Hans Ringström
Professor
Room 3623, Lindstedtsvägen 25
Tel: +46 8 790 66 75
Email:hansr@kth.se
Postal address:
Department of Mathematics
KTH
100 44 Stockholm
Sweden
|
|
Teaching
Non-linear wave equations,
Spring 05.
The announcement of the course is available in
pdf and
ps.
Signaler och system I,
för E, 5B1209, HT 2005.
Analytiska metoder och linjär algebra II
, 8p, för
Öppen Ingång, 5B1141, VT 2006.
Differentialekvationer II
för T, 5B1207 (6 poäng), VT 2006.
Signaler och system I,
för E, 5B1209, HT 2006.
Signaler och system I,
för E2, SF1635, HT 2007.
Diff och Trans III,
för CL2, SF1637, HT 2007.
Semi-Riemannian Geometry,
Spring 08.
Differentialekvationer II
för T, SF1634 (9 poäng), VT 2009.
Differentialekvationer I
för Industriell Ekonomi, SF1633 (6 poäng), VT 2009.
Differentialekvationer och transformer II
för Teknisk Fysik och Medicinsk Teknik, SF1629 (9 poäng),
HT 2010.
Differentialekvationer och transformer II, del 1,
för Teknisk Fysik och Medicinsk Teknik, SF1629 (4,5 poäng),
HT 2011.
Differentialekvationer och transformer II, del 1,
för Teknisk Fysik och Medicinsk Teknik, SF1629 (4,5 poäng),
HT 2012.
Differentialekvationer I,
för CSAMH1, SF1633 (6 poäng),
VT 2014.
Differentialgeometri,
avancerad kurs, SF 2722 (7,5 poäng),
VT 2015.
Introductory school at Institut Henri Poincare, September 2015
The Cauchy problem in general relativity in
For references related to the lectures, see
here here.
Research
I do research in mathematical general relativity, in particular in
mathematical cosmology. A poster giving a description intended for
non-experts is available in
pdf and
ps form.
This poster was written when I was still at the
Max Planck Institute for Gravitational
Physics in Golm outside of Berlin.
Talks
The slides of a talk entitled "3-manifold topology, geometry and the
Einstein flow" that I gave some time ago at the institute are available
here.
Books
On the Topology
and Future Stability of the Universe, published by Oxford University Press.
Please send me an email if you have found errors.
The Cauchy Problem
in General Relativity, published by the European Mathematical Society.
Those who have read the book and found errors are encouraged to contribute
to the list of errata.
Preprints
Publications
-
Curvature blow up in Bianchi VIII and IX vacuum spacetimes,
Class.Quant.Grav. 17 (2000) 713-731.
-
The Bianchi IX attractor,
Annales Henri Poincare 2 (2001) 405-500.
-
The future asymptotics of Bianchi VIII vacuum solutions,
Class.Quant.Grav. 18 (2001) 3791-3824.
-
On Gowdy vacuum spacetimes,
Math.Proc.Cambridge Phil.Soc. 136 (2004) 485-512.
-
Future asymptotic expansions of Bianchi VIII vacuum metrics,
Class.Quant.Grav. 20 (2003) 1943-1990.
-
Asymptotic expansions close to the singularity in Gowdy spacetimes,
Class.Quant.Grav. 21 (2004) S305-S322.
- On a wave map equation arising in general relativity,
Comm.Pure Appl.Math. 57 (2004) 657-703.
-
Data at the moment of infinite expansion for polarized Gowdy
(pdf,
ps),
Class.Quant.Grav. 22 (2005) 1647-1653.
-
Curvature blow up on a dense subset of the singularity in
T3-Gowdy
(pdf,
ps),
J. Hyperbolic Diff. Eqs.
2 (2005), no. 2, 547-564.
-
On the T3-Gowdy Symmetric Einstein-Maxwell Equations
(pdf,
ps),
Annales Henri Poincare 7 (2006) 1-20.
-
Existence of an asymptotic velocity and implications
for the asymptotic behaviour in the direction of the singularity
in T3-Gowdy (pdf,
ps),
Comm.Pure Appl.Math. 59 (2006) 977-1041.
-
On curvature decay in expanding cosmological models
(pdf,
ps),
Commun. Math. Phys. 264 (2006) 613-630.
-
Future stability of the Einstein-non-linear scalar field system
(pdf,
ps),
Invent. math. 173 (2008) 123-208.
-
Power law inflation
(pdf),
Commun. Math. Phys. 290 (2009) 155-218.
-
(with Mark Heinzle) Future asymptotics of vacuum Bianchi type VI0 solutions,
Class.Quant.Grav. 26 (2009) 145001.
-
Strong cosmic censorship in T3-Gowdy spacetimes
(pdf,
ps),
Annals of Mathematics, 170 (2009) 1181-1240.
-
Cosmic Censorship for Gowdy spacetimes,
Living Rev. Relativity, 13 (2010), 2. URL (cited on
2010-08-19):
http://relativity.livingreviews.org/Articles/lrr-2010-2/
-
The Cauchy problem in general relativity
(pdf).
Acta Phys. Polon.
B 44 (2013), no. 12, 2621--2641.
-
Instability of spatially homogeneous solutions in the class of
T2-symmetric solutions to Einstein's vacuum equations (pdf),
Commun. Math. Phys., 334 (2015) 1299-1375.
Digital Object Identifier (DOI) 10.1007/s00220-014-2258-8.
For journal version, see
here.
-
Origins and development of the Cauchy problem in general relativity
(pdf).
Class. Quantum Grav. 32 (2015), 124003
Digital Object Identifier (DOI) 10.1088/0264-9381/32/12/124003.
For the journal version, see
here.
-
On proving future stability
of cosmological solutions with accelerated expansion (pdf). Surveys in Differential Geometry,
Volume 20 (2015): One hundred years of general relativity A jubilee volume on
general relativity and mathematics. Editors Lydia Bieri and Shing-Tung Yau.
For the journal version, see
here.