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Abstract. The universal means spectrum of conformal mappings
has been studied extensively in recent years. In some situations,
sharp results are available, in others, only upper and lower esti-
mates have been obtained so far. We review some of the classi-
cal results before discussing the recent work of Hedenmalm and
Shimorin on estimates of the universal means spectrum near the
origin. It is our ambition to explain how their method works and
what its limitations are. We then move on to the recent study
of the universal means spectrum of bounded functions near the
point two conducted by Baranov and Hedenmalm. A number of
open problems related to these topics are pointed out together with
some auxilliary results which are interesting in their own right.

1. Introduction

Classes of conformal mappings. We say that a function ϕ : D → C
which is univalent in the open unit disk D = {z ∈ C : |z| < 1} belongs
to the class S if it satisfies the requirements ϕ(0) = 0 and ϕ′(0) = 1.
This means that the Taylor series of a function ϕ ∈ S is of the form

ϕ(z) = z +
∞∑
n=2

anz
n.

We denote by Sb the class of bounded univalent functions in the disk
(with the normalization ϕ(0) = 0 only). Finally, we shall also consider
the subclass S1 of univalent functions ϕ in the unit disk with ϕ(0) = 0
and

‖ϕ‖∞ = sup
z∈D

|ϕ(z)| ≤ 1.
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A close relative of S is the class Σ of holomorphic functions ψ :
De → C∞ (we write C∞ = C ∪ {∞} for the Riemann sphere) which
are univalent in the exterior disk

De = {z ∈ C∞ : |z| > 1}
and have a power series expansion of the form

ψ(z) = z + b0 +
∞∑
n=1

bnz
−n.

The classes S, Sb and Σ have been the subjects of extensive studies;
we suggest that the reader consult Peter Duren’s book [12] for general
background material.

The functions in S can be viewed as conformal mappings of the unit
disk onto (normalized) simply connected domains in C, while functions
in Sb map onto bounded domains in C. Similarly, functions in Σ map
De onto C∞ \ K, where K is some (normalized) connected compact
subset of C which does not divide the plane.

The simplest example of a function in Sb (and S1) is ϕ(z) = z, which
maps the unit disk onto itself. Another, perhaps more interesting,
function in the class S is the so-called Kœbe function

(1.1) k(z) =
z

(1 + z)2
, z ∈ D.

The Kœbe function maps the unit disk onto the complement of the
slit [1

4
,+∞[, an unbounded domain. Finally, we are provided with an

example of a function in Σ by

(1.2) l(z) = z +
1

z
, z ∈ De;

this function maps De onto the complement of the line segment [−2, 2].
In many of the classical problems and theorems of Geometric Func-

tion Theory, the Kœbe function is extremal for the class S. For in-
stance, it is known that the image of every function in S contains a
disk of radius 1/4. Hence the image of the Kœbe function is extremal
for S in this respect. Moreover, for ϕ ∈ S, we have the estimates

(1.3)
1− |z|

(1 + |z|)3
≤ |ϕ′(z)| ≤ 1 + |z|

(1− |z|)3
, z ∈ D,

which are sharp for the Kœbe function and its rotations.

Coefficient problems. The famous Bieberbach conjecture proved
in 1985 by Louis de Branges asserts that if ϕ ∈ S and ϕ(z) = z +∑∞

n=2 anz
n, then

|an| ≤ n, n = 2, 3, 4, . . . ,
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and that if equality holds for some n, then ϕ is the Kœbe function.
For ψ ∈ Σ, there is a result similar to (1.3); namely, we have

(1.4)
|z|2 − 1

|z|2
≤ |ψ′(z)| ≤ |z|2

|z|2 − 1
, z ∈ De.

Let us turn to the problem of estimating the coefficients of functions in
Σ, with expansion ψ(z) = z+ b0 +

∑
n bnz

−n. Of course, we cannot say
anything about b0, since we may always introduce translations without
disturbing the univalence of a function ψ ∈ Σ. It follows immediately
from Grönwall’s celebrated area theorem (see [12], p.29) that |b1| ≤ 1.
The function in (1.2) shows that this result is sharp. One should note
that

l(z) =
[
k(z−2)

]− 1
2 = z +

1

z
,

where k is the Kœbe function. Next, in 1938, Max Schiffer proved that
|b2| ≤ 2/3, with equality for the function[

k(z−3)
]− 1

3 = z +
2

3
z−2 + · · · .

Now, one might suspect that the inequality

|bn| ≤
2

n+ 1

should hold for the remaining coefficients as well, but this turns out
to be false already for the third coefficient. The correct sharp bound
for the third coefficient is |b3| ≤ 1

2
+ e−6; this was obtained by Paul

Garabedian and Schiffer in 1955 (see chapter 4.7 of [12]). The problem
of finding optimal estimates for the coefficients of the class Σ is clearly
a delicate matter. For instance, it seems that the extremal functions
should map onto domains of a fractal nature; this is in contrast to the
slit plane which is the image of the disk under the Kœbe function. To
this day, no sharp bounds for |bn| are known for n = 4, 5, 6, . . ..

It is also natural to consider coefficient problems for other classes of
univalent functions in D, for example, for bounded functions in S or for
the class S1. As a matter of fact, the coefficient problem for S1 is closely
related to that for Σ (Carleson and Jones [9]; see also section 8.1 of
[12]). As we shall see below, the coefficient problems lead, in a natural
way, to a study of the integral means of the derivative of functions in S
and Σ. At the same time, it is of independent interest to understand
the behaviour of conformal maps in the mean. The remaining part of
this paper is devoted to questions related to various spectral notions
for conformal mappings.
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Integral means spectra. We define the integral mean of a function
ϕ ∈ S for a real number t by

Mt[ϕ
′](r) =

1

2π

∫ π

−π
|ϕ′(eiθ)|tdθ, 0 < r < 1,

and, more generally, for complex τ by setting

Mτ [ϕ
′](r) =

1

2π

∫ π

−π
|[ϕ′(reiθ)]τ |dθ, 0 < r < 1.

For functions ψ in Σ, we consider the quantity

Mτ [ψ
′](r) =

1

2π

∫ π

−π
|[ψ′(reiθ)]τ |dθ, for 1 < r < +∞.

The expression [ϕ′]τ is defined is terms of the complex logarithm.
As the derivative ϕ′ is never zero in D, we may select a unique single-
valued branch of logϕ′(z) by requiring that logϕ′(0) = 0. For real t,
the integral means enable us to measure the expansion and contraction
associated with a given mapping, and by considering complex param-
eters, we also take rotation into account.

The classical properties of the class S ensure that for each τ there
exist non-negative numbers β such that

(1.5) Mτ [ϕ
′](r) = O

(
1

(1− r)β

)
, as r → 1−.

For a given τ , we take βϕ(τ) to be the infimum of all non-negative
β such that (1.5) holds. The function βϕ is usually called the inte-
gral means spectrum of ϕ. We note that equivalently, βϕ(τ) may be
expressed as a limsup:

βϕ(τ) = lim sup
r→1

logMτ [ϕ
′](r)

log 1
1−r

.

The universal integral means spectra for the classes S and Sb are defined
by

BS(τ) = sup
ϕ∈S

βϕ(τ) and BSb
(τ) = sup

ϕ∈Sb

βϕ(τ).

It follows from the Hölder inequality that βϕ is a convex function for
each ϕ ∈ S, and hence we see that all the universal integral means
spectra are convex functions of their respective arguments. Of course,
we can define the integral means spectrum and the universal integral
means spectrum for functions ψ ∈ Σ in a similar manner. In this case,
we define βψ(τ) as the infimum of all β such that

(1.6) Mτ [ψ
′](r) = O

(
1

(r − 1)β

)
, as r → 1+.



SPECTRAL NOTIONS 5

The universal integral means spectrum BΣ is then defined in the analo-
gous fashion. It is possible to define universal integral means spectra in
a slightly different manner, by interchanging the two limit operations:

B∞
S (τ) = lim sup

r→1
sup
ϕ∈S

logMτ [ϕ
′](r)

log 1
1−r

.

Similarly, we obtain spectral functions B∞
S1

(τ) and B∞
Σ (τ) (it is easy to

see that B∞
Sb

(τ) ≡ B∞
S (τ), so we do not get anything new for the class

Sb). We call these uniform universal integral means spectra. Clearly,
we have

BSb
(τ) ≤ B∞

S1
(τ), BΣ(τ) ≤ B∞

Σ (τ), BS(τ) ≤ B∞
S (τ),

and one believes that all the stated inequalities are indeed identities.
Most of the known estimates of integral means spectra actually apply
to the uniform integral means spectra as well. In the sequel, we will
mention uniform universal integral means spectra only when they are
actually needed.

It turns out that it is a difficult problem to determine the universal
integral means spectra. Sharp results are available only for certain
values of real t; in general, we only have more or less refined estimates.
The main objective of this paper is to present some recent methods to
estimate the universal integral means spectrum. We will also point out
some open problems that arise in connection with the study of integral
means spectra of conformal mappings.

Integral means spectra and weighted Bergman spaces. We can
also define βϕ(t) in terms of weighted Bergman spaces. We let dA(z)
denote the usual normalized area measure in the plane, that is,

dA(z) =
dxdy

π
, z = x+ iy.

We also introduce the probability measure on D given by

dAα(z) = (α+ 1)(1− |z|2)αdA(z), −1 < α < +∞.

For−1 < α < +∞, the Bergman space A2
α(D) then consists of functions

f that are holomorphic in the unit disk and satisfy

(1.7) ‖f‖2
α =

∫
D
|f(z)|2dAα(z) < +∞.

In the case α = 0, we usually write A2(D) instead of A2
0(D). We then

see that

(1.8) βϕ(τ) = inf
{
α+ 1 : [ϕ′]τ/2 ∈ A2

α(D)
}
.
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Similarly, we can define the spectrum for the class Σ in terms of
Bergman spaces. In this case, we consider the Bergman spaces A2

α(De)
of functions f that are holomorphic in De and satisfy

(1.9) ‖f‖2
α,e =

∫
De

|f(z)|2(1− |z|−2)α
dA(z)

|z|4
< +∞,

and then we have

(1.10) βψ(τ) = inf
{
α+ 1 : [ψ′]τ/2 ∈ A2

α(De)
}
.

Regarding the uniform universal integral means spectra, we mention
that α > B∞

S (τ)− 1 means that

sup
ϕ∈S

∥∥[ϕ′]τ/2
∥∥
α
< +∞;

analogous statements apply to the other classes S1 and Σ.

Growth models for continua. One way to approach the problem
of estimating integral means spectra from below is to grow compact
continua (which do not divide the plane) in some predictable manner.
It is expected that the continua should exhibit fractal behavior in or-
der to be at least close to extremal. The Lœwner evolution equation
is a natural way to grow such continua. It is rather natural to try a
probabilistic approach. If we pick Brownian motion on the unit circle
as driving function, we get SLE (see, for instance, [28]). Another dis-
crete probabilistic evolution was suggested by Beliaev and Smirnov [4].
Yet another model is known as DLA (diffusion limited aggregation),
introduced by Witten and Sander [33]. A related deterministic model
was studied by Carleson and Makarov [11].

Outline of the paper. We first discuss general results comparing the
various integral means spectra. We then mention the various methods
that give estimates from above and from below of the integral means
spectra, with a focus on estimates from above. One of the methods
is based on Bloch-type properties of logϕ′ for ϕ ∈ S, and we mention
interesting open problems in the context. We also look at the Carleson-
Jones-Makarov method to estimate Bb(t) for t close to 2.

2. Sharp results

The class S. Let us begin by reviewing the known results on the
universal integral means spectrum for the class S for real values. Using
the classical pointwise estimates for ϕ ∈ S given in (1.3) and the fact
that ϕ(z) = z belongs to S, we immediately obtain the trivial bounds
for the universal integral means spectrum:

0 ≤ BS(t) ≤ max{3t,−t}, t ∈ R.
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While the pointwise estimates (1.3) are sharp for the Kœbe function
k(z) = z/(1 − z)2 and its rotations kλ(z) = z/(1 − λz)2, |λ| = 1, one
cannot truly expect that they should lead to sharp estimates for the
integral means of functions in S. The exact values of BS have been
computed for large positive t by J. Feng and Thomas MacGregor (see
[13]).

Theorem 2.1. We have

(2.1) BS(t) = 3t− 1 for
2

5
≤ t <∞.

We refer the reader to [27], chapter 8, for details.
The universal integral means spectrum for large negative values of t

has been studied by Lennart Carleson and Nikolai Makarov.

Theorem 2.2. There exists a constant t0 < 0 such that

(2.2) BS(t) = −t− 1 for −∞ < t ≤ t0.

In their paper [10], Carleson and Makarov derive this theorem from
certain results concerning counting the number of disks with large har-
monic measure. Their paper also contains some interesting remarks
on the properties one might expect of the functions corresponding to
extremal growth.

One of the most interesting open problems in the theory of conformal
mappings is to determine the optimal t0. It is only known that t0 ≤ −2.
The statement that in fact we may take t0 = −2, or equivalently, that
BS(−2) = 1, is usually referred to as Brennan’s conjecture.

The classes Sb and Σ. As we remarked before, the classes Sb and Σ
are closely related. In fact, we shall show the following.

Theorem 2.3. We have

(2.3) BSb
(τ) = BΣ(τ) for τ ∈ C.

Proof. Our argument is inspired by Carleson and Jones [9]. First, let
α′ be such that α′ < BSb

(τ). This means that there exists some ϕ ∈ Sb
such that that (ϕ′)τ/2 fails to be in A2

α′(D). An inversion produces a
function

ψ(z) =
ϕ′(0)

ϕ(1/z)
, z ∈ De,

which is in Σ, and a change of variables shows that∫
De

|[ψ′(z)]τ | (1− |z|−2)α
dA(z)

|z|4
=

∣∣[ϕ′(0)]τ ∣∣ ∫
D

∣∣∣∣[w2ϕ′(w)

[ϕ(w)]2

]τ ∣∣∣∣ dAα(z).
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In Section 4 of [1], an estimate of | log(ϕ/z)| was obtained for ϕ ∈ Sb,
which shows that the contribution of w/ϕ(w) to the integral on the
right hand side is modest. In particular, the right hand side integral
diverges for α = α′, so that (ψ′)τ/2 is not in A2

α′(De). As a consequence,
we get that α′ ≤ BΣ(τ). We conclude that

BSb
(τ) ≤ BΣ(τ).

To get the reverse inequality, we proceed as follows. Suppose α′ <
BΣ(τ), so that there exists a ψ ∈ Σ so that (ψ′)τ/2 is not in A2

α′(De).
We choose Ω ⊂ De to be a bounded simply connected domain with
C∞-smooth boundary such that

(2.4)

∫
Ω

∣∣[ψ′(z)]τ ∣∣ (1− |z|−2)α
′ dA(z)

|z|4
= +∞;

we may convince ourselves about the existence of such an Ω by the
following argument. First, we construct a bounded simply connected
Ω0 ⊂ De with C∞-smooth boundary such that ∂Ω contains an arc
of T = ∂D of length > π. The final Ω is chosen among the various
rotations of Ω0. It is an important observation that ϕ maps Ω onto a
bounded region in C.

There exists a C∞-smooth conformal mapping φ which maps D onto
Ω. The map ϕ(z) = ψ ◦ φ(z) is then bounded and univalent, so that
ϕ̃(z) = ψ ◦ φ(z)−ψ ◦ φ(0) belongs to Sb. Exploiting the fact that φ′ is
non-zero throughout the closed unit disk and performing the obvious
change of variables, we obtain the following chain of inequalities:

(2.5)

∫
D

∣∣[ϕ̃′(z)]τ ∣∣(1− |z|2)αdA(z) =

∫
D

∣∣[ϕ′(z)]τ ∣∣(1− |z|2)αdA(z)

=

∫
D

∣∣[φ′(z)]τ [ψ′ ◦ φ(z)]τ
∣∣(1− |z|2)αdA(z)

=

∫
Ω

∣∣[ψ′(w)]τ
∣∣ (1− |φ−1(w)|2)α

∣∣{[φ−1]′(w)}2−τ ∣∣ dA(w)

≥ δ

∫
Ω

∣∣[ψ′(w)]τ
∣∣ (|w|2 − 1)αdA(w),

for some small but positive δ. In view of (2.4), the bottom integral
diverges for α = α′, and hence [ϕ̃′]τ/2 /∈ A2

α′(D). In particular, α′ ≤
BΣ(τ), so that

BΣ(τ) ≤ BSb
(τ).

The assertion of the theorem is now immediate. �

The exact values of the universal integral means spectrum BSb
are

known for large t.
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Theorem 2.4. We have

(2.6) BSb
(t) = t− 1, for t ≥ 2.

The universal integral means spectrum near the point two has been
studied by Peter Jones and Makarov, who obtained the following result
in [22].

Theorem 2.5. For real t, the following estimate holds:

(2.7) BSb
(2− t) = 1− t+O(t2), as t→ 0.

In the introduction, we mentioned that the integral means of deriva-
tives are related to certain coefficient problems. More precisely, BS1(1)
determines the slowest possible rate of decay of the Taylor coefficients
of functions in S1 and, similarily, BΣ(1) determines the rate of decay
of the Laurent series coefficients of functions in Σ. Let us see why this
is so.

By applying the Cauchy estimate

n|an| ≤
1

2πrn−1

∫
|z|=r

|ϕ′(reiθ)|dθ

with r = 1− 1
n

to the coefficients an of a function ϕ ∈ S1, we immedi-
ately get an upper estimate in terms of the integral means:

|an| ≤
C

n
M1[ϕ

′]

(
1− 1

n

)
, n = 2, 3, 4, . . . ,

for some positive constant C. The corresponding estimate for the co-
efficients bn of a function in ψ ∈ Σ reads

|bn| ≤
C

n
M1[ψ

′]

(
1 +

1

n

)
, n = 2, 3, 4, . . . .

In their paper [9], Carleson and Jones show that these estimates are
essentially sharp. To be precise, let us put

Bn = sup
ψ∈Σ

|bn|;

Carleson and Jones prove that there exists a positive constant c0 such
that

Bn ≥
c0
n

sup
ψ∈Σ

M1[ψ
′]

(
1 +

1

n

)
;

and a similar result is deduced for functions in S1. As we interpret these
inequalities in terms of the uniform universal integral means spectrum,
we see that the uniform bound for the Laurent coefficients of functions
in Σ decay at a rate proportional to

n−1+B∞Σ (1)+ε
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for each fixed ε > 0, as n tends to infinity, and the corresponding
statement holds for functions in S1. This fact provides us with some
additional motivation to study the spectra BSb

and BΣ (as well as
their uniform counterparts). The value of BΣ(1) is also important for
a problem of Littlewood on the extremal behavior of polynomials (see
[3]).

From the convexity of BSb
, we obtain the trivial estimate

BSb
(1) ≤ 1

2
,

which has been improved by James Clunie, Christian Pommerenke and
others. For example, Arkadi Grinshpan and Pommerenke (see [15])
have shown that BSb

(1) ≤ 0.4884. Recently, Hedenmalm and Shimorin
[19] obtained BSb

(1) ≤ B∞
Σ (1) ≤ 0.46. Carleson and Jones have con-

jectured that BSb
(1) = B∞

S1
(1) = B∞

Σ (1) = 1/4.

Relationship between BΣ and BS. We now point out an important
relationship between the spectra of the classes S and Σ (and thus,
between BS and BSb

) found by Makarov (see [24]).

Theorem 2.6. We have

(2.8) BS(t) = max
{
BΣ(t), 3t− 1

}
, t ∈ R.

Hence, we would know BS if we could compute the universal integral
means spectrum for functions in Σ. For complex values τ , we do not
know much about the values of the universal integral means spectra.
In an unpublished manuscript, Ilia Binder extends Makarov’s results
to the complex setting (see [7]).

Theorem 2.7. Suppose Re τ ≤ 0. Then

(2.9) BS(τ) = BΣ(τ).

If, on the other hand, Re τ > 0, then

(2.10) BS(τ) = max
{
BΣ(τ), |τ |+ 2Re τ − 1

}
.

A heuristic argument suggesting that B∞
Σ = BΣ. From the defi-

nitions, it is clear that BΣ(τ) ≤ B∞
Σ (τ) holds for all complex τ . Next

suppose that for some α, −1 < α < +∞, we have

sup
ψ∈Σ

∥∥[ψ′]τ/2
∥∥
α,e

= +∞.

We would then like to construct a single ψ0 ∈ Σ such that∥∥[ψ′0]
τ/2

∥∥
α′,e

= +∞
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for each α′ with −1 < α′ < α. First, we find a sequence ψj in Σ such
that ∥∥[ψ′j]

τ/2
∥∥
α,e
≥ mj,

where mj is a very rapidly increasing sequence (one could pick, for

instance, mj = 22j
). Let Kj = C \ ψ(De) be the associated compact

continua. We will tag on a linear segment to each Kj by the following

procedure. Consider the convex hull K̂j of Kj, and pick a strictly

convex boundary point wj of K̂j; then, clearly, wj ∈ Kj. A line segment

Lj emanating from wj is chosen in a direction perpendicular to ∂K̂j

if there exists a boundary tangent at the point; if there is no tangent,
we have more freedom and just make sure that the angle to each of
the two tangential directions at wj is at least 1

2
π. The length of Lj

should be allowed to increase with j, but at a rate much slower than
that of mj. Next, we realize that Kj ∪ Lj is a continuum which does
not divide the plane; we also scale this new continuum so that it gets
diameter equal to 1, and call it Mj. We may repeat the procedure of
adding a line segment, and can thus assume that Mj has diameter 1 but
two line segments emanating from it, of the same length, pointing in
approximately the opposite directions. Unless we made a particularly
unlucky choice of the two points where the two line segments were
adjoined, the conformal maps from De onto C∞ \Mj which preserve
the point at infinity will have essentially the same properties as ψj. The
final step is to construct a continuum with all the essential geometric
ingredients of all the Kj present simultaneously. We rescale each Mj

to have diameter 1/j2, and place all the rescaled Mj’s along the real
line so that the line segments point left-right. We realign the rescaled
Mj’s slightly so that the line segments may be merged, and form their
union. The union (we should add a limit point, too) – call it M –
is a compact continuum, and it has all the ingredients of each Kj at
once. It should be possible to show that the corresponding conformal
map ψ1 : De → C∞ \M which preserves ∞ fails to have belong to the
slightly smaller weighted Bergman space A2

α′(De). We get the desired
ψ0 by normalization: ψ0(z) = ψ1(z)/ψ

′
1(∞).

3. The universal integral means spectrum near the origin

Estimates from above. We have seen that the universal integral
means spectrum is known for both large and small values of t. This
section is devoted to estimates of BS for values of t near the origin. We
begin by recalling some classical results in this direction.
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An upper estimate for BS was found by James Clunie and Pom-
merenke (see the book [27], chapter 8, for details). Their result is not
sharp, but it covers all real values of t.

Theorem 3.1. We have

(3.1) BS(t) ≤ t− 1

2
+

(
4t2 − t+

1

4

)1/2

for t ∈ R. In particular, we get the asymptotic estimate

lim sup
t→0

t−2 BS(t) ≤ 3.

In the proof, the elementary pointwise estimate

(3.2)

∣∣∣∣ϕ′′(z)ϕ′(z)
− 2z̄

1− |z|2

∣∣∣∣ ≤ 4

1− |z|2
, z ∈ D,

is used along with Hardy’s identity to reduce to problem to the study
of a certain ordinary differential inequality. More precisely, a decisive
step in the proof is the estimate
(3.3)

1

2π

∫ π

−π
|ϕ′(reiθ)|t

∣∣∣∣eiθϕ′′(reiθ)ϕ′(reiθ)
− 2r

1− r2

∣∣∣∣2 dθ ≤ 16

(1− r2)2
Mt[ϕ

′](r).

Estimates of a similar type appear in the work of Hedenmalm and
Shimorin, which will be discussed later in this paper. Their method,
however, avoids the use of pointwise estimates and leads to better re-
sults.

In addition, estimates for special values of BS(t) were found by Pom-
merenke (see [27]):

BS(−1) ≤ 0.601

and by Daniel Bertilsson (see [5], [6]):

BS(−2) ≤ 1.547.

Estimates from below. A considerable amount of work has been
devoted to finding estimates for the universal integral means spectrum
from below. There are both analytic and numerical results in this
direction.

Makarov first proved that there exists a constant c > 0 such that
BS(t) ≥ ct2 for t near the origin; this results was later improved by
Steffen Rodhe (once again, see [27]).
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Theorem 3.2. There exists a map ϕ ∈ S with βϕ(−1) > 0.109 and
βϕ(t) ≥ 0.117 t2 for small t. Hence, we have

(3.4) BS(t) ≥ 0.117 t2

for small t.

An improved lower estimate (for positive t) was recently found by
Ilgiz Kayumov (see [26]).

Theorem 3.3. We have

(3.5) BS(t) ≥
t2

5
, 0 < t ≤ 2

5
.

On the numerical side, we should mention the experimental work of
Philipp Kraetzer (see [23]). In view of his results, Kraetzer suggested
that the equality

(3.6) BS(t) =
t2

4
, −2 ≤ t ≤ 2,

might hold. This is sometimes called the Kraetzer conjecture.
In a recent paper (see [4]), Dmitry Beliaev and Stanislav Smirnov

conduct a numerical study of the universal integral means spectrum BΣ

based on the construction of a family of random fractals which they
call random conformal snowflakes. Using this technique, Beliaev and
Smirnov get the estimate BΣ(1) > 0.23 . . ..

4. Recent progress near the origin

We shall now discuss in some detail the recent work of Serguei Shi-
morin and the first-named author on upper estimates of the universal
integral means spectrum. It is our primary goal to explain the basic
ideas contained in their papers. This means that we sometimes omit
certain details and technical points; in such cases, we refer the reader
to [31] and [19] for complete arguments.

Preliminaries. In the introduction, we mentioned that the integral
means spectrum βϕ could be defined for ϕ ∈ S as

βϕ(τ) = inf
{
α+ 1 : [ϕ′]τ/2 ∈ A2

α(D)
}
,

where A2
α(D) is a weighted Bergman space on the unit disk. In fact, if

we have ∥∥[ϕ′]τ/2
∥∥2

α
< +∞

for every ϕ ∈ S, then BS(τ) ≤ α+1. Moreover, if we have the stronger
assertion

sup
ϕ∈S

∥∥[ϕ′]τ/2
∥∥2

α
< +∞,
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then B∞
S (τ) ≤ α+ 1.

Hilbert spaces of functions on the bidisk. We now introduce a
class of weighted Bergman spaces in the bidisk. For −1 < α, β < +∞
and −∞ < γ < +∞, we consider the Hilbert space L2

α,β,γ(D2) of

measurable functions in the bidisk D2 = D× D that satisfy

(4.1) ‖f‖2
α,β,γ =

∫
D2

|f(z, w)|2|z − w|2γdAα(z)dAβ(w) < +∞.

The Bergman space A2
α,β,γ(D2) is the closed subspace of L2

α,β,γ(D2) that

consists of the holomorphic functions. The spaces A2
α,β,γ(D2) were stud-

ied by Hedenmalm, Shimorin, and Sola [21], while the special case
β = 0 was investigated earlier by Hedenmalm and Shimorin [19].

For a function f ∈ A2
α,β,γ(D2), we define the diagonal restriction

operation � by setting

�[f ](z) = f(z, z), z ∈ D.
Using reproducing kernel techniques, one sees that the image of the
space A2

α,β,γ(D2) under the diagonal restriction operator � may be

identified (as a linear space) with the Bergman space A2
α+β+2θ+2(D).

Moreover, we have the sharp norm inequality

(4.2)
1

σ(α, β, γ)
‖ � f‖2

α+β+2γ+2 ≤ ‖f‖2
α,β,γ, f ∈ A2

α,β,γ(D2).

where

(4.3)
1

σ(α, β, γ)
=

∫
D2

|z − w|2γdAα(z)dAβ(w).

This fact will be of crucial importance in subsequent sections.
Using the inequality (4.2) as a starting point, it is in fact possible to

expand the norm of a function f ∈ A2
α,β,γ(D2) in terms of the norms of

its derivatives with respect to one of the variables in Bergman spaces
on the unit disk:
(4.4)

‖f‖2
α,β,γ =

∞∑
N=0

1

σ(α, β +N)

∥∥∥∥ N∑
k=0

ak,N∂N−k
z � [∂k

zf ]

∥∥∥∥2

α+β+2γ+2N+2

.

Here, ak,N are certain coefficients, which depend on α, β, γ as well as
on k and N . Also, ∂z stands for the differentiation operator

∂z =
d

dz
.

We omit the proof of these results, which rely on reproducing kernel
methods, and require a considerable amount of computation. A full
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discussion of the elegant theory of reproducing kernels is beyond the
scope of this paper; we suggest that the reader consult the book [29]
as well as the paper [21].

A multiplier estimate. We begin by reviewing the results of Shi-
morin’s paper [31]. The Schwarzian derivative of a function ϕ ∈ S is
given by the expression

S[ϕ](z) =
ϕ′′′(z)

ϕ′(z)
− 3

2

[
ϕ′′(z)

ϕ′(z)

]2

, z ∈ D.

It is classical (see [12], p. 263) that the Schwarzian derivative admits
the pointwise estimate

|S[ϕ](z)| ≤ 6

(1− |z|2)2
, z ∈ D,

which is sharp for the Kœbe function. From this it follows that, for a
fixed ϕ ∈ S, we can view the Schwarzian derivative S[ϕ] as a multiplier
between the weighted Bergman spaces A2

α−2(D) and A2
α+2(D), with the

multiplier norm estimate

(4.5)
∥∥S[ϕ] g

∥∥2

α+2
≤ 36

α+ 3

α− 1
‖g‖2

α−2, −1 < α < +∞,

for all g ∈ A2
α−2(D). Shimorin was able to improve this “trivial” in-

equality by avoiding the use of pointwise estimates.

Theorem 4.1. Fix ϕ ∈ S and a real parameter α, 1 < α < +∞. We
then have the estimate

(4.6)
∥∥S[ϕ] g

∥∥2

α+2
≤ 36

α+ 1

α− 1
‖g‖2

α−2, g ∈ A2
α−2(D).

The proof runs as follows. We introduce two functions F and G by
putting

(4.7) F (z, w) = log

[
(ϕ(w)− ϕ(z))wz

(w − z)ϕ(w)ϕ(z)

]
, (z, w) ∈ D2, z 6= w,

and

(4.8) G(z, w) =
∂2F

∂z∂w
(z, w), (z, w) ∈ D2, z 6= w.

The functions F and G can be extended holomorphically to the entire
bidisk D2. It is easy to see that

�[G](z) =
1

6
S[ϕ](z), z ∈ D.
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Using the Grunsky inequalities, or an invariant version of Grönwall’s
area theorem (see [12]), we obtain the estimate

(4.9)
∥∥z 7→ G(z, w)

∥∥2

0
≤ 1

(1− |w|2)2
, w ∈ D.

The multiplier estimate (4.6) for g ∈ A2
α−2(D) now follows from (4.9)

and (4.2) applied to the holomorphic function

f(z, w) = 6G(z, w)g(w), (z, w) ∈ D2.

Indeed, since σ(0, α, 0) = 1, we note that

‖S[ϕ]g‖2
α+2 = ‖ � f‖2

α+2 ≤ ‖f‖2
0,α,0,

and that

‖f‖2
0,α,0 = 36

∫
D2

|G(z, w)g(w)|2 dA(z)dAα(w)

= 36

∫
D
‖z 7→ G(z, w)‖2

0 |g(w)|2 dAα(w)

≤ 36

∫
D
|g(w)|2 dAα(w)

(1− |w|2)2
= 36

α+ 1

α− 1
‖g‖2

α−2.

Derivatives of powers of [ϕ′]λ and derivatives of Bergman space
functions. In what follows, we will apply Theorem 4.1 to functions g
of the type

(4.10) g(z) = [ϕ′(z)]λ = exp[λf(z)], λ ∈ C,
where f = logϕ′. It is easy to compute derivatives of these functions;
we have

(4.11) g′ = λf ′ exp(λf) = λf ′g,

(4.12) g′′ = (λf ′′ + λ2[f ′]2) g,

and so on. We should mention that the linear combinations and prod-
ucts of derivatives of ϕ′ one obtains in this fashion have rather inter-
esting algebraic properties. This is mentioned in [19] and [20].

We need to be able to compare the norm of a function in A2
α(D)

with the norms of its successive derivatives in the appropriate weighted
Bergman spaces. The precise statement is as follows.

Proposition 4.2. Suppose −1 < α < ∞, and fix a real parameter ν
with 0 < ν ≤ 1. We then have, for n = 1, 2, 3, . . . and for g ∈ A2

α(D),

0 ≤ (α+ 2)2n‖g‖2
α − ‖g(n)‖2

α+2n = O(‖g‖2
α+ν).
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Here, the standard Pochhammer notation is used:

(x)n = x(x+ 1)(x+ 2) · · · (x+ n− 1).

One way to prove Proposition 4.2 is to consider the Taylor coefficients
of the given function and the coefficients of its derivative and use the
Parseval formula to express the norm in the weighted Bergman space.

Remark 4.3. It is an open problem to find a relation similar to that of
Proposition 4.2 for the Bergman Lp spaces Apα(D), with 0 < p < +∞,
that is, the space of functions g that are holomorphic in the unit disk
and satisfy the norm boundedness condition

(4.13) ‖g‖p
Ap

α
=

∫
D
|g(z)|pdAα(z) < +∞.

It is known (see the first chapter of [18]) that for 1 ≤ p < +∞,

(4.14) C1(α)‖f‖Ap
α
≤ ‖f ′‖p

Ap
α+2

≤ C2(α)‖f‖p
Ap

α

holds for f ∈ Apα(D) with f(0) = 0. Here, C1(α) and C2(α) are some
positive constants. The optimal constants are not known here.

Estimate of BS(−1). We are now ready to implement our results and
recover Shimorin’s estimates. Next, we put λ = −1

2
in (4.12), and see

that

∂2
z

{
[ϕ′(z)]−1/2

}
= −1

2
S[ϕ](z) [ϕ′(z)]−1/2.

Using this together with Proposition 4.2, we get the following chain of
inequalities:

(4.15)
∥∥[ϕ′]−1/2

∥∥2

α−2
=

1

(α)4

∥∥∂2
z{[ϕ′]−1/2}

∥∥2

α+2
+O

(∥∥[ϕ′]−1/2
∥∥2

α−2+ν

)
=

1

4(α)4

∥∥[ϕ′]−1/2 S[ϕ]
∥∥2

α+2
+O

(∥∥[ϕ′]−1/2
∥∥2

α−2+ν

)
≤ 9 (α+ 1)

(α− 1)(α)4

‖(ϕ′)−1/2‖2
α−2 +O

(∥∥[ϕ′]−1/2
∥∥2

α−2+ν

)
.

We may now rewrite this as

(4.16)

(
1− 9(α+ 1)

(α− 1)(α)4

) ∥∥[ϕ′]−1/2
∥∥2

α−2
≤ O

(∥∥[ϕ′)−1/2
∥∥2

α−2+ν

)
.

Suppose that α is chosen so that

(4.17)
9(α+ 1)

(α− 1)(α)4

< 1,
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and suppose moreover that we may find a ν, 0 < ν ≤ 1, such that

sup
ϕ∈S

∥∥[ϕ′]−1/2
∥∥2

α−2+ν
< +∞,

due, for instance, to some a priori estimates of distortion type. We
then obtain that

sup
ϕ∈S

∥∥[ϕ′]−1/2
∥∥2

α−2
< +∞.

It is immediate that BS(−1) ≤ B∞
S (−1) ≤ α−1. The critical condition

is (4.17), as it is usually easy to obtain a reasonable a priori estimate.
An implementation yields the estimate BS(−1) ≤ 0.4196.

4.1. Area-type inequalities and norm expansions. We proceed
with a discussion of the methods developed in the paper [19].

Our starting point is an inequality which follows from a classical
result of Prawitz (see [19] for details).

Theorem 4.4. Let ϕ ∈ S and 0 < θ ≤ 1. We then have∫
D

∣∣∣∣ϕ′(z)[ z

ϕ(z)

]θ+1

− 1

∣∣∣∣2 dA(z)

|z|2θ+2
≤ 1

θ
.

If we are to follow the path trodden by Shimorin, our next objective is
to transform the inequality of Theorem 4.4 into a multiplier inequality
for functions in A2

α(D). First, we introduce a second variable into our
inequality. Actually, in the integral of Theorem 4.4, two points are
present, the origin 0 and the point z. The origin may be moved to
another (free) point w in D via a suitable Mœbius automorphism of
D, while z is kept as integration variable. After these changes, the
inequality of Prawitz takes the following appearance:

(4.18)

∫
D

∣∣Φθ(z, w) + Lθ(z, w)
∣∣2 dA(z)

|z − w|2θ
≤ 1

θ

1

(1− |w|2)2θ
,

where w ∈ D and 0 < θ ≤ 1. The function Φθ is given by

(4.19) Φθ(z, w) =
1

z − w

{
ϕ′(z)

ϕ′(w)

(
ϕ′(w)(z − w)

ϕ(z)− ϕ(w)

)θ+1

− 1

}
,

while Lθ is defined to be

(4.20) Lθ(z, w) =
1

z − w

{
1−

(
1− |w|2

1− wz

)1−θ
}

;
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it is assumed that (z, w) ∈ D2 and z 6= w. The function Φθ extends
holomorphically across the diagonal; the diagonal values are

(4.21) Φθ(z, z) =
1− θ

2

ϕ′′(z)

ϕ′(z)
, z ∈ D.

A similar smooth extension is possible for Lθ.
The next step is now to multiply both sides of (4.18) by a function

g ∈ A2
α−2θ(D) and integrate with respect to the measure dAα in the

variable w. This yields∫
D2

∣∣g(w)Φθ(z, w) + g(w)Lθ(z, w)
∣∣2|z − w|−2θdA(z)dAα(w)

≤ α+ 1

θ(α− 2θ + 1)
‖g‖2

α−2θ,

and we interpret the left-hand side as the norm of the function

g(w)Φθ(z, w) + g(w)Lθ(z, w)

in the space L2
0,α,−θ(D2). Thus, we find that

(4.22)
∥∥g(w)Φθ(z, w) + g(w)Lθ(z, w)

∥∥2

0,α,−θ ≤
α+ 1

θ(α− 2θ + 1)
‖g‖2

α−2θ.

At this point, we would like to use (4.4) to expand the the left hand
side of (4.22) in terms of diagonal contributions. Unfortunately, the
function Lθ is in general not holomorphic and so we cannot use the
expansion (4.4) right away. Orthogonal projection techniques offer a
remedy to this problem.

Let Pα,−θ denote the orthogonal projection from L2
0,α,−θ(D2) onto its

subspace A2
0,α,−θ(D2) of holomorphic functions; moreover, write

P⊥
α,−θ = I −Pα,−θ.

Since g(w)Φθ(z, w) is holomorphic, we get

P⊥
α,−θ[g(w)Φθ(z, w)] = 0,

so that we realize that it follows from (4.22) that

(4.23)
∥∥g(w)Φθ(z, w) + Pα,−θ[g(w)Lθ(z, w)]

∥∥2

0,α,−θ

≤ α+ 1

θ(α− 2θ + 1)
‖g‖2

α−2θ −
∥∥P⊥

α,−θ[g(w)Lθ(z, w)]
∥∥2

0,α,−θ.

Using a combination of norm expansion techniques and explicit com-
putations, we are able to estimate the right-hand side of this inequality
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in terms of the function g. More precisely, we have

α+ 1

θ(α− 2θ + 1)
‖g‖2

α−2θ −
∥∥P⊥

α,−θ[g(w)Lθ(z, w)
∥∥2

0,α,−θ

= K ‖g‖2
α−2θ +O(‖g‖2

α−θ),

where K = K(α, θ) is given by an explicit expression involving certain
generalized hypergeometric functions.

Now, the functions gΦθ and Pα,−θ[gLθ] are holomorphic in D2, and
we may apply the diagonal norm expansion. The result is

(4.24)
∥∥g(w)Φθ(z, w) + Pα,−θ[g(w)Lθ(z, w)]

∥∥2

α,−θ

=
∞∑
N=0

1

σN

∥∥∥∥bNg(N+1) +
N∑
k=0

ak,N∂N−k
z [Φk,θg]

∥∥∥∥2

α−2θ+2N+2

.

Here, we have introduced the functions

Φk,θ(z) = �[∂k
zΦθ], k = 0, 1, 2, . . . ;

and we write σN for σ(α,−θ+N). Finally, we state the main result of
[19].

Theorem 4.5. Fix α, θ with −1 + 2θ < α < +∞ and 0 < θ ≤ 1.
Then, for any g ∈ A2

α−2θ(D), we have

(4.25)
∞∑
N=0

1

σN

∥∥∥∥∥bNg(N+1) +
N∑
k=0

ak,N∂N−k
z [Φk,θg]

∥∥∥∥∥
2

α−2θ+2N+2

≤ K‖g‖2
α−2θ +O(‖g‖2

α−θ).

Here, K = K(α, θ), σN = σ(α,−θ + N), ak,N and bN are given by
certain explicit expressions.

One should note that �[∂k
zΦθ] can always be computed in terms of

the original function ϕ ∈ S (see section 5 of [19] for details).
We have now accomplished our first goal: to find a parametrized

inequality which holds uniformly in the class S. As we shall see, the
free parameter 0 < θ ≤ 1 will play a crucial role in our investigations.
We devote the next section to the applications of the theorem to the
study of the universal integral means spectrum.

Estimating BS(τ) near the origin. Let us see how our inequality
can be used in the study of the universal integral means spectrum.
Suppose we throw away all but the first term in the series expansion
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in (4.25), put α = β + 2θ − 1 and plug in the function g = [ϕ′]τ/2. We
then obtain

(4.26)

∥∥∥∥C1 ∂z{[ϕ′]τ/2}+ C2
ϕ′′

ϕ′
[ϕ′]τ/2

∥∥∥∥2

β+1

≤ K
∥∥[ϕ′]τ/2

∥∥2

β−1
+O

(∥∥[ϕ′]τ/2
∥∥2

β−1+θ

)
,

where C1 = C1(β, θ) and C2 = C2(β, θ) are explicit expressions. Next,
we note that

∂z {[ϕ′]τ/2} =
τ

2

ϕ′′

ϕ′
[ϕ′]τ/2

and that by (4.2) with ν = θ∥∥∂z[ϕ
′]τ/2

∥∥2

β+1
= (β + 1)(β + 2)

∥∥[ϕ′]τ/2
∥∥2

β−1
+O

(∥∥[ϕ′]τ/2
∥∥2

β−1+θ

)
.

We implement this in the inequality (4.26) and obtain

(4.27) A
∥∥[ϕ′]τ/2

∥∥2

β−1
+O

(∥∥[ϕ′]τ/2
∥∥2

β−1+θ
)

≤ K ‖[ϕ′]τ/2
∥∥2

β−1
+O

(∥∥[ϕ′]τ/2
∥∥2

β−1+θ

)
,

where A = A(β, θ, τ) is an explicit expression and K = K(β, θ) is
(essentially) as before (we really should write K(β+2θ−1, θ) instead).
This implies that if we can find, for τ fixed, β and θ such that

M(β, θ, τ)−K(β, θ) > 0,

while at the same time ‖[ϕ′]τ/2‖2
β−θ+1 < +∞ for all ϕ ∈ S, then

BS(τ) ≤ β. Initial control of the big-oh term can be achieved by
using, for instance, the pointwise bound

|[ϕ′(z)]τ | ≤ (1 + |z|)2|τ |−Re τ

(1− |z|)2|τ |+Re τ
, z ∈ D.

In this fashion, the authors of [19] obtain the estimate

lim sup
τ→0

BS(τ)

|τ |2
≤ 1

2
.

Let us take into account one more term in the norm expansion. We be-
gin by taking into account the first two terms in (4.25), again plugging
in g = [ϕ′]τ/2. After some calculations, we arrive at the inequality

(4.28) M
∥∥[ϕ′]τ/2

∥∥2

β−1
+

∥∥∥∥A1
ϕ′′′

ϕ′
[ϕ′]τ/2 + A2

[
ϕ′′

ϕ′

]2

[ϕ′]τ/2
∥∥∥∥2

β+3

≤ K
∥∥[ϕ′]τ/2‖2

β−1 +O
(∥∥[ϕ′]τ/2

∥∥2

β−1+θ

)
,
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where, as before, we can write down explicit expressions for the con-
stants Ai = Ai(β, θ, τ), i = 1, 2. One checks that for θ close to 0 (and
β, τ ∼ 0 as well), A1 is almost zero, while A2 is not. The inequality∥∥∥∥ϕ′′′ϕ′ [ϕ′]τ/2

∥∥∥∥2

β+3

≤ C
∥∥[ϕ′]τ/2

∥∥2

β−1

(valid for some suitable constant C) together with (4.28) now tells us
that (with θ, β, τ ∼ 0) we may neglect the term with A1 as a factor,
and thus bound ∥∥∥∥ [

ϕ′′

ϕ′

]2

[ϕ′]τ/2
∥∥∥∥2

β+3

in terms of ‖[ϕ′]τ/2‖2
β−1 plus a bounded term. By the Cauchy-Schwarz

inequality, we can find a constant C3 = C3(β, θ, τ) such that

(4.29)
∥∥∂z[ϕ

′]τ/2
∥∥2

β+1
≤ C3

∥∥∥∥[
ϕ′′

ϕ′

]2

[ϕ′]τ/2
∥∥∥∥
β+3

∥∥[ϕ′]τ/2
∥∥
β−1

.

Finally, we obtain

(β + 1)(β + 2)
∥∥[ϕ′]τ/2

∥∥2

β−1
=

∥∥∂z{[ϕ′]τ/2}
∥∥2

β+1
+O

(∥∥[ϕ′]τ/2
∥∥
β−1+θ

)
≤ C3

∥∥∥∥[
ϕ′′

ϕ′

]2

[ϕ′]τ/2
∥∥∥∥
β+1

∥∥[ϕ′]τ/2
∥∥
β−1

+O
(∥∥[ϕ′]τ/2

∥∥
β−1+θ

)
,

and this gives a condition on β and θ (expressed in terms of all our
constants) for the norm ‖[ϕ′]τ/2‖2

β−1 to be bounded by some constant

times ‖[ϕ′]τ/2‖2
β−1+θ. By choosing our parameters as above, we obtain

the estimate

lim sup
τ→0

BS(τ)

|τ |2
≤ 0.43649 . . . .

If we take one more term into account, this may be improved to (see
[20])

lim sup
τ→0

BS(τ)

|τ |2
= 0.3798 . . . .

We should mention that it is possible to use the inequality (4.25) as
a starting point for a numerical study of the universal integral means
spectrum, at least for real values of τ . A numerical implementation
based on the first two terms can be found in the paper [19], while
three terms were used in the numerical study in [32]. The numerical
implementation is based on optimization techniques, using the fact that
the coefficients A1, A2 in (4.28) vary with the choice of the parameter
θ. Deeper properties are needed to uncover the full strength of (4.28).
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Underlying ideas and remaining difficulties. Now that we have
seen how the methods developed in [31] and [19] work, let us try to see
where the underlying ideas come from and why our techniques do not
yet work as well as we would like them to.

The Bloch space B(D) consists of functions f which are holomorphic
in the unit disk and have bounded norm in the sense that

(4.30) ‖f‖B(D) = sup
{
(1− |z|2)|f ′(z)| : z ∈ D

}
< +∞.

It is a well-known fact that a Bloch space function belongs to A2
α(D)

for any given α > −1. Sometimes it is also of interest to consider the
little Bloch space B0(D). This is the subspace of B(D) that consists of
functions f with

(4.31) lim
|z|→1−

(1− |z|2)|f ′(z)| = 0.

It follows from (3.2) that if ϕ ∈ S, then logϕ′ ∈ B(D). Moreover,
if a function f in the Bloch space has sufficiently small Bloch norm
(actually, it suffices that the Bloch norm is ≤ 1), then there exists a
function ϕ ∈ S such that f = logϕ′ (see [12] and [27]).

It is the philosophy of this paper that the study of integral means
spectra amounts to understanding the function f = logϕ′ as an element
of the quotient space B(D)/B0(D) for ϕ ∈ S. Since for λ ∈ C we have
[ϕ′]λ = exp(λf), we are asking for which α exp(λf) belongs to A2

α(D).
One way to approach this is to use (4.2) to achieve inequalities of the
type

(4.32)
∥∥ exp(λf)

∥∥2

α
= c(α)

∥∥∂z exp(λf)
∥∥2

α+2
+O(1)

= c(α)‖λf ′ exp(λf)‖2
α+2 +O(1)

≤ c(α)|λ|‖Mf ′‖‖ exp(λf)‖2
α +O(1),

with
1− c(α)|λ|‖Mf ′‖ > 0

and the O(1)-term given by the norm of exp(λf) in some weighted
Bergman space to which the function belongs a priori. Here, MF de-
notes the operator of multiplication by the function F , and ‖Mf ′‖ is
the operator norm A2

α(D) → A2
α+2(D). In order to be able to choose

α as small as possible, we need to get a good bound for the multi-
plier norm. The inequality (4.15) fits into this scheme; in that case
we choose λ = −1/2 and consider second order derivatives instead. In
that situation, the corresponding multiplier

Mf ′′− 1
2
(f ′)2

is precisely the Schwarzian derivative S[ϕ].
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More generally, we are provided with an entire collection of inequal-
ities, which can be exploited to obtain similar estimates, by (4.25). In
order to make good use of the information given to us by this result, we
would like to use as many of the terms in the series expansion as pos-
sible. The success of the method now relies on our ability to somehow
compare the norms appearing on the left-hand side of the fundamental
inequality with the norm of a suitably chosen function g ∈ A2

β−1(D).
That is, we now want to compare∥∥∥∥bNg(N+1) +

N∑
k=0

ak,N ∂N−k
z [gΦk,θ]

∥∥∥∥2

β+2N−1

with ‖g‖2
β−1. This, however, is in general quite difficult. As we noticed

before, the case with the first term only (N = 0) is easy to handle. Let
us therefore return to the case where we take two terms in our series
expansion into account. Setting

f = logϕ′ and g = exp
[τ
2
f
]
,

we may rewrite (4.28) in the form

(4.33) A ‖g‖2
β−1 +B

∥∥{
f ′′ + η[f ′]2

}
g
∥∥2

β+3
≤ ‖g‖2

β−1 +O(‖g‖2
β−1+θ).

As usual, the constants A = A(β, θ, τ), B = B(β, θ, τ), and η =
η(β, θ, τ) are explicit expressions. We are now faced with the prob-
lem of comparing the term∥∥{

f ′′ + η [f ′]2
}
g
∥∥2

β+3

with the norm of the function g ∈ A2
β−1(D), and we want to do this

for different values of the constant η. Of course, if η is such that the
expression {f ′′ + η[f ′]2}g can be thought of as a multiple of a higher
order derivative of g (as was the case in our discussion involving the
Schwarzian), then we can immediately apply (4.2) and get a good es-
timate in terms of ‖g‖2

β−1. There was also the rather ad-hoc method
involving the Cauchy-Schwarz inequality (corresponding to the degen-
erate case when η tends to infinity). But it would appear that in order
to really make effective use of (4.33), we should need to have inequali-
ties of the type

(4.34) c1(η, η
′)

∥∥{
f ′′ + η′ [f ′]2

}
g
∥∥2

β+3
+O(1)

≤
∥∥{
f ′′ + η[f ′]2

}
g
∥∥2

β+3

≤ c2(η, η
′)

∥∥{
f ′′ + η′[f ′]2

}
g
∥∥2

β+3
+O(1)
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with good constants c1(η, η
′) and c2(η, η

′). If the above were true, we
could exchange one η for another in order to reach a situation where
the result (4.2) applies. The estimates we would obtain of the universal
integral means spectrum would of course depend on the quality of the
constants in (4.34).

Let A−γ(D) denote the Banach space of functions f holomorphic in
D, subject to the norm boundedness condition

‖f‖A−γ(D) = sup
z∈D

(1− |z|2)γ |f(z)| < +∞.

Here, we assume 0 < γ < +∞ (the space is trivial for negative γ).
Moreover, let A−γ

0 (D) denote the closed subspace of functions f with

f(z) = o

(
1

(1− |z|2)γ

)
, as |z| → 1.

It is well known that if f ∈ B(D), then f ′ ∈ A−1(D), f ′′ ∈ A−2(D),
and so on. This implication is actually reversible. Moreover, f ∈
B0(D) if and only if f ′ ∈ A−1

0 (D), which happens if and only if f ′′ ∈
A−2

0 (D). This means that the mapping f 7→ f ′′ induces an isomorphism
B(D)/B0(D) ∼= A−2(D)/A−2

0 (D). What then about the nonlinear map

f 7→ f ′′ + η [f ′]2,

for some complex η, where it is assumed that f = logϕ′ with ϕ ∈
S? Does it induce a correspondence between the spaces B(D)/B0(D)
and A−2(D)/A−2

0 (D)? Answering this question is a first step toward
understanding when an estimate like (4.34) is possible. Pleasantly,
Eero Saksman obtained the following.

Theorem 4.6. (Saksman) For each fixed complex number η, f ∈ B(D)
holds if and only if

f ′′(z) + η [f ′(z)]2 ∈ A−2(D).

However, it is not always true that

f ′′(z) + η [f ′(z)]2 ∈ A−2
0 (D)

implies that f ∈ B0(D). The main source of counterexample is the
following:

ϕλ(z) =
1

λ

{
(1 + z)λ − 1

}
, z ∈ D,

where λ is a complex parameter (for λ = 0, we pick ϕ0(z) = log(1+z)).
One verifies that ϕλ ∈ S if and only if

|λ− 1| ≤ 1 or |λ+ 1| ≤ 1.
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We calculate that

fλ(z) = logϕ′λ(z) = (λ− 1) log(1 + z),

which induces a nontrivial element of B(D)/B0(D) for λ 6= 1. A short
calculation yields

f ′′λ (z) + η [f ′λ(z)]
2 = (1− λ)[1− η(1− λ)]

1

(1 + z)2
, z ∈ D,

which vanishes provided that

1

η
= 1− λ.

So for 1 ≤ |η| < +∞, we see that f ′′ + η[f ′]2 may be in A−2
0 (D) while

f /∈ B0(D). However, for |η| < 1, there is still hope that f ′′ + η[f ′]2 ∈
A−2

0 (D) might imply that f ∈ B0(D). For the Schwarzian derivative
(the case η = −1

2
), it seems to be so (see [2]).

For higher order terms, the picture is much more complicated. Nev-
ertheless, we believe that clearing up of the above issues for the second
term should go a long way toward understand all the other terms as
well.

5. Recent progress on bounded functions

The universal integral means spectrum near 2. Here, we men-
tion some recent results of Anton Baranov and the first-named author.
Their work is inspired by the deep paper [22] of Jones and Makarov.
We recall that the main result of [22] concerning the universal means
spectrum reads as follows.

Theorem 5.1. We have

BSb
(2− t) = 1− t+O(t2), as t→ 0.

In the paper [1], a similar theorem is obtained. While slightly weaker
for real arguments, the result holds for complex values of τ as well.

Theorem 5.2. We have

BSb
(2− τ) ≤ 1− Re τ +

(
9e2

2
+ o(1)

)
|τ |2 log |τ |, as |τ | → 0.
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The basic identity. As before, let ϕ ∈ Sb be a conformal mapping.
The proof is based on the following elementary identity:

log
z(ϕ(z)− ϕ(ζ))

(z − ζ)ϕ(z)
− ζ(1− |ζ|2)

[
ϕ′(ζ)

ϕ(ζ)− ϕ(z)
− 1

ζ − z

]
+ log

(
1− z̄ζ

)
+ z̄ζ

1− |ζ|2

1− z̄ζ

= ζ2

∫
D

ϕ′(w)

ϕ(w)− ϕ(z)

ζ̄ − w̄

(1− w̄ζ)2
dA(w).

This identity is related to the Grunsky inequality in a manner explained
in [1]. As a matter of fact, the diagonal restriction of the above identity
is essential:

log
zϕ′(z)

ϕ(z)
− z(1− |z|2) ϕ

′′(z)

ϕ′(z)
+ log

(
1− |z|2

)
+ |z|2

= z2

∫
D

ϕ′(w)

ϕ(w)− ϕ(z)

z̄ − w̄

(1− w̄z)2
dA(w).

It is well-known that

−z(1− |z|2) ϕ
′′(z)

ϕ′(z)
+ |z|2

is bounded by a universal constant, so that we get

(5.1) log
zϕ′(z)

ϕ(z)
+ log

(
1− |z|2

)
+O(1)

= z2

∫
D

ϕ′(w)

ϕ(w)− ϕ(z)

z̄ − w̄

(1− w̄z)2
dA(w).

Uniform Sobolev imbedding. An application of Hölder’s inequality
and some well-known properties of Marcinkiewicz-Zygmund integrals
show that the Cauchy-type operator

C̃ϕ[f ](z) =

∫
D

ϕ′(w)

ϕ(w)− ϕ(z)

z̄ − w̄

1− w̄z
f(w) dA(w)

has a uniform Sobolev imbedding property (0 < κ < +∞):

(5.2)

∫
D

exp
{
|λ| sup

f∈ball(Xκ(D))

∣∣ C̃ϕ[f ](z)
∣∣2+κ} |ϕ′(z)|2 dA(z) < +∞,

provided that λ ∈ C has

|λ| < κ4−κ

9e(2 + κ)
.
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Here, Xκ(D) is the Lebesgue (Banach) space

Xκ(D) = Lp(D, µ),

where

p =
2 + κ

1 + κ
, dµ(z) = (1− |z|2)−κ/(1+κ) dA(z);

the norm in Xκ(D) is given by

‖f‖Xκ(D) =

{∫
D
|f(z)|(2+κ)/(1+κ)(1− |z|2)−κ/(1+κ) dA(z)

}(1+κ)/(2+κ)

.

We apply the uniform Sobolev imbedding to the function fz given by

fz(w) =
gz(w)

‖gz‖Xκ(D)

, gz(w) =
z2

1− w̄z
;

that is, we pick a different f for each point z ∈ D in (5.2). It is
important to note that by (5.1),

(5.3) C̃ϕ[gz](z) = log

[
z
ϕ′(z)

ϕ(z)

(
1− |z|2

)]
+O(1), z ∈ D.

Theorem 5.2 now follows from the uniform Sobolev imbedding estimate
(5.2) by a convexity argument involving linear approximation. For
details, we refer to [1].

It is interesting to note that the method used by Baranov and Heden-
malm uses the diagonal restriction of an integrated version of a Grunsky
identity, while the standard method which yields so far best results at
other parts of the spectrum uses a kind of diagonal restriction of the
usual (weighted) Grunsky identity (for the notion of Grunsky identity,
see [1]).

6. Numerical implementation

Estimating BSb
(t) near 0, 1, and 2. In this section, we present

some new numerical estimates that we have obtained using the results
of the paper [1]. There, it is shown that for ϕ ∈ Sb, we have, for every
0 < κ < 1,

BSb
(2− τ) ≤ 1− Re τ +

(
9e4κ

κ

)1/(1+κ) (1 + κ)Γ(1−κ
1+κ

)

(2 + κ)Γ( 1
1+κ

)2
|τ |(2+κ)/(1+κ).

We now choose small real τ and vary κ to obtain numerical estimates
of BSb

near the point 2. In addition, we apply the methods of [19]
and [32], to obtain of estimates of BS close to the origin. The fact
that the universal means spectra are convex now allows us to estimate
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BSb
(1) using linear interpolation between upper estimates for BS(t) and

BSb
(2 − τ) for suitable (small real) values of t and τ . Using a larger

collection of estimates than the one presented in [32], we have managed
to obtain the estimate

BSb
(1) ≤ 0.4598 . . . ,

which represents a very modest improvement of the bound BSb
(1) ≤

0.4600 . . . given in [19].
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