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POWER LAW INFLATION

HANS RINGSTROM

ABSTRACT. The subject of this paper is Einstein’s equations coupled to a non-
linear scalar field with an exponential potential. The problem we consider is
that of proving future global non-linear stability of a class of spatially locally
homogeneous solutions to the equations. There are solutions on R4 x R™ with
accelerated expansion of power law type. We prove a result stating that if we
have initial data that are close enough to those of such a solution on a ball
of a certain radius, say B4g,(p), then all causal geodesics starting in Br, (p)

are complete to the future in the maximal globally hyperbolic development of

the data we started with. In other words, we only make local assumptions
in space and obtain global conclusions in time. We also obtain asymptotic
expansions in the region over which we have control. As a consequence of this

result and the fact that one can analyze the asymptotic behaviour in most of

the spatially homogeneous cases, we obtain quite a general stability statement
in the spatially locally homogeneous setting.
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1. INTRODUCTION

1.1. Background and motivation. The spacetimes currently used by physicists
to model the universe are ones with accelerated expansion. However, such expan-
sion can be achieved by many different mechanisms, and which one to choose is
not completely clear. Some examples of candidates are a positive cosmological con-
stant, quintessence and k-essence, cf. e.g. [16, 17, 18]. Due to this uncertainty,
it seems reasonable to try to understand the behaviour of solutions under as gen-
eral assumptions on the model as possible. One particular question of interest is
that of future global non-linear stability, i.e., for the purposes of the present dis-
cussion, the following question: given initial data for the equations such that the
corresponding maximal globally hyperbolic development (MGHD) is future causally
geodesically complete, do small perturbations of the initial data also yield future
causally geodesically complete MGHD’s? It is of course also of interest to analyze
the asymptotics in the causally geodesically complete direction, but that the answer
to the above question be yes is a minimum requirement for stating that the MGHD
of the given initial data is future stable. In [20], we built a framework for con-
sidering the question of future global non-linear stability for Einstein’s equations
coupled to a non-linear scalar field. The actual case considered in [20] was that
of a potential with a non-degenerate positive local minimum, Einstein’s vacuum
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equations with a positive cosmological constant being contained as a special case,
and the resulting expansion being exponential. As a test of the framework of [20],
and of the preconception that situations with accelerated expansion are stable, it
is of interest to use it to prove stability in some other context. Here we study
the behaviour in the case of an exponential potential. There are solutions of the
corresponding equations on R} x R™ such that the metric is of the form

(1) —dt* +t?75,;da’ @ dx?

where p > 1 is a real number, § is the Kronecker delta and ¢ and z* are standard
coordinates on R} and R™ respectively. In other words, the expansion is of power
law type, and in the limiting case, p = 1, it is not accelerated. One might thus
expect the problem of proving stability to be harder in this setting, and, in fact, it
is more difficult to analyze the behaviour of the solutions to the PDE’s that result
in the end. To our knowledge, the first author to study an exponential potential
was Halliwell, cf. [7], who considered the spatially homogeneous and isotropic case.
Later, the spatially homogeneous but non-isotropic case was studied in [10]. The
question of stability in the case of 3+ 1 dimensions has also been considered, see [9].
In [9], Heinzle and Rendall used the results of Michael Anderson on the stability
of even dimensional de Sitter space, cf. [1], together with Kaluza Klein reduction
techniques, in order to obtain stability of the metrics (1) and the corresponding
scalar fields, for a discrete set of values of p converging to 1. It is of interest to
note that the methods used in [1] avoid the problem of proving global existence
of a system of PDE’s by an intelligent and geometric choice of equations, see also
[5]. In other words, the arguments used to prove the stability results of [9] are
essentially geometric in flavour. In the present paper, the focus is rather on the
analysis aspect, and though the perspective taken is less geometric, the results are
more robust; we get stability in n+1 dimensions of the metrics (1) together with the
corresponding scalar fields for any p > 1. We also formulate a result which makes
local assumptions in space and yields global conclusions in time. From a conceptual
point of view, this is the natural type of result to prove due to the extreme nature
of the causal structure in the case of accelerated expansion. However, it is also
very convenient in practice to have such a statement; combining it with the results
concerning the asymptotic behaviour in the spatially homogeneous setting, we get a
non-linear stability result for quite general spatially locally homogeneous solutions
to the equations under consideration.

1.2. Equations. The subject of this paper is Einstein’s equations, given by

(2) Guv = Ty,
where

G = Ry — %Sg,w,
R, are the components of the Ricci tensor of a Lorentz metric g on an n + 1-

dimensional manifold M, and S is the associated scalar curvature. In this paper,
we shall be interested in stress energy tensors of the form

3) T = Vu6V06 ~ | 5V769,6+ V(9) | g
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where V is the Levi-Civita connection associated with the metric g, ¢ is a smooth
function on M,

(4) V(9) = Voe 7,
and Vj and A are positive constants. We shall refer to the matter model defined

by (3) as the non-linear scalar field model, to V' as the potential and to ¢ as the
scalar field. Note that in this situation, (2) is equivalent to

2
(5) Ry, =V,u6V,0 + mv(d’)gw-
It should of course be coupled to a matter equation for ¢, which is given by
(6) VIV 6 —V'(¢) = 0.

Observe that this equation is a sufficient, but not necessary, condition for the stress
energy tensor to be divergence free. We do, however, impose it. The system of
equations of interest is thus (5)-(6).

1.3. Initial value problem. Concerning the system of equations under considera-
tion, there is a natural initial value problem. The idea is to specify initial data that
would correspond to the metric, second fundamental form, scalar field and normal
derivative of the scalar field induced on a spacelike hypersurface in the Lorentz
manifold one wishes to construct. However, in order for this to make sense, the ini-
tial data cannot be specified freely; they have to satisfy certain constraint equations
that are implied by the Gaufl and Codazzi equations, cf. [20] for more details.

Definition 1. Initial data for (5) and (6) consist of an n dimensional manifold ¥,
a Riemannian metric h, a symmetric covariant 2-tensor k and two functions ¢, and
¢p on X, all assumed to be smooth and to satisfy

(7) r—kyk" + (trpk)? = ¢f + D'doaDida + 2V (¢a),
(8) Dikj; — Di(trpk) = ¢pDida,

where D is the Levi-Civita connection of h, r is the associated scalar curvature and
indices are raised and lowered by h. Given initial data, the initial value problem is
that of finding

e an n+1 dimensional manifold M with a Lorentz metric g and a ¢ € C*°(M)
such that (5) and (6) are satisfied, and
e an embedding i : X — M

such that i(X) is a Cauchy hypersurface in (M, g), i*g = h, poi = ¢,, and if N
is the future directed unit normal and k is the second fundamental form of i(X),
then i*k = k and (N¢) oi = ¢3. Such a triple (M, g, ¢) is referred to as a globally
hyperbolic development of the initial data, the existence of an embedding ¢ being
tacit.

Remark. A Cauchy hypersurface is a set in a Lorentz manifold which is intersected
exactly once by every inextendible timelike curve, see [14] or [20] for more details.
In the above definition, and below, we assume all Lorentz manifolds to be time
oriented. One can of course define the concept of initial data and development for
a lower degree of regularity. We shall, however, restrict our attention to the smooth
case in this paper.
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For results concerning the existence of initial data in the current setting, we refer
the reader to [3] and [8].

Definition 2. Given initial data (X, h, k, ¢q, ¢p) for (5) and (6), a mazimal globally
hyperbolic development of the data is a globally hyperbolic development (M, g, ¢),
with embedding i : ¥ — M, such that if (M, ¢’, ') is any other globally hyperbolic
development of the same data, with embedding i’ : ¥ — M’, then there is a map
1 : M’ — M which is a diffeomorphism onto its image such that ¢*g = ¢, ¥*¢ = ¢’
and Y o = 1.

Theorem 1. Given initial data for (5) and (6), there is a mazimal globally hyper-
bolic development of the data which is unique up to isometry.

Remark. When we say that (M, g, ¢) is unique up to isometry, we mean that if
(M',q',¢") is another maximal globally hyperbolic development, then there is a
diffeomorphism 1 : M — M’ such that ¢*¢’ = g, ¥*¢' = ¢ and 1 o = ¢/, where ¢
and ¢/ are the embeddings of ¥ into M and M’ respectively.

The proof is as in [2]. This is an important result and will be of use to us in this

paper. However, it does not yield any conclusions concerning e.g. causal geodesic
completeness.

1.4. Background solution. The basic background solution we are interested in
is (in Lemma 1 below, we shall prove that it is a solution)

(9) go = —dt* +e*K(t/tg)*r8;;da’ @ dad
2 1

(10) QSO = Xlnt— XCQ7

on Ry x T", where Ry = (0,00), tg > 0, K and p > 1 are constants and
2
11 N = — -
- [(n = 1)p]*/2’
(n=1)(np—1)p
12 = 1
(12) co n oV

Note that given the dimension n, there is a one to one correspondence between p
and A, and we shall prefer to specify p rather than A\. The above constructions
make sense for p > 1/n, but in order for us to get accelerated expansion, we need
to have p > 1.

Consider the metric (9) on Ry x R™. Let h denote the Riemannian metric induced
on {to} x R™ by go and let v : [0,T) — Ry x R™ be a future directed causal curve
with y(0) € {to} x R™. Then, if v, is the projection of v to R™,

T
i t
In[w) ;:/ [hij'49] 2ds < —2—,
0 p—1

where Latin indices run from 1 to n, a convention that will be used consistently in
what follows, as well as the convention that Greek indices run from 0 to n. Further-
more, the indices used on R x T™ and Ry x R™ will be the ones associated with
the standard frame dy = J; and 0; unless otherwise specified. As a consequence, if
we define

(13) (ty) = —°

p—1

)
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then

(14) JH[{to} X Begy) (€)] € DT [{to} X Bsu(t)(€)],

where Jt(A) is the causal future of a set A and DT (A) is the future Cauchy
development of a set A, cf. [14] or [20] for detailed definitions. This demonstrates
that £(to) is a fundamental length scale and, similarly to the case studied in [20],
that if we want to control the behaviour of a solution to the linear wave equation
(on Ry x T™ with metric given by (9)) to the future of {Zo} x By1,) (), then we only
need to control the initial data on {tg} x Bsy,)(§). However, it also demonstrates
that there is a difference between the case considered in the present paper and
the case considered in [20]. In [20], the fundamental length scale was a constant,
determined by the dimension and the minimum of the scalar field. In the present
case, it depends on the starting time and tends to infinity with the starting time.
As a consequence, the size of the ball over which it is necessary to have control in
order to predict what happens along causal geodesics that start at the center tends
to infinity with time. However, if we consider the above situation on Ry x T™,
then we see that the size of the torus grows even more rapidly if p > 1, so that the
fraction of the volume of the torus that the ball constitutes tends to zero. Another
problem that arises in the present setting is the fact that it is necessary to make
a choice of tg given initial data (X, p, k, ¢a, P»). We shall here do so by using the
relation (10), in which we shall replace ¢¢ by the mean value of ¢, in the ball of
interest, cf. Theorem 2 (in particular (15)) for a more precise statement.

1.5. Results. Before we state the main result, we need to introduce some termi-
nology. Let ¥ be an n dimensional manifold. We shall be interested in coordinate
systems x on open subsets U of ¥ such that z : U — B;(0) is a diffecomorphism. If
s is a tensor field on ¥, we shall use the notation

ww=( > > ¥

P1seeyiq=1j1,eesjr=1|a|<I V¥

1/2

0%s5 o Pdat - da”
)

where the components of s are computed with respect to x and the derivatives are
with respect to 2. When we write [|s|| ;¢(1y, we shall take it to be understood that
there are coordinates x as above. Below, we shall use ¢ to denote the Kronecker
delta with respect to the x coordinates. In particular, we shall use the notation

1/2

lg — ad|lgry = Z Z/ 0%(gij — abij) o™ [da’ - - dz"

i,j=1 |a|<l (U)

Theorem 2. Let V be given by (4), where Vy is a positive number and X is given
by (11) in which n > 3 is an integer and 1 < p € R. There is an € > 0, depending
onn and p, such that if

o (X,p, K, @a, dp) are initial data for (5) and (6), with dimX = n,
e x:U — B1(0) is a diffeomorphism, where U C ¥,
e the objects (¢q), to and K are defined by

19) (0= - [ owoatie, tom e [0+ )] K = blatto)]

Wn
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where wy, is the volume of the unit ball in R™ with respect to the ordinary
Euclidean metric, co is defined in (12) and €(ty) is defined in (13), and
e the inequality

—2K

lle™5p = 8l mrro+s ) + [le™* ok = P3|l i 17

(16) +da — do(to)ll mro+tr ) + tods — to(Ordo) (to)llarowy < €
holds, where kg is the smallest integer satisfying ko > n/2 + 1,

then the mazimal globally hyperbolic development (M,g,®) of (X, p, K, da, ) has
the property that if i : X — M 1is the associated embedding, then all causal geodesics
that start in i{z~[B1,4(0)]} are future complete. Furthermore, there is a t_ €
(0,t0) and a smooth map,

(17) v (tf,OO) X B5/8(0) — .Z\I7

which is a diffeomorphism onto its image, such that all causal curves that start in
i{z~1[B1,4(0)]} remain in the image of U to the future, and g and ¢ have expansions
(18)-(23) in the solid cylinder [0,00) x Bs;3(0) when pulled back by V. Finally,
U(0,p) =iox"(p) forp e Bs/5(0). In the formulas below, Latin indices refer to
the natural Buclidean coordinates on Bs/3(0) and t is the natural time coordinate
on the solid cylinder. There is a positive constant o, a Riemannian metric x on
Bss(0) and constants K; such that if || - | ot denotes the C' norm on Bss(0), we
have, fort > tg,

(18)  lo(t,) = do()llct + (@) (t, ) — thpo()llcr < Ky (t/to)™"
(19) [(goo + 1)t Mt + [ (t0egoo) (8, Mer < Ki (t/to)™
(20) Ht_lgm‘(t,') T ;p+1x Viim .
HIt(E go)l(t ller < Ki(t/to) ™"
(21) 1(t/t0) "*Pe™*  gij (t, ) — xusllcr
It /t0) 2Pe 2K tDrgis(t, ) — 2pxisller < Ki(t/to)” ",
(22) 1(t/t0)Pe* g (t,) =X ler < Ki(t/to)™,
(23) [(t/to) " 2Pe* thij(t,) — pxijller < Ki(t/to)™",

where Yjim are the Christoffel symbols associated with the metric x and k is the
second fundamental form of the hypersurfaces {t} x Bs;s(0).

Remark. Remarks similar to those made in connection with the analogous theorem
in [20] remain valid and need not be repeated here. Let us simply point out that
to is chosen so that ¢g(to) = (¢d.), a choice which is essentially necessary, and that
K is chosen so that the ball of radius 1 with respect to the z-coordinates roughly
corresponds to a ball of radius 4¢(ty) with respect to p. The latter choice should
be compared with (14); if we replace 3€(to) with 4¢(¢p) on the right hand side, the
inclusion still holds, but with a margin, so that the corresponding statement can
be expected to hold in the MGHD’s corresponding to perturbed initial data. Due
to (22) and (23), we have, for t > ¢,

1t(g™ ko) (8, ) = poillor < Ki(t/to)™",
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and in this sense, we have isotropization. The expansions are incomplete but with
more work it should be possible to obtain more detailed information. In [9], more
detailed asymptotic expansions were provided, though it should be pointed out
that the foliation considered here differs from that considered in [9]. Note that as
a consequence of Theorem 2 and Cauchy stability, c¢f. Theorem 7 of [20], we get
future global non-linear stability of the solutions (9) and (10) on Ry x T™ for n > 3,
since we can apply Theorem 2 in a neighbourhood of every point at late enough
times. The reason for this is that [44(t)] 722X (t/ty)?" tends to infinity, so that a
ball in T™ of fixed positive radius € > 0 with respect to fixed coordinates will sooner
or later contain a ball of radius 4¢(¢) with respect to the metric induced on {t} x T™
by the metric go.

The proof of the above theorem is to be found in Section 11.

Let us consider the 4-dimensional spatially homogeneous case. In other words, let
us restrict our attention to 3-dimensional initial data with a transitive isometry
group. Due to the work of Kitada and Maeda, cf. [10], it is reasonable to hope that
Theorem 2 will be applicable in a neighbourhood of every point on a late enough
hypersurface of spatial homogeneity, with some exceptions. If ¥ is S3, S2 x R
or quotients thereof, then it is not clear that the corresponding solution needs to
expand; it might recollapse. The reason for this is that S* and S? x R admit
homogeneous metrics with positive scalar curvature. To simplify the statement, we
shall thus exclude this possibility. Furthermore, we are only interested in the case
that the isometry group admits a cocompact subgroup.

Theorem 3. Let V' be given by (4), where Vg is a positive number and X is given
by (11) in which n = 3 and p > 1. Let M be a connected and simply connected
3-dimensional manifold and let (M, h,k,¢q, dp) be initial data for (5) and (6).
Assume, furthermore, that one of the following conditions is satisfied:

o M is a unimodular Lie group different from SU(2) and the isometry group
of the initial data contains the left translations.

o M = H?, where H" is the n-dimensional hyperbolic space, and the initial
data are invariant under the full isometry group of the standard metric on
H?.

o M =H?xR and the initial data are invariant under the full isometry group
of the standard metric on H? x R.

Assume finally that trpk > 0. Let I' be a cocompact subgroup of M in the case
that M is a unimodular Lie group and a cocompact subgroup of the isometry group
otherwise. Let 3 be the compact quotient. Then (X, h, k, ¢q, dp) are initial data.
Make a choice of Sobolev norms || || g1 on tensorfields on ¥.. Then there is an € > 0
such that if (X, p, K, @a, p) are initial data for (5) and (6) satisfying

lp = hllgs + |k = kllgs + |a — Gallas + oo — dollas < e,

then the mazimal globally hyperbolic development corresponding to (X, p, Ky ©a, ©b)
is future causally geodesically complete and there are expansions of the form given
in the statement of Theorem 2 to the future.

Remark. If M is a 3-dimensional unimodular Lie group it contains a cocompact
subgroup I', cf. [15]. Concerning the definition of Sobolev norms on tensorfields on
manifolds, we refer the reader to e.g. [20]. The statement that there are expansions
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to the future should be interpreted as saying that there is a Cauchy hypersurface
¥’ in the maximal globally hyperbolic development of (X, p, &, ¢4, ©5) such that for
every p € ¥, there is a neighbourhood of p to which Theorem 2 applies. In [20],
we made several comments that are equally relevant in the present context, but for
the sake of brevity, we do not wish to repeat them here.

The proof of the above theorem is to be found in Section 12.

1.6. Outline. Let us start by discussing the proof of Theorem 2. Due to the nature
of the causal structure, it is sufficient to study the future stability of the solutions
given by (9)-(12) on R4 x T™. The procedure leading to this reduction can briefly
be described as follows. Given initial data and a diffeomorphism = : U — B;(0)
as described in the statement of Theorem 2, pull back the initial data to By(0) by
2~ !. Using a cut-off function and a suitable choice of ¢ty and K, one can fit the
initial data on Bj(0) to the initial data on T™ corresponding to a ¢ = tqy slice of
(9)-(12). The resulting data on T™ in general violate the constraints in an annular
region. However, they are close to those of the t = tg slice of (9)-(12), and it is pos-
sible to demonstrate stability in the class of constraint violating data for a suitable
modification of Einstein’s equations, described below. Thus one obtains a solution
to the modified equations which is global to the future. Furthermore, the Cauchy
development of the part of By(0) unaffected by the cut-off function yields a patch
of spacetime corresponding to the original initial data. For the purposes of the
present discussion, we shall refer to this patch as the global patch. The statements
concerning future completeness of causal geodesics starting in i{z~![B;,4(0)]} and
asymptotic expansions hold in the global patch. Constructing local patches corre-
sponding to the other points of the original initial manifold, one obtains a globally
hyperbolic development of the original initial data which includes the global patch.
By the abstract properties of the MGHD of the initial data, this globally hyperbolic
development can be embedded into the maximal globally hyperbolic one, and the
statement of the theorem follows.

Due to the above observations, it is clear that the essential step of the argument
is to prove future stability of the solutions defined by (9)-(12) in a situation where
the constraints are violated. Such a result presupposes a hyperbolic formulation
of the equations, which we provide in the beginning of Section 2. The formulation
we use is based on gauge source functions, cf. [6], together with some additional
modifications, cf. (24)-(25). The gauge source functions are chosen so that they
coincide with the contracted Christoffel symbols of the background, the equality
holding for upstairs indices, cf. (26). The main purpose of adding the modifications
is that they make it possible to prove stability for data violating the constraints.
However, the modifications, additionally, yield a partial decoupling at the linear
level, which leads to a hierarchy we shall describe below, and they yield damping
terms which are of crucial importance when proving stability. In the beginning of
Section 2, we briefly discuss the hyperbolic formulation we shall use, the associated
initial data and a division of the terms appearing into ones that have to be taken into
account and ones that can, in the end, in practice be ignored. Readers interested
in a more complete presentation are referred to [20]. After a discussion of the
background solution, we then reformulate the equations. The first reformulation
serves the purpose of expressing the equations in terms of quantities concerning
which we have definite expectations; we subtract the background scalar field ¢q



10 HANS RINGSTROM

from the scalar field ¢ and consider v = ¢ — ¢g, u = gog + 1, u; = go; and
hij = (t/to)"?Pgi;. We expect ¢ and u to converge to zero and h;; to converge.
Concerning u;, it seems reasonable to expect that if we rescale it by a factor of t~P
(the logic being that every downstairs spatial index corresponds to a factor ¢¥), then
the resulting object remains small or converges to zero. Thus, it might seem natural
to carry out such a rescaling. However, in the case of u;, we shall do this rescaling
at the level of the energies, cf. Section 5. The resulting equations, (45)-(48), have
a certain structure; considering the linear terms, it is clear that the terms involving
zeroth order derivatives have a factor in front of them of the form of a constant
divided by ¢2, and the terms involving first order derivatives have a factor in front
of them of the form of a constant divided by ¢. Consequently, it seems natural to
multiply the equations with #? and to change the time coordinate so that td; = 9,
for some new time coordinate 7. This is the purpose of the second reformulation,
which leads to the equations (61)-(64) with which we shall be working.

Starting with (61)-(64), one can generate a model problem by dropping the terms
given by A, and Ay, and by replacing the wave operator ﬂg by the wave operator
associated with the background. Considering (61)-(64) with these simplifications
in mind, one sees that some of the equations partly decouple; the equations for u
and v, (61) and (64), do not involve the remaining unknowns, and the equation
for hij, (63), does not involve u;. In other words, there is a hierarchy in the model
problem. One can start by analyzing the model equations for u and 1, then turn to
the model equations for h;;, and finally consider the equation for u;. Even though
this hierarchy does not persist in the non-linear case, some aspects of it remain
and are of central importance in the proof of future global non-linear stability;
given suitable bootstrap assumptions, the hierarchy does, for all practical purposes,
persist. Given the structure of the hierarchy, it is natural to start by considering
the model equations for v and . Such an analysis is the subject of Section 3. It
turns out that one can construct an energy which decays exponentially. For this to
hold, one does, however, need to require that n > 3 and p > 1; for p = 1, there are
constant, non-zero, solutions to the model equations. In Section 4, we write down
the energies, not only for u and 1, but also for h;; and w;, with which we shall be
working in the non-linear setting, the construction in part being based on that of
the model problem. We also derive the estimates for the time derivatives of the
energies on which the bootstrap argument will be based.

In Section 5, we specify the bootstrap assumptions. There are two levels of as-
sumptions. The first level consists of assumptions ensuring that g remains a Lorentz
metric, with quantitative bounds, cf. Subsection 5.1. Thanks to this assumption, it
is, among other things, possible to define the energies. The second level assumption
consists of an upper bound for the energy, cf. Subsection 5.4.

The main tool for proving future global existence is the system of differential in-
equalities derived in Lemma 16 of Section 7. Corollaries 1 and 2 of Section 4 and
the equations (61)-(64) constitute the starting point for the derivation. However,
it is necessary to estimate the terms that are of higher order in the expressions
that vanish on the background, cf. Lemma 11, to estimate the commutator terms
that arise when applying spatial derivatives to the equations, cf. Lemma 13, and
to estimate the remainder terms that appear in the estimates for the time deriva-
tives of the energies in Corollaries 1 and 2, c¢f. Lemma 15. Section 6 is devoted
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to deriving the necessary estimates. All the estimates are of course based on the
bootstrap assumptions, and deriving them requires an effort. However, applying
general techniques developed in [20] leads to a significant reduction of the amount
of work. Using these estimates, we then derive the system of differential inequalities
in Section 7. The hierarchy mentioned above is apparent in this system. Disregard-
ing the terms involving € in (139)-(141) (the corresponding terms can be estimated
using the bootstrap assumptions), it is clear that only f[lp’k appears on the right
hand side of the differential inequality for f[lp) &, cf. (139), so that one can improve
the bootstrap assumptions for this quantity first. Considering (141), the second
and third terms on the right hand side may appear hard to control. However, since
it is possible to improve the bootstrap for fIlp,k to say that, not only is it small but
it decays exponentially, the second and third terms on the right hand side of (141)
do not constitute a problem. Finally, turning to (140), the second term on the right
hand side can be controlled using the information already obtained concerning H Ip,k
and ﬁm,k. To conclude, it is of crucial importance to derive a system of differential
inequalities; combining (139)-(141) into one differential inequality yields an esti-
mate which does not appear to be very useful. In Section 8, we then prove future
global existence of solutions corresponding to initial data on T™ close to those of
a model solution. Note, however, that given initial data on T", it is necessary to
determine an initial time, since some of the unknowns, i.e. v and h;j, depend on
it. We carry out a discussion concerning how to achieve this in the beginning of
Section 8. After the proof of global existence, we derive some basic conclusions;
in the case of hyperbolic PDE’s, it is natural to make smallness assumptions for a
finite degree of regularity and then to draw conclusions for any degree of regularity,
and a first step in this direction is taken in Theorem 5, following the proof of future
global existence. In Section 9, we then carry out a rough analysis of the causal
structure. This analysis yields information concerning the future Cauchy develop-
ment of subsets of the initial data, which is of crucial importance when carrying out
the arguments described at the beginning of the present subsection. Furthermore,
we prove future causal geodesic completeness. In Section 10, we derive asymptotic
expansions for the solution and in Section 11 we prove the main theorem along the
lines described above. The spatially homogeneous solutions of interest were already
analyzed in [10], but the perspective taken here is somewhat different. Furthermore
we need somewhat more detailed knowledge concerning the asymptotics, and con-
sequently, we discuss the spatially homogeneous solutions in detail in Section 12.
Note, however, that the results of [10] cover a much more general situation than we
discuss in the present paper. At the end of Section 12 we then prove Theorem 3.

Let us comment on the differences and the similarities between the situation studied
in [20] and the one studied in the present paper. The main purpose of [20] was to
build a framework for proving future global non-linear stability in the Einstein-non-
linear scalar field setting. In particular, specific choices of gauge source functions
and corrections to the equation were made that work equally well for the case
studied in [20] as for the case studied here. Furthermore, in [20], we wrote down
bootstrap assumptions as well as a partial division of the terms appearing in the
equations, separating out the ones of higher order. Finally, and perhaps most im-
portantly, we constructed an algorithm yielding estimates for the non-linear terms
given that the bootstrap assumptions hold, the advantage of the algorithm being
that in order to estimate a term in H”, it is enough to make simple computations
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such as counting the number of downstairs spatial indices minus the number of up-
stairs spatial indices. All of these constructions carry over, and will be very useful
in the present situation. On the other hand, the actual PDE problems that result
are quite different in the different cases. In the case of a potential with a positive
non-degenerate minimum, the background scalar field is zero, but in the case of
an exponential potential, the scalar field tends to infinity as ¢ — co. As described
above, it is thus, in the case of an exponential potential, necessary to subtract the
background solution. The process of doing so introduces couplings between the
equations for the scalar field and the different components of the metric, even on
the linear level, and this makes the resulting equations harder to analyze. Above,
we discussed the equations for v and i that result after having dropped the terms
that are quadratic in the quantities that vanish on the background and after having
changed the coefficients of the highest order derivatives to those corresponding to
the background. In particular, we noted that these equations are coupled, and it
turns out that finding an energy that decays exponentially does require an effort.
If one were to consider the corresponding equations for u and v in the case studied
in [20], one would see that the equations for v and 1 decouple, and that one easily
obtains exponential decay for both of them separately. To sum up, there are several
aspects concerning the general set up of the equations and the general methods for
estimating the non-linearity that are common to the analysis carried out in [20]
and the analysis carried out here. However, the actual PDE problems that one has
to deal with in the end are quite different, the present one being the more difficult.

Finally, let us note that in the outline of the proof of the theorem in [20] corre-
sponding to Theorem 2 in the present paper, we motivated the choice of gauge
source functions, the choice of corrections, and we made comparisons between our
method and the methods used by Lindblad and Rodnianski to prove the stability of
Minkowski space in [12] and [13] (simplifying the original proof by Christodoulou
and Klainerman [4], though not obtaining as detailed asymptotics). As a conse-
quence, we shall not do so here.

2. REFORMULATION OF THE EQUATIONS ON T"

As we pointed out in the outline, the central problem in the proof of Theorem
2 is that of proving future global non-linear stability of the solutions (9)-(12) on
R4 x T™. In [20], we considered (5) and (6) in the context of perturbations around
metrics of the form

—dt® + eméijdxi ® da?
on Ry x T™. Thus the problem we are interested in here fits exactly into the general
framework developed in [20], provided we choose Q = pInt+ K —plntg (below, we
shall, for various reasons, make a somewhat different choice). As in [20], we shall
use the notation w = €2, so that w = p/t. The choice of equations, the relevant

estimates for the non-linearity etc. then follow from [20]. Consequently, we shall
consider the equations

V@ + My = 0,

(25) 900,056 — TH9,6 — V'(¢) + My = 0,

(24) le - V,LQSVVQS -
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cf. (53) and (54) of [20], where all the indices are with respect to the standard
vectorfields on Ry x T", i.e. 0y = O, 0; = O, for i = 1,...,n, if 2° are the standard
“coordinates” on T". Here

1
Dy =Fu =Ty Ry =Ru+VDy), V(D= 50Dy +0,D,) ~Tji, Do,

and
(26) F, = nwgou, Mo = 2wg0"(Fu —F,), Moy =—2w(l; —nwgo;:),
(27) M;; = 0, My=g¢""T,—F.)0.9.

The equations (24) and (25) imply a homogeneous wave equation for D,,, cf. (56)
and (57) of [20]. If the initial data satisfy the constraints and one sets up the
initial for the equations (24) and (25) in the correct way, the initial data for D,
vanish. This leads to the conclusion that D, = 0 where the solution is defined.
As a consequence, we obtain a solution to (5) and (6). For more details on this
argument, the reader is referred to [20], cf., in part, Proposition 1.

2.1. Initial data. The initial data for (24) and (25) are not completely determined
by initial data for (5) and (6). However, part of the corresponding freedom has
to be used to ensure that D, = 0 initially. In practice, we shall be interested
in initial data that do not satisfy the constraint equations on the entire initial
manifold. We shall thus assume that we are given (o,s, ®,, ®,) on T", where o is
a Riemannian metric, ¢ is a symmetric covariant 2-tensor and ®,, ®; are smooth
functions on T". Furthermore, we shall assume that (7) and (8) are satisfied on
S C T" (with (h, k, ¢a, dp) replaced by (o,s, P, Pp)). Starting with these initial
data, we construct initial data for (24) and (25) as in [20]:

(28) gij(to,-) = 0(0;,0;),
(29) goo(to,") = -1, goi(to,") =0,

for é,j = 1,...,n, cf. (58) and (59) of [20]. Due to this choice, the future directed
unit normal to the hypersurface ¢t = tg is 0;. Note, furthermore, that this fixes
F,(to,), cf. (26). Concerning the first time derivatives, we choose

(30) O009ij(to,-) = 2¢(0;,0;),
(31) 80900(t07 ) = 72F0(t0, ) — 2tI‘§7
1 .
(32) ogoi(to,-) = |—Fi+ 59”(231‘93‘1 — g45)| (to, ),

cf. (60), (62) and (63) of [20] respectively. Due to these choices, D, (to,-) = 0.
Concerning ¢, we require

(33) B(to, ) = @u,  (O10)(to,") = P,

cf. (61) of [20], since §; is the future directed unit normal to {to} x T".

With these initial data, we get a local existence and uniqueness result. Furthermore,
we get a continuation criterion and the conclusion that (5) and (6) are satisfied in
D({to} x S), where D signifies the Cauchy development (for a definition of Cauchy
development, see [14] or [20]). For an exact statement, cf. Proposition 1 of [20].
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2.2. Equations. To conclude, we consider the equations

(34) Roo + 20T — 2nw? — VoV — %V(¢)QOO = 0,
« 2

(35) Roi — 2w(l'; — nwgo;) — VopVid — mv(@gm = 0,
A 2

(36) Rij — Vi¢V;¢ — mV(sb)gij = 0,

(37) 9°P 0,056 — nwdod —V'(¢) = 0.

In order to analyze what terms are relevant and what terms are irrelevant in the
expressions for R, + M,,, one can use the results of [20]. Combining Lemma 4,
Lemma 6 and (88) of [20], we obtain

1 1
—ggo‘ﬂaaaggoo + i(n + 2)wdogoo
+n(w + w?)goo + nw?(goo + 1)

+A 400 + Ac,00,

(38) Roo + 20T — 2nw?

« 1 1
(39) Rom — 2w(Ty — nwgom) = —igaﬁaaaﬂg()m + inwa()gOm

1 3
+ [2(n — 1)w? + 379 | Jom — WG T i

+A 4 0m + Acom,

X 1 1
(40) Ri; = —§g“ﬁ3a8ﬁgij+§nwaogij+2wg°°809ij

—2w?g%g:; + A4 i,

where the higher order terms Ay ., Ac . are defined in (87), (92) and (93) of
[20]. The point of these expressions is that Ay ,, and Ac,, are sums of terms
that are quadratic in factors that vanish for the background solution.

2.3. Background solution, revisited. Before we proceed, let us prove that the
basic solution around which we are perturbing actually is a solution.

Lemma 1. Letn >3, p > 1, Vo > 0 and define A, co and V by (11), (12) and (4)
respectively. Then the metric go, given by (9), and the function ¢q, given by (10),
on Ry x T™ satisfy (5) and (6). In particular, ¢g satisfies the equation

(41) bo + nwo + V' (¢o) = 0.

Proof. One can compute that for gy given in (9), we have I'° = nw, where w = p/t,
and I'" = 0. In other words, F,, defined in (26) coincides with T';,, so that for go,

R,, = R,, and the modifications M, and My vanish. Note also that A, ,, =0
for the metric under consideration, and that Acoo = Acom = 0, cf. [20] (note
that this is clear due to the idea behind the definition of these quantities). The 00
component of (5) is thus, due to (34) and (38), equivalent to

2V (¢o)

42 —nw — nw? — §2 =0.
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Since ¢ only depends on t, the 0m equations are automatically satisfied and the
ij equations are equivalent to
2V (¢o)

4 ' 2 2790,
(43) W+ nw — 0

With ¢g as in (10), equation (43) is equivalent to

2Vpe®
—p+np’ — = =0,
n—1

which is equivalent to

o _ (2= D(mp =1
2Vo ’

which holds due to (12). In particular,

(44) 2lon) _ vl 1)

Using this information, (42) is equivalent to

4

2 +p(np—1) =0.

In other words, (11) implies (42). Thus (5) is satisfied. To check that ¢ satisfies
the last equation, which in the current situation is equivalent to (37), is simply a
computation. Since (37) is equivalent to (6) for the metric under consideration, the
lemma follows. (|

np — np* —

2.4. Linear algebra. Before reformulating the equations, let us introduce some
terminology concerning Lorentz matrices. Let g be a real valued (n+1) x (n+ 1)-
matrix with components g,,. We shall denote the matrix with components g;;,
i,7 = 1,..,n by g,, denote the vector with components go; by v[g] and denote
goo + 1 by ulg]. If g is symmetric and has one negative and n positive eigenvalues,
we shall say that g is a Lorentz matriz. In case ¢ is an invertible (n + 1) X (n 4 1)
matrix, we shall let ¢g"* denote the components of the inverse and we shall let g*
denote the matrix with components ¢/, 4,5 = 1,...,n. It is of interest to note the
following, cf. Lemma 1 and 2 of [20].

Lemma 2. Let h be a symmetric (n+1) x (n+1) real valued matriz. Assume that
ulh] < 1 and that hy is positive definite. Then h is a Lorentz matriz, h¥ is positive
definite and ulh='] < 1.

Remark. Below, we shall sometimes use the notation h, > 0 to indicate that h, is
positive definite.

Definition 3. A canonical Lorentz matriz is a symmetric (n + 1) x (n + 1)-
dimensional real valued matrix g such that u[g] < 1 and g, > 0. Let C,, denote the
set of (n + 1) x (n + 1)-dimensional canonical Lorentz matrices.

Note that, due to Lemma 2, the inverse of an element of C,, is in C,.
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2.5. First reformulation of the equations. Since the background scalar field ¢g
tends to infinity as ¢ — oo, it seems natural to reformulate the equations in terms of
1 = ¢—¢g. Furthermore, since the 00- and ij-components of the background metric
are —1 and 2K (t/ t0)2p6ij respectively, it seems natural to consider © = ggg + 1 and
hij = (t/to) " *Pg;;. Isolating terms that involve, at worst (in terms of number of
derivatives) first order derivatives of the unknowns and are quadratic in quantities
that vanish on the background, we obtain the following reformulation.

Lemma 3. Let Vo > 0, p > 1 and let n > 3 be an integer. Define A by (11), V
by (4) and let ¢o be given by the right hand side of (10), where ¢q is given by (12).
Finally, fir 0 <ty € R and let U be an open subset of Ry x T™. Then the following
statements are equivalent:

e the functions g and ¢, with values in C, and R respectively, are C* and
satisfy (34)-(37) on U,

e the functions = ¢ — ¢o, u = goo + 1, wi = goi, hij = (t/to) *Pgi;
(i,j = 1,..,n) are C*°, where uw < 1 and h;; are the components of a
positive definite metric, and satisfy

(45)—g"*" 9,0, u + (n + 2)wdou + %u - %8@ - %7# +Agy = 0,
(46) ~g"" 0udyui + nwdoui + s — 29" T, — Eam +Ay = 0,
(47) =g 0,0, hs; +nwdohy; + ip + %w hi+ Ay = 0,
(48) —g"" 0,0,9 + nwdytp + ( )w — /\t2u +A, = 0

on U, where w = p/t, p1 = 2p[n(p — 1) + 1] and B2 = p(n —2)(2p — 1).

Furthermore, Ago, Ngi, Aij and Ay are defined by (51), (52), (55) and
(56) respectively.

Remark. Given w, u; and h;j, one can construct g,, and thereby g"”. Note that
the equivalence presupposes that t; has been fixed. Recall that C, was defined
in Definition 3. It is of interest to note that (45)-(48) are independent of Vp; an
expression of the form Voe=*?0 appears in Ap 4, cf. (49), but this expression is
independent of Vj due to (44). On the other hand, it is necessary to know Vj in
order to be able to reconstruct ¢ from 1.

Proof. Note that
e = M0 (M 1 4 M) + e M1 — ).
Since the first term is quadratic in 1, which vanishes on the background, we define
(49) Apy = Voe (e — 1+ ).
With this notation, we can write

2V(p)  p(np—1)
1 = 12 (1= ) +

2AE¢,
1’
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cf. (44). We thus have (in this proof, we shall use the notation f = 8, f)

o 2V(9) 4 plrp—1)
2 _ _
o e A2¢2 2
4 . np—1 Ap(np — 1
+=v+ p(p72)(g00 +1)+ %ﬂf + Ay,00
At t t

where

. Ap(np — 1 2A
(50) D00 =1 — %T/’(Qoo +1)+— _Ef goo-
Before we reformulate (34), let us note that, due to (38),
. 1 1
Roo + 2wT? — 2nw? = —59“”8”61,900 + i(n + 2)wdogoo + n(w + 2w?)(goo + 1)

—n(d} + UJ2) + AA700 + Ac)oo.
Since

: 4 pp—1)
—n(w + w?) — o 2 =0,
cf. (42) and (44), we get
. . 2V 1 1
Roo + 200 — 2nw? — ¢2 - r«?goo = fig’“’ﬁﬂ&,goo + 5(71 + 2)&)80900
. np —1
+ [n(w + 2w?) — plrp — 1) 222 ) (goo + 1)
4 . Ap(np-—1) 1+
—— - = ~A
/\tw o Y+ 5500

where
(51) A00 = 2A 4,00 + 2A¢,00 — 2A4,00-

Thus (34) is equivalent to (45). By similar arguments, using (39), (35) is equivalent
to (46), where

(52) Aoi = 2040 + 20¢0i — 20,00ib + WAWM - iAf’f 9oi-
Using (40), equation (36) can be reformulated to

— 9" 0,0,9ij + (n+ 49" )wdogs;

-2 2w2g00 + p(ﬂ];— D - )\p(nénz— 1)1/) Gij + Aij =0,

where
(53) Ajj =204, — %gij — 20;90;1).
We wish to reformulate this equation in terms of h;; = (t/to) “?Pg;;. Note that
(£/t0) " B0gs; = Dohay + 2whiy, (t/te) 2 Rgs; = Ohyy + dwdohy; + L2 1) (252_ U

Using

1 ,
(54) g0 +1=—(goo+1)+ gE[(gOO +1)% — g% goi],
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we conclude that (36) is equivalent to (47) where

N m 1 )
(55)  Aij = —4g”wdihi; + ,Tf [(g00 + 1)% — g% goiJhij + (t/t0) P Ay

goo
and A;; is given by (53). Finally, let us turn to (37). Note that

V/(¢) = —AVoe 2 + X*Vpe M0 — NAp
so that (37) is equivalent to

2(np —1)

2
—9" 0,0yt + o) + —— 51 — (9" +1)95 b0 — Mg, =0,

where we have used the fact that ¢q satisfies (41). Due to (54), (37) is equivalent
to (48), where

~ 1 ,
(56) Ay = —%[(goo + 1) — g% g0i] 03 po — MAE 4.

The lemma follows. O

2.6. Second reformulation of the equations. Consider (45). All the terms
on the left hand side but the first and the last have a certain structure: terms
involving dyu and 0y are multiplied by a factor in the form of a constant divided
by t (recall that w = p/t) and terms involving u and ¢ are multiplied by a factor
in the form of a constant divided by #2. Similar comments can be made concerning
the remaining equations (46)-(48). Consequently, in order to minimize the number
of time dependent coefficients, it seems natural to multiply the equations with ¢2
and to change the time coordinate to 7, where 7 is such that 0, = td;.

Lemma 4. Let Vj > 0, p > 1 and let n > 3 be an integer. Define X by (11),
V by (4) and let ¢g be given by the right hand side of (10), where cq is given by
(12). Fiz 0 < tg € R, let the time coordinate T be defined by T = In(t/to), 7o
be defined by 19 = Inty, and let U be an open subset of Ry x T™. Finally, let
T:Ry xT" — R x T™ be defined by Y(t,z) = [In(t/to),z]. Then the following
statements are equivalent:

e the functions g and ¢, with values in C, and R respectively, are C* and
satisfy (34)-(37) on U,
o the functions h;j, u;, w and ¢ (i,j =1,...,n) defined by

(57) hij(r,2) = e 2PTg;i(e™0, x),
(58) ui(t,z) = goi(e™T™, z),

(59) u(t,z) = goole™ ™, x) + 1,

(60) P(r,e) = ¢(e™ ™, x) — go(e” )
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are C°, where u < 1 and h;; are the components of a positive definite
metric, and satisfy

A 8
(61) Ogu + o10-u + Bru — X@ﬂ/} —22p(np— v+ Agp = 0,
- 4e7TT0
(62)  Ogui + aodru; + Bou; — 2pe™ 70 g Ty, — Taﬂﬁ +Ap = 0,
(63) Oyhij 4+ (np — 1)-hij + [=2pu+ 2Ap(np — Dplhy; + Ay = 0,
N 2
(64) Ogtp 4 (np — 1)0:9 + 2(np — 1) — et Ay =0

on Y(U), where
(65) O, = —g%002 — 2e7+704%9,9; — e2(7+70) 649,09,

ar=m+2)p—1, 6 =2pn(p—1)+1], aa =np—1, B =p(n—2)(2p—1)
and Noo, Noi, Aij and Ay are given by (66)-(69).

Remark. From time to time, we shall abuse notation by writing g¢,;(7, ) when
gij (€7 x) would be the correct expression etc. Note that the functions h;; etc.
are different from the ones of the previous lemma, the difference amounting to a
change of time coordinate.
Proof. Note that

202 = —0,f + 0.

The conclusions follow by straightforward computations, and we have

(66) A = (g% +1)dru+ 2T A,
(67) Aoi = (g% + 1)+ 2TTA,,
(68) A = (9% +1)0-hy +2TTOA,
(69) Ay (6% +1)0,9 + 2TTTIA

where Agg, Agi, Ayj and Ay, are defined by (51), (52), (55) and (56) respectively.
The lemma follows. O

3. MODEL PROBLEM

As was discussed in the introduction, the system of equations (61)-(64) has, in
a certain sense, a hierarchical structure; dropping the A,, and Ay terms and
changing the coefficients of the highest order derivatives to those of the background,
the equations for « and 1) involve neither u; nor h;; and the equations for h;; do not
involve u;. As has been mentioned, this structure will be of essential importance in
the bootstrap argument used to prove future global existence. As a consequence of
the structure of the hierarchy, a natural problem to consider is that of proving decay
of solutions to the resulting model equations for u and v, cf. (70) and (71) below.
In order for the analysis to be of use in the non-linear setting, it is preferable to
prove decay by constructing a decaying energy; arguments based on energies tend
to be more robust. The purpose of the present section is to construct such an
energy.
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3.1. Model equations. If we consider (61) and (64), ignore the higher order terms
and replace the metric with the background metric, i.e. if we assume ¢%° = —1,
g" = 0 and ¢g¥ = (t/ty) 2’6" and assume, for the sake of simplicity, to = 1, we
obtain the equations

(70) Urr — e M7 Au+ cqu, + Bru+ MY, +61y = 0,
(71) Yrr — 672H7Aw + B3u + 39, + 03¢ =
Here H = p—1 and
8
(72) oy = (n+2)p—1, Bi=2pnp—-1)+1], m =5
2
(73) & = —2wp-1), f=—3, w=mw-1 b&=2np-1),

where n > 3, p > 1 and A is given by (11). Let us define

oG a) (9 n) ()

Then (70) and (71) can be written

(75) ur —e 2HTAu+ Cu, + Au=0.

Let T be an invertible 2 x 2 matrix and apply 7! to (75). We obtain
U, —e 2HTAG+T7'CTa, + T-PATa = 0,

where @ := T~ tu.

3.2. Positive definiteness of the coefficient matrices. Let us try to find a
matrix T so that T-'AT is diagonal. The eigenvalues of A are given by

+6 +d3)° v
Ay = B 5 3 + (ﬂl 1 3) — (163 + 6103
Note that
+ § 2 1
M — 103+ 0183 = Z[(ﬂl — d3)" + 46105 > 0,

since d133 > 0 for n > 3 and p > 1. The eigenvalues are thus real and different.
Note also that

B163 — 6135 = 4dnp(np — 1)(p — 1) > 0
for the range of n and p we are interested in. This computation shows that A_ =0
when p = 1. Since (51 + d3 > 0, we conclude that both eigenvalues are positive. Let

A_—03 Ay —63
76 T := .
(76) < B3 B3 )
Then detT" > 0 and
A e (A= 0
(77) A:=T AT = < 0 A )

where the first equality is a definition. Let C := T~1CT. The main question is
then whether C' + C? is positive definite or not.

Lemma 5. With definitions as above, C + C* is positive definite.
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_ Bz 03— Ap
R._(_ﬂg B )

Note that T=1 = R/det T. In other words, R coincides with T—1 up to a positive
factor. The question is then if RCT plus its transpose is positive definite. Let us

define a, b, ¢ and d by
a b
(* ) =ser

In order to prove that RCT plus its transpose is positive definite, all we need to
prove is that

(78) a+d>0, (a+d)?—(a—d)?—(b+c)?>0.

One can compute that

Proof. Define

a+d=—0F5(Ay — A_) (a1 +73).

Since B3 < 0, a3 +v3 > 0 and Ay — A_ > 0, we conclude that a + d > 0. One can
also compute that

b+c = —F3(Ar —A)(y3 — )
a—d Bs[(cr — v3)(B1 — 63) + 20371

Consequently,

a+d\? a—d\* b+c)?
<ﬁa) _< Bs ) _<ﬁ3>
= dar[(f — 83)% +46301] — (1 — 73)*(B1 — 83)°
—4(ar —v3) (B — 63)Bsm1 — 4533,

After inserting the values for the different constants, we obtain

a+d\? a—d\> b+c\?
(2ﬁ3> <Qﬁ3> <253>
= [(np— 1)+ 2p(np — 1)](B1 — 05)* + 16p(np — 1)*(np — 1 + 2p)
—p* (1 — 83)% = 8(n — 1)p? (1 — d3) — 16(n — 1)%p”.
One can see that the terms involving (8; — d3)? add up to something non-negative.
Consider the second term on the right hand side. If we write the last factor in this

term as np — 1+ p + p, take the term that arises from one of the p’s and add it to
the last two terms, we obtain

16p°[(np — 1)> = (n — 1)*] = 8(n — 1)p*(B1 — d3)
= 16np*(p — Dn(p+ 1) — 2] — 8(n — 1)p* (81 — bs).

However,
By — 03 =2np(p—1)+2p—2np+ 2,
so that
—8(n — 1)p*(B1 — 83) = —16np*(p — 1)(n — 1)p + 16(n — 1)p*(np —p — 1).
We conclude that
16p°[(np — 1)* — (n — 1)*) = 8(n — 1)p*(B1 — b3)
= 16np2(p —D(n+p—2)+16(n— 1)p2(np —p—1).
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Thus (78) holds and C + C* is positive definite. O

3.3. Model energy. Let us consider a solution to (70) and (71), where 7 € R and
x € T™. Let us use the notation

(Z)zﬁzT‘lu,

where T is given by (76). Then
,, — e 2TAa+ Ca, + Ad = 0.
Note that A is given by (77) and that C + C* is positive definite. We shall denote
the components of C' by Cj;. Let us define an energy
1 o .
E = 5/ ([, 4+ e 2H7(|Va)? + |Vo|?) + 2cti’ i, + bya? + bot)?]du,

where the constants ¢ and b; are to be determined. To start with, the only condition
we impose is that ¢ < b; for i = 1,2. Note that this implies that there is an 7 > 0,
depending on ¢, by and by, such that

2
Let us compute

aE
dr

1 “
1 / 16, + 217 (1 Vap + [VOP2) + [a]2)dz < nE.
'H‘n

1 A oA R
— / [_Qﬁ:(c + CH, + |t 2 — (H + c)e 227 (IVa> + | Vo)
—eA_02% — A h? + (by — A — cChy) iy + (by — Ay — cClao )i,
—0(3*12111&7 — 06’211;127—](1.%‘.
Let us choose
(79) by = A_+ Céu, by = )\+ + Cégg.

Since the A+ are positive, we obtain ¢? < b; by choosing ¢ small enough. Note that
A ~ 1 PN
|cCrotin),| < /%02 + 1&”0@3,

and similarly for Cégl’l[}ﬂ-,—. Choosing b; as in (79), we obtain

dE 1o, a A 1 o
- / {—2ui<0+0t)uf + el * + 22 (CH? + C5ya)
—(H +c)e 2 7(|Vaf* + V)

—c(A_ — a2 — e(Ay — ) da.

Due to Lemma 5, Ct+Cis positive definite, so that by choosing ¢ small enough,
there is a constant a; > 0, depending on n and p, such that

dE . . .
T <o [ (60 (VAR V) + i e
This of course implies the existence of a x > 0, depending on n and p, such that
FE
d— < —2kE.

dr —
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4. ENERGY ESTIMATES

Let us turn back to the actual equations. The purpose of the present section is to
construct the energies on which the bootstrap argument will be based. Let us start
by constructing the energy associated with (61) and (64). Note that we can write
(61) and (64) as

ﬂgu—i—CuT +Au+ A =0,
where A, C' and u are defined in (74), (J, is defined in (65) and

Letting T be defined by (76), t = T~ u, A = T-'A, A = T"'AT and C =
T—1CT, we obtain

(80) gt + Cia, + Aa+ A =0.

()

Lemma 6. Let p > 1 and 1y be real numbers and n > 3 be an integer. Let
g: I xT" — C,, where I is an interval, and denote the components of g by gu. .
Consider a solution 1 to the equation

We shall also use the terminology

(81) 0,0+ Cii, + Aa=F

on I x T™, where Ijg is defined in (65), F is a given function and A and C are
defined above. Given constants cip and b;, 1 = 1,2, we define

1 - .
(82) &[] = 3 {—g"0, 0" 0,0 + §V 0,0 0,1 — 2¢1,¢°%0 0,0 + b10? + botp? }d

'[["IL

on I, where we use the notation §*7 = e*7t7) g% Below we shall also use the
notation §°" = e7T70g% and H = p — 1. There are constants Mp, Cps bi, cp > 0,
depending on n and p, such that if € is defined by (82) with this choice of b; and
cp and

(83) 9% + 1] < mip,

then

(84) E>Gp / {0,800, 4 + §Y 9,000 + Gta}de
’]I‘n

and

€
P —2mp€ + [ {(0:-0" + cp0")F + Ap[]}da
TTL
where Ag[Q] is given in (85).

Remark. Note that since g is a map into C,, Lemma 2 implies that g*/ are the
components of a positive definite matrix and that ¢°° < 0.



24 HANS RINGSTROM

Proof. Let us compute

% = {—%&ﬁt(é’ + Y9, 0 — 9,0t Al + 9, 0'F — (H + ¢1,)§" 9,605
’]I?’L
+eip| 00| — apatCo i — cptl Al 4 cip@'F + by 6d- 4 + bathdr1)
where
Aplt] = —ap(g®™ +1)0,0'0, 0 — 26,6" 0,00, 1 — 2¢1,(0;9" )0 0,01
g 1
(85) —ap(0;97) 0t — 5(87—900)67—ﬁt87ﬁ + [20 G + Hg”} 0;0'0;10

—(0;6°)0-0" 0,0 — (0;¢")0, 0" 0; — e1,(0,¢%°) 0" 0, 0.
Choosing cjp and b; similarly to how we chose them in Subsection 3.3, we get the

desired conclusion, assuming ¢g°° to be close enough to —1. O

Corollary 1. With assumptions as in Lemma 6, let £ be defined by (82) with
constants chosen as in the statement of Lemma 6. Let

¢ = > £o™al.
la|<k
Then, assuming (83) holds,

de
Tk < =2mpCr+ Y [ {(0°0,0" + ap0™a")(0°F + [0y, 0°Th) + Ap[0™a] }da.
laj<k’T"

Remark. When we write 9%, we shall always take for granted that the Greek index
used upstairs is a multiindex, o = (I3, ...,l,,), where the I; are non-negative integers
so that
0% =0y -0y,

where 0; is the standard differential operator with respect to the i:th “coordinate”
on T™. Note in particular that 0% never contains any derivatives with respect to the
time coordinate. Note also that in an expression 0., the Greek index downstairs
means a number from 0 to n.

Proof. Differentiating (81), we obtain
0,0% + C9,0% + Ad*a = 0°F + [0J,, 0°]q,
so that we only need to apply Lemma 6 in order to get the desired conclusion. [

The energies we shall construct for u; and h;; will be based on the following lemma.

Lemma 7. Let 19 be a real number and n > 3 be an integer. Let g : I x T" — C,,
where I is an interval, and denote the components of g by g,.,. Consider a solution
to the equation

(86) O,v + adyv + v = F

on I x T™, where Ijg is defined in (65), F' is a given function and o > 0 and 3 >0
are constants. Then there are constants n.,( > 0 and v, > 0, depending on o and
B, such that if

(87) 9% + 1] < ne
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and
1 .
Ey5lv] = 3 / [—9%(0:v)* + § 0;00;v — 27¢" v0,v + §v?]d,
then
(88) Ev52 ¢ [ 10r0)* + 570050 + 10%)da,
where tg =0 if 3 =0 and 13 = 1 otherwise, and
d& s

<2t [ (@t 0)F + Apg o]},
T’Vl

where Ag - 5[v] is given by (89). If 3 =0, then v = 4§ = 0.

Proof. If 3 > 0, choose v = a/2 and § = 3+ a?/2. Then 4?2 < §, and it is clear
that there is a constant ¢ > 0 such that (88) holds, assuming g% is close enough to
—1. If 8 =0, we simply let v = § = 0, and the existence of a { > 0 such that (88)
holds again follows from the assumption that ¢° is close enough to —1. Compute

d€
2 = | @@ + (6= 5= ra)d - fret
—(H + ’y)ﬁij&-vajv + (0;v +Yu)F + Ag 4 5[v] }dz,
where
Agqslv] = f'y(&;gij)v@jv - 27(8i§0i)v(97v — 275" 0,00, v — (8¢§Oi)(37v)2
(89) (0,470,090, — %(87900)(8711)2 + (;argif + Hgii> D000

—~0-gv0,v — (g% + 1)(9,v)2.
Due to our choices, we have, assuming G > 0,

% = _% / [(870)? + (o + 2H)§" 9080 + afv?)da
T n

+ {(0rv +Y0)F + Ag 5 5[v] }dz.
']T'VL

Since the opposite inequality to (88) also holds, provided we replace ¢ by (~! for ¢
small enough, we obtain the conclusion of the lemma for 5 > 0. The conclusion in
the case 8 = 0 follows for similar reasons. O

Corollary 2. Under the assumptions of Lemma 7, let

Ep= > &50™].

lal<k
Then, assuming (87) holds,

d€y
<o
w<omet Y [

{(9:0% 4+ 70%0) (9°F + [0y, d%v) + Ag ~.5[0%] }dz.
laf<k 71"

Proof. Given that v satisfies (86), 0“v satisfies
0,(8%) 4 ad, (9%v) + B(0%) = 9*F + [0, 9.

The statement follows from Lemma 7. O
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5. BOOTSTRAP ASSUMPTIONS

Before we write down the basic bootstrap assumptions, let us introduce some ter-
minology. If A is a symmetric positive definite n X n matrix with components A;;
and w € R", we shall use the notation
1/2
n
|wla = Z Aijwiwj
i,j=1

If 1d is the identity matrix, we define |w| := |w|;q. We shall also use the notation
introduced in Subsection 2.4.

5.1. Primary bootstrap assumptions. The purpose of the primary bootstrap
assumptions is to ensure that the metric remains Lorentzian, with quantitative
bounds.

Definition 4. Let p > 1,a >0, ¢; > 1, n € (0,1), Ky and 79 be real numbers and
n > 3 be an integer. We shall say that a function g : I x T"™ — C,, where [ is an
interval, satisfies the primary bootstrap assumptions on I (the relevant constants
being understood from the context) if

(90) o tw)? < e PR w2 < ofw)?,
(91) lulg]] < n,
(92) gl < neyteP?TErRE

for all w € R™ and all (7,2) € I x T, where Q = p7, r = ar and K = 19 + K.

Remark. We shall specify a and n in (101) and (100) below. In the end we shall
apply the above conditions to a situation in which Ky only depends on p, so that
factors of e=#0 and e®o can be considered to be constants of which one need not
keep track. In fact, the natural choice to make for e is a numerical multiple of
the basic length scale £(tg). Furthermore, the constants n and a we shall use only
depend on n and p, and ¢y will, in our applications, be a numerical constant. In
other words, the only quantity that in practice needs to be specified (beyond n and
p) is To.

Lemma 7 of [20] gives the following conclusions of the bootstrap assumptions.

Lemma 8. Letp > 1, a > 0, ¢ > 1, n € (0,1), Ko and 19 be real numbers
and n > 3 be an integer. Assume that g : I x T" — C, satisfies the primary
bootstrap assumptions on I, where I is an interval. There is a numerical constant
no € (0,1/4) such that if we assume n < ng in (91) and (92), then

(93) g™ < 2ce7 2 ulg]|
(94) ((vlghvlg™' DI < 2c1e7 22K wlg]?
(95) lulg™] < 4n,

2 2 20+2K [, 12 31, 1o
(96) Q\wl < e lwly: < —|wl

for allw € R™ and (1,z) € I x T". Here we use the notation (§,¢) for the ordinary
scalar product of £, € R™.

Remark. The lemma holds irrespective of the value of a.
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5.2. Energies. Let p > 1, a > 0, ¢1 > 1, € (0, min{no, mp/4}], Ko and 7 be
real numbers and n > 3 be an integer. Assume that g : [ x T — C,, satisfies the
primary bootstrap assumptions on I, where I is an interval. Then (83) is satisfied
due to (95). In order to define the energy associated with w and v, let us note
that (61) and (64) can be combined into (80). Using the notation introduced in
connection with (80), let

(97) Hypp= Y E[0™d],

la|<k

where £ is defined in (82) with the constants that are obtained as a result of Lemma
6.

Consider (62). If we take all the terms on the left hand side except for the first
three to the right hand side, we get an equation of the type discussed in Lemma
7 with « replaced by as and ( replaced by (2. Since awg, B2 > 0, Lemma 7 yields
positive constants s, ds, s and (s such that the conclusions of that lemma holds,
and we define

(98) Hs,k = Z Z 5 <, 0s [8aui],
i o<k
where &, 5, is defined in Lemma 7.

Consider (63). Taking all but the first two terms on the left hand side to the right
hand side, we obtain an equation of the type considered in Lemma 7 with « replaced
by np —1 > 0 and 3 replaced by 0. We thus get v, = 6, = 0 and 79y, G > 0 such
that the conclusions of Lemma 7 hold. We define the energy associated with h;; to
be

1
(99) Hm,k = 5 Z Z <g,7"”§m [8°‘hij] +/ e_QGTaa(aahij)Qda:) s
i |al<k "

where a > 0 is given by (101) and a, = 1 for |a| > 0, a, = 0 for & = 0. From
now on, we shall assume that g satisfies the primary bootstrap assumption on an
interval I where 7 is defined by

(100) 7 := min{7no, Mp/4, Ns /4, M /4}.

Note that as a consequence, the conclusions of Lemma 6 and 7 hold for the energies
of interest, cf. (95). Furthermore, we define

1 .
(101) a = Zmln{p - 17771137778’77111}'

Note that a and n only depend on n and p.

5.3. Basic estimates. Let us use the notation
1/2

e = | [ (@ 1

la|<k

for the Sobolev norms (note that we shall use this notation even when f depends on
t, and then the derivatives will still only be with respect to the spatial coordinates).
We wish to express the Sobolev norms of the quantities of interest in terms of the
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geometrically defined energies Hy, . etc. In the end it will turn out to be convenient
to use the following energies instead:

ﬁlp,k — egaTHlch, Hs,k _ e—2pr+2a7——2KHS’k’ Hm,lc — e2a7_4KHm,k7
where a > 0 is given by (101). We shall also use the notation
(102) I‘A[k = Hlp,k—kﬁsyk—F}AIm’k.

Note that, using the notation of Section 7 in [20], lfﬁp,k, I‘L,k and I:Im,;C are equiv-
alent to Ei, p, Fsp and Ey, i respectively; in the formulas for £, the quantity r
should be replaced by ar and it is convenient to note that

(103) W =10, W =g, W = p 20,

In particular, Hy, is equivalent to Ej. Furthermore, we have the following lemma.

Lemma 9. Let p > 1, ¢; > 1, Ko and 19 be real numbers and n > 3 be an
integer. Let 1 and a be defined by (100) and (101) respectively and assume that
g: I xT" — C, satisfies the primary bootstrap assumptions on an interval I. Then

(104) Wl + 109l + e TR0l ] < CHLYY,

ar —Hr— rr1/2
(105) e [ull g + 107ull e + e T E0 Sl ] < CHY,
(106) P79 K ||y | g + [|0rtinl| e + €T O | ] < CHYZ,
(107) e 272K NG gii — 2pgyj | e + € TR 094 | ] < Cﬁrln/,i’
(108) e T2 geg < CHY

hold on I, where K = 19 + Ky, the last estimate is valid for 0 < |a| < k and the
constants depend on c1, n and p.

Proof. The lemma follows from Lemma 8 of [20] given the above mentioned equiv-
alence of the energies (though it is not difficult to prove the statement directly).
Note, however, that this is based on observations such as (103) and

—1e—p7'—K —_ —1e—HT—K0

w P

and the fact that 1 is as good a constant as p~!. O

We shall need estimates for the components of the inverse of the metric. Such
estimates follow from the results of [20].

Lemma 10. Let p > 1, ¢y > 1, Ky and 19 be real numbers and n > 3 be an
integer. Let 1 and a be defined by (100) and (101) respectively and assume that
g: IxT™ — C, satisfies the primary bootstrap assumptions on an interval I. Then,
for 0 <|a| <k,

(109) eTlo%g®ls < CH,
(110) T gy < CHL?,
(111) P | < CHL

hold on I, where K = 19+ Ko, ﬁk is defined in (102) and the constants depend on
n, p, k and c;.

Proof. See Lemma 9 of [20]. O



POWER LAW INFLATION 29

5.4. The main bootstrap assumption. Using the primary bootstrap assump-
tions, it is possible to define the energy Hj in terms of which the main bootstrap
assumption is phrased.

Definition 5. Let p > 1, ¢ > 1, Ky, 0 < € < 1 and 79 be real numbers and
n > 3 and kg > n/2 4+ 1 be integers. We shall then say that (g,v) satisfy the
main bootstrap assumption on I (the relevant constants being understood from the
context), where I is an interval, if

e g: I xT"—=C,and ¢p: I xT" — R are C,

e ¢ satisfies the primary bootstrap assumptions on I, where n and a are
defined by (100) and (101) respectively,

e g and v satisfy

(112) H%(r) < e
for all 7 € I, where K = Ko + 7.

Remark. Note that these bootstrap assumptions correspond exactly to the boot-
strap assumptions made in [20], given the specific form of © and r, cf. (105) of
[20].

6. ESTIMATES FOR THE NON-LINEARITY

In the proof of future global existence of solutions, the main tool is the system of
differential inequalities given in Section 7. The first step in the derivation of these
inequalities has already been taken, cf. Corollary 1 and 2. However, in order to
obtain (139)-(141), it is necessary to estimate A,,,,, Ay, [y, 8], Ap[0*d] etc. in
H* cf. Corollary 1 and 2. The present section is devoted to a derivation of such
estimates.

In Subsection 9.1 of [20], we described an algorithm for estimating the higher order
terms. The current context is only a special case of what was considered there.
However, a few things should be kept in mind when making the comparison. First
of all, in the estimates in [20], time derivatives were computed with respect to the
original time ¢ and not with respect to 7. Furthermore, Q = pr, K = 179 + K,
w = p/t and r = ar. The relationship between ¢ and 7 is of course given by
7 =Int — 79. When using the algorithm described in [20], it is convenient to note
that (103) holds. In particular, changing 9; to 9, corresponds to multiplication
with w™! as far as estimates are concerned.

6.1. Estimates for the quadratic terms.

Lemma 11. Letp > 1,¢; > 1, Kg, 0 < e < 1 and 19 be real numbers andn > 3 and
ko > n/241 be integers. Assume that (g,) satisfy the main bootstrap assumption
on an interval I. Then

(113) |Agollge < Cee 27H/?,
114 Aollgr < CeePr—207+K /2
k
(115) Al e < Cee 20T 2K 12
(116) |Ayllge < Cee 27/
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on I, where Aoy, Agi, Asj and Ay are given by (66)-(69), K = Ky + 70, Hy, is
defined in (102) and the constants depend on n, p, k and c;.

Remark. The bootstrap assumptions only constitute control of ky 4+ 1 derivatives,
but the conclusions of the present lemma, as well as several lemmas to follow, hold
for any non-negative integer k.

Proof. Consider
Ao = (6% +1)0ru + 27T A

To estimate the first term using the algorithm, cf. Subsection 9.1 of [20], note that
it can be rewritten

(117) (9°° + 1)pw ™' ou.
The expression
(118) (9" +1)dsu,

is of the type dealt with by the algorithm, and, in the terminology of [20], we
compute that [ = 2, [, = 0 and Iy = 1. Here [, gives the number of terms that are
“small” (for a precise definition, see [20]), I, gives the number of downstairs spatial
indices minus the number of upstairs spatial indices, including spatial derivatives,
and ly is the number of derivatives occurring. Due to the algorithm, the expression
(118) can thus be estimated by

_ ~1/2 — ~1/2
Cewlaelh(Q+K) lETEk/ = Cewe 2aTEk:/’

which yields the desired estimate for (117) in view of the fact that Ey, and H), are
equivalent. What remains to be considered is thus

(119) 62(T+T0)A00 = 262(T+TO)AA,00 + 262(T+T0)AC700 - 262(T+T0)A¢700,
cf. (51). Due to Lemma 12 of [20], we have the estimate

1A 400l x + | Acoollgr < Cew?e=2 B/,

Noting that w=2 = p~2e2(7+70)  this estimate implies

2T A g ool + 2T | Acgol g < Cee™m 2,
which yields the desired estimate for the first two terms on the right hand side of
(119). Let us turn to e27F0) Ay o, where Ay g is given by (50). An estimate for
the first two terms in (50), after multiplication by e2(7+70)  follows by estimating
w212 and wyp. These objects can be estimated by the algorithm; in both cases

le = 2 and l;, = 0 and in the first case lyg = 2 whereas [y = 0 in the last case.
Finally, we need to estimate

(120) 2T goo A .
Note that Ag 4 is given by (49) and that Voe *% = p(np — 1)(n — 1)/(2t%), cf.
(44), so that estimating (120) is the same as estimating

goo(e ™ =14+ X)) = R()goot?

for some smooth function R, cf. the proof of Lemma 16 in [20]. This is an object
which can be estimated by the algorithm; I, = 2 and [, = I3 = 0. The arguments
to derive (114)-(116) are similar. O



POWER LAW INFLATION 31

6.2. Estimates for the commutators. We shall need estimates for the H*-norm
of

. 8
(121)Fy := Ogu=—a10;u— fru+ X@ﬂb + 2Ap(np — 1)1 — Ago,

. T+To

R 4
(122) F; == Ogu; = —aed-u; — Bou; + 20" 70 g ™ Ty, + eTaﬂP — Aoy,
(123} = Oghi; = —(np — 1)0rhij — [~2pu + 22p(np — D)) hij — Aij,
N . 2
(124)Fy, = Ogp=—(np—1)0-¢ —2(np— 1) + U Ay,
where we have used (61)-(64).

Lemma 12. Letp > 1,¢c1 > 1, Ko, 0 < e <1 and 19 be real numbers andn > 3 and
ko > n/2+41 be integers. Assume that (g,v) satisfy the main bootstrap assumption
on an interval I. Assuming (61)-(64) are satisfied (where hij, u; and u are defined
in terms of g according to (57)-(59)), we conclude that

(125) [Eollge < Ce"HY?
(126) |Emllr < CePromHEEL2
(127) Bl < Ceomt2K[l/2
(128) 1Byl < CemomH,?

on I, where Fg,...,ﬁw are defined in (121)-(124) respectively, K = Ko + T, Hy, is
defined in (102) and the constants depend on n, p, k and c;.

Proof. Except for the terms
(129) 2pe™ g " Ciign,  —[—2pu + 2Xp(np — 1)) hij,

the conclusions are immediate consequences of (113)-(116), (104)-(108), the defi-
nition of Hj, and the fact that ¢ < 1. In order to deal with the first expression
appearing in (129), note that we can apply the algorithm, cf. Subsection 9.1 of
[20], with I =1, lp =1 and I}, = 1 in order to obtain

— rl/2 — rl/2
||2peT+nglmFlim”Hk < CeT+TowepT+K U.THk/ — CpepT+K m—Hk/ :

which is an estimate of the desired form. In order to deal with the second expression
appearing in (129), we can also apply the algorithm with . =1, I, = 2 and Iy = 0,
though in order for this to fit with the conventions of [20], we have to rewrite h;;
as e~ ?P7g;;. We obtain

[~2pu + 22p(np — 1)plhy || e < Ce 27 2T +2K—ar [11/2,
and the lemma follows. O

Lemma 13. Letp > 1,c¢; > 1, K, 0 < e <1 and 19 be real numbers andn > 3 and
ko > n/241 be integers. Assume that (g,) satisfy the main bootstrap assumption
on an interval I. Assuming (61)-(64) are satisfied (where hi;, u; and w are defined
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in terms of g according to (57)-(59)), we conclude that, for 0 < |o| <k,

(130) [0y, 0%ulls < Cee 2e7H}/?
(131) 1[5y, 0% umlla < CeePT 20K fl/2
(132) 1[0y, 0% hsslls < Cee 29T+2K /2,
(133) 10y, 8°]lla < Cee