Motivation

Optimization as iterative algorithms

Asynchronism and convergence rates

. R . . . . Many optimization algorithms are iterations, e.g.
in distributed optimization yop . &

z(t+1) =z(t) — vV [f(x(t)) := Mz(t)

Hamid Reza Feyzmahdavian, Arda Aytekin and Mikael Johansson L : . :
KTH - Royal Institute)gf Technology y Opt|m|zer ™ is a flxed—pomt of M.

Easy to analyze when M is a contraction mapping
Mz — My| <cllz —y|  Vz,yecR"

for some ¢ € [0,1) and some norm || - ||. Then ||z(t) — 2*| < c!||z(0) — z*||

Ex. Gradient mapping when f is u-strongly convex with L-Lipschitz gradient
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Motivation Motivation

Distributed implementations and asynchrony The impact of asynchrony

Emerging applications require distributed implementations Asynchrony can cause otherwise stable iterations to diverge, or slow down.

LL’l(t + 1) = ZL‘](t) — 075131@) — 0.7332(t — T(t))
:Ug(t + 1) = .Tz(t) — 0751?2(t> —0.721 (t — T(t))
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Communication delays, lack of synchronization = asynchronous iterations Need models and tools for asynchronous iterations!

M. Johansson (KTH) Embppt'14 - Lucca, Italy - September 8-9, 2014 / M. Johansson (KTH) Embppt'14 - Lucca, Italy - September 8-9, 2014




Motivation Motivation

A model for asynchronous iterations Partially asynchronous algorithms

A standard form for asynchronous iterations: The iteration
eilt 4 1) Mi(z1(Ti @), ..., 2o(ri(t)) ifte T nilt 1) = Mi(z ((t)), .., an(Th(1))  ifteT
. — '3 - .
’ xi(t) otherwise zi(t) otherwise
Here, is called partially asynchronous if there exists B > 0 such that
T' is the set of times when node i executes an update, and a) For every i,t, at least one element of {t,t+1,...,t+ B —1}isin T"
7/(t) is the time when the most recent version of z; available to b) For every i,j and all t € T*, we have 0 <t —7j(t) < B — 1.
node ¢ at time ¢ was computed c) There holds 7}(t) =t for all i and all t € T*
Note: Can view ¢ — 7/(t) as information delay from node j to 4 at time ¢ Bounded update intervals/information delays, direct access to “own” state

Chazan and Miranker (1969), Baudet (1978), Bertsekas and Tsitsiklis (1989), ...
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Motivation Motivation

Totally asynchronous algorithms Challenge: quantify the impact of asynchronism

The iteration
We address two key questions:

Mi(z1(T8(t)), ..., an(TE(2)) ifteT?

x;(t) otherwise

1. quantify how B impacts convergence of partially asynchonus iterations

2. establish convergence rates for classes of totally asynchonous iterations
is called totally asynchronous if
a) every set 7 is an infinite subset of Ny

b) for every sequence {t;} of elelements of 7" that tends to infinity, it holds Max-norm [ sers9 I
that limy_ o T;(tk) = oo for all i,]. contractions :

BeT:89
Linear Baudet:78
No node ceases to update, old information eventually purged out of system. | L L
Synchronous  Partially asynchronous Totally asynchronous

We then use this insight to design delay-insensitive optimization algorithms
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Problem formulation

Outline Problem formulation

Motivation Consider iterations
Problem formulation
, . z(t+1) = Mz(t)
Convergence rates of asynchronous iterations
Example: power control in wireless systems where M is a pseudo-contraction

A delayed incremental gradient method with linear convergence rate
y & & Mz —2*|| < cl|lx —2*|| Vo eR"

I

Conclusions
with respect to a block-maximum norm

e = mae 1220
1<i<m  w;
(here x = (z1,...,2y) €ER™, z; € R™ and || - ||; is any norm)

Challenge: Quantify the impact of asynchrony on the iterates.
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Results Main results

Our approach Main result

Use a continuous decreasing function A : R, — R, satisfying Theorem 1. If
lim A(t) = 0 a) M is pseudo-contraction with modulus ¢ w.r.t. block-maximum norm
im = .
t—00 b) There exist functions 5* : Ry — Ry and A € Ny such that, Vi > A
and show that there is M > 0 such that ‘_ t?e < 5i(t) <t te( }'c’ 2+1]
1 , o . . ‘
— i (t) — xF]ls < MA(t,), Vt € (ththial for every two consecutive elements ¢} and t;_, in 7".
Wi

c) There is a decreasing function A : Ry — R with lim; ., A(¢) = 0 and

AT () — (75 (1))

for all 4, all £ and every pair of consecutive elements ¢}, and ¢}, in T".

¢ lim <1 Vi, j
00 () J
MAGL) \\C\ . Then, the sequence generated by (2) under total asynchronism satisfies
e O—. 1 * i i g
M) oe i) =il < MA®t), e (8, ]

- MA(t) i
t

for all 7 and all ¢, where M is a positive constant.
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Main results Main results

Main result (partially asynchronous iterations) Example (“retarding divider”)

Theorem 2. Let M be a pseudo-contraction in the block-maximum norm. Consider the iteration
Then, the iterates generated by (2) under partial asynchronism satisfy

ot 41) = {;m(t), teT

1 z(t), t¢T

wfini(t) —a}|| < Mp' t € (th thgal
‘ ' ‘ where z(t) € R and T = {2% | k € No}.

for every pair of consecutive elements ¢; and ¢}, in 7*. Moreover,

Since t41 —tr = 2F, there is no uniform upper bound on inter-update times.

However, since

4
t—tkfigt Vte(tk,tkH]

Note. Convergence rate still linear. Slows down with increasing B.
& & B(t) =t/2 and A(t) = 1/t satisfy conditions of Theorem 1. It follows that

Proof uses Theorem 1 with 3i(t) = B and \(t) = p'. M
lz(t)| < —,  t € (th, o]
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Main results Main results

Main result (linearly bounded delays) Discussion: iterate time vs. physical time

Theorem 3. If Upper bound decreases only at iteration times, stays constant in between.
a) M is a pseudo-contraction with modulus ¢ w.r.t. a block-maximum norm In physical time, convergence rate depends on how update times grow large.
b) For each t € T*, there exists t’ € T* such that 1 <t —¢ < B.

4 For partially asynchronous iterations t — B < ti for t € (ti ¢! ], so
¢) It holds that 0 < ¢ — 7i(t) < at for all i, and all ¢ > . g hrt

Then, the sequence generated by (2) under total asynchronism satisfies Mpti < Mp'=B = M'pt, te(t),th, ]
: ¢
1 t o Thus,
@ - o<y (F1) re il
% 1 * !’ ot
—lai(t) — @il < M'p7,
where ( =1In¢/In(1 — ). wi

so error decays as O(p?)

Note. Bounded by polynomial function of time. Slower as delays increase.
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Applications Applications

Application: wireless power control

Application: wireless power control

User ¢ transmits at power p;, tries to maintain SINR target ~; Transmit power control implements fixed-point iteration
GiiDi » ) - T
SINR; = 24— >, 0 pi(t+1) = Li(p(t))
' Z]#’L gl]p] + I/i ! | |/User1
S~ Definition 1. I : R} — R} is a c-contractive interference function if
Transmit powers that minimize total energy satisfy (]
User 2 a) Iz(p) 2 0
I —— =0 b) If p > p/ then I;(p) > L;(p')
Z];ﬁz gZ]pj _|_ v; User 3

c) There exists ¢ € [0,1) and a vector v > 0 such that for all € > 0

or, equivalently Li(p + ev) < I;i(p) + cev;

pi = Li(p)
Proposition. If I : R} — R"} is a c-contractive interference function, then
it has a unique fixed-point p* € R’} and

11(p) = I(P")I% < cllp —p'II%

where I; : R — R, is the interference function.
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Applications Applications

Application: wireless power control

Application: wireless power control

Corollary. Consider the asynchronous power control iteration, and assume Simulations and bounds for two users in a four-user scenario
a) every mobile updates its power at least once every B time units, and

b) no information is more than Dy, time units old. UpperBound |

Asynchronous Algorithm

A"""'--u.., ===-Upper Bound
““=vn..| = Asynchronous Algorithm|

6:

If I(p) is a c-contractive interference function, then

3,

3,

1 i S
;|pi(t) —pi| < Mp', t € (thtpy]
3

3,

Absolute distance from fixed point

where M > 0 and ¢} and # , are consecutive elements of 7. Moreover,

3
o

Absolute distance from fixed point
S,

20 40 60 80 100 10° 20

60 40 60 80 100
Number of iterations Number of iterations

1
— ¢ B+Dmax . . .
p=c Linear interference functions, B = D .x = 4.

Bounds valid, but not tight (for these users)
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Applications Proofs

Application: wireless power control Proof sketch

Assume that information delay for user 1 grows increasingly large Theorem 1 (recollection and interpretation) If
a) M is pseudo-contraction with modulus ¢ w.r.t. block-maximum norm

t—7rit)=t—7(t) = |0.1¢ .
75 (®) mi(8) = 10.1¢] b) There exist functions 5* : Ry — Ry and A € Ny such that, Vi > A

J

while other delays, execution times remain unchanged. ; ; P
t—t, <P <t tE (th il
Simulations and bounds from Theorem 3. ] ) ]

for every two consecutive elements ¢; and ¢; ,, in T".

s,

e vonoes Aloritn . ot ron) c) There is a decreasing function A : Ry +— Ry with lim;,c A(t) = 0 and
10 10
2 e ATi(t) — BI(Ti(t
10 ol MO — B (7)) <1 i
10" e t—o0 A (t)

3

Then, the sequence generated by (2) under total asynchronism satisfies

Absolute distance from fixed point
3,

Absolute distance from fixed point

o . o

0 . N

10 10
Number of iterations Number of iterations

1 i i i
i) =il < MA®tL), € (8, ]

K3

for all 7 and all ¢, where M is a positive constant.
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Proofs Proofs

Proof sketch Proof sketch

Step 1. Find initial time ¢ such that hypotheses satisfied for t =0, ..., Step 2. Induction: assume true until ¢/, show that it holds for ¢’ + 1.

Let ¢} be smallest element of 7¢. By total asynchronism, there is t such that First consider t’ € T*, and define k&’ : t’ € (t}..t), + 1]. Then, by a)
74(t) > max{A, max t§+ 1 vt >t 1 N 1 i N
(1) 2 mex{&, ma t 1) D+ 1)~ < e e { Dy - 251,

By condition ¢), we can find £ such that ) ) ) ) ) )
y ) Noting that Tj?(t’) < t/, we apply the induction hypothesis and find

eA(Ti(t) = BI(Ti(1)) S A(t)  VE>¢

1 . . , o M

_ - _ — (7 () = 231l < MA(t ) < MA@(E) = B7(r5(t))) < —A(t)
Let = max{f, 7} and define M = [|2(0) — z* || /A (D). w; 7 b ’ ? c
Since {x | ||z(t) — «*||}’ < ||x(0) —a*||}’} is invariant and A(t) decreasing It thus holds

1 ,
;Hmw—@mSMMm, tE (thth ). oo It 1) = afll < MA®) = MA(the )
i i

forall t =0,....7. Since ' +1 € (t} .t} ), the assertion holds for ¢’ +1. (' & T" trivial)
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Outline So far...

Motivation . . . .
Established rather general convergence estimates for asynchronous iterations.

Problem formulation
Convergence rates of asynchronous iterations Psuedo-contraction in block-maximum norm essential to analysis.
Example: power control in wireless systems

. . o When the gradient iteration
A delayed incremental gradient method with linear convergence rate gradient !

Conclusions z(t+1) =x(t) — vV [f(x(t))

I

is a contraction mapping, this is typically w.r.t. the Euclidean norm.

Can we use our insight to design delay-insensitive optimization algorithms?
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A delayed incremental gradient method A delayed incremental gradient method

Delayed incremental gradient methods State-of-the art

Common set-up in machine-learning applications: The Hogwild! algorithm by Niu, Recht, et al (2011)

minimize ﬁ fozl fm () i(t) = U1, M]
w(t+1) = a(t) =V fiw (2t — (1))

Converges linearly to ball around origin.

Centralized coordinator, workers that compute delayed (partial) gradients

Coordinator Limitations:

(t)
e Analysis asumes strong convexity and bounded gradients (!)

e Convergence proof valid for one particular value of ~.

worker M

Computational delay time-varying, update order sometimes stochastic

e Step-size depends on M, max-delay and gradient norms at optimum

Note. lterations mixing delayed and current states often hard to analyze.

Agarwal and Duchi (2011), Niu, Recht et al (2011),
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A delayed incremental gradient method A delayed incremental gradient method

Delayed gradient iterations Delayed gradient iterations: quadratic objective functions

Instead of updating based on delayed gradient Consider minimization of the quadratic function

z(t+1) = a(t) — AV F(a(t - 7(t))) Fla) = 5 (La? + )

we consider updating based on delayed gradient mapping, ith 7(t) = 1 for all ¢
with 7(t) = 1 for all ¢.

a(t+1) = a(t —7(t) —yV[f(x(t —7(1))) (1) .

Then, delayed gradient iteration has convergence factor

K

9= k+1
Proposition 1. Let f be u-strongly convex and have L-Lipschitz continuous
gradient. If 0 < 7(t) < Tuax for all ¢, then {z(t)} generated by (1) satisfies while the delayed prox iteration has convergence factor
t 2
K — 1\ Tmax+1 VKT — 1
let) -l < (257) D= <

Potentially faster and easier to analyze

where Kk = L/p.
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A delayed incremental gradient method A delayed incremental gradient method

Our algorithm Main result

To minimize Theorem 4. Assume that
M a) each f,, is convex and has L,,-Lipschitz gradient on R"
flx) = 1 Z fm() b) the overall objective f is p-strongly convex
M = Then, if v € (0, u/ max,, L?,) the iterates generated by our method satisfy

we propose the following algorithm E,. 1[f(z(t)] - f* < ct(f(g;(o)) - +e

i(t) =U[1, M] with

s(t) = a(t — 7(t)) = YV fip (et — (1)) mas, L2, \ ) /et D)

2(t+1) = (1— 0)x(t) + 0s() c=\1=2mw0(1-y— —=

and

ymax, Ly,

M
= Ty w7y 2o IV

Note. Linear convergence to ball around optimum. Error/speed trade-off.
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A delayed incremental gradient method A delayed incremental gradient method

Numerical results Numerical results

Representative convergence behaviour Comparison with Hogwild!

x 10

o= 0.0065561
12} 0, = 0:0008967}

E[f(k)-f ]
E[f(k)-f ]

0 0 . . )
10° 10' 10° 10° 10° 10 10 10° 10 10
Iteration (#) Iteration (#)

Our algorithm converges faster with theoretically justified stepsizes.
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A delayed incremental gradient method A delayed incremental gradient method

Proof sketch Proof sketch

Lemma 5. Let {V(¢)} be a sequence of real numbers satsfying Proof of Lemma 5. First note that since p+ ¢ < 1,
V(it+1) <pV(t 1% 1< —Tmax/(1+Tmax)
t+1)<p ()+qt77r(1}§%<8§t (s)+r <(p+a)

i — 1/(1+Tmax
for some non-negative numbers p,q and . If p+¢ < 1, and 50, since ¢ = (p + q)"/ (M7,

0 < 7(t) < Tmax p+ac ™ =p4qlp+q) Trmax < (p+q)(p+q) Tome =c

Then, Assertion holds for ¢t = 0. Assume that it holds for t = 0,...¢. Then

V(t) < cV(0)+e V(@) < AV(0) +e, V(i) <c’V(0)+e s=1t— Tmax,---,t

where ¢ = (p + q)/(H7™max) and e = /(1 — p — q). We then have

Vi+1) < pch(O) +pe+q( max A)V(0)+qge+r
T—7(f)<s<t

< petV(0) + pe + gct "=V (0) + ge + 7 = ¢ FLV(0) +e.
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A delayed incremental gradient method A delayed incremental gradient method

Proof sketch Proof sketch

Proof of Theorem 4. Consider Specifically,
V(t+1) = Eef(a(t +1)) = f* =B By [f(2(t + 1)) - f* V(t+1) < (1-0)V ()
i i vex _ _ M —r
Since f is convex and 0 € [0,1], +0 <1 2py <1 p > Vit (t))>
J(t+1) = f* = F(1 - 0)a(t) + 0s(t) - f* 92 mas, L, )
< (= O)(f0) ~ 1) + 00 (1) — 1) tar s 2 Ve
We establish the following bound on f(s(t)) — f*: So Lemma 5 now yields
Bt ()] - £ < (1= 20 (1= 22250 ) ) (7(at0 - 7)) - ) V<AV e viEN

9 M with the desired convergence factors and error terms.
4 7 maxey, Lin Z IV fn ()2
m
M m=1

Allows to express V(¢ + 1) in terms of V(¢),...V(t — Timax) plus error term.
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Conclusions References

Conclusions References

Complete statements and proofs can be found in
e Convergence analysis of asynchronous iterations
e A general theorem covering both totally and partially asynchronism H. R. Feyzmahdavian and M. Johansson, . _
“On the convergence rate of asynchronous iterations”,

* Asynchronism affects rates, not only factors In IEEE CDC 2014, Los Angeles, CA, December 2014

e A delayed incremental gradient method ) ]
H. R. Feyzmahdavian, A. Aytekin and M. Johansson,

“A delayed proximal gradient method with linear convergence rate”,
e Converges faster, and under less restrictive assumptions, than alternatives In IEEE MLSP 2014, Reims, France, September 2014.

¢ Running averages of delayed incremental gradient mappings

e Not everything is in “the book” - many open problems!
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