × R.

Assume finally that trhk > 0. Let Γ be a cocompact subgroup of M in the case
that M is a unimodular Lie group and a cocompact subgroup of the isometry group
otherwise. Let Σ be the compact quotient. Then (Σ, h, k, φa, φb) are initial data.
Make a choice of Sobolev norms ‖·‖Hl on tensorfields on Σ. Then there is an ε > 0
such that if (Σ, ρ, κ, ϕa, ϕb) are initial data for (5) and (6) satisfying

‖ρ− h‖H4 + ‖κ− k‖H3 + ‖ϕa − φa‖H4 + ‖ϕb − φb‖H3 ≤ ε,

then the maximal globally hyperbolic development corresponding to (Σ, ρ, κ, ϕa, ϕb)
is future causally geodesically complete and there are expansions of the form given
in the statement of Theorem 2 to the future.

Remark. If M is a 3-dimensional unimodular Lie group it contains a cocompact
subgroup Γ, cf. [15]. Concerning the definition of Sobolev norms on tensorfields on
manifolds, we refer the reader to e.g. [20]. The statement that there are expansions
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to the future should be interpreted as saying that there is a Cauchy hypersurface
Σ′ in the maximal globally hyperbolic development of (Σ, ρ, κ, ϕa, ϕb) such that for
every p ∈ Σ′, there is a neighbourhood of p to which Theorem 2 applies. In [20],
we made several comments that are equally relevant in the present context, but for
the sake of brevity, we do not wish to repeat them here.

The proof of the above theorem is to be found in Section 12.

1.6. Outline. Let us start by discussing the proof of Theorem 2. Due to the nature
of the causal structure, it is sufficient to study the future stability of the solutions
given by (9)-(12) on R+ × Tn. The procedure leading to this reduction can briefly
be described as follows. Given initial data and a diffeomorphism x : U → B1(0)
as described in the statement of Theorem 2, pull back the initial data to B1(0) by
x−1. Using a cut-off function and a suitable choice of t0 and K, one can fit the
initial data on B1(0) to the initial data on Tn corresponding to a t = t0 slice of
(9)-(12). The resulting data on Tn in general violate the constraints in an annular
region. However, they are close to those of the t = t0 slice of (9)-(12), and it is pos-
sible to demonstrate stability in the class of constraint violating data for a suitable
modification of Einstein’s equations, described below. Thus one obtains a solution
to the modified equations which is global to the future. Furthermore, the Cauchy
development of the part of B1(0) unaffected by the cut-off function yields a patch
of spacetime corresponding to the original initial data. For the purposes of the
present discussion, we shall refer to this patch as the global patch. The statements
concerning future completeness of causal geodesics starting in i{x−1[B1/4(0)]} and
asymptotic expansions hold in the global patch. Constructing local patches corre-
sponding to the other points of the original initial manifold, one obtains a globally
hyperbolic development of the original initial data which includes the global patch.
By the abstract properties of the MGHD of the initial data, this globally hyperbolic
development can be embedded into the maximal globally hyperbolic one, and the
statement of the theorem follows.

Due to the above observations, it is clear that the essential step of the argument
is to prove future stability of the solutions defined by (9)-(12) in a situation where
the constraints are violated. Such a result presupposes a hyperbolic formulation
of the equations, which we provide in the beginning of Section 2. The formulation
we use is based on gauge source functions, cf. [6], together with some additional
modifications, cf. (24)-(25). The gauge source functions are chosen so that they
coincide with the contracted Christoffel symbols of the background, the equality
holding for upstairs indices, cf. (26). The main purpose of adding the modifications
is that they make it possible to prove stability for data violating the constraints.
However, the modifications, additionally, yield a partial decoupling at the linear
level, which leads to a hierarchy we shall describe below, and they yield damping
terms which are of crucial importance when proving stability. In the beginning of
Section 2, we briefly discuss the hyperbolic formulation we shall use, the associated
initial data and a division of the terms appearing into ones that have to be taken into
account and ones that can, in the end, in practice be ignored. Readers interested
in a more complete presentation are referred to [20]. After a discussion of the
background solution, we then reformulate the equations. The first reformulation
serves the purpose of expressing the equations in terms of quantities concerning
which we have definite expectations; we subtract the background scalar field φ0
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from the scalar field φ and consider ψ = φ − φ0, u = g00 + 1, ui = g0i and
hij = (t/t0)−2pgij . We expect ψ and u to converge to zero and hij to converge.
Concerning ui, it seems reasonable to expect that if we rescale it by a factor of t−p

(the logic being that every downstairs spatial index corresponds to a factor tp), then
the resulting object remains small or converges to zero. Thus, it might seem natural
to carry out such a rescaling. However, in the case of ui, we shall do this rescaling
at the level of the energies, cf. Section 5. The resulting equations, (45)-(48), have
a certain structure; considering the linear terms, it is clear that the terms involving
zeroth order derivatives have a factor in front of them of the form of a constant
divided by t2, and the terms involving first order derivatives have a factor in front
of them of the form of a constant divided by t. Consequently, it seems natural to
multiply the equations with t2 and to change the time coordinate so that t∂t = ∂τ
for some new time coordinate τ . This is the purpose of the second reformulation,
which leads to the equations (61)-(64) with which we shall be working.

Starting with (61)-(64), one can generate a model problem by dropping the terms
given by ∆µν and ∆ψ, and by replacing the wave operator �̂g by the wave operator
associated with the background. Considering (61)-(64) with these simplifications
in mind, one sees that some of the equations partly decouple; the equations for u
and ψ, (61) and (64), do not involve the remaining unknowns, and the equation
for hij , (63), does not involve ui. In other words, there is a hierarchy in the model
problem. One can start by analyzing the model equations for u and ψ, then turn to
the model equations for hij , and finally consider the equation for ui. Even though
this hierarchy does not persist in the non-linear case, some aspects of it remain
and are of central importance in the proof of future global non-linear stability;
given suitable bootstrap assumptions, the hierarchy does, for all practical purposes,
persist. Given the structure of the hierarchy, it is natural to start by considering
the model equations for u and ψ. Such an analysis is the subject of Section 3. It
turns out that one can construct an energy which decays exponentially. For this to
hold, one does, however, need to require that n ≥ 3 and p > 1; for p = 1, there are
constant, non-zero, solutions to the model equations. In Section 4, we write down
the energies, not only for u and ψ, but also for hij and ui, with which we shall be
working in the non-linear setting, the construction in part being based on that of
the model problem. We also derive the estimates for the time derivatives of the
energies on which the bootstrap argument will be based.

In Section 5, we specify the bootstrap assumptions. There are two levels of as-
sumptions. The first level consists of assumptions ensuring that g remains a Lorentz
metric, with quantitative bounds, cf. Subsection 5.1. Thanks to this assumption, it
is, among other things, possible to define the energies. The second level assumption
consists of an upper bound for the energy, cf. Subsection 5.4.

The main tool for proving future global existence is the system of differential in-
equalities derived in Lemma 16 of Section 7. Corollaries 1 and 2 of Section 4 and
the equations (61)-(64) constitute the starting point for the derivation. However,
it is necessary to estimate the terms that are of higher order in the expressions
that vanish on the background, cf. Lemma 11, to estimate the commutator terms
that arise when applying spatial derivatives to the equations, cf. Lemma 13, and
to estimate the remainder terms that appear in the estimates for the time deriva-
tives of the energies in Corollaries 1 and 2, cf. Lemma 15. Section 6 is devoted
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to deriving the necessary estimates. All the estimates are of course based on the
bootstrap assumptions, and deriving them requires an effort. However, applying
general techniques developed in [20] leads to a significant reduction of the amount
of work. Using these estimates, we then derive the system of differential inequalities
in Section 7. The hierarchy mentioned above is apparent in this system. Disregard-
ing the terms involving ε in (139)-(141) (the corresponding terms can be estimated
using the bootstrap assumptions), it is clear that only Ĥlp,k appears on the right
hand side of the differential inequality for Ĥlp,k, cf. (139), so that one can improve
the bootstrap assumptions for this quantity first. Considering (141), the second
and third terms on the right hand side may appear hard to control. However, since
it is possible to improve the bootstrap for Ĥlp,k to say that, not only is it small but
it decays exponentially, the second and third terms on the right hand side of (141)
do not constitute a problem. Finally, turning to (140), the second term on the right
hand side can be controlled using the information already obtained concerning Ĥlp,k

and Ĥm,k. To conclude, it is of crucial importance to derive a system of differential
inequalities; combining (139)-(141) into one differential inequality yields an esti-
mate which does not appear to be very useful. In Section 8, we then prove future
global existence of solutions corresponding to initial data on Tn close to those of
a model solution. Note, however, that given initial data on Tn, it is necessary to
determine an initial time, since some of the unknowns, i.e. ψ and hij , depend on
it. We carry out a discussion concerning how to achieve this in the beginning of
Section 8. After the proof of global existence, we derive some basic conclusions;
in the case of hyperbolic PDE’s, it is natural to make smallness assumptions for a
finite degree of regularity and then to draw conclusions for any degree of regularity,
and a first step in this direction is taken in Theorem 5, following the proof of future
global existence. In Section 9, we then carry out a rough analysis of the causal
structure. This analysis yields information concerning the future Cauchy develop-
ment of subsets of the initial data, which is of crucial importance when carrying out
the arguments described at the beginning of the present subsection. Furthermore,
we prove future causal geodesic completeness. In Section 10, we derive asymptotic
expansions for the solution and in Section 11 we prove the main theorem along the
lines described above. The spatially homogeneous solutions of interest were already
analyzed in [10], but the perspective taken here is somewhat different. Furthermore
we need somewhat more detailed knowledge concerning the asymptotics, and con-
sequently, we discuss the spatially homogeneous solutions in detail in Section 12.
Note, however, that the results of [10] cover a much more general situation than we
discuss in the present paper. At the end of Section 12 we then prove Theorem 3.

Let us comment on the differences and the similarities between the situation studied
in [20] and the one studied in the present paper. The main purpose of [20] was to
build a framework for proving future global non-linear stability in the Einstein-non-
linear scalar field setting. In particular, specific choices of gauge source functions
and corrections to the equation were made that work equally well for the case
studied in [20] as for the case studied here. Furthermore, in [20], we wrote down
bootstrap assumptions as well as a partial division of the terms appearing in the
equations, separating out the ones of higher order. Finally, and perhaps most im-
portantly, we constructed an algorithm yielding estimates for the non-linear terms
given that the bootstrap assumptions hold, the advantage of the algorithm being
that in order to estimate a term in Hk, it is enough to make simple computations
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such as counting the number of downstairs spatial indices minus the number of up-
stairs spatial indices. All of these constructions carry over, and will be very useful
in the present situation. On the other hand, the actual PDE problems that result
are quite different in the different cases. In the case of a potential with a positive
non-degenerate minimum, the background scalar field is zero, but in the case of
an exponential potential, the scalar field tends to infinity as t → ∞. As described
above, it is thus, in the case of an exponential potential, necessary to subtract the
background solution. The process of doing so introduces couplings between the
equations for the scalar field and the different components of the metric, even on
the linear level, and this makes the resulting equations harder to analyze. Above,
we discussed the equations for u and ψ that result after having dropped the terms
that are quadratic in the quantities that vanish on the background and after having
changed the coefficients of the highest order derivatives to those corresponding to
the background. In particular, we noted that these equations are coupled, and it
turns out that finding an energy that decays exponentially does require an effort.
If one were to consider the corresponding equations for u and ψ in the case studied
in [20], one would see that the equations for u and ψ decouple, and that one easily
obtains exponential decay for both of them separately. To sum up, there are several
aspects concerning the general set up of the equations and the general methods for
estimating the non-linearity that are common to the analysis carried out in [20]
and the analysis carried out here. However, the actual PDE problems that one has
to deal with in the end are quite different, the present one being the more difficult.

Finally, let us note that in the outline of the proof of the theorem in [20] corre-
sponding to Theorem 2 in the present paper, we motivated the choice of gauge
source functions, the choice of corrections, and we made comparisons between our
method and the methods used by Lindblad and Rodnianski to prove the stability of
Minkowski space in [12] and [13] (simplifying the original proof by Christodoulou
and Klainerman [4], though not obtaining as detailed asymptotics). As a conse-
quence, we shall not do so here.

2. Reformulation of the equations on Tn

As we pointed out in the outline, the central problem in the proof of Theorem
2 is that of proving future global non-linear stability of the solutions (9)-(12) on
R+×Tn. In [20], we considered (5) and (6) in the context of perturbations around
metrics of the form

−dt2 + e2Ωδijdx
i ⊗ dxj

on R+×Tn. Thus the problem we are interested in here fits exactly into the general
framework developed in [20], provided we choose Ω = p ln t+K− p ln t0 (below, we
shall, for various reasons, make a somewhat different choice). As in [20], we shall
use the notation ω = Ω̇, so that ω = p/t. The choice of equations, the relevant
estimates for the non-linearity etc. then follow from [20]. Consequently, we shall
consider the equations

R̂µν −∇µφ∇νφ−
2

n− 1
V (φ)gµν +Mµν = 0,(24)

gαβ∂α∂βφ− Γµ∂µφ− V ′(φ) +Mφ = 0,(25)
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cf. (53) and (54) of [20], where all the indices are with respect to the standard
vectorfields on R+×Tn, i.e. ∂0 = ∂t, ∂i = ∂xi for i = 1, ..., n, if xi are the standard
“coordinates” on Tn. Here

Dµ = Fµ − Γµ, R̂µν = Rµν +∇(µDν), ∇(µDν) =
1
2
(∂µDν + ∂νDµ)− ΓαµνDα,

and

Fµ = nωg0µ, M00 = 2ωg0µ(Γµ − Fµ), M0i = −2ω(Γi − nωg0i),(26)
Mij = 0, Mφ = gµν(Γµ − Fµ)∂νφ.(27)

The equations (24) and (25) imply a homogeneous wave equation for Dµ, cf. (56)
and (57) of [20]. If the initial data satisfy the constraints and one sets up the
initial for the equations (24) and (25) in the correct way, the initial data for Dµ
vanish. This leads to the conclusion that Dµ = 0 where the solution is defined.
As a consequence, we obtain a solution to (5) and (6). For more details on this
argument, the reader is referred to [20], cf., in part, Proposition 1.

2.1. Initial data. The initial data for (24) and (25) are not completely determined
by initial data for (5) and (6). However, part of the corresponding freedom has
to be used to ensure that Dµ = 0 initially. In practice, we shall be interested
in initial data that do not satisfy the constraint equations on the entire initial
manifold. We shall thus assume that we are given (%, ς,Φa,Φb) on Tn, where % is
a Riemannian metric, ς is a symmetric covariant 2-tensor and Φa, Φb are smooth
functions on Tn. Furthermore, we shall assume that (7) and (8) are satisfied on
S ⊆ Tn (with (h, k, φa, φb) replaced by (%, ς,Φa,Φb)). Starting with these initial
data, we construct initial data for (24) and (25) as in [20]:

gij(t0, ·) = %(∂i, ∂j),(28)
g00(t0, ·) = −1, g0i(t0, ·) = 0,(29)

for i, j = 1, ..., n, cf. (58) and (59) of [20]. Due to this choice, the future directed
unit normal to the hypersurface t = t0 is ∂t. Note, furthermore, that this fixes
Fµ(t0, ·), cf. (26). Concerning the first time derivatives, we choose

∂0gij(t0, ·) = 2ς(∂i, ∂j),(30)
∂0g00(t0, ·) = −2F0(t0, ·)− 2trς,(31)

∂0g0l(t0, ·) =
[
−Fl +

1
2
gij(2∂igjl − ∂lgij)

]
(t0, ·),(32)

cf. (60), (62) and (63) of [20] respectively. Due to these choices, Dµ(t0, ·) = 0.
Concerning φ, we require

(33) φ(t0, ·) = Φa, (∂tφ)(t0, ·) = Φb,

cf. (61) of [20], since ∂t is the future directed unit normal to {t0} × Tn.
With these initial data, we get a local existence and uniqueness result. Furthermore,
we get a continuation criterion and the conclusion that (5) and (6) are satisfied in
D({t0}×S), where D signifies the Cauchy development (for a definition of Cauchy
development, see [14] or [20]). For an exact statement, cf. Proposition 1 of [20].
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2.2. Equations. To conclude, we consider the equations

R̂00 + 2ωΓ0 − 2nω2 −∇0φ∇0φ−
2

n− 1
V (φ)g00 = 0,(34)

R̂0i − 2ω(Γi − nωg0i)−∇0φ∇iφ−
2

n− 1
V (φ)g0i = 0,(35)

R̂ij −∇iφ∇jφ−
2

n− 1
V (φ)gij = 0,(36)

gαβ∂α∂βφ− nω∂0φ− V ′(φ) = 0.(37)

In order to analyze what terms are relevant and what terms are irrelevant in the
expressions for R̂µν + Mµν , one can use the results of [20]. Combining Lemma 4,
Lemma 6 and (88) of [20], we obtain

R̂00 + 2ωΓ0 − 2nω2 = −1
2
gαβ∂α∂βg00 +

1
2
(n+ 2)ω∂0g00(38)

+n(ω̇ + ω2)g00 + nω2(g00 + 1)
+∆A,00 + ∆C,00,

R̂0m − 2ω(Γm − nωg0m) = −1
2
gαβ∂α∂βg0m +

1
2
nω∂0g0m(39)

+
[
2(n− 1)ω2 +

1
2
nω̇

]
g0m − ωgijΓimj

+∆A,0m + ∆C,0m,

R̂ij = −1
2
gαβ∂α∂βgij +

1
2
nω∂0gij + 2ωg00∂0gij(40)

−2ω2g00gij + ∆A,ij ,

where the higher order terms ∆A,µν , ∆C,µν are defined in (87), (92) and (93) of
[20]. The point of these expressions is that ∆A,µν and ∆C,µν are sums of terms
that are quadratic in factors that vanish for the background solution.

2.3. Background solution, revisited. Before we proceed, let us prove that the
basic solution around which we are perturbing actually is a solution.

Lemma 1. Let n ≥ 3, p > 1, V0 > 0 and define λ, c0 and V by (11), (12) and (4)
respectively. Then the metric g0, given by (9), and the function φ0, given by (10),
on R+ × Tn satisfy (5) and (6). In particular, φ0 satisfies the equation

(41) φ̈0 + nωφ̇0 + V ′(φ0) = 0.

Proof. One can compute that for g0 given in (9), we have Γ0 = nω, where ω = p/t,
and Γi = 0. In other words, Fµ defined in (26) coincides with Γµ, so that for g0,
R̂µν = Rµν and the modifications Mµν and Mφ vanish. Note also that ∆A,µν = 0
for the metric under consideration, and that ∆C,00 = ∆C,0m = 0, cf. [20] (note
that this is clear due to the idea behind the definition of these quantities). The 00
component of (5) is thus, due to (34) and (38), equivalent to

(42) −nω̇ − nω2 − φ̇2
0 +

2V (φ0)
n− 1

= 0.
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Since φ0 only depends on t, the 0m equations are automatically satisfied and the
ij equations are equivalent to

(43) ω̇ + nω2 − 2V (φ0)
n− 1

= 0.

With φ0 as in (10), equation (43) is equivalent to

−p+ np2 − 2V0e
c0

n− 1
= 0,

which is equivalent to

ec0 =
(n− 1)(np− 1)p

2V0
,

which holds due to (12). In particular,

(44)
2V (φ0)
n− 1

=
p(np− 1)

t2
.

Using this information, (42) is equivalent to

np− np2 − 4
λ2

+ p(np− 1) = 0.

In other words, (11) implies (42). Thus (5) is satisfied. To check that φ0 satisfies
the last equation, which in the current situation is equivalent to (37), is simply a
computation. Since (37) is equivalent to (6) for the metric under consideration, the
lemma follows. �

2.4. Linear algebra. Before reformulating the equations, let us introduce some
terminology concerning Lorentz matrices. Let g be a real valued (n+ 1)× (n+ 1)-
matrix with components gµν . We shall denote the matrix with components gij ,
i, j = 1, ..., n by g[, denote the vector with components g0i by v[g] and denote
g00 + 1 by u[g]. If g is symmetric and has one negative and n positive eigenvalues,
we shall say that g is a Lorentz matrix. In case g is an invertible (n+ 1)× (n+ 1)
matrix, we shall let gµν denote the components of the inverse and we shall let g]

denote the matrix with components gij , i, j = 1, ..., n. It is of interest to note the
following, cf. Lemma 1 and 2 of [20].

Lemma 2. Let h be a symmetric (n+1)× (n+1) real valued matrix. Assume that
u[h] < 1 and that h[ is positive definite. Then h is a Lorentz matrix, h] is positive
definite and u[h−1] < 1.

Remark. Below, we shall sometimes use the notation h[ > 0 to indicate that h[ is
positive definite.

Definition 3. A canonical Lorentz matrix is a symmetric (n + 1) × (n + 1)-
dimensional real valued matrix g such that u[g] < 1 and g[ > 0. Let Cn denote the
set of (n+ 1)× (n+ 1)-dimensional canonical Lorentz matrices.

Note that, due to Lemma 2, the inverse of an element of Cn is in Cn.
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2.5. First reformulation of the equations. Since the background scalar field φ0

tends to infinity as t→∞, it seems natural to reformulate the equations in terms of
ψ = φ−φ0. Furthermore, since the 00- and ij-components of the background metric
are −1 and e2K(t/t0)2pδij respectively, it seems natural to consider u = g00 +1 and
hij = (t/t0)−2pgij . Isolating terms that involve, at worst (in terms of number of
derivatives) first order derivatives of the unknowns and are quadratic in quantities
that vanish on the background, we obtain the following reformulation.

Lemma 3. Let V0 > 0, p > 1 and let n ≥ 3 be an integer. Define λ by (11), V
by (4) and let φ0 be given by the right hand side of (10), where c0 is given by (12).
Finally, fix 0 < t0 ∈ R and let U be an open subset of R+×Tn. Then the following
statements are equivalent:

• the functions g and φ, with values in Cn and R respectively, are C∞ and
satisfy (34)-(37) on U ,

• the functions ψ = φ − φ0, u = g00 + 1, ui = g0i, hij = (t/t0)−2pgij
(i, j = 1, ..., n) are C∞, where u < 1 and hij are the components of a
positive definite metric, and satisfy

−gµν∂µ∂νu+ (n+ 2)ω∂0u+
β1

t2
u− 8

λt
∂0ψ −

2λp(np− 1)
t2

ψ + ∆̃00 = 0,(45)

−gµν∂µ∂νui + nω∂0ui +
β2

t2
ui − 2ωglmΓlim − 4

λt
∂iψ + ∆̃0i = 0,(46)

−gµν∂µ∂νhij + nω∂0hij +
[
−2p
t2
u+

2λp(np− 1)
t2

ψ

]
hij + ∆̃ij = 0,(47)

−gµν∂µ∂νψ + nω∂0ψ +
2(np− 1)

t2
ψ − 2

λt2
u+ ∆̃ψ = 0(48)

on U , where ω = p/t, β1 = 2p[n(p − 1) + 1] and β2 = p(n − 2)(2p − 1).
Furthermore, ∆̃00, ∆̃0i, ∆̃ij and ∆̃ψ are defined by (51), (52), (55) and
(56) respectively.

Remark. Given u, ui and hij , one can construct gµν and thereby gµν . Note that
the equivalence presupposes that t0 has been fixed. Recall that Cn was defined
in Definition 3. It is of interest to note that (45)-(48) are independent of V0; an
expression of the form V0e

−λφ0 appears in ∆E,φ, cf. (49), but this expression is
independent of V0 due to (44). On the other hand, it is necessary to know V0 in
order to be able to reconstruct φ from ψ.

Proof. Note that

e−λφ = e−λφ0(e−λψ − 1 + λψ) + e−λφ0(1− λψ).

Since the first term is quadratic in ψ, which vanishes on the background, we define

(49) ∆E,φ = V0e
−λφ0(e−λψ − 1 + λψ).

With this notation, we can write

2V (φ)
n− 1

=
p(np− 1)

t2
(1− λψ) +

2∆E,φ

n− 1
,
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cf. (44). We thus have (in this proof, we shall use the notation ḟ = ∂tf)

φ̇2 +
2V (φ)
n− 1

g00 =
4

λ2t2
− p(np− 1)

t2

+
4
λt
ψ̇ +

p(np− 1)
t2

(g00 + 1) +
λp(np− 1)

t2
ψ + ∆φ,00,

where

(50) ∆φ,00 = ψ̇2 − λp(np− 1)
t2

ψ(g00 + 1) +
2∆E,φ

n− 1
g00.

Before we reformulate (34), let us note that, due to (38),

R̂00 + 2ωΓ0 − 2nω2 = −1
2
gµν∂µ∂νg00 +

1
2
(n+ 2)ω∂0g00 + n(ω̇ + 2ω2)(g00 + 1)

−n(ω̇ + ω2) + ∆A,00 + ∆C,00.

Since

−n(ω̇ + ω2)− 4
λ2t2

+
p(np− 1)

t2
= 0,

cf. (42) and (44), we get

R̂00 + 2ωΓ0 − 2nω2 − φ̇2 − 2V (φ)
n− 1

g00 = −1
2
gµν∂µ∂νg00 +

1
2
(n+ 2)ω∂0g00

+
[
n(ω̇ + 2ω2)− p(np− 1)

t2

]
(g00 + 1)

− 4
λt
ψ̇ − λp(np− 1)

t2
ψ +

1
2
∆̃00,

where

(51) ∆̃00 = 2∆A,00 + 2∆C,00 − 2∆φ,00.

Thus (34) is equivalent to (45). By similar arguments, using (39), (35) is equivalent
to (46), where

(52) ∆̃0i = 2∆A,0i + 2∆C,0i − 2∂tψ∂iψ +
2p(np− 1)

t2
λψg0i −

4∆E,φ

n− 1
g0i.

Using (40), equation (36) can be reformulated to

−gµν∂µ∂νgij + (n+ 4g00)ω∂0gij

−2
[
2ω2g00 +

p(np− 1)
t2

− λp(np− 1)
t2

ψ

]
gij + ∆̂ij = 0,

where

(53) ∆̂ij = 2∆A,ij −
4∆E,φ

n− 1
gij − 2∂iψ∂jψ.

We wish to reformulate this equation in terms of hij = (t/t0)−2pgij . Note that

(t/t0)−2p∂0gij = ∂0hij + 2ωhij , (t/t0)−2p∂2
0gij = ∂2

0hij + 4ω∂0hij +
2p(2p− 1)

t2
hij .

Using

(54) g00 + 1 = −(g00 + 1) +
1
g00

[(g00 + 1)2 − g0ig0i],
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we conclude that (36) is equivalent to (47) where

(55) ∆̃ij = −4g0lω∂lhij +
2p
t2

1
g00

[(g00 + 1)2 − g0lg0l]hij + (t/t0)−2p∆̂ij

and ∆̂ij is given by (53). Finally, let us turn to (37). Note that

V ′(φ) = −λV0e
−λφ0 + λ2V0e

−λφ0ψ − λ∆E,φ,

so that (37) is equivalent to

−gµν∂µ∂νψ + nω∂0ψ +
2(np− 1)

t2
ψ − (g00 + 1)∂2

0φ0 − λ∆E,φ = 0,

where we have used the fact that φ0 satisfies (41). Due to (54), (37) is equivalent
to (48), where

(56) ∆̃ψ = − 1
g00

[(g00 + 1)2 − g0ig0i]∂2
0φ0 − λ∆E,φ.

The lemma follows. �

2.6. Second reformulation of the equations. Consider (45). All the terms
on the left hand side but the first and the last have a certain structure: terms
involving ∂tu and ∂tψ are multiplied by a factor in the form of a constant divided
by t (recall that ω = p/t) and terms involving u and ψ are multiplied by a factor
in the form of a constant divided by t2. Similar comments can be made concerning
the remaining equations (46)-(48). Consequently, in order to minimize the number
of time dependent coefficients, it seems natural to multiply the equations with t2

and to change the time coordinate to τ , where τ is such that ∂τ = t∂t.

Lemma 4. Let V0 > 0, p > 1 and let n ≥ 3 be an integer. Define λ by (11),
V by (4) and let φ0 be given by the right hand side of (10), where c0 is given by
(12). Fix 0 < t0 ∈ R, let the time coordinate τ be defined by τ = ln(t/t0), τ0
be defined by τ0 = ln t0, and let U be an open subset of R+ × Tn. Finally, let
Υ : R+ × Tn → R × Tn be defined by Υ(t, x) = [ln(t/t0), x]. Then the following
statements are equivalent:

• the functions g and φ, with values in Cn and R respectively, are C∞ and
satisfy (34)-(37) on U ,

• the functions hij, ui, u and ψ (i, j = 1, ..., n) defined by

hij(τ, x) = e−2pτgij(eτ+τ0 , x),(57)

ui(τ, x) = g0i(eτ+τ0 , x),(58)
u(τ, x) = g00(eτ+τ0 , x) + 1,(59)
ψ(τ, x) = φ(eτ+τ0 , x)− φ0(eτ+τ0)(60)
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are C∞, where u < 1 and hij are the components of a positive definite
metric, and satisfy

�̂gu+ α1∂τu+ β1u−
8
λ
∂τψ − 2λp(np− 1)ψ + ∆00 = 0,(61)

�̂gui + α2∂τui + β2ui − 2peτ+τ0glmΓlim − 4eτ+τ0

λ
∂iψ + ∆0i = 0,(62)

�̂ghij + (np− 1)∂τhij + [−2pu+ 2λp(np− 1)ψ]hij + ∆ij = 0,(63)

�̂gψ + (np− 1)∂τψ + 2(np− 1)ψ − 2
λ
u+ ∆ψ = 0(64)

on Υ(U), where

(65) �̂g = −g00∂2
τ − 2eτ+τ0g0i∂τ∂i − e2(τ+τ0)gij∂i∂j ,

α1 = (n+2)p−1, β1 = 2p[n(p−1)+1], α2 = np−1, β2 = p(n−2)(2p−1)
and ∆00, ∆0i, ∆ij and ∆ψ are given by (66)-(69).

Remark. From time to time, we shall abuse notation by writing gij(τ, x) when
gij(eτ+τ0 , x) would be the correct expression etc. Note that the functions hij etc.
are different from the ones of the previous lemma, the difference amounting to a
change of time coordinate.

Proof. Note that

t2∂2
0f = −∂τf + ∂2

τf.

The conclusions follow by straightforward computations, and we have

∆00 = (g00 + 1)∂τu+ e2(τ+τ0)∆̃00,(66)

∆0i = (g00 + 1)∂τui + e2(τ+τ0)∆̃0i,(67)

∆ij = (g00 + 1)∂τhij + e2(τ+τ0)∆̃ij ,(68)

∆ψ = (g00 + 1)∂τψ + e2(τ+τ0)∆̃ψ,(69)

where ∆̃00, ∆̃0i, ∆̃ij and ∆̃ψ are defined by (51), (52), (55) and (56) respectively.
The lemma follows. �

3. Model problem

As was discussed in the introduction, the system of equations (61)-(64) has, in
a certain sense, a hierarchical structure; dropping the ∆µν and ∆ψ terms and
changing the coefficients of the highest order derivatives to those of the background,
the equations for u and ψ involve neither ui nor hij and the equations for hij do not
involve ui. As has been mentioned, this structure will be of essential importance in
the bootstrap argument used to prove future global existence. As a consequence of
the structure of the hierarchy, a natural problem to consider is that of proving decay
of solutions to the resulting model equations for u and ψ, cf. (70) and (71) below.
In order for the analysis to be of use in the non-linear setting, it is preferable to
prove decay by constructing a decaying energy; arguments based on energies tend
to be more robust. The purpose of the present section is to construct such an
energy.
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3.1. Model equations. If we consider (61) and (64), ignore the higher order terms
and replace the metric with the background metric, i.e. if we assume g00 = −1,
g0i = 0 and gij = (t/t0)−2pδij and assume, for the sake of simplicity, t0 = 1, we
obtain the equations

uττ − e−2Hτ∆u+ α1uτ + β1u+ γ1ψτ + δ1ψ = 0,(70)

ψττ − e−2Hτ∆ψ + β3u+ γ3ψτ + δ3ψ = 0.(71)

Here H = p− 1 and

α1 = (n+ 2)p− 1, β1 = 2p[n(p− 1) + 1], γ1 = − 8
λ
,(72)

δ1 = −2λp(np− 1), β3 = − 2
λ
, γ3 = np− 1, δ3 = 2(np− 1),(73)

where n ≥ 3, p > 1 and λ is given by (11). Let us define

(74) A =
(
β1 δ1
β3 δ3

)
, C =

(
α1 γ1

0 γ3

)
, u =

(
u
ψ

)
.

Then (70) and (71) can be written

(75) uττ − e−2Hτ∆u + Cuτ +Au = 0.

Let T be an invertible 2× 2 matrix and apply T−1 to (75). We obtain

ûττ − e−2Hτ∆û + T−1CT ûτ + T−1AT û = 0,

where û := T−1u.

3.2. Positive definiteness of the coefficient matrices. Let us try to find a
matrix T so that T−1AT is diagonal. The eigenvalues of A are given by

λ± :=
β1 + δ3

2
±
[
(β1 + δ3)2

4
− β1δ3 + δ1β3

]1/2
.

Note that
(β1 + δ3)2

4
− β1δ3 + δ1β3 =

1
4
[(β1 − δ3)2 + 4δ1β3] > 0,

since δ1β3 > 0 for n ≥ 3 and p > 1. The eigenvalues are thus real and different.
Note also that

β1δ3 − δ1β3 = 4np(np− 1)(p− 1) > 0

for the range of n and p we are interested in. This computation shows that λ− = 0
when p = 1. Since β1 + δ3 > 0, we conclude that both eigenvalues are positive. Let

(76) T :=
(
λ− − δ3 λ+ − δ3
β3 β3

)
.

Then detT > 0 and

(77) Â := T−1AT =
(
λ− 0
0 λ+

)
,

where the first equality is a definition. Let Ĉ := T−1CT . The main question is
then whether Ĉ + Ĉt is positive definite or not.

Lemma 5. With definitions as above, Ĉ + Ĉt is positive definite.
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Proof. Define

R :=
(

β3 δ3 − λ+

−β3 λ− − δ3

)
.

Note that T−1 = R/detT . In other words, R coincides with T−1 up to a positive
factor. The question is then if RCT plus its transpose is positive definite. Let us
define a, b, c and d by (

a b
c d

)
= RCT.

In order to prove that RCT plus its transpose is positive definite, all we need to
prove is that

(78) a+ d > 0, (a+ d)2 − (a− d)2 − (b+ c)2 > 0.

One can compute that

a+ d = −β3(λ+ − λ−)(α1 + γ3).

Since β3 < 0, α1 + γ3 > 0 and λ+ − λ− > 0, we conclude that a+ d > 0. One can
also compute that

b+ c = −β3(λ+ − λ−)(γ3 − α1)
a− d = β3[(α1 − γ3)(β1 − δ3) + 2β3γ1].

Consequently,(
a+ d

β3

)2

−
(
a− d

β3

)2

−
(
b+ c

β3

)2

= 4α1γ3[(β1 − δ3)2 + 4β3δ1]− (α1 − γ3)2(β1 − δ3)2

−4(α1 − γ3)(β1 − δ3)β3γ1 − 4β2
3γ

2
1 .

After inserting the values for the different constants, we obtain(
a+ d

2β3

)2

−
(
a− d

2β3

)2

−
(
b+ c

2β3

)2

= [(np− 1)2 + 2p(np− 1)](β1 − δ3)2 + 16p(np− 1)2(np− 1 + 2p)
−p2(β1 − δ3)2 − 8(n− 1)p2(β1 − δ3)− 16(n− 1)2p2.

One can see that the terms involving (β1− δ3)2 add up to something non-negative.
Consider the second term on the right hand side. If we write the last factor in this
term as np− 1 + p+ p, take the term that arises from one of the p’s and add it to
the last two terms, we obtain

16p2[(np− 1)2 − (n− 1)2]− 8(n− 1)p2(β1 − δ3)
= 16np2(p− 1)[n(p+ 1)− 2]− 8(n− 1)p2(β1 − δ3).

However,
β1 − δ3 = 2np(p− 1) + 2p− 2np+ 2,

so that

−8(n− 1)p2(β1 − δ3) = −16np2(p− 1)(n− 1)p+ 16(n− 1)p2(np− p− 1).

We conclude that

16p2[(np− 1)2 − (n− 1)2]− 8(n− 1)p2(β1 − δ3)
= 16np2(p− 1)(n+ p− 2) + 16(n− 1)p2(np− p− 1).
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Thus (78) holds and Ĉ + Ĉt is positive definite. �

3.3. Model energy. Let us consider a solution to (70) and (71), where τ ∈ R and
x ∈ Tn. Let us use the notation(

û

ψ̂

)
= û = T−1u,

where T is given by (76). Then

ûττ − e−2Hτ∆û + Ĉûτ + Âû = 0.

Note that Â is given by (77) and that Ĉ + Ĉt is positive definite. We shall denote
the components of Ĉ by Ĉij . Let us define an energy

E =
1
2

∫
Tn

[|ûτ |2 + e−2Hτ (|∇û|2 + |∇ψ̂|2) + 2cûtûτ + b1û
2 + b2ψ̂

2]dx,

where the constants c and bi are to be determined. To start with, the only condition
we impose is that c2 < bi for i = 1, 2. Note that this implies that there is an η > 0,
depending on c, b1 and b2, such that

1
2

∫
Tn

[|ûτ |2 + e−2Hτ (|∇û|2 + |∇ψ̂|2) + |û|2]dx ≤ ηE.

Let us compute

dE

dτ
=

∫
Tn

[
−1

2
ûtτ (Ĉ + Ĉt)ûτ + c|ûτ |2 − (H + c)e−2Hτ (|∇û|2 + |∇ψ̂|2)

−cλ−û2 − cλ+ψ̂
2 + (b1 − λ− − cĈ11)ûûτ + (b2 − λ+ − cĈ22)ψ̂ψ̂τ

−cĈ12ûψ̂τ − cĈ21ψ̂ûτ ]dx.

Let us choose

(79) b1 = λ− + cĈ11, b2 = λ+ + cĈ22.

Since the λ± are positive, we obtain c2 < bi by choosing c small enough. Note that

|cĈ12ûψ̂τ | ≤ c3/2û2 +
1
4
c1/2Ĉ2

12ψ̂
2
τ ,

and similarly for cĈ21ψ̂ûτ . Choosing bi as in (79), we obtain

dE

dτ
≤

∫
Tn

[
−1

2
ûtτ (Ĉ + Ĉt)ûτ + c|ûτ |2 +

1
4
c1/2(Ĉ2

12ψ̂
2
τ + Ĉ2

21û
2
τ )

−(H + c)e−2Hτ (|∇û|2 + |∇ψ̂|2)
−c(λ− − c1/2)û2 − c(λ+ − c1/2)ψ̂2]dx.

Due to Lemma 5, Ĉt + Ĉ is positive definite, so that by choosing c small enough,
there is a constant a1 > 0, depending on n and p, such that

dE

dτ
≤ −a1

∫
Tn

[û2
τ + ψ̂2

τ + e−2Hτ (|∇û|2 + |∇ψ̂|2) + û2 + ψ̂2]dx.

This of course implies the existence of a κ > 0, depending on n and p, such that

dE

dτ
≤ −2κE.
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4. Energy estimates

Let us turn back to the actual equations. The purpose of the present section is to
construct the energies on which the bootstrap argument will be based. Let us start
by constructing the energy associated with (61) and (64). Note that we can write
(61) and (64) as

�̂gu + Cuτ +Au + ∆ = 0,

where A, C and u are defined in (74), �̂g is defined in (65) and

∆ =
(

∆00

∆ψ

)
.

Letting T be defined by (76), û = T−1u, ∆̂ = T−1∆, Â = T−1AT and Ĉ =
T−1CT , we obtain

(80) �̂gû + Ĉûτ + Âû + ∆̂ = 0.

We shall also use the terminology (
û

ψ̂

)
:= û.

Lemma 6. Let p > 1 and τ0 be real numbers and n ≥ 3 be an integer. Let
g : I × Tn → Cn, where I is an interval, and denote the components of g by gµν .
Consider a solution û to the equation

(81) �̂gû + Ĉûτ + Âû = F

on I × Tn, where �̂g is defined in (65), F is a given function and Â and Ĉ are
defined above. Given constants clp and bi, i = 1, 2, we define

(82) E [û] =
1
2

∫
Tn

{−g00∂τ ût∂τ û + ĝij∂iût∂jû− 2clpg00ût∂τ û + b1û
2 + b2ψ̂

2}dx

on I, where we use the notation ĝij = e2(τ+τ0)gij. Below we shall also use the
notation ĝ0i = eτ+τ0g0i and H = p − 1. There are constants ηlp, ζlp, bi, clp > 0,
depending on n and p, such that if E is defined by (82) with this choice of bi and
clp and

(83) |g00 + 1| ≤ ηlp,

then

(84) E ≥ ζlp

∫
Tn

{∂τ ût∂τ û + ĝij∂iût∂jû + ûtû}dx

and
dE
dτ

≤ −2ηlpE +
∫

Tn

{(∂τ ût + clpût)F + ∆E [û]}dx

where ∆E [û] is given in (85).

Remark. Note that since g is a map into Cn, Lemma 2 implies that gij are the
components of a positive definite matrix and that g00 < 0.
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Proof. Let us compute
dE
dτ

=
∫

Tn

{−1
2
∂τ ût(Ĉ + Ĉt)∂τ û− ∂τ ûtÂû + ∂τ ûtF− (H + clp)ĝij∂iût∂jû

+clp|∂τ û|2 − clpûtĈ∂τ û− clpûtÂû + clpûtF + b1û∂τ û+ b2ψ̂∂τ ψ̂

+∆E [û]}dx,
where

∆E [û] = −clp(g00 + 1)∂τ ût∂τ û− 2clpĝ0i∂iût∂τ û− 2clp(∂iĝ0i)ût∂τ û

−clp(∂j ĝij)∂iûtû−
1
2
(∂τg00)∂τ ût∂τ û +

[
1
2
∂τ ĝ

ij +Hĝij
]
∂iût∂jû(85)

−(∂iĝ0i)∂τ ût∂τ û− (∂j ĝij)∂τ ût∂iû− clp(∂τg00)ût∂τ û.

Choosing clp and bi similarly to how we chose them in Subsection 3.3, we get the
desired conclusion, assuming g00 to be close enough to −1. �

Corollary 1. With assumptions as in Lemma 6, let E be defined by (82) with
constants chosen as in the statement of Lemma 6. Let

Ek =
∑
|α|≤k

E [∂αû].

Then, assuming (83) holds,

dEk
dτ

≤ −2ηlpEk +
∑
|α|≤k

∫
Tn

{(∂α∂τ ût + clp∂
αût)(∂αF + [�̂g, ∂

α]û) + ∆E [∂αû]}dx.

Remark. When we write ∂α, we shall always take for granted that the Greek index
used upstairs is a multiindex, α = (l1, ..., ln), where the li are non-negative integers
so that

∂α = ∂l11 · · · ∂lnn ,
where ∂i is the standard differential operator with respect to the i:th “coordinate”
on Tn. Note in particular that ∂α never contains any derivatives with respect to the
time coordinate. Note also that in an expression ∂α, the Greek index downstairs
means a number from 0 to n.

Proof. Differentiating (81), we obtain

�̂g∂
αû + Ĉ∂τ∂

αû + Â∂αû = ∂αF + [�̂g, ∂
α]û,

so that we only need to apply Lemma 6 in order to get the desired conclusion. �

The energies we shall construct for ui and hij will be based on the following lemma.

Lemma 7. Let τ0 be a real number and n ≥ 3 be an integer. Let g : I × Tn → Cn,
where I is an interval, and denote the components of g by gµν . Consider a solution
to the equation

(86) �̂gv + α∂τv + βv = F,

on I ×Tn, where �̂g is defined in (65), F is a given function and α > 0 and β ≥ 0
are constants. Then there are constants ηc, ζ > 0 and γ, δ ≥ 0, depending on α and
β, such that if

(87) |g00 + 1| ≤ ηc
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and

Eγ,δ[v] =
1
2

∫
Tn

[−g00(∂τv)2 + ĝij∂iv∂jv − 2γg00v∂τv + δv2]dx,

then

(88) Eγ,δ ≥ ζ

∫
Tn

[(∂τv)2 + ĝij∂iv∂jv + ιβv
2]dx,

where ιβ = 0 if β = 0 and ιβ = 1 otherwise, and

dEγ,δ
dτ

≤ −2ηcEγ,δ +
∫

Tn

{(∂τv + γv)F + ∆E,γ,δ[v]}dx,

where ∆E,γ,δ[v] is given by (89). If β = 0, then γ = δ = 0.

Proof. If β > 0, choose γ = α/2 and δ = β + α2/2. Then γ2 < δ, and it is clear
that there is a constant ζ > 0 such that (88) holds, assuming g00 is close enough to
−1. If β = 0, we simply let γ = δ = 0, and the existence of a ζ > 0 such that (88)
holds again follows from the assumption that g00 is close enough to −1. Compute

dEγ,δ
dτ

=
∫

Tn

{−(α− γ)(∂τv)2 + (δ − β − γα)v∂τv − βγv2

−(H + γ)ĝij∂iv∂jv + (∂τv + γv)F + ∆E,γ,δ[v]}dx,

where

∆E,γ,δ[v] = −γ(∂iĝij)v∂jv − 2γ(∂iĝ0i)v∂τv − 2γĝ0i∂iv∂τv − (∂iĝ0i)(∂τv)2

−(∂j ĝij)∂iv∂τv −
1
2
(∂τg00)(∂τv)2 +

(
1
2
∂τ ĝ

ij +Hĝij
)
∂iv∂jv(89)

−γ∂τg00v∂τv − γ(g00 + 1)(∂τv)2.

Due to our choices, we have, assuming β > 0,
dEγ,δ
dτ

= −1
2

∫
Tn

[α(∂τv)2 + (α+ 2H)ĝij∂iv∂jv + αβv2]dx

+
∫

Tn

{(∂τv + γv)F + ∆E,γ,δ[v]}dx.

Since the opposite inequality to (88) also holds, provided we replace ζ by ζ−1 for ζ
small enough, we obtain the conclusion of the lemma for β > 0. The conclusion in
the case β = 0 follows for similar reasons. �

Corollary 2. Under the assumptions of Lemma 7, let

Ek =
∑
|α|≤k

Eγ,δ[∂αv].

Then, assuming (87) holds,

dEk
dτ

≤ −2ηcEk +
∑
|α|≤k

∫
Tn

{(∂τ∂αv + γ∂αv)(∂αF + [�̂g, ∂
α]v) + ∆E,γ,δ[∂αv]}dx.

Proof. Given that v satisfies (86), ∂αv satisfies

�̂g(∂αv) + α∂τ (∂αv) + β(∂αv) = ∂αF + [�̂g, ∂
α]v.

The statement follows from Lemma 7. �
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5. Bootstrap assumptions

Before we write down the basic bootstrap assumptions, let us introduce some ter-
minology. If A is a symmetric positive definite n× n matrix with components Aij
and w ∈ Rn, we shall use the notation

|w|A =

 n∑
i,j=1

Aijw
iwj

1/2

.

If Id is the identity matrix, we define |w| := |w|Id. We shall also use the notation
introduced in Subsection 2.4.

5.1. Primary bootstrap assumptions. The purpose of the primary bootstrap
assumptions is to ensure that the metric remains Lorentzian, with quantitative
bounds.

Definition 4. Let p > 1, a > 0, c1 > 1, η ∈ (0, 1), K0 and τ0 be real numbers and
n ≥ 3 be an integer. We shall say that a function g : I × Tn → Cn, where I is an
interval, satisfies the primary bootstrap assumptions on I (the relevant constants
being understood from the context) if

c−1
1 |w|2 ≤ e−2Ω−2K |w|2g[

≤ c1|w|2,(90)

|u[g]| ≤ η,(91)

|v[g]|2 ≤ ηc−1
1 e2Ω−2r+2K ,(92)

for all w ∈ Rn and all (τ, x) ∈ I × Tn, where Ω = pτ , r = aτ and K = τ0 +K0.

Remark. We shall specify a and η in (101) and (100) below. In the end we shall
apply the above conditions to a situation in which K0 only depends on p, so that
factors of e−K0 and eK0 can be considered to be constants of which one need not
keep track. In fact, the natural choice to make for eK is a numerical multiple of
the basic length scale `(t0). Furthermore, the constants η and a we shall use only
depend on n and p, and c1 will, in our applications, be a numerical constant. In
other words, the only quantity that in practice needs to be specified (beyond n and
p) is τ0.

Lemma 7 of [20] gives the following conclusions of the bootstrap assumptions.

Lemma 8. Let p > 1, a > 0, c1 > 1, η ∈ (0, 1), K0 and τ0 be real numbers
and n ≥ 3 be an integer. Assume that g : I × Tn → Cn satisfies the primary
bootstrap assumptions on I, where I is an interval. There is a numerical constant
η0 ∈ (0, 1/4) such that if we assume η ≤ η0 in (91) and (92), then

|v[g−1]| ≤ 2c1e−2Ω−2K |v[g]|(93)

|(v[g], v[g−1])| ≤ 2c1e−2Ω−2K |v[g]|2(94)
|u[g−1]| ≤ 4η,(95)
2

3c1
|w|2 ≤ e2Ω+2K |w|2g] ≤

3c1
2
|w|2(96)

for all w ∈ Rn and (τ, x) ∈ I×Tn. Here we use the notation (ξ, ζ) for the ordinary
scalar product of ξ, ζ ∈ Rn.

Remark. The lemma holds irrespective of the value of a.
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5.2. Energies. Let p > 1, a > 0, c1 > 1, η ∈ (0,min{η0, ηlp/4}], K0 and τ0 be
real numbers and n ≥ 3 be an integer. Assume that g : I × Tn → Cn satisfies the
primary bootstrap assumptions on I, where I is an interval. Then (83) is satisfied
due to (95). In order to define the energy associated with u and ψ, let us note
that (61) and (64) can be combined into (80). Using the notation introduced in
connection with (80), let

(97) Hlp,k =
∑
|α|≤k

E [∂αû],

where E is defined in (82) with the constants that are obtained as a result of Lemma
6.

Consider (62). If we take all the terms on the left hand side except for the first
three to the right hand side, we get an equation of the type discussed in Lemma
7 with α replaced by α2 and β replaced by β2. Since α2, β2 > 0, Lemma 7 yields
positive constants γs, δs, ηs and ζs such that the conclusions of that lemma holds,
and we define

(98) Hs,k =
∑
i

∑
|α|≤k

Eγs,δs [∂αui],

where Eγs,δs is defined in Lemma 7.

Consider (63). Taking all but the first two terms on the left hand side to the right
hand side, we obtain an equation of the type considered in Lemma 7 with α replaced
by np− 1 > 0 and β replaced by 0. We thus get γm = δm = 0 and ηm, ζm > 0 such
that the conclusions of Lemma 7 hold. We define the energy associated with hij to
be

(99) Hm,k =
1
2

∑
i,j

∑
|α|≤k

(
Eγm,δm [∂αhij ] +

∫
Tn

e−2aτaα(∂αhij)2dx
)
,

where a > 0 is given by (101) and aα = 1 for |α| > 0, aα = 0 for α = 0. From
now on, we shall assume that g satisfies the primary bootstrap assumption on an
interval I where η is defined by

(100) η := min{η0, ηlp/4, ηs/4, ηm/4}.

Note that as a consequence, the conclusions of Lemma 6 and 7 hold for the energies
of interest, cf. (95). Furthermore, we define

(101) a :=
1
4

min{p− 1, ηlp, ηs, ηm}.

Note that a and η only depend on n and p.

5.3. Basic estimates. Let us use the notation

‖f‖Hk =

∑
|α|≤k

∫
Tn

(∂αf)2dx

1/2

for the Sobolev norms (note that we shall use this notation even when f depends on
t, and then the derivatives will still only be with respect to the spatial coordinates).
We wish to express the Sobolev norms of the quantities of interest in terms of the
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geometrically defined energies Hlp,k etc. In the end it will turn out to be convenient
to use the following energies instead:

Ĥlp,k = e2aτHlp,k, Ĥs,k = e−2pτ+2aτ−2KHs,k, Ĥm,k = e2aτ−4KHm,k,

where a > 0 is given by (101). We shall also use the notation

(102) Ĥk = Ĥlp,k + Ĥs,k + Ĥm,k.

Note that, using the notation of Section 7 in [20], Ĥlp,k, Ĥs,k and Ĥm,k are equiv-
alent to Êlp,k, Ês,k and Êm,k respectively; in the formulas for Ê, the quantity r
should be replaced by aτ and it is convenient to note that

(103) ω−1∂t = p−1∂τ , ω−1g0i = p−1ĝ0i, ω−2gij = p−2ĝij .

In particular, Ĥk is equivalent to Êk. Furthermore, we have the following lemma.

Lemma 9. Let p > 1, c1 > 1, K0 and τ0 be real numbers and n ≥ 3 be an
integer. Let η and a be defined by (100) and (101) respectively and assume that
g : I×Tn → Cn satisfies the primary bootstrap assumptions on an interval I. Then

eaτ [‖ψ‖Hk + ‖∂τψ‖Hk + e−Hτ−K0‖∂iψ‖Hk ] ≤ CĤ
1/2
lp,k,(104)

eaτ [‖u‖Hk + ‖∂τu‖Hk + e−Hτ−K0‖∂iu‖Hk ] ≤ CĤ
1/2
lp,k,(105)

e−pτ+aτ−K [‖um‖Hk + ‖∂τum‖Hk + e−Hτ−K0‖∂ium‖Hk ] ≤ CĤ
1/2
s,k ,(106)

e−2pτ+aτ−2K
[
‖∂τgij − 2pgij‖Hk + e−Hτ−K0‖∂lgij‖Hk

]
≤ CĤ

1/2
m,k,(107)

e−2pτ−2K‖∂αgij‖2 ≤ CĤ
1/2
m,k(108)

hold on I, where K = τ0 + K0, the last estimate is valid for 0 < |α| ≤ k and the
constants depend on c1, n and p.

Proof. The lemma follows from Lemma 8 of [20] given the above mentioned equiv-
alence of the energies (though it is not difficult to prove the statement directly).
Note, however, that this is based on observations such as (103) and

ω−1e−pτ−K = p−1e−Hτ−K0

and the fact that 1 is as good a constant as p−1. �

We shall need estimates for the components of the inverse of the metric. Such
estimates follow from the results of [20].

Lemma 10. Let p > 1, c1 > 1, K0 and τ0 be real numbers and n ≥ 3 be an
integer. Let η and a be defined by (100) and (101) respectively and assume that
g : I×Tn → Cn satisfies the primary bootstrap assumptions on an interval I. Then,
for 0 < |α| ≤ k,

eaτ‖∂αg00‖2 ≤ CĤ
1/2
k ,(109)

e2pτ+2K‖∂αglm‖2 ≤ CĤ
1/2
k ,(110)

epτ+aτ+K‖g0l‖Hk ≤ CĤ
1/2
k(111)

hold on I, where K = τ0 +K0, Ĥk is defined in (102) and the constants depend on
n, p, k and c1.

Proof. See Lemma 9 of [20]. �
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5.4. The main bootstrap assumption. Using the primary bootstrap assump-
tions, it is possible to define the energy Ĥk in terms of which the main bootstrap
assumption is phrased.

Definition 5. Let p > 1, c1 > 1, K0, 0 < ε ≤ 1 and τ0 be real numbers and
n ≥ 3 and k0 > n/2 + 1 be integers. We shall then say that (g, ψ) satisfy the
main bootstrap assumption on I (the relevant constants being understood from the
context), where I is an interval, if

• g : I × Tn → Cn and ψ : I × Tn → R are C∞,
• g satisfies the primary bootstrap assumptions on I, where η and a are

defined by (100) and (101) respectively,
• g and ψ satisfy

(112) Ĥ
1/2
k0

(τ) ≤ ε

for all τ ∈ I, where K = K0 + τ0.

Remark. Note that these bootstrap assumptions correspond exactly to the boot-
strap assumptions made in [20], given the specific form of Ω and r, cf. (105) of
[20].

6. Estimates for the non-linearity

In the proof of future global existence of solutions, the main tool is the system of
differential inequalities given in Section 7. The first step in the derivation of these
inequalities has already been taken, cf. Corollary 1 and 2. However, in order to
obtain (139)-(141), it is necessary to estimate ∆µν , ∆ψ, [�̂g, ∂

α]û, ∆E [∂αû] etc. in
Hk, cf. Corollary 1 and 2. The present section is devoted to a derivation of such
estimates.

In Subsection 9.1 of [20], we described an algorithm for estimating the higher order
terms. The current context is only a special case of what was considered there.
However, a few things should be kept in mind when making the comparison. First
of all, in the estimates in [20], time derivatives were computed with respect to the
original time t and not with respect to τ . Furthermore, Ω = pτ , K = τ0 + K0,
ω = p/t and r = aτ . The relationship between t and τ is of course given by
τ = ln t− τ0. When using the algorithm described in [20], it is convenient to note
that (103) holds. In particular, changing ∂t to ∂τ corresponds to multiplication
with ω−1 as far as estimates are concerned.

6.1. Estimates for the quadratic terms.

Lemma 11. Let p > 1, c1 > 1, K0, 0 < ε ≤ 1 and τ0 be real numbers and n ≥ 3 and
k0 > n/2 + 1 be integers. Assume that (g, ψ) satisfy the main bootstrap assumption
on an interval I. Then

‖∆00‖Hk ≤ Cεe−2aτ Ĥ
1/2
k ,(113)

‖∆0l‖Hk ≤ Cεepτ−2aτ+KĤ
1/2
k ,(114)

‖∆ij‖Hk ≤ Cεe−2aτ+2KĤ
1/2
k ,(115)

‖∆ψ‖Hk ≤ Cεe−2aτ Ĥ
1/2
k(116)
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on I, where ∆00, ∆0i, ∆ij and ∆ψ are given by (66)-(69), K = K0 + τ0, Ĥk is
defined in (102) and the constants depend on n, p, k and c1.

Remark. The bootstrap assumptions only constitute control of k0 + 1 derivatives,
but the conclusions of the present lemma, as well as several lemmas to follow, hold
for any non-negative integer k.

Proof. Consider
∆00 = (g00 + 1)∂τu+ e2(τ+τ0)∆̃00.

To estimate the first term using the algorithm, cf. Subsection 9.1 of [20], note that
it can be rewritten

(117) (g00 + 1)pω−1∂tu.

The expression

(118) (g00 + 1)∂tu,

is of the type dealt with by the algorithm, and, in the terminology of [20], we
compute that lε = 2, lh = 0 and l∂ = 1. Here lε gives the number of terms that are
“small” (for a precise definition, see [20]), lh gives the number of downstairs spatial
indices minus the number of upstairs spatial indices, including spatial derivatives,
and l∂ is the number of derivatives occurring. Due to the algorithm, the expression
(118) can thus be estimated by

Cεωl∂elh(Ω+K)−lεrÊ
1/2
k = Cεωe−2aτ Ê

1/2
k ,

which yields the desired estimate for (117) in view of the fact that Êk and Ĥk are
equivalent. What remains to be considered is thus

(119) e2(τ+τ0)∆̃00 = 2e2(τ+τ0)∆A,00 + 2e2(τ+τ0)∆C,00 − 2e2(τ+τ0)∆φ,00,

cf. (51). Due to Lemma 12 of [20], we have the estimate

‖∆A,00‖Hk + ‖∆C,00‖Hk ≤ Cεω2e−2rÊ
1/2
k .

Noting that ω−2 = p−2e2(τ+τ0), this estimate implies

e2(τ+τ0)‖∆A,00‖Hk + e2(τ+τ0)‖∆C,00‖Hk ≤ Cεe−2aτ Ĥ
1/2
k ,

which yields the desired estimate for the first two terms on the right hand side of
(119). Let us turn to e2(τ+τ0)∆φ,00, where ∆φ,00 is given by (50). An estimate for
the first two terms in (50), after multiplication by e2(τ+τ0), follows by estimating
ω−2ψ̇2 and uψ. These objects can be estimated by the algorithm; in both cases
lε = 2 and lh = 0 and in the first case l∂ = 2 whereas l∂ = 0 in the last case.
Finally, we need to estimate

(120) e2(τ+τ0)g00∆E,φ.

Note that ∆E,φ is given by (49) and that V0e
−λφ0 = p(np − 1)(n − 1)/(2t2), cf.

(44), so that estimating (120) is the same as estimating

g00(e−λψ − 1 + λψ) = R(ψ)g00ψ2

for some smooth function R, cf. the proof of Lemma 16 in [20]. This is an object
which can be estimated by the algorithm; lε = 2 and lh = l∂ = 0. The arguments
to derive (114)-(116) are similar. �
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6.2. Estimates for the commutators. We shall need estimates for the Hk-norm
of

F̂0 := �̂gu = −α1∂τu− β1u+
8
λ
∂τψ + 2λp(np− 1)ψ −∆00,(121)

F̂i := �̂gui = −α2∂τui − β2ui + 2peτ+τ0glmΓlim +
4eτ+τ0

λ
∂iψ −∆0i,(122)

F̂ij := �̂ghij = −(np− 1)∂τhij − [−2pu+ 2λp(np− 1)ψ]hij −∆ij ,(123)

F̂ψ := �̂gψ = −(np− 1)∂τψ − 2(np− 1)ψ +
2
λ
u−∆ψ,(124)

where we have used (61)-(64).

Lemma 12. Let p > 1, c1 > 1, K0, 0 < ε ≤ 1 and τ0 be real numbers and n ≥ 3 and
k0 > n/2 + 1 be integers. Assume that (g, ψ) satisfy the main bootstrap assumption
on an interval I. Assuming (61)-(64) are satisfied (where hij, ui and u are defined
in terms of g according to (57)-(59)), we conclude that

‖F̂0‖Hk ≤ Ce−aτ Ĥ
1/2
k ,(125)

‖F̂m‖Hk ≤ Cepτ−aτ+KĤ
1/2
k ,(126)

‖F̂ij‖Hk ≤ Ce−aτ+2KĤ
1/2
k ,(127)

‖F̂ψ‖Hk ≤ Ce−aτ Ĥ
1/2
k(128)

on I, where F̂0,...,F̂ψ are defined in (121)-(124) respectively, K = K0 + τ0, Ĥk is
defined in (102) and the constants depend on n, p, k and c1.

Proof. Except for the terms

(129) 2peτ+τ0glmΓlim, −[−2pu+ 2λp(np− 1)ψ]hij ,

the conclusions are immediate consequences of (113)-(116), (104)-(108), the defi-
nition of Ĥk and the fact that ε ≤ 1. In order to deal with the first expression
appearing in (129), note that we can apply the algorithm, cf. Subsection 9.1 of
[20], with lε = 1, l∂ = 1 and lh = 1 in order to obtain

‖2peτ+τ0glmΓlim‖Hk ≤ Ceτ+τ0ωepτ+K−aτ Ĥ
1/2
k = Cpepτ+K−aτ Ĥ

1/2
k ,

which is an estimate of the desired form. In order to deal with the second expression
appearing in (129), we can also apply the algorithm with lε = 1, lh = 2 and l∂ = 0,
though in order for this to fit with the conventions of [20], we have to rewrite hij
as e−2pτgij . We obtain

‖[−2pu+ 2λp(np− 1)ψ]hij‖Hk ≤ Ce−2pτe2pτ+2K−aτ Ĥ
1/2
k ,

and the lemma follows. �

Lemma 13. Let p > 1, c1 > 1, K0, 0 < ε ≤ 1 and τ0 be real numbers and n ≥ 3 and
k0 > n/2 + 1 be integers. Assume that (g, ψ) satisfy the main bootstrap assumption
on an interval I. Assuming (61)-(64) are satisfied (where hij, ui and u are defined
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in terms of g according to (57)-(59)), we conclude that, for 0 < |α| ≤ k,

‖[�̂g, ∂
α]u‖2 ≤ Cεe−2aτ Ĥ

1/2
k(130)

‖[�̂g, ∂
α]um‖2 ≤ Cεepτ−2aτ+KĤ

1/2
k(131)

‖[�̂g, ∂
α]hij‖2 ≤ Cεe−2aτ+2KĤ

1/2
k ,(132)

‖[�̂g, ∂
α]ψ‖2 ≤ Cεe−2aτ Ĥ

1/2
k(133)

on I. Here, K = K0 + τ0, Ĥk is defined in (102) and the constants depend on n,
p, k, c1 and an upper bound on e−K0 .

Remark. Note that a ≤ H due to (101).

Proof. The result follows from Lemma 13 in [20]. However, in order to be able to
see that, we need to translate the terminology of [20] to the current setting. In
[20], the notation �̂g occurs, but this object does not coincide with the �̂g used
in the current paper. Let us denote the object �̂g that occurs in [20] by �̂old

g to
distinguish it from the object considered in the present paper. The relation between
the two is then given by

�̂g = t2�̂old
g − g00∂τ .

This can be restated as follows:

ω−2�̂old
g = p−2(�̂g + g00∂τ ).

Expressing the statement of Lemma 13 in [20] in terms of the current terminology,
we conclude that if, for some smooth v on I × Tn,

p−1‖∂τv‖Hk + p−1e−Hτ−K0‖∂iv‖Hk + p−2‖�̂gv + g00∂τv‖Hk

≤ Celh(pτ+K)−aτ Ĥ
1/2
k ,

for some k > n/2 + 1, then, for 0 < |α| ≤ k,

‖[�̂g + g00∂τ , ∂
α]v‖2 ≤ Cεelh(pτ+K)−2aτ Ĥ

1/2
k ,

where the constant depends on

(134) sup
t∈I

ω−1e−Ω−K+r,

which is assumed to be finite. Note that ω−1e−Ω−K+r = p−1e−Hτ+aτ−K0 . In order
to be allowed to use Lemma 13 of [20], we thus need to have 0 < a ≤ p− 1, which
is ensured by (101). Furthermore, the constant depends on e−K0 .

Let us reformulate the assumptions and the conclusions. Note that if we assume

(135) ‖∂τv‖Hk ≤ Celh(pτ+K)−aτ Ĥ
1/2
k ,

then

‖g00∂τv‖Hk ≤ ‖∂τv‖Hk + ‖(g00 + 1)∂τv‖Hk

≤ C[(1 + ‖1 + g00‖∞)‖∂τv‖Hk + ‖∂τv‖∞‖1 + g00‖Hk ]

≤ Celh(pτ+K)−aτ Ĥ
1/2
k

due to the bootstrap assumptions, the algorithm applied to g00+1, Sobolev embed-
ding and the fact that ε ≤ 1. As a conclusion we might as well replace �̂gv+g00∂τv
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with �̂gv in the assumptions. Concerning the conclusions, note that for |α| ≤ k,

‖[g00∂τ , ∂
α]v‖2 ≤ C

n∑
i=1

(‖∂ig00‖∞‖∂τv‖Hk−1 + ‖∂ig00‖Hk−1‖∂τv‖∞)

≤ Cεelh(pτ+K)−2aτ Ĥ
1/2
k ,

where we have used (135), (109), the bootstrap assumptions and Sobolev embed-
ding. Thus we might as well replace �̂gv + g00∂τv with �̂gv in the conclusions.

In order to obtain the desired conclusion, all we need to do is to combine the above
result with the estimates (104)-(108) and (125)-(128), with one exception. In the
case of hij , lh(Ω +K) should be replaced by 2K. The argument goes through all
the same if we simply let lh = 0 in that case and apply the result to v = e−2Khij .
�

6.3. Estimates for the remainder terms in the energy estimates. In prepa-
ration for the final estimate, let us note that the following estimates hold.

Lemma 14. Let p > 1, c1 > 1, K0, 0 < ε ≤ 1 and τ0 be real numbers and n ≥ 3 and
k0 > n/2 + 1 be integers. Assume that (g, ψ) satisfy the main bootstrap assumption
on an interval I. Then, on I,∥∥∥∥1

2
∂τ ĝ

ij +Hĝij
∥∥∥∥
∞

≤ Cεe−2Hτ−2K0e−aτ ,

‖∂τg00‖∞ ≤ Cεe−aτ .

Proof. Note that ĝij = e2(τ+τ0)gij = t2gij , so that (recall that H = p− 1 and that
ω = p/t)

t∂tĝ
ij = −2Hĝij − t3gik(gjl∂tgkl − 2ωδjk)− t3gi0gj0∂tg00 − t3gikgj0∂tg0k

−t3gi0gjk∂tg0k.

Moving −2Hĝij over to the left hand side the objects that remain on the right hand
side can be estimated using the algorithm; e.g.

‖gik(gjl∂tgkl − 2ωδjk)‖Hk ≤ Cωe−2(pτ+K)−aτ Ĥ
1/2
k ,

since lε = 1, lh = −2 and l∂ = 1 in this case. Since t∂t = ∂τ , we get the desired
conclusion using the bootstrap assumptions and Sobolev embedding. The second
estimate follows by a similar argument. �

Finally, we need the following estimates.

Lemma 15. Let p > 1, c1 > 1, K0, 0 < ε ≤ 1 and τ0 be real numbers and n ≥ 3 and
k0 > n/2 + 1 be integers. Assume that (g, ψ) satisfy the main bootstrap assumption
on an interval I. Then

‖∆E [∂αû]‖1 ≤ Cεe−aτHlp,k,(136)

‖∆E,γs,δs [∂
αum]‖1 ≤ Cεe−aτHs,k,(137)

‖∆E,γm,δm [∂αhij ]‖1 ≤ Cεe−aτHm,k(138)

on I for |α| ≤ k, where ∆E and ∆E,γ,δ are defined in (85) and (89) respectively.
The constants depend on n, p, k, c1 and an upper bound for e−K0 .
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Proof. Due to the algorithm, (112) and Sobolev embedding,

‖g00 + 1‖∞ ≤ Cεe−aτ .

Furthermore, using (110) and (111), we conclude that

e2Hτ+2K0‖∂iĝlm‖∞ + eHτ+K0+aτ‖∂iĝ0m‖∞ + eHτ+K0+aτ‖ĝ0m‖∞ ≤ Cε

for all i, l,m, due to Sobolev embedding, the fact that k0 > n/2+1 and the fact that
the bootstrap assumptions hold. Recall that ĝ0i and ĝij were defined in Lemma 6.
Due to these estimates, (90)-(92) and the estimates of Lemma 14, we conclude that

‖∆E [û]‖1 ≤ Cεe−aτE [û],

where E was defined in (82) and the constant depends on an upper bound of e−K0 .
Note that in order to obtain this conclusion, we used the fact that a ≤ H, cf. (101).
This proves (136). The other estimates follow in a similar fashion, keeping in mind
that γm = δm = 0. �

7. Differential inequalities

Finally, we are in a position to derive the differential inequalities that will be the
core of the proof of global existence.

Lemma 16. Let p > 1, c1 > 1, K0, 0 < ε ≤ 1 and τ0 be real numbers and n ≥ 3 and
k0 > n/2 + 1 be integers. Assume that (g, ψ) satisfy the main bootstrap assumption
on an interval I. Assuming (61)-(64) are satisfied (where hij, ui and u are defined
in terms of g according to (57)-(59)), we conclude that

dĤlp,k

dτ
≤ −2aĤlp,k + Cεe−aτ Ĥ

1/2
lp,kĤ

1/2
k(139)

dĤs,k

dτ
≤ −2aĤs,k + CĤ

1/2
s,k (Ĥ1/2

lp,k + Ĥ
1/2
m,k) + Cεe−aτ Ĥ

1/2
s,k Ĥ

1/2
k(140)

dĤm,k

dτ
≤ Ce−aτ Ĥm,k + CĤ

1/2
lp,k0

Ĥm,k + CĤ
1/2
lp,kĤ

1/2
m,k(141)

+Cεe−aτ Ĥ1/2
m,kĤ

1/2
k

on I, where the constants depend on n, p, k, c1 and an upper bound on e−K0 .

Proof. Recall that Hlp,k is defined by (97). Due to Corollary 1, where

F = −T−1

(
∆00

∆ψ

)
and T is defined in (76), we obtain

dHlp,k

dτ
≤ −2ηlpHlp,k + Cεe−2aτH

1/2
lp,kĤ

1/2
k + Cεe−aτHlp,k,

where we have used (113), (116), (130), (133) and (136). Given the definition of
Ĥlp,k and (101), we conclude that (139) holds. Let us turn to Ĥs,k. Consider (62).
This is an equation for ui of the form considered in Corollary 2 if we let

Fi = 2peτ+τ0glmΓlim +
4eτ+τ0

λ
∂iψ −∆0i.
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Due to Corollary 2, (114), (131) and (137), we have

dHs,k

dτ
≤ −2ηsHs,k + CH

1/2
s,k

∑
i

eτ+τ0(‖glmΓlim‖Hk + ‖∂iψ‖Hk)

+Cεepτ−2aτ+KH
1/2
s,k Ĥ

1/2
k + Cεe−aτHs,k.

By (104),
eτ+τ0‖∂iψ‖Hk ≤ Cepτ−aτ+KĤ

1/2
lp,k.

When estimating glmΓlim in Hk, it is convenient to divide the terms that appear
into two different categories. Due to (107)

eτ+τ0
∑
|α|≤k

‖glm∂α∂jgrq‖2 ≤ Cepτ−aτ+KĤ
1/2
m,k.

The second category consists of terms of the form

eτ+τ0‖∂α1∂jg
lm∂α2∂igrq‖2 ≤ Ceτ+τ0 [‖∂jglm‖∞‖∂igrq‖Hk−1

+‖∂jglm‖Hk−1‖∂igrq‖∞]

≤ Cεeτ+τ0Ĥ
1/2
k ,

where |α1|+|α2| ≤ k−1 and we have used (108), (110) and the fact that k0 > n/2+1.
Due to these observations, the definition of Ĥs,k and (101), we obtain the conclusion
that (140) holds with a constant depending on an upper bound on e−K0 . Finally,
consider Hm,k defined by (99). Due to Lemma 7, we have, cf. Corollary 2,

d

dτ

(
Eγm,δm [∂αhij ] +

∫
Tn

e−2aτaα(∂αhij)2dx
)

≤ −2ηmEγm,δm [∂αhij ] +
∫

Tn

(∂τ∂αhij + γm∂
αhij)(∂αFij + [�̂g, ∂

α]hij)dx

+
∫

Tn

∆E,γm,δm [∂αhij ]dx− 2a
∫

Tn

e−2aτaα(∂αhij)2dx

+2
∫

Tn

e−2aτaα∂
αhij∂τ∂

αhijdx,

where
Fij = −[−2pu+ 2λp(np− 1)ψ]hij −∆ij .

Due to (101), the fact that γm = δm = 0, (115), (132) and (138), we obtain

dHm,k

dτ
≤ −2aHm,k + Ce−aτHm,k + C

∑
i,j

[‖uhij‖Hk + ‖ψhij‖Hk ]H1/2
m,k

+Cεe−2aτ+2KĤ
1/2
k H

1/2
m,k + Cεe−aτHm,k.

When estimating uhij in Hk it is useful to divide the terms into two different
categories. Let us first consider∑

|α|≤k

∑
i,j

‖hij∂αu‖2 ≤ Ce2KH
1/2
lp,k.

The second category consists of terms of the form∑
|α1|+|α2|≤k−1

‖∂α1∂qhij∂
α2u‖2 ≤ C[‖∂qhij‖∞‖u‖Hk + ‖u‖∞eaτH1/2

m,k].
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Since we assume that k0 > n/2 + 1, the bootstrap assumptions imply that

‖∂qhij‖∞ ≤ Cεe2K ,

cf. (108). Consequently,

‖uhij‖Hk ≤ C[Ĥ1/2
lp,k0

H
1/2
m,k + e2KH

1/2
lp,k].

We have a similar estimate for ‖ψhij‖Hk and consequently we obtain (141). �

8. Global existence

We are now in a position to prove that solutions corresponding to small initial data
for (61)-(64) do not become unbounded in finite time. Before we do so, we do,
however, need to relate initial data for (24)-(25) to initial data for (61)-(64). A
complication arises due to the fact that the background solution we are subtracting
has an explicit time dependence. Consequently, we need to determine the starting
time based on the data we have. Let (%, ς,Φa,Φb) be given on Tn, where % is a
smooth Riemannian metric, ς is a smooth symmetric covariant 2-tensor and Φa, Φb
are smooth functions. Since we wish Φa to be close to the background solution, we
shall in the end demand that its spatial variation be small. A natural condition to
determine the initial time, t0, is thus

〈Φa〉 =
2
λ

ln t0 −
1
λ
c0,

where 〈·〉 denotes the mean value over Tn, i.e.

〈Φa〉 =
1

(2π)n

∫
Tn

Φadx.

As a consequence, we make the following definition.

Definition 6. Let n ≥ 3 be an integer and let p > 1. Let V (φ) be given by (4),
where V0 > 0 and λ is given by (11). Let (%, ς,Φa,Φb) be given on Tn, where % is
a smooth Riemannian metric, ς is a smooth symmetric covariant 2-tensor and Φa,
Φb are smooth functions. Define the initial time associated with (%, ς,Φa,Φb) to be

(142) t0 = exp
[
1
2
(λ〈Φa〉+ c0)

]
,

where c0 is defined in (12), and define the initial data for (61)-(64) associated with
(%, ς,Φa,Φb) to be

u(0, ·) = 0,(143)
(∂τu)(0, ·) = 2np− 2t0trς,(144)

ui(0, ·) = 0,(145)

(∂τul)(0, ·) =
1
2
t0%

ij(2∂i%jl − ∂l%ij),(146)

hij(0, ·) = %ij ,(147)
(∂τhij)(0, ·) = 2t0ςij − 2p%ij ,(148)

ψ(0, ·) = Φa − 〈Φa〉,(149)

(∂τψ)(0, ·) = t0Φb −
2
λ
,(150)
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where all the indices are with respect to the standard frame {∂i} of the tangent
space on Tn.

Lemma 17. Let n ≥ 3 be an integer and let p > 1. Let V (φ) be given by (4), where
V0 > 0 and λ is given by (11). Let (%, ς,Φa,Φb) be given on Tn, where % is a smooth
Riemannian metric, ς is a smooth symmetric covariant 2-tensor and Φa, Φb are
smooth functions. Then (%, ς,Φa,Φb) determine initial data for (24)-(25) according
to (28)-(33). Choosing t0 to be the initial time associated with (%, ς,Φa,Φb), the
initial data (28)-(33) for (24)-(25) transform to the initial data (143)-(150) for
(61)-(64) under the transformation (57)-(60).

Proof. The lemma follows by straightforward computations. Note, however, that in
the current setting Fl(t0, ·) = 0 and F0(t0, ·) = nωg00(t0, ·) = −np/t0. Furthermore,
φ0(t0) = 〈Φa〉 by definition. �

In what follows, we shall use the notation

(151) K = ln[4`(t0)],

where `(t0) is defined in (13). Note that, using the convention K = τ0 +K0, where
τ0 = ln t0, we have

K0 = ln
4

p− 1
.

In other words, K0 only depends on p, so that eK0 and e−K0 can be treated as
constants of which we need not keep track.

Theorem 4. Let n ≥ 3 be an integer and let p > 1. Let V (φ) be given by (4),
where V0 > 0 and λ is given by (11). Let (%, ς,Φa,Φb) be given on Tn, where % is
a smooth Riemannian metric, ς is a smooth symmetric covariant 2-tensor and Φa,
Φb are smooth functions. Define initial data for (61)-(64) according to (143)-(150)
where τ0 = ln t0 and t0 is given by (142). Assume there is a constant c1 > 2 such
that

(152)
2
c1
|v|2 ≤ e−2Khij(0, x)vivj ≤

c1
2
|v|2

for all v ∈ Rn and x ∈ Tn, where K is given by (151). Let k0 > n/2 + 1 and a
be given by (101). There is an ε0 > 0 and a cb ∈ (0, 1), where ε0 and cb should be
small enough, depending on n, k0, p and c1 such that if

(153) Ĥ
1/2
k0

(0) ≤ cbε,

for some ε ≤ ε0, then the solution to (61)-(64) exists for all future times and (90)-
(92) (where η is given by (100)) and

(154) Ĥ
1/2
k0

(τ) ≤ ε

are satisfied for all τ ≥ 0.

Remark. Note that a does not appear in Ĥk0(0).

Proof. Note that p > 1, c1 > 1, K0 = K − τ0, τ0, n ≥ 3 and k0 > n/2 + 1 have
already been specified. Let 0 < ε ≤ 1 and let A denote the set of s ∈ [0,∞) such
that (in the conditions below, we abuse notation by consistently using τ -time, cf.
the remark following Lemma 4)

• (g, ψ) satisfy the main bootstrap assumption on I = [0, s).
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• (g, ψ) constitute a smooth solution to (61)-(64) on I ×Tn with initial data
as specified in (143)-(150) (where hij , ui and u are defined in terms of g
according to (57)-(59) and ψ is related to φ according to (60)).

Note that if s ∈ A, then the conditions necessary for deriving the different inequal-
ities above are satisfied on [0, s). Note that (61)-(64) are equivalent to (24)-(25)
and that initial data specified by (143)-(150) correspond to initial data defined by
(28)-(33). Since Proposition 1 of [20] applies to the equations (24)-(25) with initial
data given by (28)-(33), we obtain a unique smooth solution to (61)-(64) on some
time interval (Tmin, Tmax). Assume cb ≤ 1/2. Then (154) is satisfied with a margin
for τ = 0, so that it is satisfied on an open time interval containing 0. Since (152)
holds and since u(0, ·) = 0 and ui(0, ·) = 0, we conclude that (90)-(92) are satisfied
on an open interval containing 0. In particular, there is a T > 0 such that T ∈ A.

Assume 0 < T <∞ is such that T ∈ A. Due to the bootstrap assumptions and the
equations, we conclude that u, ui, hij , and φ do not blow up in C2. Furthermore, g00
and the smallest eigenvalue of {hij} stay bounded away from zero due to (90) and
(91). Due to Proposition 1 of [20], we conclude that T < Tmax. As a consequence,
we have a smooth solution beyond T , and the bootstrap assumptions (90)-(92)
together with (154) hold on [0, T ].

The above arguments lead to the conclusion that A is closed (note that it is con-
nected by definition). All that remains to be proved is that A is open. This would
yield the conclusion that A = [0,∞). Let T ∈ A. That there exists a solution
beyond T is clear from the above. We need to prove that we can improve the
bootstrap assumptions in [0, T ). Due to (154) and Sobolev embedding, we obtain,
cf. (107),

eaτ−2K‖∂τhij‖∞ ≤ Cε.

Consequently,

(155) ‖e−2pτ−2Kgij(τ, ·)− e−2Kgij(0, ·)‖∞ ≤ Cεa−1

for all τ ∈ [0, T ). By assuming ε to be small enough, we obtain an improvement
of (90). By assuming ε to be small enough, we also obtain improvements of (91)
and (92), due to the definition of the energies, (105), (106) and Sobolev embedding.
Finally, we need to improve (154). Note that in [0, T ), the conditions of Lemma
16 are satisfied so that (139)-(141) hold in this interval. Note also that e−K0 only
depends on p. Thus, in [0, T ), we have

dĤlp,k0

dτ
≤ −2aĤlp,k0 + Cε2e−aτ Ĥ

1/2
lp,k0

.

This inequality implies

Ĥ
1/2
lp,k0

(τ) ≤ e−aτ Ĥ
1/2
lp,k0

(0) +
1
2
Cτe−aτ ε2

for all τ ∈ [0, T ). We obtain

(156) Ĥ
1/2
lp,k0

(τ) ≤ Clp(cbε+ ε2)e−aτ/2.

In order to get an estimate for Ĥm,k0 , let us define

f = exp
[
C

a
(e−aτ − 1)

]
,
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where C is the first constant appearing on the right hand side of (141) for k = k0.
Note that exp(−C/a) ≤ f ≤ 1 for all τ ∈ [0, T ). Furthermore, since we can assume
that Ĥm,k0 ≤ 1, we can estimate Ĥm,k0 ≤ Ĥ

1/2
m,k0

. If we let

H̃m,k = fĤm,k,

and use (156), then (141) yields

dH̃m,k0

dτ
≤ [Ccbεe−aτ/2 + Cε2e−aτ/2]f1/2H̃

1/2
m,k0

≤ Ccbε
2e−aτ/2 + Cε3e−aτ/2,

so that
Ĥm,k0(τ) ≤ eC/aĤm,k0(0) + Ca−1eC/a[ε3 + cbε

2].
We obtain

(157) Ĥm,k0(τ) ≤ Cm(cbε+ ε2)ε,

assuming cb ≤ 1. Consider (140). We have

dĤs,k0

dτ
≤ −2aĤs,k0 + Cs(c

1/2
b ε+ ε3/2)Ĥ1/2

s,k0
.

We see that the right hand side is negative if

2aĤ1/2
s,k0

> Cs(c
1/2
b ε+ ε3/2).

By assuming cb and ε to be small enough, depending only on Clp, Cm and Cs, we
conclude that

Ĥ
1/2
k ≤ 1

3
ε

holds in [0, T ). Consequently, A is open and the theorem follows. �

Theorem 5. Consider a solution to (61)-(64) corresponding to smooth initial data
satisfying the conditions of Theorem 4, with k0 given by the smallest integer strictly
larger than n/2 + 1. Then, for every k, there is a constant Ck such that

(158) Ĥ
1/2
k (τ) ≤ Ck

for all τ ≥ 0.

Proof. Since the conditions required for deriving the differential inequalities are
satisfied for the entire future, we have (139)-(141) for all k and all τ ≥ 0. Let us
define

H̃s,k = e−aτ/2Ĥs,k, H̃lp,k = eaτ/2Ĥlp,k.

Then

dH̃s,k

dτ
≤ −2aH̃s,k + Ce−aτ/4(Ĥ1/2

lp,k + Ĥ
1/2
m,k)H̃

1/2
s,k + Cεe−5aτ/4Ĥ

1/2
k H̃

1/2
s,k ,

dH̃lp,k

dτ
≤ −aH̃lp,k + Cε−3aτ/4H̃

1/2
lp,kĤ

1/2
k .

Due to these inequalities and (141), we obtain

(159)
dHk

dτ
≤ Ce−aτ/4Hk + CĤ

1/2
lp,k0

Ĥm,k,

where
Hk = H̃lp,k + H̃s,k + Ĥm,k.
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Due to the fact that Ĥ1/2
m,k0

is bounded for all τ ≥ 0 and the fact that (159) holds,
we conclude that

dHk0

dτ
≤ Ce−aτ/4H1/2

k0
.

Thus Hk0 is bounded. Consequently, Ĥ1/2
lp,k0

≤ Ce−aτ/4, which, in combination with
(159), yields

dHk

dτ
≤ Ce−aτ/4Hk.

Consequently, Hk is bounded for all k. This leads to the conclusion that Ĥlp,k and
Ĥm,k are both bounded. If we insert this information into (140), we get

dĤs,k

dτ
≤ −2aĤs,k + Ce−aτ Ĥs,k + CĤ

1/2
s,k .

By assuming τ to be great enough, the second term on the right hand side can be
absorbed in the first. The inequality that results immediately implies that Ĥs,k is
bounded, since it implies that Ĥs,k decays as soon as it exceeds a certain value.
The theorem follows. �

9. Causal structure

Recall the outline of the proof of Theorem 2 given in the beginning of Subsection
1.6. In the course of the proof of this theorem, we are interested in the future
Cauchy development of a subset of the initial data on Tn on which the constraint
equations are satisfied. The purpose of Proposition 1 below is to yield quantitative
control of this set, which we referred to as the global patch in the outline. In
Proposition 2, we then prove future causal geodesic completeness.

Proposition 1. Consider a Lorentz manifold of the type constructed in Theorem 4.
Let γ be a future directed causal curve with domain [s0, smax) such that γ0(s0) = t0,
where t0 is as in Theorem 4. If the ε appearing in the assumptions of Theorem 4
is small enough (depending only on n, p and c1), then γ̇0 > 0 and the length of the
spatial part of the curve with respect to the metric at t = t0 satisfies

(160)
∫ smax

s0

[gij(t0, γ[)γ̇iγ̇j ]1/2ds ≤ d(ε)`(t0),

where d(ε) is independent of γ, d(ε) → 1 as ε → 0, `(t0) is defined in (13) and
γ[ = π ◦ γ where π : [t0,∞) × Tn → Tn is given by π(t, x) = x. Finally, if γ is
future inextendible, then γ0(s) →∞ as s→ smax.

Remark. The time orientation is assumed to be such that ∂t is future directed and
γ̇µ is defined by the condition that γ̇µ∂µ = γ̇, where ∂µ is the standard frame for
the tangent space of R+ × Tn. The statement d(ε) → 1 as ε→ 0 can be improved
to the statement: for any δ > 0, there is an ε1 depending only on n, p, c1 and δ
such that if ε ≤ ε1, then |d(ε)− 1| ≤ δ.

Proof. Due to causality, we have

(161) gµν γ̇
µγ̇ν ≤ 0.

The condition that the curve be future directed is equivalent to

(162) g00γ̇
0 + g0iγ̇

i < 0.
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Let us work out the consequences of this. Due to (92), we have

|2g0iγ̇0γ̇i| ≤ η1/2|γ̇0|2 + η−1/2|g0iγ̇i|2 ≤ η1/2|γ̇0|2 + η1/2c−1
1 e2Ω+2K−2rδij γ̇

iγ̇j .

Note that the t appearing in e.g. Ω is given by γ0(s). Note, furthermore, that, due
to (105), (106) and (154), we can replace η in (91) and (92) by Cε, where C only
depends on n, p and c1. Since the last term can be bounded by η1/2gij γ̇

iγ̇j , due to
(90), we obtain

(163) gij γ̇
iγ̇j ≤ c(η)γ̇0γ̇0,

where c(η) → 1 as η → 0+ and we have used (91) and (161). Due to (90), we
conclude that

(164) δij γ̇
iγ̇j ≤ c1c(η)e−2Ω−2K γ̇0γ̇0 = c1c(η)(t/t0)−2pe−2K γ̇0γ̇0.

Note that (155) can be rewritten

‖(t/t0)−2pe−2Kgij(t, ·)− e−2Kgij(t0, ·)‖∞ ≤ Ca−1ε,

where C only depends on n, p and c1. Combining this observation with (164), we
obtain

|e−2Kgij(t0, γ[)γ̇iγ̇j − (t/t0)−2pe−2Kgij γ̇
iγ̇j | ≤ Ca−1εc1c(η)(t/t0)−2pe−2K γ̇0γ̇0.

This observation, together with (163), yields

(165) e−2Kgij(t0, γ[)γ̇iγ̇j ≤ d2(ε)(t/t0)−2pe−2K γ̇0γ̇0,

where d(ε) → 1 as ε → 0+ (note that η → 0+ as ε → 0+). Consider (162). Note
that

|g0iγ̇i| ≤ [e−2Ω−2Kδijg0ig0j ]1/2[e2Ω+2Kδij γ̇
iγ̇j ]1/2 ≤ ξ(ε)|γ̇0|,

where ξ(ε) → 0 as ε→ 0+, due to (92) and (164). Assuming ε to be small enough
(depending only on n, p and c1), we conclude that γ̇0 > 0, which yields the first
conclusion of the proposition. Combining this observation with (165), we obtain
(160). Finally, let γ be future inextendible and assume γ0 does not tend to ∞.
Since γ̇0 > 0, γ0 has to converge to a finite number and thus, since we have (164),
γ[ has to converge to a point on Tn. We have a contradiction. �

Proposition 2. Consider a spacetime of the type constructed in Theorem 4. As-
suming the ε appearing in the assumptions of Theorem 4 to be small enough (de-
pending only on n, p and c1), this spacetime is future causally geodesically complete.

Proof. Let γ be a future directed causal geodesic and assume (smin, smax) to be the
maximal existence interval. In other words, γ is a map from (smin, smax) into the
spacetime satisfying γ′′ = 0, and (smin, smax) is the maximal existence interval of
solutions to the corresponding equation. We shall use the notation t = γ0(s). Due
to the equation for a geodesic, we have

(166) γ̈0 + Γ0
µν γ̇

µγ̇ν = 0.

Due to (154) and the algorithm, cf. Subsection 9.1 of [20],

|Γ0
00| ≤ Cεωe−aτ , |Γ0

0i| ≤ Cεωepτ+K−aτ , |Γ0
ij − ωgij | ≤ Cεωe2pτ+2K−aτ .

Consequently, Γ0
ij γ̇

iγ̇j ≥ 0 for t large enough (or ε small enough). Due to these
estimates and (164), we conclude that

|Γ0
00γ̇

0γ̇0|+ 2|Γ0
0iγ̇

0γ̇i| ≤ Cεωe−aτ |γ̇0|2,
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where C only depends on n, p and c1. Combining these pieces of information with
(166), we obtain

γ̈0 ≤ Cεωe−aτ γ̇0γ̇0 = Cεpt−1

(
t

t0

)−a
γ̇0γ̇0

for s ≥ s1. Since γ̇0 > 0, assuming ε to be small enough (depending only on n,
p and c1), we can divide by γ̇0 in this equation and integrate in order to obtain
(recall that t = γ0(s))

ln
γ̇0(s)
γ̇0(s1)

≤ Cεp

∫ s

s1

t−1

(
t

t0

)−a
γ̇0ds = Cεp

∫ γ0(s)

γ0(s1)

t−1

(
t

t0

)−a
dt ≤ Cεpa−1,

if we assume s1 to be large enough that γ0(s1) ≥ t0. Thus γ̇0 is bounded to the
future. Consequently,

γ0(s)− γ0(s0) =
∫ s

s0

γ̇0(s)ds ≤ C|s− s0|.

Since γ0(s) →∞ as s→ smax, we conclude that smax = ∞. �

10. Asymptotic expansions

Let us derive conclusions concerning the asymptotic behaviour which are more
detailed than (158).

Proposition 3. Consider a spacetime of the type constructed in Theorem 4. Then,
assuming ε to be small enough in this construction (depending on n, p, c1 and k0),
there is a positive constant α > 0, a smooth Riemannian metric ρ on Tn and, for
every l ≥ 0, a constant Kl (depending on n, l, p and c1) such that for all t ≥ t0,∥∥∥∥φ(t, ·)− 2

λ
ln t+

1
λ
c0

∥∥∥∥
Cl

≤ Kl (t/t0)
−α

,(167) ∥∥∥∥(t∂tφ)(t, ·)− 2
λ

∥∥∥∥
Cl

≤ Kl (t/t0)
−α

,(168)

‖(g00 + 1)(t, ·)‖Cl + ‖(t∂tg00)(t, ·)‖Cl ≤ Kl (t/t0)
−α

,(169) ∥∥∥∥t−1g0i(t, ·)−
1

np− 2p+ 1
ρjmγjim

∥∥∥∥
Cl

+‖[t∂t(t−1g0i)](t, ·)‖Cl ≤ Kl (t/t0)
−α

,(170)

‖(t/t0)−2pe−2Kgij(t, ·)− ρij‖Cl

+‖(t/t0)−2pe−2Kt∂tgij(t, ·)− 2pρij‖Cl ≤ Kl (t/t0)
−α

,(171)

‖(t/t0)2pe2Kgij(t, ·)− ρij‖Cl ≤ Kl (t/t0)
−α

,(172)

‖(t/t0)−2pe−2Ktkij(t, ·)− pρij‖Cl ≤ Kl (t/t0)
−α

,(173)

where γjim are the Christoffel symbols associated with the metric ρ and kij(t, ·)
are the components of the second fundamental form induced on the hypersurface
{t} × Tn with respect to the standard vectorfields on Tn. Here ‖ · ‖Cl denotes the
Cl norm on Tn.
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Proof. Let us begin by observing that (due to (158), (104), (105) and (107)) u, ψ,
uτ , ψτ and e−2K∂τhij are decaying in any Cl norm as e−aτ . As a consequence,
(167)-(169) hold and there are smooth functions ρij on Tn such that for every k ≥ 0,
there is a constant Kl such that

‖e−2Khij(τ, ·)− ρij‖Cl ≤ Kle
−aτ

for all τ ≥ 0. This leads to the conclusion that (171) holds. Furthermore, e−2Khij
is bounded in any Cl norm. Consider

e2K∂τ (e2pτgij) = 2pe2pτ+2Kgij − e2pτ+2Kgiµgjν∂τgµν .

Using the algorithm, one can conclude that the right hand side is bounded by e−aτ

in any Cl norm. In other words, there are smooth functions ρij on Tn such that

‖e2pτ+2Kgij(τ, ·)− ρij‖Cl ≤ Kle
−aτ .

From the above, we conclude that ρijρjk = δik (note that gi0g0m converges to zero
due to the algorithm), so that ρij are the components of a Riemannian metric on
Tn and ρij are the components of the inverse of the matrix with components ρij .
Furthermore, (172) holds. If we let γlim denote the Christoffel symbols of ρ, we
obtain, in particular, that

(174) ‖(glmΓlim)(τ, ·)− ρlmγlim‖Cl ≤ Kle
−aτ .

We wish to improve our knowledge concerning ui. Consider (62). Note that a term
of the form

−2peτ+τ0glmΓlim
appears in this equation. Since, by the above observations, glmΓlim converges to
something which is not necessarily zero, it is clear that this object may tend to
infinity. It therefore seems natural to rescale the equation and to introduce

ûi = e−τ−τ0ui.

Using (62), we obtain

�̂gûi + α̂2∂τ ûi + β̂2ûi

−2pglmΓlim − 4
λ
∂iψ + e−τ−τ0∆0i − (g00 + 1)(2∂τ ûi + ûi)− 2ĝ0j∂j ûi = 0,(175)

where

α̂2 = α2 + 2 = np+ 1, β̂2 = β2 + α2 + 1 = p(n− 2)(2p− 1) + np.

Note that the first three terms on the left hand side of (175) are such that Lemma
7 applies. In particular, there are strictly positive constants γ̂s, δ̂s, ζ̂s and η̂s as
specified in Lemma 7. Assuming ε to be small enough in the original construction
of the development, we are allowed to use the conclusions of Lemma 7 as well as
the conclusions of Corollary 2. In particular, we can define an energy as described
in Corollary 2,

El =
∑
i

∑
|α|≤l

Eγ̂s,δ̂s [∂
αûi].

Note that ûi(0, ·) = 0 and that

(∂τ ûi)(0, ·) = e−τ0(∂τui)(0, ·).
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Considering (146), it is clear that this object is small in Hk0 . As a consequence,
Ek0(0) is also small. Due to Lemma 7, we have

ζ̂s
∑
i

∑
|α|≤l

∫
Tn

[(∂α∂τ ûi)2 + ĝlm∂α∂lûi∂
α∂mûi + (∂αûi)2]dx ≤ El.

Due to Corollary 2, we have

(176)
dEl
dτ

≤ −2η̂sEl + CE
1/2
l

∑
|α|≤l

∑
i

‖∂αF̂i + [�̂g, ∂
α]ûi‖2 + Cεe−aτEl,

where the constant depends on an upper bound on e−K0 and we have argued
similarly to the proof of Lemma 15 to deal with the term arising from ∆E,γ̂s,δ̂s

[∂αûi]
(note that the only difference between proving the estimate needed for (176) and
proving (137) is that the constants γ and δ are different, something which does not
affect the arguments) and F̂i is given by

F̂i = 2pglmΓlim +
4
λ
∂iψ − e−τ−τ0∆0i + (g00 + 1)(2∂τ ûi + ûi) + 2ĝ0j∂j ûi.

Note that the first and the second terms in F̂i are bounded in any Cl norm (in fact,
the second term is exponentially decaying in any Cl norm). Since

‖(g00 + 1)(τ, ·)‖Cm ≤ Cme
−aτ , ‖ĝ0j(τ, ·)‖Cm ≤ Cme

−Hτ−K0−aτ

for any m, we conclude that the fourth and fifth terms in F̂i can be bounded by

(177) Ce−aτE
1/2
l .

Thus
‖F̂i(τ, ·)‖Hl ≤ Kl(1 + e−aτE

1/2
l ) + e−τ−τ0‖∆0i(τ, ·)‖Hl

and

‖F̂i(τ, ·)− 2pglmΓlim‖Hl ≤ Kle
−aτ (1 + E

1/2
l ) + e−τ−τ0‖∆0i(τ, ·)‖Hl .

Consider (67). The first term appearing on the right hand side of this expression
can, after multiplication with e−τ−τ0 , be estimated by the expression appearing in
(177), so that

e−τ−τ0‖∆0i(τ, ·)‖Hl ≤ Ce−aτE
1/2
l + eτ+τ0‖∆̃0i(τ, ·)‖Hl .

We thus focus on eτ+τ0∆̃0i. The expression ∆̃0i is given in (52). The third term
on the right hand side is, after multiplication with t = eτ+τ0 , given by −2∂τψ∂iψ,
an object which decays exponentially. The fourth term, after multiplication by t,
is given by

2p(np− 1)λψûi,

so that it can be estimated by Ce−aτE1/2
l . Since the fifth term can be written, after

multiplication by t,

−4t2∆E,φ

n− 1
ûi

and t2∆E,φ is exponentially decaying with respect to any Cm norm as e−2aτ , we
get a similar estimate for it. Thus

eτ+τ0‖∆̃0i(τ, ·)‖Hl ≤ Kle
−aτ (1 + E

1/2
l ) + 2t‖∆A,0i + ∆C,0i‖Hl ,

where ∆A,0i and ∆C,0i are given in (87) and (93) of [20] respectively. Assume a
term in t∆A,0i or t∆C,0i contains a factor g0i. If we extract t−1g0i = ûi from this
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term, what remains is t2 times an expression to which we can apply the algorithm
with lε ≥ 1, lh = 0, l∂ = 2 (sometimes l∂ may be less than 2, but this will then
be compensated for by a corresponding number of factors of ω). By the algorithm,
the factor multiplying ûi can thus be estimated by

t2Kmω
2e−aτ Ê1/2

m ≤ Ce−aτ

in Hm, and the corresponding term can be estimated by

(178) Ce−aτE
1/2
l .

Note that
g0i = − 1

g00
gijg0j ,

so that a term appearing in t∆A,0i or t∆C,0i which contains a factor of g0i can also
be estimated as in (178). Assume a term in t∆A,0i or t∆C,0i contains a factor

∂tg0i = ∂τ ûi + ûi.

What remains of this term after extracting ∂tg0i is then t times something to which
the algorithm can be applied with lε ≥ 1, lh = 0 and l∂ = 1 (with the same caveat as
before). Applying the algorithm, one sees that the original term can be estimated
by (178). If a term contains a factor of the form ∂jg0i, one can argue similarly to
the above to conclude that it is bounded by

Ce−Hτ−K0−aτ‖∂j ûi‖Hl ,

which in its turn is bounded by (178). If a term contains a factor of the form ∂ig00,
we can extract this term, and conclude, by the algorithm, that what remains is
exponentially decaying so that the term we started with had to be exponentially
decaying in any Cm norm. The argument to deal with terms containing a factor
of the form ∂iglm is similar. Since all the terms in ∆A,0i and ∆C,0i are such that
each term falls into one of the categories described above, cf. (87) and (93) of [20],
we obtain

2t‖∆A,0i + ∆C,0i‖Hl ≤ Ce−aτ (1 + E
1/2
l ).

To conclude,

(179) ‖F̂i(τ, ·)‖Hl ≤ Kl +Kle
−aτ (1 + E

1/2
l ).

Note also that

(180) ‖F̂i(τ, ·)− 2p(glmΓlim)(τ, ·)‖Hl ≤ Kle
−aτ (1 + E

1/2
l ).

What remains to be estimated is

‖[�̂g, ∂
α]ûi‖2

for |α| ≤ k. Estimate, using (158) and (111),

‖∂α1(∂j ĝ0m)∂α2∂τ∂mûi‖2 ≤ Ce−Hτ−K0−aτ‖∂τ ûi‖Hl ≤ Ce−aτE
1/2
l

where |α1|+ |α2| = |α| − 1 and the constant depends on an upper bound for e−K0 .
Similarly, we get an estimate

‖∂α1(∂j ĝlm)∂α2∂l∂mûi‖2 ≤ Ce−aτE
1/2
l .

Consider
‖∂α1(∂jg00)∂α2∂2

τ ûi‖2 ≤ Ce−aτ‖∂2
τ ûi‖Hl−1 .
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We have

∂2
τ ûi = − 1

g00

(
2ĝ0m∂τ∂mûi + ĝlm∂l∂mûi − α̂2∂τ ûi − β̂2ûi + F̂i

)
.

Due to the estimates given above, we obtain

‖∂α1(∂jg00)∂α2∂2
τ ûi‖2 ≤ Ce−aτ (1 + E

1/2
l ).

Thus

(181) ‖[�̂g, ∂
α]ûi‖2 ≤ Ce−aτ (1 + E

1/2
l ).

Inserting (179) and (181) into (176), we get

dEl
dτ

≤ −2η̂sEl + CE
1/2
l + Ce−aτEl,

which leads to the conclusion that El is bounded for all l, since it implies that El
is decreasing after it has exceeded a certain value. Let us introduce

ũi(τ, ·) = ûi(τ, ·)−
2p

β̂2

ρlmγlim.

Then,

(182) �̂gũi + α̂2∂τ ũi + β̂2ũi = F̃i,

where

F̃i = F̂i − 2pρrqγriq + ĝlm∂l∂m

[
2p

β̂2

ρrqγriq

]
,

so that
‖F̃i‖Cm ≤ Cme

−aτ

for all m due to (174) and (180). Note also that as a consequence of (182), the fact
that ûi and ∂τ ûi are bounded in any Cm norm and the fact that ĝij and ĝ0i are
exponentially decaying in any Cm norm as e−Hτ , we have

‖ĝlq∂l∂qũi‖Cm + ‖ĝ0l∂l∂τ ũi‖Cm + ‖(g00 + 1)∂2
τ ũi‖Cm ≤ Ce−aτ .

Combining this observation with (182), we conclude that

∂2
τ ũi + α̂2∂τ ũi + β̂2ũi = F̃i,

where F̃i satisfies the same kind of estimate as F̃i. By arguments similar to those
used to prove Lemma 7, one can prove that ũi is exponentially decaying in every
Cm norm as well as ∂τ ûi = ∂τ ũi. We obtain (170).

Finally, let us turn to the second fundamental form. Note that the future directed
unit normal is given by

N = −(−g00)−1/2g0µ∂µ.

Thus

kij = 〈∇∂iN, ∂j〉 = −∂i[(−g00)−1/2g0µ]gµj − (−g00)−1/2g0µΓijµ.

With the exception of
1
2
(−g00)1/2∂tgij ,

all the terms appearing in kij can be estimated using the algorithm with lh = 2,
l∂ = 1 and lε ≥ 1, i.e. by

Cωe2pτ+2K−aτ Ĥ
1/2
l ,



POWER LAW INFLATION 47

so that for every l ≥ 0, there is a constant Cl such that∥∥∥∥(t/t0)−2pe−2K

[
tkij −

1
2
(−g00)1/2t∂tgij

]
(t, ·)

∥∥∥∥
Cl

≤ Cl

(
t

t0

)−α
.

Since g00 + 1 is exponentially decaying and (171) holds, we conclude that (173)
holds. �

11. Proof of the main theorem

Proof of Theorem 2. Consider Tn to be [−π, π]n with the ends identified.

Construction of a global (in time) patch. Let us start by constructing a patch
of spacetime which is essentially the development of the piece of the data over which
we have some control. Let fc ∈ C∞0 [B1(0)] be such that fc(p) = 1 for |p| ≤ 15/16
and 0 ≤ fc ≤ 1. In order to apply Theorem 4, we need to define a Riemannian
metric on Tn, a symmetric covariant 2-tensor and two functions. We define them
by

%ij = fcρij ◦ x−1 + (1− fc)e2Kδij

ςij = fcκij ◦ x−1 +
p

t0
(1− fc)e2Kδij

Φa = fcφa ◦ x−1 + (1− fc)〈φa〉(183)
−〈fc(φa ◦ x−1 − 〈φa〉)〉〈1− fc〉−1(1− fc)

Φb = fcφb ◦ x−1 + (1− fc)
2
λt0

,

where t0 and K are given by (15) and where the indices on the right hand side refer
to the coordinates x assumed to exist in the statement of the theorem, δij are the
components of the Kronecker delta and the indices on the left hand side refer to
the standard coordinates on Tn. The choice (183) requires some motivation. The
last term is there to ensure that

(184) 〈Φa〉 = 〈φa〉

while, at the same time, ensuring that Φa equals φa ◦ x−1 in the set of interest.
The reason it is of importance to have (184) is that it ensures that t0 defined in
Theorem 2 coincides with t0 defined in Theorem 4. We can view (%, ς,Φa,Φb) as
initial data on Tn. Given these data, we can define initial data for (61)-(64) by
(143)-(150). Due to (16),

(185) ‖e−2K%− δ‖Hk0+1 =
∥∥fc{e−2Kρ ◦ x−1 − δ}

∥∥
Hk0+1 ≤ Cε.

Furthermore, due to (16),

‖e−2Kt0ς − pδ‖Hk0 = ‖fc{t0e−2Kκ ◦ x−1 − pδ}‖Hk0 ≤ Cε,

which implies

(186) ‖2e−2Kt0ς − 2pe−2K%‖Hk0 ≤ Cε.

Since the object inside the norm in (186) corresponds to e−2K∂τhij(0, ·), cf. (148),
the estimates (185) and (186) imply that

Ĥ
1/2
m,k0

(0) ≤ Cε.
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Note also that due to (185), we have (152) for some suitable c1 > 2. Let us turn
to Ĥlp,k0(0). Since u(0, ·) = 0, we only need concern ourselves with ∂τu(0, ·) and
the initial data for ψ. The initial data for ∂τu is given by (144). Note that (185)
implies that

(187) ‖e2K%ij − δij‖Hk0 ≤ Cε,

assuming ε to be small enough, where %ij are the components of the inverse of the
matrix with components %ij . Combining this observation with (186), we conclude
that

‖t0%ijςij − np‖Hk0 ≤ Cε.

Thus the part of Ĥ1/2
lp,k0

coming from u is bounded by Cε, since the object appearing
inside the norm is, up to a numerical factor, the right hand side of (144). Turning
to ψ,

ψ(0, ·) = Φa−〈Φa〉 = fc(φa ◦ x−1−〈φa〉)−〈fc(φa ◦ x−1−〈φa〉)〉〈1− fc〉−1(1− fc),
so that, due to (16) (recall that 〈φa〉 = 〈Φa〉 = φ0(t0)),

‖ψ(0, ·)‖Hk0+1 ≤ Cε.

Consider

∂τψ(0, ·) = t0Φb −
2
λ

= fc

(
t0φb ◦ x−1 − 2

λ

)
.

Due to (16), we have
‖∂τψ(0, ·)‖Hk0 ≤ Cε.

The above estimates together imply

Ĥlp,k0(0) ≤ Cε.

What remains to be considered is Ĥ1/2
s,k0

. Since ui(0, ·) = 0, we need only estimate

e−K∂τui(0, ·) =
p− 1
4t0

1
2
t0%

lj(2∂l%ji − ∂i%jl),

cf. (146). Due to (185) and (187), we get

‖e−K∂τui(0, ·)‖Hk0 ≤ Cε,

so that
Ĥ

1/2
s,k0

(0) ≤ Cε.

To conclude,
Ĥ

1/2
k0

(0) ≤ Cε

where the constant depends on n and p. Note, furthermore, that c1 is numerical
in the current setting, that K0 only depends on p and that k0 only depends on n.
As a consequence, we get the conclusions of Theorem 4, assuming ε to be small
enough depending only on n and p. In particular, we get a solution, say (ḡ,Φ), on
(t−,∞)×Tn. Note that we also get asymptotics as in the statement of Proposition
3.

Note that the variables used in (34)-(37) are related to the variables in (61)-(64)
according to (57)-(60). Using these relations, we get solutions to the original equa-
tions (34)-(37). Furthermore, on B15/16(0), the constraint equations are satisfied,
and we have chosen the initial data in such a way that Dµ|t=t0 = 0 (cf. Lemma 17
and the comments made in Subsection 2.1). Due to standard local existence and
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uniqueness results, cf. Proposition 1 of [20], we conclude that inD[{t0}×B15/16(0)],
the solution (ḡ,Φ) satisfies (5) and (6). If ε is small enough, Proposition 1 implies
that

(188) (t−,∞)×B5/8(0) ⊆ D[{t0} ×B29/32(0)],

where we increase t− if necessary. The reason for this is that, first of all, (185) and
Sobolev embedding yield (here ḡij(t0, ·) = %ij)

[4`(t0)]2|v|2 ≤ d2
1(ε)ḡij(t0, ·)vivj

for all v ∈ Rn, where d1(ε) → 1 as ε→ 0. Due to (160), we then obtain

4`(t0)
∫ smax

s0

[δij γ̇iγ̇j ]1/2ds ≤ d(ε)d1(ε)`(t0).

For ε small enough, we thus get∫ smax

s0

[δij γ̇iγ̇j ]1/2ds ≤
9
32
,

which implies (188). Note that due to Lemma 3 of [20], see also the proof corre-
sponding to the present one in Section 16 of [20], the sets

U0,exc = D[{t0} ×B15/16(0)], U1,exc = D[{t0} ×B29/32(0)],

U2,exc = D[{t0} × B̄29/32(0)],

are open, open and closed subsets of (t−,∞) × x(U) respectively. Consequently,
Wi,exc = (Id×x−1)(Ui,exc) for i = 0, 1, 2 are also open, open and closed respectively.

Construction of a reference metric. In order to prove that the patches that we
construct fit together to form a globally hyperbolic development, it is convenient
to construct a reference metric. Let

g̃ = (1− fc ◦ x)(−dt2 + ρ) + (fc ◦ x)(Id× x)∗ḡ.

Here ρ is the Riemannian metric on Σ given by the initial data. Note that ∂t is
timelike with respect to ḡ so that ∂t is timelike with respect to g̃. The hypersurfaces
{s} × Σ are spacelike with respect to −dt2 + ρ and with respect to (Id × x)∗ḡ for
s ∈ (t−,∞) (where this metric is defined), so that they are spacelike with respect
to g̃. As a consequence, g̃ is a Lorentz metric on (t−,∞)× Σ, cf. Lemma 2.

End of the proof. The argument required to finish the proof is essentially identical
to the end of the corresponding proof in [20] and need not be repeated here (at one
stage V ′(0) = 0 is used, but this can easily be circumvented by multiplying the
corresponding term by a cut-off function). �

12. Stability of locally spatially homogeneous spacetimes

Let us first consider the case in which the background initial data are given by
(G, g, k, φa, φb), where G is a simply connected unimodular Lie group and the
isometry group of the initial data contains the left translations in G. Many of
the arguments are quite similar to the ones presented in [20], and we shall therefore
sometimes only sketch them. One can define an orthonormal basis {e′i} (with re-
spect to the metric g) of the Lie algebra such that the components of k with respect
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to this basis, say kij , are diagonal and such that there is a diagonal matrix νij with
the property that

[e′j , e
′
k] = εjklν

lie′i,

where εjkl is antisymmetric in all of its indices and ε123 = 1. The reader inter-
ested in the details is referred to Section 17 of [20] (the momentum constraint (8)
corresponds to the same condition as in [20] since Diφa = 0). Define n(0) = ν,
θ(0) = trgk, σij(0) = kij − θ(0)δij/3, φ(0) = φa and φ̇(0) = φb. Define n, θ, σ, φ to
be the solution to

θ̇ = −3
2
σ2 +

1
2
R− 3

2
φ̇2,(189)

φ̈ = −θφ̇− V ′(φ),(190)
σ̇lm = −θσlm − slm,(191)

ṅij = 2σk(inj)k −
1
3
θnij ,(192)

where a parenthesis among indices denotes symmetrization and

slm = blm − 1
3
(trb)δlm,(193)

blm = 2n i
m nil − (trn)nlm,(194)

R = −nijnij +
1
2
[trn]2,(195)

σ2 = σijσ
ij ,(196)

trn = δijnij .(197)

In these equations, indices are raised and lowered with δij . In other words, there is
no difference between indices upstairs and downstairs. Let (t−, t+) be the maximal
existence interval. Note that (7) is equivalent to

(198)
2
3
θ2 − σ2 +R = φ̇2 + 2V (φ),

so that this equation holds for t = 0. Due to (191)-(192), the off diagonal compo-
nents of n and σ, collected into one vector, say v, satisfy an equation of the form
v̇ = Cv, so that n and σ remain diagonal in all of (t−, t+). Collecting all the terms
in (198) on one side and differentiating, using (189)-(197), one obtains zero as a
result, so that (198) is satisfied for all t ∈ (t−, t+). Finally, σ remains trace free.

Using the above information, we can construct a spacetime metric as in [20],

(199) ḡ = −dt2 +
3∑
i=1

a2
i (t)ξ

i ⊗ ξi,

on M = (t−, t+)×G where the ξi are the duals of the e′i. Here ai(0) = 1 and

ȧi
ai

= σi +
1
3
θ,

where σi are the diagonal components of σij . Define ei = a−1
i e′i. Then e0 = ∂t and

ei constitute and orthonormal frame for (M, ḡ). Similarly to Section 17 of [20], one
can prove that

g(∇eie0, ej) = σij +
1
3
θδij
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and that if γijk is defined by [ej , ek] = γijkei, then

γijk = εjkln
il.

We refer the interested reader to [20], Section 17, for a proof of these facts, cf. also
the proof of Lemma 21.2 of [19]. Given this information, one can compute that the
scalar curvature of the hypersurfaces {t}×G is given by (195). The Ricci curvature
can be expressed in terms of the quantities nij and θij . In fact, in the current
setting, the 00 components and the lm components of (5) read

−θ̇ − θijθij = φ̇2 − V (φ),(200)

θ̇lm + θθlm + 2n i
m nil − nijnijδlm

+
1
2
(trn)2δlm − (trn)nlm = V (φ)δlm.(201)

In fact, in these equations, the left hand side of the first equation is the 00 com-
ponent of Ric and the left hand side of the second equation represents the lm
components of Ric. The 0l-components of the left and right hand sides of (5) van-
ish identically due to the setup; the 0l equations correspond to the momentum
constraint (8) and in the current setting the momentum constraint is equivalent
to the matrices with components nij and θij commuting, which is an immediate
consequence of the fact that both these matrices are diagonal.

Let us prove that (M, ḡ, φ) is a solution of (5) and (6). That (6) holds is an
immediate consequence of (190) due to the current geometric setup. To prove that
(5) is satisfied all we need to prove is that (200)-(201) are satisfied. However, (200)
is a consequence of (189) and (198); one simply uses (198) to eliminate R in (189).
The equation (201) on the other hand can be divided into its trace part and its trace
free part. Due to (191), we see that the equation corresponding to the trace free
part of (201) holds. Furthermore, the equation corresponding to the trace part is a
consequence of (189) and (198); one simply uses (198) to eliminate the expressions
involving σij in (189). Thus (5) and (6) are satisfied. That all the hypersurfaces
{t}×G are Cauchy hypersurfaces in (M, ḡ) follows by an argument which is identical
to the proof of Lemma 21.4 of [19]. Finally, the initial data induced on {0} × G
correspond to the data we started with.

Analyzing the asymptotics. The asymptotics were already analyzed in [10], see
also [11] for the situation with matter of Vlasov type, but since the analysis is, for
our purposes, in some respects incomplete, we prefer to give a different analysis
here.

Definition 7. We refer to initial data for (189)-(192) satisfying (198) as Bianchi
class A initial data if σ and n are diagonal matrices. If all the diagonal elements
of n are non-zero and have the same sign, we shall say that the initial data are of
Bianchi type IX.

We shall here be interested in the case that the potential is given by

(202) V (φ) = V0e
−λφ,

where V0 > 0 and λ ∈ (0,
√

2) are constants. We shall furthermore restrict our
attention to Bianchi class A initial data and exclude Bianchi type IX (Bianchi IX
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corresponds to the universal covering group of the Lie group under consideration
being isomorphic to SU(2)), so that

(203) R = −nijnij +
1
2
(trn)2 ≤ 0,

where we use R(t) to denote the scalar curvature of the hypersurface {t} ×G, and
G is the unimodular Lie group under consideration. For convenience, we shall also
drop the argument t most of the time.

Lemma 18. Consider Bianchi class A initial data for (189)-(192) at t = 0 which
is not of Bianchi type IX. If θ(0) > 0 and the maximal existence interval of the
corresponding solution to (189)-(192) is (t−, t+), then t+ = ∞.

Proof. Due to (189) and (203), we see that θ̇ ≤ 0. Due to (189) and (198), we see
that θ̇/θ2 is bounded. Assuming t1 ∈ (0, t+) to be the first time such that θ(t1) = 0,
we get, for t2 ∈ (0, t1), ∣∣∣∣ 1

θ(0)
− 1
θ(t2)

∣∣∣∣ ≤ C|t2|.

As t2 → t1−, the left hand side blows up whereas the right hand side is bounded.
As a consequence, θ(t) > 0 for all t ∈ (t−, t+). Due to (198), σij and φ̇ are bounded
to the future, so that φ cannot blow up in finite time. Considering (192), keeping
the fact that θ and σij are bounded in mind, we see that the nij cannot blow up
in finite time. Global existence follows. �

It will be of interest to note that many of the conclusions hold using only (189),
(190), (198) and the assumptions that R ≤ 0 and that σ2 ≥ 0.

Lemma 19. Assume we have a solution to (189), (190), (198) on (t−,∞) where
t− < 0 and R and σ2 are functions satisfying R ≤ 0 and σ2 ≥ 0 on this interval.
If, furthermore, θ(0) > 0, then 0 < θ(t) ≤ θ(0) for all t ≥ 0, there is a T ≥ 0 such
that φ̇(t) > 0 for all t ≥ T , θ /∈ L1([0,∞)) and

lim
t→∞

φ(t) = ∞.

Proof. The proof that θ has to remain positive is identical to the one presented in
the proof of Lemma 18. Since θ̇ ≤ 0 due to (189) and the assumptions, the first
conclusion follows. Note that V ′(φ) < 0 so that if φ̇ ≤ 0, then, due to (190), φ̈ > 0.
Since −V ′(φ) has a positive lower bound on sets of the form (−∞, ϕ0) for ϕ0 ∈ R,
we conclude that φ̇ must, sooner or later, become positive and then, due to (190),
it will stay positive. Assuming φ to be bounded from above, we conclude that it
has to converge to a finite number. As a consequence,

−V ′(φ) = λV (φ) ≥ cmin > 0.

As long as
φ̇ <

cmin

θ(0)
,

we get φ̈ > 0, so that φ̇ will in the end have a positive uniform lower bound. We
conclude that φ→∞, a contradiction. Thus φ is not bounded from above. In fact,
φ→∞.

Note that (198) and the assumptions imply that φ̇ is bounded. Since θ and V ′(φ)
are bounded, (190) thus implies that φ̈ is bounded. Since, due to (189), φ̇2 is
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integrable, we conclude that φ̇ converges to zero. Let T be chosen so that φ̇(t) > 0
for t ≥ T and let

q(t) =
∫ t

0

θ(s)ds.

Then, due to (190),

d

dt

(
eqφ̇
)

= eq(φ̈+ θφ̇) = −V ′(φ)eq > 0,

so that
(eqφ̇)(t) ≥ (eqφ̇)(T ) > 0

for all t ≥ T . Since φ̇ converges to zero, we conclude that θ /∈ L1([0,∞)). �

Lemma 20. Assume we have a solution to (189), (190), (198) on (t−,∞) where
t− < 0 and R and σ2 are functions satisfying R ≤ 0 and σ2 ≥ 0 on this interval.
If, furthermore, θ(0) > 0, then

lim
t→∞

σ2 −R

θ2
= 0,(204)

lim
t→∞

φ̇

θ
=

λ

3
,(205)

lim
t→∞

V

θ2
=

1
3
− λ2

18
.(206)

Proof. Let T0 be such that φ̇(t) > 0 for all t ≥ T0. In the present proof, we shall
consistently assume that t ≥ T0. Using (189) and (198), we obtain (one simply uses
(198) to eliminate the expression involving R)

d

dt

(
V

θ2

)
= φ̇

V

θ2

[
−λ+ 2

φ̇

θ
+ 2

θ

φ̇

(
1
3
− V

θ2
+
σ2

θ2

)]
,

an equation which should be compared with (11) of [17], cf. also the proof of
Theorem 4, pp. 1660–1661 of [17]. Since

2x+
2α
x
≥ 4

√
α

for all α ≥ 0 and x > 0, we obtain (note that 1/3− V/θ2 ≥ 0 due to (198))

d

dt

(
V

θ2

)
≥ φ̇

V

θ2

[
−λ+ 4

(
1
3
− V

θ2
+
σ2

θ2

)1/2
]
.

Say, for the sake of argument, that

V

θ2
≤ 1

3
− λ2

16
− ε

for some ε > 0 and for all t ≥ T . Then

1
3
− V

θ2
+
σ2

θ2
≥ λ2

16
+ ε

for all t ≥ T , so that there is a constant C(ε) > 0 such that

d

dt

(
V

θ2

)
≥ C(ε)φ̇

V

θ2
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for all t ≥ T . Integrating this differential inequality, we obtain(
V

θ2

)
(t) ≥

(
V

θ2

)
(T ) exp{C(ε)[φ(t)− φ(T )]}.

Due to Lemma 19, φ→∞, so that V/θ2 →∞, which contradicts (198). Due to the
above arguments, once V/θ2 has exceeded 1/3− λ2/16− ε it will not decay below
that to the future. To conclude: for any ε > 0, there is a T such that

(207)
V

θ2
≥ 1

3
− λ2

16
− ε

holds for t ≥ T .

Using (189), (190) and (198) (in the expression that appears, one simply uses (198)
to eliminate σ2), we obtain

(208)
d

dt

(
φ̇

θ

)
= θ

V

θ2

(
λ− 3

φ̇

θ

)
+ θ

φ̇

θ

R

θ2
.

Since R ≤ 0 by assumption, we conclude that if

φ̇

θ
≥ λ

3
+ ε

for some ε > 0 and for all t ≥ T , then

d

dt

(
φ̇

θ

)
≤ −3θ

V

θ2
ε

for all t ≥ T . Since V/θ2 has a uniform positive lower bound, due to (207) and
the fact that λ2 < 2, and since θ /∈ L1([0,∞)), due to Lemma 19, this implies that
φ̇/θ → −∞, contradicting (198). Since the time derivative of φ̇/θ is negative for
φ̇/θ > λ/3, there is, for every ε > 0, a T such that

φ̇

θ
≤ λ

3
+ ε

for all t ≥ T .

Define

S =
(

2
3
θ2 − φ̇2 − 2V

)
eλφ,

a quantity which should be compared with S̃ defined in (3.1) of [10]. Then, using
(198) to eliminate R from (189),

dS

dt
= −θ

(
2
3
− λ

φ̇

θ

)
S − 4

3
θσ2eλφ.

Since φ̇/θ ≤ λ/3 + ε and λ2 < 2, we have

2
3
− λ

φ̇

θ
≥ 2

3
− λ2

3
− λε = ηε > 0

for ε small enough. Thus

(209)
dS

dt
≤ −ηεθS
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for t ≥ T so that S → 0 since θ /∈ L1([0,∞)). Note that V/θ2 is bounded from
below and from above by positive constants. Thus the same is true of θ2eλφ. Since
S converges to zero, we thus conclude that

lim
t→∞

(
2
3
− φ̇2

θ2
− 2V
θ2

)
= 0.

Combining this with (198), we conclude that (204) holds. Combining this obser-
vation with (208), the fact that V/θ2 has a positive lower bound and the fact that
θ /∈ L1([0,∞)), we conclude that (205) must hold. Combining (198), (204) and
(205), we obtain (206). �

Lemma 21. Assume we have a solution to (189), (190), (198) on (t−,∞) where
t− < 0 and R and σ2 are functions satisfying R ≤ 0 and σ2 ≥ 0 on this interval.
If, furthermore, θ(0) > 0, then there are constants C, cai and β > 0 such that for
t ≥ 1, ∣∣∣∣φ− 2

λ
ln t+

c0
λ

∣∣∣∣ ≤ Ct−β ,(210) ∣∣∣∣tφ̇− 2
λ

∣∣∣∣ ≤ Ct−β ,(211)

where c0 is the constant defined in (12). Assuming, furthermore, that

(212) ȧi =
(
σi +

1
3
θ

)
ai,

where the σi are functions such that

(213)
3∑
i=1

σ2
i ≤ σ2,

we have ∣∣∣∣ln ai(t)
ai(0)

− 2
λ2

ln t− cai

∣∣∣∣ ≤ Ct−β ,(214) ∣∣∣∣ tȧiai − 2
λ2

∣∣∣∣ ≤ Ct−β .(215)

Proof. Let us introduce a new time coordinate

(216) τ(t) =
∫ t

0

θ(s)ds.

Note that τ →∞ as t→∞ due to Lemma 19. Furthermore
dτ

dt
= θ.

Due to (209), we conclude that S converges to zero exponentially in τ -time. In
other words, there are constants C and α > 0 such that∣∣∣∣∣23 − φ̇2

θ2
− 2V
θ2

∣∣∣∣∣ ≤ Ce−ατ

for τ ≥ 0. Combining this fact with (208) and (198), we conclude that φ̇/θ converges
to λ/3 exponentially in τ -time. To see this, derive an equation for eατ (φ̇/θ− λ/3);
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for α > 0 small enough the resulting equation implies that this quantity has to
converge to zero. As a consequence, V/θ2 converges to 1/3− λ2/18 exponentially.
Compute

(217)
d

dτ
ln θ =

θ̇

θ2
= −3

2
σ2

θ2
+

1
2
R

θ2
− 3

2

(
φ̇2

θ2
− λ2

9

)
− λ2

6
.

By the above observations, we have∣∣∣∣ln θ(τ)θ(0)
+
λ2

6
τ − cθ

∣∣∣∣ ≤ Ce−ατ

for some suitably chosen cθ, where we have abused notation by writing θ(τ) when
we should in fact write θ̃(τ), where θ̃ is the function such that θ̃[τ(t)] = θ(t). Letting
r(τ) be the expression inside the absolute value signs, we obtain

θ(τ) = θ(0) exp
(
−λ

2

6
τ + cθ + r(τ)

)
.

Since dt/dτ = 1/θ, this leads to

t(τ) =
1
θ(0)

∫ τ

0

exp
(
λ2

6
s− cθ − r(s)

)
ds.

Combining θ(0) and cθ into one constant, say c1, this leads to

t(τ) =
∫ τ

0

exp
(
λ2

6
s+ c1 − r(s)

)
ds =

6
λ2

exp
(
λ2

6
τ + c1

)[
1 +O(e−ατ )

]
for τ ≥ 0, where 0 < α < λ2/6. As a consequence,

τ =
6
λ2

ln t+ c2 +O(t−β)

for t ≥ 1 and some constants β > 0 and c2. Since φτ = φ̇/θ converges to λ/3
exponentially, we conclude that

(218) φ =
2
λ

ln t+ c3 +O(t−β)

for t ≥ 1 and some constant c3. Note that, cf. (217),

d

dτ
(tθ) = 1 + tθ

θ̇

θ2
= 1 + tθ

[
−λ

2

6
+O(e−ατ )

]
=

(
tθ − 6

λ2

)[
−λ

2

6
+O(e−ατ )

]
+O(e−ατ ).

Thus tθ converges to 6/λ2 exponentially so that (211) holds for t ≥ 1, since φ̇/θ
converges to λ/3 exponentially. Due to (212) and (213), we have

ln
ai(t)
ai(0)

=
∫ t

0

(
σi +

1
3
θ

)
ds =

∫ τ

0

(
σi
θ

+
1
3

)
dτ =

1
3
τ + c1,i +O(e−ατ )

=
2
λ2

ln t+ c2,i +O(t−β),

yielding (214), and (215) follows from

tȧi
ai

= tθ
σi
θ

+
1
3
tθ =

2
λ2

+O(t−β)
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for t ≥ 1. What remains to be proved is (210). Consider (190). Let us introduce

ψ = φ− 2
λ

ln t+
c0
λ
.

At this stage, we only know that ψ converges to a constant, with an error of the form
O(t−β), cf. (218), and that (211) holds. Compute, using the fact that p = 2/λ2 in
the present situation,

t2ψ̈ = t2
(
−θψ̇ − θ

2
λt

+ λV0t
−2 2(3p− 1)p

2V0
e−λψ +

2
λt2

)
= −tθtψ̇ − 2

λ
(tθ − 1) + λ(3p− 1)pe−λψ

= −tθtψ̇ − 2
λ

(
tθ − 6

λ2

)
− 2
λ

(
6
λ2

− 1
)

(1− e−λψ).

The first two terms on the right hand side are O(t−β) due to (211) and the fact that
tθ converges to 6/λ2 with an error of the order of magnitude t−β . If the constant
c3 appearing in (218) is −c0/λ we are done, so let us assume not. Then the above
shows that

t2ψ̈ = α0 +O(t−β)
for some α0 6= 0. Since tψ̇ = O(t−β), we conclude that

t∂t(tψ̇) = α0 +O(t−β).

Integrating this equality from T ≥ 1, we get

tψ̇(t) = T ψ̇(T ) + α0 ln
t

T
+O(1).

Since everything in this equation is bounded except for ln(t/T ), we get a contra-
diction, and the lemma follows. �

Let us assume the initial data are specified on H3 and that they are invariant under
the isometry group of the corresponding canonical metric. By arguments similar
to those given in Section 17 of [20], the initial data for the metric and second
fundamental form can be assumed to be of the form g = α2gH3 and k = αβgH3 for
positive constants α and β and it is enough to consider metrics of the form

(219) ḡ = −dt2 + a2(t)gH3

on I × H3 for some open interval I. Using the formulas (1)-(3), p. 211 of [14] to
compute the Ricci tensor, one concludes that (5) and (6) in the current situation
are equivalent to

(220)
ä

a
= −1

3
φ̇2 +

1
3
V (φ), 6

(
ȧ

a

)2

− 6
a2

= φ̇2 + 2V (φ), φ̈+ 3
ȧ

a
φ̇+ V ′(φ) = 0.

The first and the last of these equations can be used as evolution equations given
initial data. Collecting all the terms in the middle equation on the right hand side
and denoting the result f , one can compute, using the first and the last equation,
that ḟ is a multiple of f . Since f(0) = 0 (this is simply the Hamiltonian constraint),
one obtains f = 0 where the solution exists. Letting R = −6/a2 (this is simply the
scalar curvature of the hypersurfaces {t} ×H3), θ = 3ȧ/a (this is simply the trace
of the second fundamental form of the hypersurfaces {t} × H3) and σ2 = 0, one
can compute, using (220), that (189), (190) and (198) hold in the present setting.
By arguments similar to the proof of Lemma 18, one can prove that future global
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existence holds. Since, in our case, ȧ = θa/3, we are thus allowed to use the
conclusions of Lemma 21 with ai = a and σi = 0.

Finally, consider the case that the initial data are specified on H2 × R and are
invariant under the isometry group of the corresponding canonical metric. Then,
by the same argument that was presented in Section 17 of [20], the initial data can
be assumed to be of the form

g = a2
0gH2 + b20dz

2, k = a1a0gH2 + b1b0dz
2,

and it is enough to consider metrics of the form

(221) ḡ = −dt2 + a2(t)gH2 + b2(t)dz2.

When computing the Ricci curvature of (221), it is convenient to note that the
spacetime (I ×H2 × R, ḡ), where I is an open interval, can be viewed as a warped
product with warping function a and

B = I × R, gB = −dt2 + b2(t)dz2, F = H2, gF = gH2 ,

using the terminology of [14], pp. 204-211. One can compute that (5) is equivalent
to

ä

a
+
ȧḃ

ab
+
(
ȧ

a

)2

− 1
a2

= V (φ),
b̈

b
+ 2

ȧḃ

ab
= V (φ),(222) (

ȧ

a

)2

+ 2
ȧḃ

ab
− 1
a2

=
1
2
φ̇2 + V (φ).(223)

The equation (6) for the scalar field turns into

(224) φ̈+ θφ̇+ V ′(φ) = 0,

where θ = 2ȧ/a + ḃ/b is the trace of the second fundamental form of the hyper-
surfaces {t} × H2 × R (note that we shall assume θ(0) > 0 in what follows). We
evolve the initial data using the evolution equations (222) and (224). If we collect
all the terms in (223) on the left hand side, denote the resulting function f , then
(222) and (224) imply that ḟ = −2θf , so that f vanishes where the solution is
defined, since f(0) = 0 due to the fact that the initial data satisfy the Hamiltonian
constraint (7). As a consequence, the development satisfies (5) and (6). Let us
introduce σ =

√
2(ȧ/a − ḃ/b)/

√
3 and R = −2/a2 (this is the scalar curvature of

the hypersurfaces {t}×H2×R). Then (223) takes the form (198). Using (222) and
(223), one can prove that (189) holds. Finally, note that (224) and (190) coincide in
the current setting. In order to prove future global existence, one proceeds similarly
to Lemma 18. Due to the above observations, we are allowed to use the conclusions
of Lemma 21 with a1 = a2 = a, a3 = b, σ1 = σ2 = σ/

√
6 and σ3 = −

√
2σ/

√
3.

Proof of Theorem 3. Let us assume we have a metric of the form (199) on I × G,
where G is a 3-dimensional Lie group, I is an open interval containing (t0,∞) for
t0 large enough and ξi are the duals of a basis {ei} for the Lie algebra (the metrics
(219) and (221) can be written in this form due to the fact that hyperbolic space
can be considered as a Lie group with a left invariant metric, cf. Section 17 of [20]).
Assume furthermore that

lim
t→∞

t−2/λ2
ai(t) = αi, lim

t→∞

tȧi
ai

=
2
λ2
,
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for some αi > 0 and that (210) and (211) hold. Note that these assumptions hold
in the cases of interest here, due to the arguments given at the beginning of the
present section. Assume finally that there is a group of diffeomorphisms Γ acting
freely and properly discontinuously on G such that {Id}×Γ is a group of isometries
of ḡ and such that the quotient of G under Γ is compact (it is clear that the groups
under consideration in the theorem are of this type in the unimodular case, due
to our assumptions, and in the remaining cases due to the forms of the metrics in
these cases, cf. (219) and (221)). Let Σ denote the quotient and let π : G→ Σ be
the covering projection. Let us define a reference metric

h =
3∑
i=1

α2
i ξ
i ⊗ ξi

on G. Note that since

ĥ = t−4/λ2
3∑
i=1

a2
i (t)ξ

i ⊗ ξi

converges to the metric h as t→∞ and Γ is a group of isometries of ĥ, Γ is a group
of isometries of h. Consequently, h induces a metric on Σ. In what follows it will
be useful to compare ∂yi for some coordinates y with the basis ei. Unfortunately,
we cannot assume that the ei are well defined on Σ, since the group Γ may contain
diffeomorphisms that do not map ei to itself. On the other hand, there is an
ε0 > 0 such that if ε ≤ ε0 and q ∈ Σ, then Bε(q) (measured with respect to the
metric h) is such that π−1[Bε(q)] consists of a disjoint collection of open sets such
that π, restricted to any connected member of the disjoint union, is an isometry
onto Bε(q). One can use one of these isometries to push the basis ei (and thus
ξi) forward to Bε(q). However, the result will in general depend on the choice of
connected member of π−1[Bε(q)]; below we shall speak of a choice of ξi on Bε(q).
In [20], we proved that there is an ε > 0 and a K > 0 such that for every q ∈ Σ,
there are normal coordinates yi on Bε(q) with respect to the metric h, and a choice
of ξi such that if ζij = ξi(∂yj ), then all the derivatives of ζij with respect to yl up to
order k0 + 1 are bounded by K in the sup norm on Bε(q) (cf. pp. 204-205 of [20]).

Let ε > 0 and K > 0 be as above and q ∈ Σ. Let yi be normal coordinates on Bε(q)
with respect to the metric h, and make a choice of ξi such that if ζij = ξi(∂yj ), then
all the derivatives of ζij with respect to yl up to order k0 + 1 are bounded by K in
the sup norm on Bε(q). The initial data induced on the hypersurface {t} × G are
given by

g =
3∑
i=1

a2
i (t)ξ

i ⊗ ξi, k =
3∑
i=1

ȧi(t)ai(t)ξi ⊗ ξi, φ(t), φ̇(t).

Let us introduce coordinates xi = [4`(t)]−1t2/λ
2
yi. For t large enough, the range of

xi contains the ball of radius 1 (recall that λ2 < 2). Note that

gij = g(∂xi , ∂xj ) = [4`(t)]2
3∑
l=1

t−4/λ2
a2
l (t)(ξ

l ⊗ ξl)(∂yi , ∂yj ).

Since t−2/λ2
ai(t) → αi as t → ∞, h(∂yi , ∂yj ) = δij at q, the derivatives of ξl(∂yi)

with respect to yj are bounded by K on Bε(q) and the ball of radius 1 with respect
to the xi coordinates corresponds to a ball of an arbitrarily small radius with respect
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to the yi coordinates for t large enough, we conclude that for t large enough (the
bound being independent of q),

(225) [4`(t)]−2gij − δij

is arbitrarily small in the ball of radius 1 with respect to the xi coordinates. Since

∂

∂xi
= 4`(t)t−2/λ2 ∂

∂yi
,

and ξi(∂yj ) is bounded in Ck0+1, the spatial derivatives of the expression appearing
in (225) with respect to xl are arbitrarily small for t large enough (independent of
q). Similarly,

kij = k(∂xi , ∂xj ) = [4`(t)]2
3∑
l=1

t−4/λ2
ȧl(t)al(t)(ξl ⊗ ξl)(∂yi , ∂yj ).

Since, in addition to the above observations,

lim
t→∞

t−2/λ2
tȧi(t) =

2
λ2
αi,

we conclude that (recall that p = 2/λ2)

(226) tp−1[4`(t)]−2kij − δij

is arbitrarily small in a ball of radius 1 with respect to the xi-coordinates. Fur-
thermore, the derivatives of the expression appearing in (226) with respect to ∂xl

are arbitrarily small. There is one problem with the above argument of course; in
Theorem 2, the time t0 used is determined by the mean value of the scalar field. In
fact, instead of `(t), we should use `[t0(t)] in (225), where

t0(t) = exp
[
1
2
(λφ(t) + c0)

]
and similarly in (226). Due to (210), we have

t0(t) = t[1 +O(t−β)].

As a consequence

[4`(t)]−2

{4`[t0(t)]}−2
= 1 +O(t−β),

tp−1[4`(t)]−2

t0(t)p−1{4`[t0(t)]}−2
= 1 +O(t−β).

In other words, whether we use t or t0(t) does not make any difference as far as the
conclusions are concerned. Note that, by definition, φ(t)− φ0[t0(t)] is zero, and by
(211) and the above observations,

t0(t)φ̇(t)− t0(t)φ̇0[t0(t)]

converges to zero. Since this object is spatially homogeneous, we are allowed to
conclude that for t large enough, (16) is satisfied with ε replaced by ε/2, where the
coordinates are of the form described above (regardless of the point q). Combining
Theorem 2 of the present paper with Theorem 7 of [20], we get the desired stability
statement. �
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