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Abstract— This paper presents a unifying convergence result
for asynchronous iterations involving pseudo-contractions in the
block-maximum norm. Contrary to previous results which only
established asymptotic convergence or studied simplified models
of asynchronism, our result allows to bound the convergence
rates for both partially and totally asynchronous implementa-
tions. Several examples are worked out to demonstrate that our
theorem recovers and improves on existing results, and that it
allows to characterize the solution times for several classes of
asynchronous iterations that have not been addressed before.

I. INTRODUCTION

Asynchronous algorithms appear naturally in parallel and
distributed systems and are heavily exploited applications
ranging from large-scale linear algebra and optimization to
distributed coordination of small embedded devices. Allow-
ing nodes to operate in an asynchronous manner simplifies
the implementation of distributed algorithms and eliminates
the overhead associated with synchronization. However, care
has to be taken, since asynchrony runs the risk of rendering
an otherwise stable iteration unstable.

The dynamics of asynchronous iterations are much richer
than their synchronous counterparts, and quantifying the im-
pact of asynchrony on the convergence properties of iterative
algorithms remains challenging. Some of the first results on
the convergence of asynchronous iterations were derived by
Chazan and Miranker [1], who studied chaotic relaxations
for solving linear systems of equations. Several authors have
proposed extensions of this pioneering work to nonlinear
iterations involving maximum norm contractions (e.g., [2],
[3]) and for monotone iterations (e.g., [4], [5]). Powerful
convergence results for broad classes of asynchronous algo-
rithms, including maximum norm contractions and monotone
mappings, under different assumptions on communication
delays and update rates were presented by Bertsekas [6]
and Bertsekas and Tsitsiklis [7]. Most of the results in the
literature only guarantee asymptotic convergence. This paper
complements the existing work by developing convergence
theorems that characterize the rate of convergence of asyn-
chronous iterations and quantify how these rates depend on
the update intervals and information delays in the system.

We focus on iterations involving block-maximum norm
pseudo-contractions under the general asynchronous model
introduced in [6], [7], which allows for heterogeneous
and time-varying update rates and communication delays.
Such iterations arise in a variety of algorithms, such as
certain classes of linear fixed-point iterations and gradient
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descent methods [7], [8], optimum multiuser detection al-
gorithms [9], distributed algorithms for averaging [10], and
power control algorithms in wireless networks [11]–[13].
Our main theorem provides a powerful approach for char-
acterizing the rate of convergence of totally asynchronous
implementations, where both the update intervals and com-
munication delays may grow unbounded. When specialized
to partially asynchronous algorithms (where the update inter-
vals and communication delays have a fixed upper bound),
or to particular classes of unbounded delays and update
intervals, our approach allows to explicitly quantify how the
degree of asynchronism affects the convergence rates.

The paper is organized as follows. Section II reviews the
partially and totally asynchronous models of computation
and recalls some basic results about fixed-point iterations
involving pseudo-contractions in the block-maximum norm.
Section III presents our main results on the convergence rates
of asynchronous iterations, and Section IV demonstrates how
the results can be used to analyze the impact of asynchronism
on the convergence rate of power control algorithms in
wireless networks. Finally, Section V concludes the paper.

A. Notation and Preliminaries

Here, we introduce the notation and review the key def-
initions that will be used throughout the paper. We let R,
N, and N0 denote the set of real numbers, natural numbers,
and the set of natural numbers including zero, respectively.
The largest integer less than or equal to real number x
is indicated by bxc. The non-negative orthant of the n-
dimensional real space Rn is represented by Rn+. For each
vector x = (x1, . . . , xm) ∈ Rn with xi ∈ Rni , the block-
maximum norm is defined by

‖x‖wb = max
1≤i≤m

‖xi‖i
wi

,

where wi is a positive scalar, and ‖ · ‖i is a norm on Rni .
When ni = 1 for all i = 1, . . . ,m, the block-maximum norm
reduced to the maximum norm defined by

‖x‖w∞ = max
1≤i≤m

|xi|
wi

.

A sequence {x(t)} ∈ Rn is said to converge geometrically
(at a linear rate) to x? if there exists a ρ ∈ (0, 1) such that

lim
t→∞

‖x(t+ 1)− x?‖
‖x(t)− x?‖

= ρ,

where ‖ · ‖ is some norm on Rn. For a matrix A ∈ Rn×n,
aij denotes the entry in row i and column j. The spectral
radius of A is the largest magnitude of its eigenvalues.



II. TOTALLY ASYNCHRONOUS ALGORITHMS INVOLVING
BLOCK-MAXIMUM NORM PSEUDO-CONTRACTIONS

Consider an iterative algorithm on the form

xi
(
t+ 1

)
= fi

(
x1(t), . . . , xm(t)

)
, t ∈ N0, (1)

where i = 1, . . . ,m, xi ∈ Rni , and fi : Rn → Rni are
functions of n variables with n = n1 + . . . + nm. A vector
x? = (x?1, . . . , x

?
m) ∈ Rn is called a fixed point of the

function f(x) = (f1(x), . . . , fm(x)) if

x?i = fi(x
?
1, . . . , x

?
m), ∀i = 1, . . . ,m.

If fi is continuous at x? and the sequence {xi(t)} generated
by (1) converges to x?i for every i, then x? is a fixed point
of f [7]. Therefore, the iteration (1) can be viewed as a
network of m nodes, each responsible for updating one of
the m subvectors of x so as to find a global fixed point. The
function f is called a pseudo-contraction with respect to the
block-maximum norm if there exists c ∈ [0, 1) such that

‖f(x)− x?‖wb ≤ c ‖x− x?‖wb , ∀x ∈ Rn,

where x? is a fixed point of f . The scalar c is called the
contraction modulus of f . Pseudo-contractions have at most
one fixed point, to which the iterates produced by (1)
converge geometrically [7].

The algorithm described by (1) is synchronous in the
sense that all nodes update their states at the same time and
have access to the states of all other nodes. Synchronous
execution is possible if there are no communication faults
or delays in the network and all nodes operate in synch
with a global clock. In practice, these requirements are hard
to satisfy: local clocks in different nodes tend to drift and
communication latency between nodes can be significant
and unpredictable. Synchronization can also be accomplished
through communication primitives such as MPIs barrier,
which enforces nodes to wait until all other nodes are ready
to carry out the next iteration. The drawback with insisting
on synchronous operation in an inherently asynchronous
environment is that nodes will spend a significant time idle,
especially if some nodes compute faster because of, e.g.,
higher processor power or smaller workload per iteration.

In an asynchronous implementation of the iteration (1),
each node updates its state at its own pace, using possibly
outdated information from the other nodes. Following the
notation in [7], we write such iterations as

xi(t+ 1) =

{
fi
(
x1(τ i1(t)), · · · , xm(τ im(t))

)
, t ∈ T i,

xi(t), t 6∈ T i,
(2)

where T i is the set of times when node i executes an update,
and τ ij(t) is the time at which the most recent version of xj
available to node i at time t was computed. We can view
t− τ ij(t) as the communication delay from node j to node i
at time t. Note that 0 ≤ τ ij(t) ≤ t for all t ∈ N0. The
synchronous algorithm (1) is a special case of (2) where
τ ij(t) = t, and T i = N0 for all i and j, and all t ∈ N0.

Based on the assumptions on the communication delays
and update rates, asynchronous algorithms are classified into
totally asynchronous and partially asynchronous:

Assumption 1 (Total Asynchronism [7]) For the asyn-
chronous algorithm (2), there holds:

a) the sets T i are infinite subsets of N0 for every i;
b) limk→∞ τ ij(tk) = ∞ for all i and j, where {tk} is a

sequence of elements of T i that tends to infinity.

Loosely speaking, Assumption 1a) guarantees that no node
ceases to execute its update while Assumption 1b) guarantees
that old information is eventually purged out of the network.
Under total asynchronism, the delay t − τ ij(t) can become
unbounded as t increases. This is the main difference with
partially asynchronous algorithms, where delays are assumed
bounded; in particular, the following assumption holds.

Assumption 2 (Partial Asynchronism [7]) For the asyn-
chronous algorithm (2), there exists a positive integer B such
that:

a) For every i and for every t ∈ N0, at least one of the
elements of the set {t, t+ 1, . . . , t+B − 1} belongs to
T i.

b) There holds 0 ≤ t− τ ij(t) ≤ B− 1, for all i and j, and
all t ∈ N0 belonging to T i.

c) There holds τ ii (t) = t for all i and t ∈ T i.

Assumptions 2a) and 2b) ensure that both the time interval
between updates executed by each node and the communi-
cation delays are bounded. When B = 1, this model reduces
to the synchronous algorithm (1). Assumption 2c) states that
nodes always use the latest version of their own state.

While convergent synchronous algorithms may diverge in
the face of asynchronism, it has been shown in [7] that
the asynchronous iteration (2) involving pseudo-contractions
in the block-maximum norm also converges to the fixed
point under total asynchronism, i.e, it can tolerate arbitrary
large communication and computation delays. However, [7]
did not quantify how bounds on the time delays and up-
date rates of nodes affect the convergence rate of (2).
One could expect that the convergence rates would become
slower with increasing communication delays or with more
infrequent update rates. Our main objective in this paper
is therefore to give explicit estimates of the convergence
rate of asynchronous algorithms involving block-maximum
norm pseudo-contractions under different assumptions on
communication delays and update rates.

III. MAIN RESULTS

We will now develop a theorem that provides guaranteed
convergence rates of the asynchronous algorithm (2) under
various classes of total asynchronism. Our proof uses a
continuous decreasing function λ : R+ → R+ satisfying

lim
t→∞

λ(t) = 0,



and shows that for all i = 1, . . . ,m, and for all t ∈ N0,

1

wi
‖xi(t)− x?i ‖i ≤Mλ(tik), t ∈ (tik, t

i
k+1],

where M is a positive constant, and tik and tik+1 are two
consecutive elements of T i. The function λ(t) quantifies how
fast the sequence of vectors generated by (2) converges to
the fixed point x?. For example, if λ(t) = ρt with ρ ∈ (0, 1),
{xi(tik)} converges geometrically to x?i ; and if λ(t) = t−ξ

with ξ > 0, then ‖xi(tik) − x?i ‖i is upper bounded by a
polynomial function of time. Similar to the asynchronous
iterates themselves, the upper bound on the convergence rate
is left unchanged when t /∈ T i and decreases after update
times; see Figure (1).

t
Mλ(t)

tik−1

Mλ(tik−1)

tik

Mλ(tik)

tik+1

Mλ(tik+1)

Fig. 1. Illustration of the upper bound on the convergence rate of the
asynchronous algorithm (2) for every node i.

Theorem 1 For the asynchronous algorithm (2), suppose
that the following conditions hold:
i) f is a pseudo-contraction with contraction modulus c

with respect to the block-maximum norm.
ii) There exist functions βi : R+ → R+ and ∆ ∈ N0 such

that for all t ≥ ∆,

t− tik ≤ βi(t) ≤ t, t ∈ (tik, t
i
k+1], (3)

where tik and tik+1 are two consecutive elements of T i.
iii) There is a decreasing function λ : R+ → R+ such that

lim
t→∞

λ(t) = 0,

and that for all i and j,

c lim
t→∞

λ
(
τ ij(t)− βj(τ ij(t))

)
λ(t)

< 1. (4)

Then, the sequence of vectors generated by (2) under total
asynchronism satisfies

1

wi
‖xi(t)− x?i ‖i ≤Mλ(tik), t ∈ (tik, t

i
k+1],

for all i and all t ∈ N0, where M is a positive constant.

Note that βi(tk+1) is an upper bound on the time interval
between node i’s kth and k+1st updates. Letting βi(t) = β,
β ∈ N, means that node i performs at least one update

during any time interval of length β. In general, βi(t) may be
unbounded (we will will consider such a case in Example 1).

Proof: (of Theorem 1)
For each i = 1, . . . ,m, let ti0 be the first element of T i.

From Assumption 1b), there exists a time t̂ ∈ N0 large
enough such that for all i and j,

τ ij(t) ≥ max
{

∆, max
1≤i≤m

{ti0}+ 1
}
, ∀t ≥ t̂. (5)

By (4), we can find a sufficiently large time t̃ ∈ N0 so that

cλ
(
τ ij(t)− βj(τ ij(t))

)
≤ λ

(
t
)
, ∀t ≥ t̃. (6)

Let t = max{ t̂, t̃ }, and define

M =
‖x(0)− x?‖wb

λ(t)
.

According to Proposition 2.1 of Section 6.2 in [7], the
sequence {x(t)} generated by (2) satisfies

1

wi
‖xi(t)− x?i ‖i ≤ ‖x(0)− x?‖wb , ∀t ∈ N0,

for all i. Thus,

max
0≤t≤t

{
1

wi

‖xi(t)− x?i ‖i
λ(t)

}
≤ max

0≤t≤t

{
‖x(0)− x?‖wb

λ(t)

}
≤ ‖x(0)− x?‖wb

λ(t)

= M,

where for the second inequality, we use the fact that λ(t) is
decreasing on R+. It follows that

1

wi
‖xi(t)− x?i ‖i ≤Mλ(t), ∀t ∈ {0, . . . , t}.

For each tik ∈ T i, we have λ(t) ≤ λ(tik) when t ≥ tik. Thus,

1

wi
‖xi(t)− x?i ‖i ≤Mλ(tik), t ∈ (tik, t

i
k+1], (7)

for all t ∈ {0, . . . , t}. We will show by induction that (7)
also holds for all t ≥ t.
Assume for induction that (7) holds for all t up to some t′,
where t′ ≥ t. Let tik′ and tik′+1 be two consecutive elements
of T i such that t′ ∈ (tik′ , t

i
k′+1]. Using the induction

hypothesis, we have

1

wi
‖xi(t′)− x?i ‖i ≤Mλ(tik′). (8)

We now prove that xi(t′ + 1) satisfies (7).
Case 1) If t′ /∈ T i, then t′ + 1 ∈ (tik′ , t

i
k′+1]. Moreover,

from (2), xi(t′ + 1) = xi(t
′). It follows from (8) that

1

wi
‖xi(t′ + 1)− x?i ‖i =

1

wi
‖xi(t′)− x?i ‖i ≤Mλ(tik′).

Therefore, in this case, (7) is true for t′ + 1.



Case 2) If t′ ∈ T i, or, equivalently, t′ = tik′+1, then

1

wi
‖xi(t′ + 1)− x?i ‖i

=
1

wi
‖fi
(
x1(τ i1(t′)), · · · , xm(τ im(t′))

)
− x?i ‖i

≤ c
∥∥(x1(τ i1(t′)), · · · , xm(τ im(t′))

)
− x?

∥∥w
b

= c max
1≤j≤m

{
1

wj
‖xj(τ ij(t′))− x?j‖j

}
, (9)

where the inequality holds, since f is a pseudo-contraction
with respect to the block-maximum norm. As t′ ≥ t ≥ t̂, (5)
implies that τ ij(t

′) > tj0 for each j. Let tjkτ and tjkτ+1 be two
consecutive elements of T j such that

τ ij(t
′) ∈ (tjkτ , t

j
kτ+1].

Since τ ij(t
′) ≤ t′, the induction hypothesis yields

1

wj
‖xj(τ ij(t′))− x?j‖i ≤Mλ(tjkτ ), (10)

for all j. Moreover, (5) also implies that τ ij(t
′) ≥ ∆. It

follows from (3) that

tjkτ ≥ τ
i
j

(
t′
)
− βj

(
τ ij(t

′)
)
≥ 0.

As λ(t) is decreasing on R+, this in turn implies

λ
(
tjkτ
)
≤ λ

(
τ ij(t

′)− βj(τ ij(t′))
)
. (11)

Substituting (10) into (9), then using (11), we obtain

1

wi
‖xi(t′ + 1)− x?i ‖i ≤ cM max

1≤j≤m
λ(tjkτ )

≤ cM max
1≤j≤m

λ
(
τ ij(t

′)− βj(τ ij(t′))
)

≤Mλ(t′)

= Mλ(tik′+1), (12)

where the last inequality follows from (6). Note that

t′ + 1 = tik′+1 + 1 > tik′+1,

implying that t′ + 1 ∈ (tik′+1, t
i
k′+2]. It follows from (12)

that (7) holds for t′+ 1. The induction proof is complete.
According to Theorem 1, any function λ(t) satisfying

condition (iii) can be used to estimate the convergence
rate of the totally asynchronous algorithm (2). From (4),
it is clear that the admissible choices for λ(t) depend on
the asymptotic behaviour of βi(t) and τ ij(t). This means
that the rate at which the nodes execute their updates as
well as the way communication delays tend large affects the
convergence rate of (2). To clarify this statement, we will
analyze a few special cases in detail. First, we consider the
partially asynchronous model. The following result gives a
bound on the convergence rate of asynchronous algorithms
involving block-maximum norm pseudo-contractions under
this model of asynchronicity.

Theorem 2 Consider the iteration (2) under partial asyn-
chronism. Assume that f is a block-maximum norm pseudo-
contraction with contraction modulus c. Then, the sequence

of vectors generated by (2) satisfies

1

wi
‖xi(t)− x?i ‖i ≤Mρt

i
k , t ∈ (tik, t

i
k+1], (13)

for all i and all t ∈ N0, where M is a positive constant, tik
and tik+1 are two consecutive elements of T i, and

ρ = c
1

2B−1 (14)

Proof: According to Assumption 2a), we have

t− tik ≤ B ≤ t, t ∈ (tik, t
i
k+1],

for all t ≥ B. Thus, we can choose βi(t) = B for all i. Pick
a constant ρ̂ such that

ρ̂ ∈ (ρ, 1), (15)

where ρ is defined by (14). Let λ(t) = ρ̂t, t ≥ 0. Clearly,
λ(t) is decreasing on R+. Moreover, for all i and j, we
obtain

c lim
t→∞

λ
(
τ ij(t)− βj(τ ij(t))

)
λ(t)

= c lim
t→∞

ρ̂τ
i
j (t)−B

ρ̂t

≤ c lim
t→∞

ρ̂t+1−2B

ρ̂t

< cρ1−2B = 1,

where the first inequality uses the fact that under Assump-
tion 2b), t + 1 − B ≤ τ ij(t) for t ∈ N0. The last equality
uses (14). It follows that condition (iii) of Theorem 1
holds for all ρ̂ satisfying (15). Hence, the sequence {x(t)}
generated by (2) satisfies (13).

Theorem 2 shows that block-maximum norm pseudo-
contractions still converge geometrically under partial asyn-
chronism assumption, and provides an explicit bound on the
impact that an increasing delay has on the convergence rate.
More precisely, c1/(2B−1) is monotonically increasing with
B and approaches one as B tends to infinity. Hence, while
the asynchronous algorithm (2) involving block-maximum
norm pseudo-contractions remains geometrically stable for
arbitrary bounded communication delays, the convergence
rate deteriorates with increasing delays.

Contrary to the typical upper bounds on the convergence
rate, the guaranteed bounds provided by Theorem 1 do not
decrease at every time step, but only after update times tik.
Therefore, our estimation of convergence rate, in general, de-
pends on how fast the sequence {tik} grows large. According
to Theorem 2, the sequence {‖xi(tik)− x?i ‖i} generated by
the partially asynchronous iteration (2) converges at a linear
rate ρ. Under partial asynchronism, it holds that

0 ≤ t−B ≤ tik, t ∈ (tik, t
i
k+1],

for all t ≥ B, which implies that

Mρt
i
k ≤Mρt−B = M ′ρt, t ∈ (tik, t

i
k+1],



where M ′ = Mρ−B . It follows from (13) that
1

wi
‖xi(t)− x?i ‖i ≤M ′ρt, ∀t ≥ B,

for all i. This shows that partially asynchronous iterations
attains a rate of O(ρt).

Under partial asynchronism, both update rates and com-
munication delays are bounded. However, Theorem 1 can
also be used to find guaranteed convergence rates of asyn-
chronous iterations with unbounded communication delays
and update intervals. To make our point, we establish con-
vergence rates for a particular class of totally asynchronous
algorithms described by the following assumption:

Assumption 3 For the asynchronous algorithm (2), there
exist positive integer B, a scalar α ∈ [0, 1), and tα ∈ N0

such that, for each i and each t ∈ T i, there holds:
a) There exists t′ ∈ T i for which 1 ≤ t′ − t ≤ B.
b) 0 ≤ t − τ ij(t) ≤ αt, for all j ∈ {1, . . . , p}, and all

t ≥ tα.

Note that delays satisfying Assumption 3b) may be un-
bounded (take, for example, τ ij(t) = b0.2tc, t ∈ N0). The
associated convergence result now reads as follows.

Theorem 3 Consider the iteration (2) under Assumption 3,
and assume that f is a pseudo-contraction with contraction
modulus c with respect to the block-maximum norm. Then,
the sequence {x(t)} generated by (2) satisfies

1

wi
‖xi(t)− x?i ‖i ≤M

(
tik
B

+ 1

)−ξ
, t ∈ (tik, t

i
k+1], (16)

for all i and all t ∈ N0, where M is a positive constant, tik
and tik+1 are two consecutive elements of T i, and

ξ =
ln c

ln(1− α)
. (17)

Proof: Similar to the proof of Theorem 2, we choose
βi(t) = B for all i = 1, . . . ,m. Let

λ(t) =

(
t

B
+ 1

)−ξ̂
, t ≥ 0,

where ξ̂ is a positive constant satisfying

ξ̂ ∈ (0, ξ). (18)

We then have

c lim
t→∞

λ
(
τ ij (t)− βj(τ ij (t))

)
λ(t)

= c lim
t→∞

(
t/B + 1

(τ ij (t)−B)/B + 1

)ξ̂
≤ c lim

t→∞

(
t+B

(1− α)t

)ξ̂
<

c

(1− α)ξ
= 1,

where for the first inequality, we use the fact that

0 ≤ (1− α)t ≤ τ ij(t), t ≥ tα.

The second inequality follows from (18). Therefore, accord-
ing to Theorem 1, the sequence {x(t)} generated by (2)
satisfies (16).

According to Theorem 3, the convergence rate of the asyn-
chronous algorithm (2) under unbounded delays satisfying
Assumption 3 is upper bounded by a polynomial function of
time. From (17), we can see that the magnitude of the upper
delay bound, α, affects ξ. Specifically, ξ is monotonically
decreasing with α and approaches zero as α tends to one.
In addition, the upper bound on the convergence rate is
inversely proportional to B. It follows that the convergence
rates get increasingly slower as either delays are allowed to
grow quicker when t→∞ or nodes execute less frequently.

The guaranteed bounds provided by Theorems 2 and 3 are
derived under the assumption that the update intervals of all
nodes are bounded by a constant B, i.e.,

tik+1 − tik ≤ B, ∀k, i (19)

However, Theorem 1 allows time-varying upper bounds on
both update rates and communication delays. Rather than
developing theorems for specific combinations of update
rates and time delays, we illustrate the principle on a simple
example.

Example 1 Consider the following asynchronous iteration

x(t+ 1) =

{
1
2x(t), t ∈ T,
x(t), t 6∈ T,

(20)

where x(t) ∈ R, and T = {2k | k ∈ N0}. In terms of (2),
f(x) = 1

2x. Note that f is a pseudo-contraction with c = 1
2

and fixed point x? = 0. For any two consecutive elements
of T , we have tk+1 − tk = 2k, k ∈ N0. Thus, there is no B
satisfying (19). However, for all t ∈ N,

t− tk ≤
1

2
t ≤ t, t ∈ (tk, tk+1],

so (3) holds with β(t) = t/2. As λ(t) = 1/t satisfies
condition (iii) of Theorem 1, it follows that

|x(t)| ≤ M

tk
, t ∈ (tk, tk+1].

One can also verify that the sequence {x(t)} generated
by (20) is given by

x(t) =
x(0)/2

tk
, t ∈ (tk, tk+1],

for all t ≥ 2. This shows that, in this example, both the
iteration (20) and our guaranteed upper bound have the same
convergence rate.

As also stressed in [14], very few results on convergence
rates of asynchronous algorithms have appeared in the liter-
ature (see e.g., [2], [7] for exceptions). In particular, [7, Sec-
tion 6.3] showed that if delays are bounded and T i = N0 for
all i (tik+1− tik = 1, ∀i, k), then asynchronous iterations in-
volving block-maximum norm pseudo-contractions converge
geometrically to the fixed point. Theorems 2 and 3 as well as
Example 1 demonstrate that not only can Theorem 1 recover



the results in [7], but it also quantifies the convergence rates
of asynchronous iterations with unbounded upper bounds on
update intervals and communication delays.

IV. ASYNCHRONOUS OPTIMIZATION ALGORITHM FOR
POWER CONTROL IN WIRELESS

Next, we will use our main results to analyze the conver-
gence of asynchronous power control algorithms in wireless
networks. To this end, consider a wireless network where n
mobile users communicate over the same frequency band.
Since concurrent transmissions interfere with each other,
users must transmit with sufficient power to overcome the
interference caused by the others. However, increasing the
transmit power of an individual user will not only increase its
own power consumption (and hence drain the battery of the
device quicker), but it will also generate more interference
to the other users. Thus, a natural design goal is to minimize
the total power consumption while guaranteeing that all users
overcome the interference caused by the others. The optimal
power allocation is then the one that solves the problem:

min
p

p

subject to pi ≥ Ii(p), for all i = 1, . . . , n. (21)

Here, p = (p1, . . . , pn) ∈ Rn, pi ∈ R is the transmit power
of user i, and Ii(p) is the interference function modeling the
effective interference of other users that user i must over-
come. The definition of Ii(p) depends on the communication
technology, network configuration and user requirements; see
e.g. [11], [15] for a wide range of examples. One of the
simplest interference functions is the linear one, given by

Ii(p) = γi

∑
j 6=i gijpj + hi

gii
, (22)

where gij ≥ 0 is the channel gain between user j and the
receiver of user i, γi is the target Signal-to-Interference-and-
Noise Ratio (SINR) of user i, and hi is the background noise
at the receiver of user i.

Linear and several important nonlinear interference func-
tions share common properties that allow them to be ana-
lyzed in the framework of contractive interference functions.

Definition 1 ([11]) A function I : Rn+ → Rn+ is said to be
a c-contractive interference function if for all p ≥ 0 and for
all i = 1, . . . , n, it satisfies the following conditions:
• Positivity: Ii(p) > 0.
• Monotonicity: If p ≥ p′, then Ii(p) ≥ Ii(p′).
• Contractivity: There exists a constant c ∈ [0, 1), and a

vector v > 0 such that for all ε > 0,

Ii(p+ εv) ≤ Ii(p) + cεvi.

Contractive interference functions are contractions (and
hence pseudo-contractions) w.r.t. the maximum norm [11].
Moreover, when the interference function I(p) is contractive,
the optimization problem (21) is feasible, and its unique
solution is given by the fixed point of the iteration

pi
(
t+ 1

)
= Ii

(
p(t)

)
, t ∈ N0, (23)

where i = 1, . . . , n [11]. The computation of the optimal
transmit power by this iteration is simpler than using tradi-
tional Lagrangian methods, since no dual variables need to be
stored and manipulated. Each user is only required to update
its transmit power at every time step, using information of the
transmit powers used by all users in the previous iteration.

In real-world networks, communication delays are inven-
tible, and clock drift may cause some users to execute
more iterations than others. When communication delays and
asynchronous execution are accounted for, the power control
algorithm (23) becomes

pi(t+ 1) =

{
Ii
(
p1(τ i1(t)), · · · , pn(τ in(t))

)
, t ∈ T i,

pi(t), t 6∈ T i.
(24)

Since contractive interference functions are pseudo-
contractions with respect to the maximum norm, Theorem 1
allows us to quantify the convergence rate of (24) under
different classes of communication delays and update rates.
Consider, for example, a situation where all mobiles update
their powers at least once during any interval of length B,
and there exists a positive integer Dmax such that

t−Dmax ≤ τ ij(t) ≤ t, t ∈ N0, (25)

holds for all i and j. The following result gives a bound on
the convergence rate of (24) under assumptions above.

Corollary 1 If I(p) is c-contractive, then the asynchronous
power control algorithm (24) satisfies

1

vi
|pi(t)− p?i | ≤Mρt

i
k , t ∈ (tik, t

i
k+1], (26)

for all i = 1, . . . , n, and all t ∈ N0, where M is a positive
constant, tik and tik+1 are two consecutive elements of T i,
and ρ = c

1
B+Dmax .

In [15], it has been shown that for a class of inter-
ference functions, called standard interference functions,
the asynchronous power control algorithm (24) converges
asymptotically to the optimal power vector even when it is
executed totally asynchronously. However, the impact of the
communication delay and the update rate on the convergence
rate of (24) has been missing in [15]. Several important
standard interference functions proposed in the literature
(for example, linear, macro diversity and minimum power
assignment interference functions) are also contractive [11].
In [11], the convergence rate of asynchronous power control
algorithms involving contractive interference functions was
investigated under the assumption that all mobile users
update their powers at each iteration (T i = N, for all i)
and the communication delay is guaranteed to be bounded.
In contrast, this paper develops tools that allow to quantify
the convergence rate of (24) under various assumptions
on communication delays and update rates. Specifically,
Corollary 1 shows that (24) converges geometrically if the
communication delays and update rates are bounded. An
analogue corollary of Theorem 3 would demonstrate that the



convergence rate of (24) is upper bounded by a polynomial
function of time if Assumption 3 holds.

The following numerical example illustrates the accuracy
of our guaranteed bounds on the convergence rate of
asynchronous power control algorithms.

Example 2 We consider the asynchronous power control al-
gorithm (24) with linear interference functions. Four mobile
users share a channel with link gain matrix G = [gij ] where

G =


0.4000 0.0082 0.0419 0.0579
0.0160 0.8530 0.0424 0.0043
0.0200 0.0017 0.1405 0.0010
0.1030 0.0036 0.0104 0.4050

× 10−3.

The SINR threshold and the background noise for each user
is set to γi = 3 and hi = 0.04 mWatts, respectively.
Let G = [gij ] be an 4 × 4 matrix with gii = 0 and
gij = γigij/gii for j 6= i. Since the spectral radius of G
is 0.7146 < 1, the linear interference function is 0.7146-
contractive with respect to the maximum norm ‖·‖v∞, where
v = (0.59, 0.14, 0.38, 0.67)T is the right Perron-Frobenius
eigenvector of G [11].

To demonstrate the flexibility of our framework, assume
that each user i executes (24) under the assumptions that:
• T i = {ik |k ∈ N0};
• τ ii (t) = 0, for all i and all t ∈ N0;
• For all i and j with j 6= i,

τ ji (t) =

{
t, 0 ≤ t ≤ 4,

t− 0.5j
(
1 + (−1)t

)
, 5 ≤ t.

It is easy to verify that the time interval between any two con-
secutive updates executed by all nodes is upper bounded by
B = 4, and (25) holds with Dmax = 4. Therefore, according
to Corollary 1, the asynchronous algorithm (24) converges
geometrically to the unique fixed point. In particular, the
transmit power of each user satisfies (26) with

ρ = (0.7146)
1
8 = 0.9588.

Figure 2 gives the simulation results of the theoretical bound
obtained from Corollary 1 and the actual convergence rate
of (24) for users 3 and 4.

Fig. 2. Upper bound and actual convergence rate of (24) for user 3 (left)
and user 4 (right) in the wireless network described in Example 2. The
horizontal axis represents the number of iterations and the vertical axis
shows 1

vi
|pi(t)− p?i |, i = 3, 4 (in logarithmic scale).

V. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presented a convergence result for asyn-
chronous iterations involving pseudo-contractions in the

block-maximum norm. Contrary to most results in the lit-
erature, our theorems allow to characterize the rates of
convergence of asynchronous iterations and quantify how
these rates depend on the update intervals and information
delays in the system. We demonstrated how our results can be
used to analyze the impact of asynchrony on the convergence
rate of power control algorithms in wireless networks.

There are several open issues for future work, such as
attempting to derive convergence rates of asynchronous
iterations involving monotone mappings [16], pseudo-
contractions with respect to the Euclidean norm [17], and
non-expansive mappings [18], much as was done in [19] for
the case of non-expansive linear iterations with delays.
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