THE DISCREPANCY FUNCTION IN TWO DIMENSIONS

IOANNIS PARISSIS

ABSTRACT. Let \mathcal{A}_N be an *N*-point set in the unit square and consider the Discrepancy function

$$D_N(\vec{x}) := \# \left(\mathcal{A}_N \cap [\vec{0}, \vec{x}) \right) - N | [\vec{0}, \vec{x}) |,$$

where $\vec{x} = (x_1, x_2) \in [0, 1]^2$, $[\vec{0}, \vec{x}) = [0, x_1) \times [0, x_2)$, and $|[\vec{0}, \vec{x})|$ denotes the Lebesgue measure of the rectangle. This is the difference between the actual number of points of \mathcal{A}_N in such a rectangle and the expected number of points - Nx_1x_2 - in the rectangle. A basic theme of discrepancy theory is to study the "size" of this function in terms of N. It turns out that no matter how the N points are selected, their distribution must be far from uniform, i.e. the discrepancy function must be "large". In this talk I will give an overview of some classical results in discrepancy theory that quantify the principle described above. I will also give an example of an *extremal* set for Discrepancy, in particular the van der Corput point set. Finally, if time permits, I will discuss some size estimates for the discrepancy function obtained in a *joint work* with *D. Bilyk*, *M. Lacey* and *A. Vagharshakyan*. For example we prove that

 $||D_N||_{BMO} \gtrsim (\log N)^{1/2}.$

This estimate is sharp. For the van der Corput set, we have $||D_N||_{BMO} \leq (\log N)^{1/2}$, whenever $N = 2^n$ for some positive integer *n*.

Institutionen för Matematik, Kungliga Tekniska Högskolan, SE 100 44, Stockholm, SWEDEN. *E-mail address*: ioannis.parissis@gmail.com