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Abstract— There are several results on the stability analysis
of positive linear systems in the presence of constant or time-
varying delays. However, most existing results assume that
the delays are bounded. This paper studies the stability of
discrete-time positive linear systems with unbounded delays.
We provide a set of easily verifiable necessary and sufficient
conditions for delay-independent stability of positive linear
systems subject to a general class of heterogeneous time-
varying delays. For two particular classes of unbounded delays,
explicit expressions that bound the decay rate of the system are
presented. We demonstrate that the best bound on the decay
rate that our results can guarantee can be found via convex
optimization. Finally, the validity of the results is demonstrated
via a numerical example.

I. INTRODUCTION

Positive systems are dynamical systems whose state vari-
ables are constrained to be nonnegative for all time whenever
the initial conditions are nonnegative [1]–[5]. Due to their
importance and wide applicability, the analysis and control
of positive systems has attracted considerable attention from
the control community (see, e.g., [6]–[13] and references
therein).

Since time delays are omnipresent in engineering systems,
the study of stability and control of dynamical systems with
delayed states is essential and of practical importance. For
general systems, the existence of time delays may impair
performance, induce oscillations and even instability [14]. In
contrast, positive linear systems are known to be insensitive
to several classes of time-delays [15]–[18] in the sense
that a positive linear system with delays is asymptotically
stable if and only if the corresponding delay-free system is
asymptotically stable.

At this point, it is worth noting that the results for positive
linear systems cited above consider bounded delays. How-
ever, in some cases, it is not possible to a priori guarantee that
the delays will be bounded, but the state evolution might be
affected by the entire history of states. It is then natural to ask
if the insensitivity properties of positive linear systems with
respect to time delays will hold also for unbounded delays.
In [19], it was shown that, for a particular class of unbounded
delays, this is indeed the case. However, the question remains
open for a general class of unbounded delays. Moreover, the
impact of unbounded delays on the decay rate of positive
linear systems was not considered in [19]. This paper closes
these gaps.
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At the core of our paper is a set of powerful conditions for
delay-independent stability of discrete-time positive linear
systems with heterogeneous unbounded time-varying delays.
Our proof technique, which neither uses the Lyapunov-
Krasovskii functional method used in [15] nor the approach
used in [19], allows us to impose minimal restrictions on
delays. More specifically, we make the following contribu-
tions. First, we derive a necessary and sufficient condition for
asymptotic stability of discrete-time positive linear systems
with heterogeneous unbounded time-varying delays. Then,
for two particular classes of unbounded delays, we present
explicit expressions that bound the decay rate of the system.
Finally, we demonstrate that the best decay rate that our
bounds can guarantee can be found via convex optimization.

The remainder of the paper is organized as follows. Sec-
tion II gives a description of the problem under consideration,
and the main results of this work are presented in Section III.
An Illustrative example is presented in Section IV, justifying
the validity and benefits of our results. Finally, concluding
remarks are given in Section V.

A. Notation
Vectors are written in bold lower case letters and matrices

in capital letters. We have R, N, and N0 for the set of real
numbers, natural numbers, and the set of natural numbers
including zero, respectively. The largest integer less than or
equal to real number x is indicated by bxc. The non-negative
orthant of the n-dimensional real space Rn is represented
by Rn+. The ith component of a vector x ∈ Rn is denoted
by xi, and the notation x > 0 implies that xi > 0 for all
components i. Given a vector v > 0, the weighted l∞ norm
is defined by

‖x‖v∞ = max
1≤i≤n

|xi|
vi
.

For a matrix A ∈ Rn×n, aij denotes the entry in row i and
column j. A matrix A ∈ Rn×n is said to be non-negative if
aij ≥ 0 for all i, j. The spectral radius of a matrix A is the
largest magnitude of the eigenvalues of A and is denoted by
ρ(A).

II. PROBLEM STATEMENT

In this paper, we consider a discrete-time linear system
with heterogeneous time-varying delays given by

xi
(
k + 1

)
=

n∑
j=1

aijxj
(
k
)

+

n∑
j=1

bijxj
(
k − dij(k)

)
, k ∈ N0,

xi(k) = ϕi(k), k ∈ {−dmax, . . . ,−1, 0}. (1)



Here, x(k) = [x1(k), . . . , xn(k)]T ∈ Rn is the state variable,
A = [aij ] ∈ Rn×n, B = [bij ] ∈ Rn×n are system matrices,
dij(k) ∈ N0 for i, j = 1, . . . , n represent the time-varying
delays, dmax ∈ N0, and ϕ(·) = [ϕ1(·), . . . , ϕn(·)]T is the
vector sequence specifying the initial state of the system.

System (1) is said to be positive if for every non-negative
initial condition ϕ(·) ∈ Rn+, the corresponding state trajec-
tory is non-negative, that is x(k) ≥ 0 for all k ∈ N. Positivity
of (1) is readily verified using the following result.

Proposition 1 ( [17]) The discrete-time system (1) is posi-
tive if and only if A and B are non-negative.

It should be stressed here that the non-negativity of the
initial condition is essential for ensuring positivity of the
state evolution of (1). In other words, when ϕ(·) ≥ 0 is not
satisfied, x(k) may not stay in the positive orthant even if
the conditions of Proposition 1 hold.

While x = 0 is clearly an equilibrium point of the sys-
tem (1), it is not necessarily stable. Moreover, the stability of
general linear systems may depend on the magnitude of the
time delays. However, as discussed in the introduction, the
asymptotic stability of discrete-time positive linear systems
with bounded delays (dij(k) ≤ dmax) does not depend on the
magnitude of the delays, only on the system matrices [15]–
[17]. It is then of great interest for theory and practice to
determine if a similar delay-independent stability result holds
for discrete-time positive systems with unbounded delays.

A general class of time delays is described by the follow-
ing assumption.

Assumption 1 The delays dij(k) for i, j = 1, . . . , n satisfy

lim
k→+∞

k − dij(k) = +∞. (2)

Roughly speaking, Assumption 1 says that as k increases,
the delays dij(k) do not grow at the same rate as k. It is
easy to see that all bounded delays, irrespective of whether
they are constant or time-varying, satisfy this assumption.
Note also that delays satisfying (2) may be unbounded. A
particular class of unbounded delays was considered in [19]
and is specified by Assumption 2.

Assumption 2 There exist T ∈ N and a scalar 0 < α < 1
such that the delays dij(k) satisfy

sup
k>T, i,j

dij(k)

k
= α. (3)

One can easily verify that constraint (3) on delays im-
plies (2). However, the following example shows that the
converse does not hold in general.

Example 1 Let dij(k) = k −
⌊ √

k
⌋

for k ∈ N0. Since

lim
k→+∞

k − dij(k) = lim
k→+∞

⌊ √
k
⌋

= +∞,

lim
k→+∞

dij(k)

k
= lim
k→+∞

k −
⌊ √

k
⌋

k
= 1,

it is clear that (2) holds while (3) does not hold.

To the best of our knowledge, Assumption 1 is the weakest
restriction for delays that can still guarantee asymptotic
stability. It is easy to give an example to show that, when
k − dij(k) 9 +∞, the positive system (1) may be unstable.
For example, one can verify that

x(k + 1) = 0.6x
(
k −

⌊
|k sin k|

⌋)
, k ∈ N0,

is not asymptotically stable. The main objectives of this
paper are therefore to (i) provide a necessary and sufficient
condition for asymptotic stability of the positive system (1)
under a general class of heterogeneous time-varying delays
satisfying Assumption 1; and to (ii) give explicit estimates
of decay rates of the positive system (1) for different classes
of unbounded delays (e.g., Assumption 2).

Remark 1 Assumption 1 implies that there exists a suffi-
ciently large M ∈ N such that k−dij(k) > 0 for all k > M .
Let

dmax = − inf
0≤k≤M

{
k − dij(k)

}
.

Clearly, dmax ≥ 0 is bounded. It follows that, even for
unbounded delays satisfying Assumption 1, it suffices to
define ϕ(·) on a bounded set {−dmax, . . . , 0}.

III. MAIN RESULTS

Having established our notation and problem formulation,
we will now present the main contributions of the paper.

A. Asymptotic Stability of Positive Linear Systems

The following theorem is our first key result, which states
a necessary and sufficient condition for asymptotic stability
of discrete-time positive linear systems with bounded or
unbounded time-varying delays.

Theorem 1 For the positive system (1), suppose Assump-
tion 1 holds. The following statements are equivalent.
(a) There exists a vector v > 0 such that

n∑
j=1

1

vi

(
aij + bij

)
vj < 1, i = 1, . . . , n. (4)

(b) The positive system (1) is globally asymptotically stable
for every non-negative initial condition ϕ(·), and for all
time delays satisfying Assumption 1.

Proof: (a) ⇒ (b) : Suppose that there exists a
vector v > 0 such that (4) holds. We shall first use
perfect induction to prove that for any non-negative initial
condition ϕ(·) ∈ Rn+, the corresponding solution x(k) of (1)
satisfies ‖x(k)‖v∞ ≤ ‖ϕ‖ for all k ≥ 0, where

‖ϕ‖ = sup
−dmax≤s≤0

‖ϕ(s)‖v∞.

By the definition of ‖ϕ‖, the initial state x(0) satis-
fies ‖x(0)‖v∞ ≤ ‖ϕ‖, so the induction hypothesis is true
for k = 0. Now, assume that it holds for all k up to



some k̄, i.e., ‖x(k)‖v∞ ≤ ‖ϕ‖ for k ≤ k̄. It follows from the
definition of weighted l∞ norm that

1

vj
xj(k) ≤ ‖x(k)‖v∞

≤ ‖ϕ‖, j = 1, . . . , n, k = −dmax, . . . , k̄,

and hence,

1

vj
xj(k̄) ≤ ‖ϕ‖,

1

vj
xj
(
k̄ − dij(k̄)

)
≤ ‖ϕ‖.

(5)

For each i ∈ {1, . . . , n}, we then have

1

vi
xi
(
k̄ + 1

)
=

n∑
j=1

1

vi
aijxj

(
k̄
)

+

n∑
j=1

1

vi
bijxj

(
k̄ − dij(k̄)

)
≤
( n∑
j=1

1

vi
aijvj +

n∑
j=1

1

vi
bijvj

)
‖ϕ‖

< ‖ϕ‖,

where we used (5) to get the first inequality, and (4) to obtain
the second inequality. Therefore,

‖x(k̄ + 1)‖v∞ ≤ ‖ϕ‖.

The induction proof is complete.
We now prove that for any non-negative initial condition
ϕ(·) ∈ Rn+, the corresponding solution x(k) converges zero
as k →∞. Define

γ = max
i=1,...,n


n∑
j=1

1

vi

(
aij + bij

)
vj

 . (6)

From (4), it is clear that γ ∈ (0, 1). We show by induction
that for each m ∈ N0, there exists km ∈ N0 such that

x(k) ∈ V (m), for all k ≥ km,

where the sets V (m) are defined as

V (m) =

{
x ∈ Rn

∣∣ ‖x‖v∞ ≤ γm‖ϕ‖}, m ∈ N0.

According to the first part of the proof, ‖x(k)‖v∞ ≤ ‖ϕ‖ for
all k ∈ N0, which implies that

x(k) ∈ V (0), ∀k ≥ 0.

Set k0 = 0. Thus, the induction hypothesis holds for m = 0.
Assume that it is true for a given m, we will show that
there exists km+1 ∈ N0 such that x(k) ∈ V (m + 1) for
all k ≥ km+1.
By Assumption 1, limk→∞ k − dij(k) = +∞ for all i,j, so
one can find a sufficiently large m̄ ∈ N such that

k − dij(k) ≥ km, ∀k ≥ m̄.

Since x(k) ∈ V (m) for all k ≥ km, we have

x(k − dij(k)) ∈ V (m), ∀k ≥ m̄,

which implies that

1

vj
xj(k − dij(k)) ≤

∥∥x(k − dij(k))
∥∥v
∞

≤ γm‖ϕ‖, ∀k ≥ m̄. (7)

For each i, we then have

1

vi
xi
(
k + 1

)
≤

n∑
j=1

1

vi
aijxj

(
k
)

+

n∑
j=1

1

vi
bijxj

(
k − dij(k)

)
≤
( n∑
j=1

1

vi
aijvj +

n∑
j=1

1

vi
bijvj

)
γm‖ϕ‖

≤ γm+1‖ϕ‖, ∀k ≥ m̄,

where we used (7) to get the second inequality, and (6) to
obtain the last inequality. Therefore,

‖x(k + 1)‖v∞ ≤ γm+1‖ϕ‖, ∀k ≥ m̄,

which implies that x(k + 1) ∈ V (m + 1) for all k ≥ m̄.
Thus,

x(k) ∈ V (m+ 1), ∀k ≥ m̄+ 1.

Set km+1 = m̄+ 1. This completes the induction proof.
In summary, we conclude that for each m, there exists km
such that x(k) ∈ V (m) for all k ≥ km. Since γ < 1, γm

approaches zero as m → +∞, and hence x(k) converges
zero as k →∞.

(b) ⇒ (a) : Suppose (1) is globally asymptotically
stable for all delays satisfying Assumption 1. Particularly,
let dij(k) = d for i, j = 1, . . . , n, where d <∞ is a positive
constant. Then, the positive linear system

x(k + 1) = Ax(k) +Bx(k − d), k ∈ N0,

is asymptotically stable. The conclusion follows from [16,
Theorem 2].

According to Theorem 1, the positive system (1) is asymp-
totically stable for all delays satisfying Assumption 1 if and
only if the following set of linear inequalities in v,{(

A+B
)
v < v,

v > 0,
(8)

is feasible. The above stability condition is a linear program-
ming (LP) problem in v, and thus can be verified numerically
in polynomial time. Since A and B are non-negative, A+B
is also non-negative. According to property of non-negative
matrices [11, Proposition 1], inequality (8) holds if and only
if ρ
(
A+B

)
< 1. This means that if the positive system

x(k + 1) = (A+B)x(k)

has an asymptotically stable equilibrium at the origin, it
remains asymptotically stable under any heterogeneous time-
varying delays satisfying Assumption 1.

Remark 2 Previous works in the literature established nec-
essary and sufficient conditions for asymptotic stability of
discrete-time positive linear systems, but required that the



delays be either bounded (e.g., [15]–[17]), or unbounded
under Assumption 2 [19]. It is clear that Assumption 1 covers
all these classes of time-delays as special cases. Hence, we
prove the asymptotic stability of positive linear systems under
much less conservative assumption.

B. Polynomial-Rate Stability of Positive Linear Systems

Theorem 1 is concerned with the asymptotic stability
of positive linear systems with delays. However, there are
processes and applications for which it is desirable that the
system has a certain decay rate. Loosely speaking, the system
has to converge quickly enough to the equilibrium. Hence,
it is important to investigate the impact of delays on the
decay rate of such systems. While the asymptotic stability
of the positive system (1) with unbounded delays satisfying
Assumption 2 has been investigated in [19], the impact of
delays on the decay rate has been missing. In this section, we
therefore determine how unbounded delays affect the decay
rate of positive linear systems. Before stating the main result,
we provide the definition of polynomial-rate stability for the
discrete-time systems.

Definition 1 The discrete-time system (1) is said to be
globally polynomial-rate stable if there exists a scalar ξ > 0,
such that for any initial condition ϕ(·), the solution x(k)
of (1) satisfies ‖x(k)‖ = O

(
k−ξ

)
for all k ∈ N, which

means that there exist scalars M > 0 and ξ > 0 such that

‖x(k)‖ ≤Mk−ξ, ∀k ∈ N.

The following theorem shows that under Assumption 2,
the positive system (1) is globally polynomial-rate stable.

Theorem 2 For the positive system (1), suppose Assump-
tion 2 holds. If there exists a vector v > 0 satisfying

n∑
j=1

1

vi

(
aij + bij

)
vj < 1, (9)

for all i, then the positive system (1) is globally polynomial-
rate stable. In particular,

‖x(k)‖v∞ = O
(
k−ξ

)
, k ∈ N, (10)

where ξi is the unique positive solution of the equation( n∑
j=1

1

vi
aijvj

)
+

( n∑
j=1

1

vi
bijvj

)(
1

1− α

)ξi
= 1, (11)

and 0 < ξ < min1≤i≤n ξi.

Before the proof of Theorem 2 is presented, it is worth
making a remark regarding Equation (11).

Remark 3 Equation (11) has three parameters, namely, the
positive vector v, α, and ξi. For any fixed 0 < α < 1, and
any fixed v > 0, (11) is a nonlinear equation with respect
to ξi. The left-hand side of (11) is strictly monotonically
increasing in ξi > 0 and, by (9), is smaller than the right-
hand side for ξi = 0. Therefore, (11) always admits a unique
positive solution ξi.

Proof of Theorem 3: According to Remark 3, Equa-
tion (11) has a unique positive solution ξi. Pick a con-
stant ξ > 0 satisfying 0 < ξ < min1≤i≤n ξi. Since the
left-hand side of (11) is monotonically increasing in ξi, we
have( n∑

j=1

1

vi
aijvj

)
+

( n∑
j=1

1

vi
bijvj

)(
1

1− α

)ξ
< 1,

for all i. It follows that( n∑
j=1

1

vi
aijvj

)(
lim
k→∞

k + 1

k

)ξ
+

( n∑
j=1

1

vi
bijvj

)(
lim
k→∞

k + 1

(1− α)k

)ξ
< 1.

Thus, there exists a sufficiently large number T ′ ∈ N such
that( n∑

j=1

1

vi
aijvj

)(
1

k

)ξ
+

( n∑
j=1

1

vi
bijvj

)(
1

(1− α)k

)ξ
≤
(

1

k + 1

)ξ
, (12)

holds for all k > T ′. On the other hand, from Assumption 2,
there exists a number T ∈ N such that

1

k − dij(k)
≤ 1

(1− α)k
, ∀i, j, ∀k > T,

which implies that(
1

k − dij(k)

)ξ
≤
(

1

(1− α)k

)ξ
, ∀k > T. (13)

Let T = max
{
T, T ′

}
+ 1. Combining (12) and (13) yields( n∑

j=1

1

vi
aijvj

)(
1

k

)ξ
+

n∑
j=1

((
1

vi
bijvj

)(
1

k − dij(k)

)ξ)
≤
(

1

k + 1

)ξ
, (14)

for all k ≥ T . Define

M = max
k=1,...,T

{
kξ ‖x(k)‖v∞

}
.

We now use induction to prove that ‖x(k)‖v∞ ≤ Mk−ξ for
all k ∈ N. From the definition of M , it is clear that the
induction hypothesis is true for k = 1, . . . , T . Next, assume
that it holds for all k up to some m, where m > T . Thus

‖x(k)‖v∞ ≤Mk−ξ, k = 1, . . . ,m, (15)

which implies that

1

vj
xj(m) ≤ M

mξ
,

1

vj
xj(m− dij(m)) ≤ M(

m− dij(m)
)ξ , (16)



for j = 1, . . . , n. We will show that x(m+ 1) satisfies (10).
For each i, we have

1

vi
xi(m+ 1) =

n∑
j=1

1

vi
aijxj(m) +

n∑
j=1

1

vi
bijxj

(
m− dij(m)

)
≤
( n∑
j=1

1

vi
aijvj

)(
M

mξ

)

+

n∑
j=1

((
1

vi
bijvj

)(
M(

m− dij(m)
)ξ))

≤ M

(m+ 1)ξ
,

where we used (16) to get the first inequality, and (14) to
obtain the second inequality. Therefore,

‖x(m+ 1)‖v∞ ≤
M

(m+ 1)ξ
.

This completes the proof.
In Equation (11), ξi is monotonically decreasing with α

and approaches zero as α tends to one. Hence, while the
positive system (1) remains polynomial-rate stable for arbi-
trary unbounded delays satisfying Assumption 2, the decay
rate deteriorates with increasing α. In other words, the decay
rate gets slower if delays grow more quickly as k →∞.

As shown in Theorem 2, the positive system (1) with
unbounded delays satisfying Assumption 2 is polynomial-
rate stable if the LP problem (8) is feasible. Moreover,
any vector v that satisfies the inequalities (8) can be
used to find a guaranteed rate of convergence of (1)
by computing the associated ξ in (11). It is easily seen
that the guaranteed decay rate depends on the choice of
vector v. Next, we will show that the best decay rate
that our results can ensure, along with the associated
vector v can be found via convex optimization. To this
end, we use the logarithmic change of variables zi = ln(vi)
for i = 1, . . . , n. Then, the search for v can be formulated as

maximize ξ
subject to:

ξ < ξi, (17a)

n∑
j=1

(
aij + bij

)
ezj−zi < 1, (17b)

n∑
j=1

aije
zj−zi +

n∑
j=1

bije
zj−zi+(ln 1

1−α )ξi ≤ 1, (17c)

i = 1, . . . , n,

where the last two constraints are (9) and (11) in the
new variables, respectively. The optimization variables are
the vector z = [z1, . . . , zn]T and the decay rate ξ. Since
aij , bij ≥ 0 for all i, j, the last two constraints in (17)
are convex in ξ and z. This implies that this is a convex
optimization problem, hence it can be efficiently solved.

C. Beyond Polynomial-Rate Stability
While the stability of positive linear systems with un-

bounded delays satisfying Assumption 1 may, in general,
only be asymptotic, Theorem 2 demonstrates that if the
delays grow sufficiently slowly, we can guarantee a certain
decay rate. However, the linear bound dij(k) ≤ αk on the
delays used in Assumption 2 is rather arbitrary. To make our
point, we will establish convergence rates for another class
of unbounded delays that do not satisfy Assumption 2. These
delays are described by the following assumption.

Assumption 3 There exist T ∈ N and a scalar 0 < β < 1
such that

dij(k) ≤ k −
(

k

ln(k)

)1−β

, ∀k > T, i, j = 1, . . . , n.

Theorem 3 Consider the positive system (1) under Assump-
tion 3. Suppose that there exists a vector v > 0 satisfying (9).
Let λi be the unique positive solution of the equation( n∑

j=1

1

vi
aijvj

)
+

( n∑
j=1

1

vi
bijvj

)(
1

1− β

)λi
= 1. (18)

Then, every solution x(k) of (1) satisfies the condition

‖x(k)‖v∞ ≤
M(

ln(k + 1)
)λ , k ∈ N,

where M is a positive constant, and 0 < λ < min1≤i≤n λi.

Theorem 3 shows that the decay rate of the positive
system (1) with unbounded delays satisfying Assumption 3
is of the order O

(
(ln(k+1))−λ

)
, and any feasible solution v

to the LP problem (8) can be used to find a guaranteed decay
rate by computing the associated λ in (18). In order to find
the best decay rate that our bound can provide, we can solve
again convex optimization problem (17). The only change is
that we replace ξ with λ, and α with β.

According to theorems 1–3, we see that even though the
delays are very large, the stability condition (8) can be
still necessary and sufficient for asymptotic stability of the
positive system (1). On the other hand, the quicker the delays
are allowed to tend to infinity, the longer the guaranteed
convergence times. Specifically, the positive system (1) is
polynomial-rate stable if Assumption 2 holds, and log-rate
stable if delays satisfy Assumption 3.

IV. AN ILLUSTRATIVE EXAMPLE

Consider the system described by (1) with

A =

[
0.20 0.15
0.10 0.20

]
, B =

[
0.15 0.10
0.10 0.20

]
. (19)

Since A and B are non-negative, by Proposition 1, the
system (19) is positive. Moreover, it is easy to verify
that ρ

(
A+B

)
< 1. Therefore, according to Theorem 1, (19)

is globally asymptotically stable for any delays satisfying
Assumption 1. For example, we take

dij(k) = k −
⌊

k

ln(k + 2)

⌋
, k ∈ N0, i, j = 1, 2,



and the simulation result is shown in Figure 1, from which
one can see that the positive system (19) is indeed asymp-
totically stable. Note that Theorem 1 in [19] can not be
applied in this example, since the delays dij(k) do not satisfy
Assumption 2.
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Fig. 1. Illustration of the asymptotic stability for the positive linear
system (19). The horizontal axis represents the number of iterations and
the vertical axis denotes logarithm of the state variable.

V. CONCLUSIONS

In this paper, we addressed the delay-independent stability
of discrete-time positive linear systems with heterogeneous
unbounded time-varying delays and derived a necessary
and sufficient condition for asymptotic stability. For two
particular classes of unbounded delays, explicit expressions
that bound the decay rate of positive linear systems were
presented. We demonstrated that the best decay rate that
our bounds can provide can be easily found via convex
optimization techniques. Finally, the validity of the results
was demonstrated via a simple example.
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