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Abstract— Recent results in the literature have shown that
particular classes of positive systems are insensitive to time-
varying delays, giving the impression that the delay-insensitivity
property stems from the fact that the system is positive.
Nonetheless, it has been lately shown that a linear cone-invariant
system is insensitive to time-varying delays, asserting that the
property of delay-independence may stem from the fact that
the system is cone-invariant rather than positive. In this paper,
we provide additional evidence for this claim by analyzing the
stability of cone-invariant monotone systems with bounded time-
varying delays. We present a set of sufficient conditions for
delay independent stability of discrete- and continuous-time
cone-invariant monotone systems. For linear cone-invariant
systems, we show that the stability conditions we have derived
are also necessary.

I. INTRODUCTION

Roughly speaking, a system is called cone invariant if
a cone is an invariant set for the system. Such systems
are encountered in a wide range of application areas, in-
cluding epidemiology, multi-agent systems, and wireless
networks [1]–[8]. Positive systems constitute a special case
of cone-invariant systems, where the nonnegative orthant
(which forms a cone) is an invariant set [9]–[13].

Physical systems are usually modeled based on the as-
sumption that their evolution depends only on the current
values of the state variables. However, in many cases, the
system state may also be affected by previous values of the
states. For example, delays are inherent in distributed sys-
tems due to communication and processing delays, forcing
subsystems to act and update their internal states based on
delayed information. For this reason, the study of stability
and control of dynamical systems with delayed states is
important and has attracted a lot of interest. It is well known
that time delays limit the performance of closed-loop control
systems and may even render an otherwise stable system
unstable [14]. However, recent results have revealed that
linear and particular classes of nonlinear positive systems are
insensitive to bounded time-varying delays in the sense that a
delayed system is asymptotically stable if the corresponding
delay-free system is asymptotically stable [15]–[25].

Recent work by Tanaka et al. [26] and Shen and
Zheng [27] show that the stability of continuous-time linear
cone-invariant systems is insensitive to bounded time-varying
delays. These results expand the class of systems that are
insensitive to delays and lead to the conjecture that the
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insensitivity to time delays is due to cone-preservation, for
which nonnegativity serves as a special case.

In this work, we provide additional evidence for this con-
jecture, by establishing delay-independent stability of non-
linear cone-invariant systems which are monotone. Mono-
tone systems are those for which trajectories preserve a
partial ordering on initial states. The theory of monotone
dynamical systems is still an active field of research, see for
example [28]–[32]. At the core of our paper, we derive a
set of sufficient conditions for delay-independent stability
of continuous- and discrete-time cone-invariant monotone
systems with bounded time-varying delays. We demonstrate
that for linear cone-invariant systems, the stability conditions
we have developed are also necessary

The rest of the paper is organized as follows. In Section II,
the notation and preliminaries needed for the development
of our results are presented. The main results for discrete-
and continuous-time monotone systems are presented in
Sections III and IV, respectively. Finally, concluding remarks
are given in Section V.

II. NOTATION AND PRELIMINARIES

A. Notation

Vectors are written in bold lower case letters and matrices
in capital letters. We let N and N0 denote the set of natural
numbers and the set of natural numbers including zero,
respectively. The non-negative orthant of the n-dimensional
real space Rn is represented by Rn+. For a real interval [a, b]
and an open set W ⊆ Rn, C

(
[a, b],W

)
denotes the space of

all real-valued continuous functions on [a, b] taking values
in W . For a set K ⊆ Rn and a matrix A ∈ Rm×n, by AK
we mean that AK := {Ax : x ∈ K}.

B. Preliminaries

Next, we review the key definitions and results necessary
for developing the main results of this paper. We start with
the definition of a cone.

Definition 1 A set K ⊆ Rn is called a cone if, for every
x ∈ K and θ ∈ R+, we have θx ∈ K.

A cone K ⊆ Rn is said to be solid if its interior, denoted by
int K, is nonempty. It is called pointed if

K ∩ (−K) = {0}.

Definition 2 A cone K ⊆ Rn is called a proper cone, if it
is convex, closed, solid, and pointed.



A proper cone K ⊆ Rn induces partial orderings ≤K and
<K on Rn as follows:

x ≤K y ⇐⇒ y − x ∈ K,
x <K y ⇐⇒ y − x ∈ int K.

When K = R+, the partial orderings ≤K and <K are the
usual ordering ≤ and < on R, respectively.

Definition 3 Given a cone K ⊆ Rn, the set

K? =
{
y ∈ Rn | x>y ≥ 0 for all x ∈ K

}
is called the dual cone of K.

The following definition introduces K-positive and cross-
positive matrices.

Definition 4 Let A ∈ Rn×n and let K ⊆ Rn be a proper
cone. The square matrix A is said to be cross-positive on K
if for any x ∈ K and any y ∈ K? with y>x = 0, we have
y>Ax ≥ 0. It is called K-positive if AK ⊆ K.

Note that Metzler and non-negative matrices are cross-
positive and K-positive on the positive orthant K = Rn+,
respectively. We now define cooperative vector fields.

Definition 5 A vector field f : K → Rn which is continu-
ously differentiable on the proper cone K ⊆ Rn is said to be
cooperative with respect to K if the Jacobian matrix ∂f

∂x (a)
is cross-positive on K for all a ∈ K.

The next definition introduces sub-homogeneous vector
fields.

Definition 6 A vector field f : K → Rn is said to be sub-
homogeneous of degree α > 0 with respect to K if

f(λx) ≤K λαf(x), ∀x ∈ K, ∀λ ≥ 1.

Finally, we define order-preserving vector fields.

Definition 7 A vector field g : K → Rn is called order-
preserving on K if for any x,y ∈ K such that x ≤K y, it
holds that g(x) ≤K g(y).

III. DISCRETE-TIME MONOTONE SYSTEMS

A. Problem Statement

Consider the discrete-time nonlinear dynamical system

Σ :

{
x
(
t+ 1

)
= f

(
x(t)

)
+ g

(
x(t− τ(t))

)
, t ∈ N0,

x
(
t
)

= ϕ
(
t
)
, t ∈ {−τmax, . . . , 0},

(1)

where x(t) ∈ Rn is the state variable, f, g : K → Rn
are continuous vector fields on the proper cone K ⊆ Rn,
ϕ : {−τmax, . . . , 0} → Rn is the vector sequence specifying
the initial state of the system, and τ(t) represents the time-
varying delay which is bounded by a nonnegative constant
τmax; this is stated in the following assumption.

Assumption 1 The delay τ : N0 → N0 satisfies

0 ≤ τ(t) ≤ τmax, t ∈ N0.

The time-delay system Σ given by (1) is said to be
monotone if ordered initial states lead to ordered subsequent
states. More precisely, let x(t,ϕ) denote the solution of Σ
starting from the initial state ϕ(t). Then, Σ is monotone if

ϕ(t) ≤K ϕ′(t), ∀t ∈ {−τmax, . . . , 0},

implies that

x(t,ϕ) ≤K x(t,ϕ′), ∀t ∈ N.

The following result provides a sufficient condition for
monotonicity of Σ.

Proposition 1 If f and g are order-preserving on K, then
the time-delay system Σ given by (1) is monotone in K.

Proof: See Appendix A.
System Σ given by (1) is called cone-invariant with

respect to a proper cone K if its state trajectory starting
from any initial state ϕ ∈ K will always remain in K, that
is x(t,ϕ) ∈ K for all t ∈ N0. When Σ is cone-invariant
with respect to the positive orthant (K = Rn+), it is called
positive. We now provide a necessary and sufficient condition
for cone-preservity of monotone systems of the form (1).

Proposition 2 Assume that f and g are order-preserving
on K. Then, the monotone system Σ given by (1) is cone-
invariant with respect to K if and only if

f(0) + g(0) ∈ K. (2)

Proof: See Appendix B.
Note that, according to Proposition 2, if the monotone
system (1) has an equilibrium at the origin, i.e.,

f(0) + g(0) = 0,

then it is cone-invariant.

B. Main Results

The following theorem states a sufficient condition for lo-
cal asymptotic stability of cone-invariant monotone systems
with bounded time-varying delays.

Theorem 1 For the time-delay system Σ given by (1), sup-
pose that f and g are order-preserving on K, and that (2)
holds. Assume also that there exists v ∈ int K such that

f(v) + g(v)− v ∈ −int K. (3)

If x? is the only equilibrium point of the cone-invariant
monotone system (1) in 0 ≤K x ≤K v, then for all bounded
time-varying delays, x? is asymptotically stable with respect
to initial conditions satisfying

0 ≤K ϕ(t) ≤K v, t ∈ {−τmax, . . . , 0}. (4)

Proof: See Appendix C.



Stability condition (3) does not include any information
on the magnitude of delays, so it ensures delay-independent
stability. This type of stability conditions is useful in practice,
since the delays may not be easy to model precisely.

We will now show that under the stability condition that
we have derived in Theorem 1, cone-invariant monotone
systems whose vector fields are sub-homogeneous of degree
smaller than or equal to one are globally asymptotically
stable. Sub-homogeneous monotone systems constitute an
important and useful class of nonlinear cone-invariant sys-
tems. Established models of many physical phenomena fall
within this class. For example, biochemical reaction networks
and most power control algorithms in wireless networks can
be analyzed as sub-homogeneous monotone systems [33]–
[35]. This class of monotone systems includes homogeneous
monotone systems as a special case.

Theorem 2 Assume that f and g are order-preserving and
sub-homogeneous of degree α ∈ (0, 1] with respect to K.
Furthermore, assume that x? is the only equilibrium of (1)
in K. If there exists a vector v ∈ int K such that

f(v) + g(v)− v ∈ −int K, (5)

then the sub-homogeneous cone-invariant monotone sys-
tem (1) is globally asymptotically stable for any bounded
time-varying delays.

Proof: See Appendix D.
Note that a linear cone-invariant system is a special case of

sub-homogeneous cone-invariant monotone systems, where
f(x) = Ax and g(x) = Bx with K-positive matrices A
and B. In this case, the global delay-independent stability
condition (5) reduces to (A+B)v <K v.

C. Extensions
Our results can be easily extended to monotone systems

with heterogeneous delays of the form:

xi
(
t+ 1

)
= fi

(
x(t)

)
+ gi

(
x1(t− τ i1(t)), . . . , xn(t− τ in(t))

)
.

Here, i ∈ {1, . . . , n}, x(t) = (x1(t), . . . , xn(t)) ∈ Rn, and
f(x) = (f1(x), . . . , fn(x)) and g(x) = (g1(x), . . . , gn(x))
are order-preserving on a proper cone K. If the delays satisfy

0 ≤ τ ji (t) ≤ τmax, ∀i, j ∈ {1, . . . , n},

then the stability condition (3) ensures that the cone-invariant
monotone system with heterogeneous time-varying delays is
locally asymptotically stable.

IV. CONTINUOUS-TIME MONOTONE SYSTEMS

A. Problem Statement
Next, we consider the continuous-time analog of (1):

G :

{
ẋ
(
t
)

= f
(
x(t)

)
+ g

(
x(t− τ(t))

)
, t ≥ 0,

x
(
t
)

= ϕ
(
t
)
, t ∈ [−τmax, 0],

(6)

where f(x) and g(x) are continuously differentiable vector
fields on the proper cone K ⊆ Rn. The time-varying delay
τ(t) is continuous with respect to time and satisfies

0 ≤ τ(t) ≤ τmax, ∀t ≥ 0.

The time-delay system G given by (6) is called monotone
if for any initial conditions ϕ(t),ϕ′(t) ∈ C

(
[−τmax, 0],K

)
,

ϕ(t) ≤K ϕ′(t) for all t ∈ [−τmax, 0] implies that

x(t,ϕ) ≤K x(t,ϕ′), ∀t ≥ 0.

Monotonicity of (6) is readily verified using the next result.

Proposition 3 [28, Theorem 5.1.1] Suppose that f is
cooperative with respect to the cone K and g is order-
preserving on K. Then, the time-delay system G given by (6)
is monotone in K.

System G is said to be cone-invariant with respect to a
cone K if for any initial condition ϕ(t) ∈ C

(
[−τmax, 0],K

)
,

the corresponding state trajectory will never leave K. The
following result provides a necessary and sufficient condition
for cone-preservity of G.

Proposition 4 Suppose that f is cooperative with respect
to the cone K and g is order-preserving on K. Then, the
monotone system (6) is cone-invariant with respect to K if
and only if

f(0) + g(0) ∈ K. (7)

Proof: See Appendix E.

B. Main Results
We now provide a test for the local asymptotic stability

of cone-invariant monotone systems of the form (6) with
bounded time-varying delays.

Theorem 3 For the time-delay system (6), suppose that f is
cooperative with respect to the cone K, g is order-preserving
on K, and (7) holds. Suppose also that there exist a vector
v ∈ int K such that

f(v) + g(v) ∈ −int K. (8)

If x? is the only equilibrium point of the cone-invariant
monotone system (6) such that 0 ≤K x? ≤K v, then for
any initial conditions satisfying

0 ≤K ϕ(t) ≤K v, t ∈ [−τmax, 0], (9)

x? is asymptotically stable for all bounded time-varying
delays.

Proof: See Appendix F.
Theorem 3 allows us to prove that when a cone-invariant

sub-homogeneous monotone system of the form (6) has a
unique equilibrium point in the proper cone K, it is globally
asymptotically stable under the stability condition (8).

Theorem 4 Assume that f is cooperative with respect to
the cone K and g is order-preserving on K. Furthermore,
assume that f and g are sub-homogeneous of degree α > 0
with respect to K. If x? is the only equilibrium of (6) in K,
and there is a vector v ∈ int K satisfying (8), then the sub-
homogeneous cone-invariant monotone system G is globally
asymptotically stable for any bounded time-varying delays.

Proof: The proof is similar to the one of Theorem 2.



C. A Special Case: Cone-invariant Linear Systems
We now discuss delay-independent stability of a special

case of (6), namely linear systems on the form{
ẋ
(
t
)

= Ax(t) +Bx(t− τ(t)), t ≥ 0,

x
(
t
)

= ϕ
(
t
)
, t ∈ [−τmax, 0].

(10)

In terms of (6), f(x) = Ax and g(x) = Bx. One
can verify that if A is cross-positive and B is K-positive,
then (10) is a sub-homogeneous cone-invariant monotone
system. Theorem 4 helps us to derive a necessary and
sufficient condition for delay-independent stability of (10).
Specifically, we note the following.

Corollary 1 Consider the linear system (10) where A is
cross-positive and B is K-positive. Then, the following
statements are equivalent.
(a) There exists a vector v ∈ int K such that

(A+B)v ∈ −int K.

(b) The cone-invariant linear system (10) is globally asymp-
totically stable for all bounded time-varying delays.

Tanaka et al. [26] proved that the stability of continuous-
time cone-invariant linear systems is insensitive to arbitrary
constant time delays using a “DC-dominant” property. More
recently, Shen and Zheng [27], by comparing the trajectory
of the constant delay system and that of the time-varying
delay system, proved that the stability of cone-invariant linear
systems is insensitive to bounded time-varying delays. The
latter result is equivalent to Corollary 1.

V. CONCLUSIONS

This paper has been concerned with delay-independent
stability of a significant class of nonlinear (continuous-
and discrete-time) cone-invariant systems. First, we have
presented a set of conditions for establishing local asymp-
totic stability of cone-invariant monotone systems with
bounded time-varying delays. Then, we have derived suf-
ficient conditions for global delay-independent stability of
sub-homogeneous cone-invariant monotone systems. Finally,
for linear cone-invariant systems, we have shown that the
stability conditions developed are also necessary.

APPENDIX

A. Proof of Proposition 1
Let ϕ(t) and ϕ′(t) be arbitrary initial conditions satisfying

ϕ(t) ≤K ϕ′(t) for all t ∈ {−τmax, . . . , 0}. We show by
induction that

x(t,ϕ) ≤K x(t,ϕ′) (11)

holds for all t ∈ N. Since

x(0,ϕ) = ϕ(0) ≤K ϕ′(0) = x(0,ϕ′),

the induction hypothesis is true for t = 0. Assume for
induction that (11) holds for t ∈ {0, . . . , t̂} with t̂ ∈ N0.
It is clear that x(t̂,ϕ) ≤K x(t̂,ϕ′). Moreover, as

−τmax ≤ t̂− τ(t̂) ≤ t̂,

we have x
(
t̂− τ(t̂),ϕ

)
≤K x

(
t̂− τ(t̂),ϕ′

)
by the induction

hypothesis. It now follows from order-preservity of f and g
on K that

x
(
t̂+ 1,ϕ

)
= f

(
x(t̂,ϕ)

)
+ g

(
x(t̂− τ(t̂)),ϕ)

)
≤K f

(
x(t̂,ϕ′)

)
+ g

(
x(t̂− τ(t̂)),ϕ′)

)
= x

(
t̂+ 1,ϕ′

)
.

We conclude that (11) is true for all t ∈ N0. Hence, the
time-delay system (1) is monotone.

B. Proof of Proposition 2

(i) Suppose that f and g are order-preserving on K, and
that f(0)+g(0) ∈ K. We will prove that the time-delay sys-
tem (1) is cone-invariant. Let x(t,ϕ0) be the solution to (1)
with the initial condition ϕ0(t) = 0, t ∈ {−τmax, . . . , 0}.
Clearly,

x
(
1,ϕ0

)
= f(0) + g(0) ∈ K.

We will use induction to show that

x
(
t,ϕ0

)
∈ K, ∀t ∈ N. (12)

If (12) is true for all t up to some t̂, then x
(
t̂,ϕ0

)
∈ K, or,

equivalently, 0 ≤K x
(
t̂,ϕ0

)
. Also, since ϕ0(t) ∈ K for all

t ∈ {−τmax, . . . , 0} and t̂− τ(t̂) ∈ [−τmax, t̂], by induction
hypothesis, we have

0 ≤K x
(
t̂− τ(t̂),ϕ0

)
.

As f and g are order-preserving on K, it follows that

0 ≤K f(0) + g(0) ≤K f
(
x(t̂,ϕ0)

)
+ g

(
x(t̂− τ(t̂)),ϕ0)

)
= x

(
t̂+ 1,ϕ0

)
,

implying that (12) holds for all t ∈ N.
Now, let ϕ be an arbitrary initial state satisfying ϕ(t) ∈ K.
It is clear that

0 = ϕ0(t) ≤K ϕ(t), t ∈ {−τmax, . . . , 0}.

According to Proposition 1, the time-delay system (1) is
monotone. Thus, x

(
t,ϕ0

)
≤K x

(
t,ϕ

)
for all t ∈ N. It

follows from (12) that 0 ≤K x
(
t,ϕ

)
, or, equivalently,

x
(
t,ϕ

)
∈ K, ∀t ∈ N.

Therefore, the monotone system (1) is cone-invariant.
(ii) Assume that the monotone system (1) is cone-

invariant. If, for contradiction, f(0) + g(0) /∈ K, then there
exists z ∈ K? such that z>

(
f(0) + g(0)

)
< 0. In this case,

we have

z>x
(
1,ϕ0

)
= z>

(
f(0) + g(0)

)
< 0,

implying that x
(
1,ϕ0

)
/∈ K. This contradicts the fact that

the time-delay system (1) is cone-invariant.



C. Proof of Theorem 1

Before proving Theorem 1, we state the following lemma
that is key to our argument.

Lemma 1 Consider the following time-delay dynamical sys-
tem with constant delays, closely related to system (1):

Σ′ :

{
y
(
t+ 1

)
= f

(
y(t)

)
+ g

(
y(t− τmax)

)
, t ∈ N0,

y
(
t
)

= ϕ
(
t
)
, t ∈ {−τmax, . . . , 0}.

(13)

Assume that f and g are order-preserving on K. The
following statements hold.
(i) If there exists a vector v ∈ int K such that

f(v) + g(v)− v ∈ −int K, (14)

then

y(t+ 1,ϕv) ≤K y(t,ϕv), t ∈ N0, (15)
x(t,ϕv) ≤K y(t,ϕv), t ∈ N0, (16)

where ϕv(t) = v for all t ∈ {−τmax, . . . , 0}, and
x(t,ϕv) and y(t,ϕv) are solutions to (1) and (13),
respectively.

(ii) If f(0) + g(0) ∈ K, then the solution y(t,ϕ0) to (13)
starting from ϕ0(t) = 0, t ∈ {−τmax, . . . , 0}, satisfies

y(t,ϕ0) ≤K y(t+ 1,ϕ0), t ∈ N0,

y(t,ϕ0) ≤K x(t,ϕ0), t ∈ N0,

where x(t,ϕ0) is the solution to (1).

Proof:
(i) Let v ∈ int K be a vector satisfying (14). Since

y
(
1,ϕv

)
= f(v) + g(v) ≤K v = y

(
0,ϕv

)
,

Inequality (15) holds for t = 0. Assume that (15) is true for
all t up to t̂. It follows from the induction hypothesis that

y(t̂+ 1,ϕv) ≤K y(t̂,ϕv),

y(t̂− τmax + 1,ϕv) ≤K y(t̂− τmax,ϕv).

These inequalities together with the order-preservity of f
and g imply that

y
(
t̂+ 2,ϕv

)
= f

(
y(t̂+ 1,ϕv)

)
+ g

(
y(t̂− τmax + 1,ϕv)

)
≤K f

(
y(t̂,ϕv)

)
+ g

(
y(t̂− τmax,ϕv)

)
= y

(
t̂+ 1,ϕv

)
.

Therefore, (15) holds for all t ∈ N0.
By using induction, we now prove Inequality (16). The

induction hypothesis is true for t = 1, since

x
(
1,ϕv

)
= f(v) + g(v) = y

(
1,ϕv

)
.

Assuming it is true for a given t = t̂, we then have

x(t̂,ϕv) ≤K y(t̂,ϕv),

x(t̂− τ(t̂),ϕv) ≤K y(t̂− τ(t̂),ϕv).

As t̂− τmax ≤ t̂− τ(t̂), it follows from (15) that

y(t̂− τ(t̂),ϕv) ≤K y(t̂− τmax,ϕv),

implying that

x(t̂− τ(t̂),ϕv) ≤K y(t̂− τmax,ϕv).

Since f and g are order-preserving on K, we obtain

x
(
t̂+ 1,ϕv

)
= f

(
x(t̂,ϕv)

)
+ g

(
x(t̂− τ(t̂),ϕv)

)
≤K f

(
y(t̂,ϕv)

)
+ g

(
y(t̂− τmax,ϕv)

)
= y

(
t̂+ 1,ϕv

)
.

The induction proof is complete.
(ii) The proof is similar to the one of part (i) and thus

omitted.

D. Proof of Theorem 2

Let ϕ ∈ K be an arbitrary initial condition and let
v ∈ int K be a vector satisfying (5). For all z ∈ K?\{0},
we have z>v > 0 [36, Proposition 3.1]. Thus, we can find
sufficiently large γ ≥ 1 such that z>ϕ(t) ≤ γz>v, for
t ∈ {−τmax, . . . , 0}, which implies that

ϕ(t) ≤K γv. (17)

Since f and g are sub-homogeneous of degree α ∈ (0, 1],
we have

f(γv) + g(γv) ≤K γα
(
f(v) + g(v)

)
≤K γαv
≤K γv,

where the second inequality follows from (5). Therefore,
the vector γv also satisfies (5). It follows from Theorem 1
and (17) that limt→∞ x(t,ϕ) = x?.

E. Proof of Proposition 4

(i) Let ϕ0(t) be the initial condition satisfying ϕ0(t) = 0,
t ∈ [−τmax, 0]. Since f is cooperative with respect to K and
g is order-preserving on K, it follows from Proposition 3
that system (6) is monotone. Thus, if ϕ0(t) ≤K ϕ(t) for all
t ∈ [−τmax, 0], then

x(t,ϕ0) ≤K x(t,ϕ), ∀t ≥ 0. (18)

Let y(t,ϕ0) be the solution to the following delayed differ-
ential equation with constant delays:{
ẏ
(
t
)

= f
(
y(t)

)
+ g

(
y(t− τmax)

)
, t ≥ 0,

y
(
t
)

= ϕ
(
t
)
, t ∈ [−τmax, 0].

(19)

According to [28, Corollary 5.2.2], y(t,ϕ0) is non-
decreasing, i.e., 0 = ϕ0(0) ≤K y(t,ϕ0), ∀t ≥ 0.
Moreover, by [37, Lemma 2], y(t,ϕ0) ≤K x(t,ϕ0) for
all t ≥ 0. Therefore, 0 ≤K x(t,ϕ), which implies that
x(t,ϕ) ∈ K for all t ≥ 0.

Conversely, assume that (6) is cone-invariant. Suppose, for
contradiction, that f(0) + g(0) /∈ K. Then, there is z ∈ K?
such that z>

(
f(0) + g(0)

)
< 0, which implies that

z>ẋ(0,ϕ0) = z>
(
f(0) + g(0)

)
< 0.



Hence, there exists sufficiently small δ > 0 such that

z>x(t,ϕ0) < z>x(0,ϕ0) = 0, ∀t ∈ (0, δ).

Therefore, x(t) /∈ K for t ∈ (0, δ), which is a contradiction.

F. Proof of Theorem 3

Let v be a vector satisfying (8). Define ϕ0(t) = 0 and
ϕv(t) = v, t ∈ [−τmax, 0]. As f is cooperative and g is
order-preserving, according to Proposition 3, the time-delay
system (6) is monotone. Thus,

x(t,ϕ0) ≤K x(t,ϕ) ≤K x(t,ϕv), ∀t ≥ 0.

Let y(t,ϕ0) and y(t,ψv) be solutions to the time-delay
system (19) starting from ϕw(t) and ϕv(t), respectively.
According to [37, Lemma 2], y(t,ϕ0) ≤K x(t,ϕ0) and
x(t,ϕv) ≤K y(t,ϕv) for all t ≥ 0, implying that

y(t,ϕw) ≤K x(t,ϕ) ≤K y(t,ϕv), ∀t ≥ 0. (20)

Since y(t,ϕ0) is non-decreasing and y(t,ϕv) is non-
increasing for t ≥ 0 [28, Corollary 5.2.2], we have

0 ≤K y(t,ϕw) ≤K y(t,ϕv) ≤K v, ∀t ≥ 0.

Thus, both y(t,ϕ0) and y(t,ϕv) are bounded and monotone.
Therefore, by [28, Theorem 1.2.1], y(t,ϕ0) and y(t,ϕv)
converge to an equilibrium of (19) in [w,v], which must be
x?, i.e.,

lim
t→∞

y(t,ϕ0) = lim
t→∞

y(t,ϕv) = x?. (21)

It now follows from (20) and (21) that limt→∞ x(t,ϕ) = x?.
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