
On the Makarov law of the iterated logarithm

H̊akan Hedenmalm and Ilgiz Kayumov

Abstract. We obtain considerable improvement in Makarov’s estimate of the boundary behav-
ior of a general conformal mapping from the unit disk to a simply connected domain in the
complex plane. We apply the result to improve Makarov’s comparison of harmonic measure
with Hausdorff measure on simply connected domains.

1. Introduction

Let D be the open unit disk in the complex plane C. Suppose that a function ϕ is analytic in the
disk D. Nikolai Makarov [8] proved that there exists a positive absolute constant C1 such that

(1.1) lim sup
r→1−

|ϕ(reiθ)|√
log 1

1−r log log log 1
1−r

≤ C1||ϕ||B

for almost all ζ ∈ ∂D. Here,
‖ϕ||B = sup

z∈D
(1− |z|2)|ϕ′(z)|

is the usual Bloch seminorm. Later, Christian Pommerenke ([9], p. 186) showed that the inequality
(1.1) is true for C1 = 1, and that there exists a function ϕ analytic in disk D such that the inequality
(1.1) fails for C1 ≤ 0.685.

Suppose that a function f is analytic and univalent in the disk D. It is known that ([9], p. 9)
that ‖ log f ′‖B ≤ 6. On the other hand, by Becker’s univalent criterion ([9], p.16), any function g
analytic in D must be univalent if || log g′||B ≤ 1. Therefore, we see that the Makarov law of the
iterated logarithm amounts to the inequality

(1.2) lim sup
r→1−

| log f ′(reiθ)|√
log 1

1−r log log log 1
1−r

≤ C2

for almost all ζ ∈ ∂D, where C2 is an absolute constant and f is a function analytic and univalent
in the disk D.

Let CM = inf{C2 : (1.2) holds}. Pommerenke’s estimates lead to the following inequalities
([9], p. 188):

0.685 < CM ≤ 6.
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Recently, in [6], it was shown that CM ≤ 2
√

3. In this paper, we shall demonstrate that

(1.3) 0.91 ≤ CM ≤ 2

√√
24− 3

5
= 1.2326 . . . .

On the one hand, to obtain the upper estimate in (1.3), we combine the following two results.
RESULT 1. In the paper [2], it was shown that

(1.4) lim sup
t→0

βf (t)
|t|2

≤
√

24− 3
5

= 0.3798 . . . ,

where

βf (t) = lim sup
r→1−

log
∫ π

−π

∣∣f ′(reiθ)t
∣∣ dθ

2π

log 1
1−r

is the integral means spectrum.

RESULT 2. In the paper [5], it was established that for all positive δ, the following inequality
holds:

(1.5) lim sup
r→1−

| log f ′(rζ)|√
log 1

1−r log log log 1
1−r

≤ 2 lim sup
t→0

√
βf,δ(t)
|t|

for almost all ζ on |ζ| = 1. Here, we use the notation

βf,δ(t) = sup
r∈]0,1[

log
{

δ
∫
|z|=r

∣∣f ′(z)t
∣∣ dθ
2π

}
log 1

1−r

.

We remark that βf (t) ≤ βf,δ(t), and that

βf,δ(t) → βf (t) as δ → 0.

This allows us to apply the results (suitably modified) of the above-mentioned paper [2].
On the other hand, to prove the lower estimate in (1.3), we use the example which was

constructed in the paper [7], combined with an iterative process introduced by Pommerenke.
We apply the upper estimate in (1.3) to the following classical problem. Let Ω be a simply con-

nected domain on the complex plane with Jordan boundary and f be the Riemann mapping from
the disk D onto Ω. By the Carathéodory extension theorem, then, f extends to a homeomorphism
of (the closure) D̄ onto Ω̄.

PROBLEM: Suppose that A is a Borel set of positive linear measure on ∂D. What we can say
about the metric properties of f(A)?

The classical Riesz-Privalov theorem states that if the domain Ω = f(D) has a rectifiable
boundary and A ⊂ ∂D has positive linear measure, then the linear measure of f(A) is also positive.
Lavrentiev later showed that the rectifiability assumption is essential here.

We recall some basic definitions. Suppose that ϕ : [0,+∞) → [0,+∞) is continuous and
increasing, with ϕ(0) = 0 and ϕ(t) > 0 for all t > 0. Let E be a Borel set in the plane C. The
ϕ-Hausdorff measure of the set E is defined by

Λϕ(E) = lim
ε→0+

inf
{Bk}k

∑
ϕ(diam Bk),

where the infimum is taken over all countable coverings {Bk}k of E such that diamBk < ε for all k.
In the case ϕ(t) = tα for some positive real parameter α, we write Λα in place of Λtα . In [1], Lennart
Carleson proved that there exists ε > 0 such that 0 < Λ1/2+ε(f(A)) ≤ +∞. Later, Makarov [8]
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showed that 0 < Λα(f(A)) ≤ +∞ for any α with 0 < α < 1. Indeed, he proved a substantially
stronger assertion: There exists an absolute positive constant C such that 0 < Λϕ(f(A)) ≤ +∞,
where

ϕ(t) = t exp

{
C

√
log

1
t

log log log
1
t

}
, 0 < t < 10−7.

Later, Pommerenke and Steffen Rohde [9] showed that one can actually take C = 30. We use the
upper estimate in (1.2) and the Makarov-Pommerenke-Rohde scheme to reduce this constant to
any C with

C > 6

√√
24− 3

5
= 3.6977 . . . ;

for instance, C = 37/10 will do.

2. The estimate from above

We need the standard weighted Bergman (Hilbert) spaces Hα(D), the elements of which are
complex-valued holomorphic functions g in D, subject to the norm boundedness condition

‖g‖2α =
∫

D
|g(z)|2 dAα(z) < +∞;

the real parameter α is confined to −1 < α < +∞, and dAα is the Borel probability measure

dAα(z) = (α + 1)
(
1− |z|2

)α dA(z),

with

dA(z) =
dxdy

π
, z = x + iy ∈ C.

Lemma 2.1. For g analytic in D and positive real α, we have∫ π

−π

∣∣g(reiθ)
∣∣2 dθ

2π
≤

‖g‖2α−1

(1− r2)α
, 0 < r < 1.

Proof. We compute that ∫ π

−π

∣∣g(reiθ)
∣∣2 dθ

2π
=

+∞∑
n=0

∣∣ĝ(n)
∣∣2r2n,

while

‖g‖2α =
+∞∑
n=0

n!
(α + 1)n

∣∣ĝ(n)
∣∣2.

Here, (β)k is the standard Pochhammer symbol, and ĝ(n) are the Taylor coefficients of g. It follows
that we have the sharp estimate∫ π

−π

∣∣g(reiθ)
∣∣2 dθ

2π
≤ A(r, α) ‖g‖2α,

where

A(r, α) = max
n

{
(α + 1)n

n!
r2n

}
.
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Next, we consider r2 = e−%, with 0 < % < +∞, and take logarithms:

log A(r, α) = max
n

{
−n% +

n∑
k=1

log
(
1 +

α

k

)}
.

Clearly,
n∑

k=1

log
(
1 +

α

k

)
≤ α

n∑
k=1

1
k

,

while for n = 1, 2, 3, . . ., we have
n∑

k=1

1
k
≤ 1 + log n,

so that if
B(r, α) = max

n∈{1,2,3...}

{
− n% + α + α log n

}
,

then
log A(r, α) ≤ max

{
0, B(r, α)

}
.

We quickly see that

B(r, α) ≤ α log
1
%

= α log
1

log 1
r2

≤ α log
1

1− r2
,

so that
A(r, α) ≤ 1

(1− r2)α
.

The assertion is immediate.

Let f be a univalent function of the class S, and consider

gt(z) =
[
f ′(z)

]t/2
, z ∈ D,

for complex t. The power is defined by selecting the holomorphic logarithm of f ′ with value 0 at
the origin.

The proof of the theorem below is based on the recent method of Hedenmalm and Shimorin
[2] (see also [3]).

Theorem 2.2. Let f ∈ S, and assume that β ∈ R has B|t|2 ≤ β ≤ 1 and β 6= 0, for some fixed
positive B with √

24− 3
5

< B ≤ 1.

Then, if the complex parameter t is sufficiently close to 0, we have that∥∥[f ′]t/2
∥∥

β−1
= OB(1),

where the OB bound only depends on B.

Proof. We first observe that an inspection of the proof of Proposition 4.7 [2] reveals that the
constant C3(α, ν) appearing there can be assumed to be an absolute constant if −1 < α ≤ 0 and
0 < ν ≤ 1.

Next, we look at the estimate in Lemma 4.4 [2], where a constant C1 = C1(α, θ) appears. This
constant may in fact be chosen independently of θ and α, at least with α confined to a bounded
interval and θ with 0 < θ < 1.

We use the above two observation to conclude that the constant C6(α, θ) of Theorem 4.9 [2]
can be assumed to depend only on θ.
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Finally, we look at the estimates (6.8) and (6.11) of [2], which involve the first two terms of
the norm expansion, as well as the estimate involving the first three terms in the addendum paper
[3]. By using the improved norm control of error terms in the method that follows from the above
two observation, the asserted norm control follows. The details are tedious but straightforward,
and therefore left to the interested reader.

In view of Lemma 2.1, we have the following.

Corollary 2.3. Let f ∈ S. Assume that β ∈ R has B|t|2 ≤ β ≤ 1 and β 6= 0, for some fixed positive
B with √

24− 3
5

< B ≤ 1.

Then, if the complex parameter t is sufficiently close to 0, we have that∫ π

−π

∣∣[f ′(reiθ)
]t∣∣ dθ

2π
= OB

(
1

(1− r2)β

)
,

where the OB bound only depends on B.

We get the following consequence of the above corollary.

Corollary 2.4. Let f ∈ S. Then, for 0 < δ ≤ 1, we have

βf,δ(t) ≤

(√
24− 3

5
+ o(1)

)
|t|2, as |t| → 0.

Proof. We note that from Corollary 2.3, we have

log
{

δ

∫ π

−π

∣∣f ′(reiθ)t
∣∣ dθ

2π

}
≤ log

∫ π

−π

∣∣f ′(reiθ)t
∣∣ dθ

2π
≤ B|t|2 log

1
1− r2

+ OB(1),

provided √
24− 3

5
< B ≤ 1

and t is sufficiently close to 0. The assertion is now immediate from the definition of βf,δ(t).

Corollary 2.5. For f ∈ S, we have∣∣ log f ′(reiθ)
∣∣√

log 1
1−r log log log 1

1−r

≤ 2

√√
24− 3

5
= 1.2326 . . . .

Proof. This follows from a combination of Corollary 2.4 and the results of Kayumov [5].

For a Borel measurable subset A of the unit circle T, let |A|s denote its normalized length
(the normalization is such that T gets total length 1). We have a weak type corollary of Corollary
2.3.

Corollary 2.6. For 0 < r < 1 and 0 < α < +∞, let Mf (r, α) denote the set

Mf (r, α) =
{
ζ ∈ T : |f ′(rζ)| ≤ e−α

}
.

Fix a real parameter B such that √
24− 3

5
< B ≤ 1.
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Then we have the following estimate for f ∈ S:∣∣Mf (r, α)
∣∣
s
≤ CB e

− α2

4B log 1
1−r ,

provided r is close enough to 1, as specified by

1− e−α/(2Bt0) ≤ r < 1.

Here, t0 is a small positive absolute constant, and the positive constant CB only depends on B.

Proof. By Corollary 2.3, we have∫ π

−π

∣∣[f ′(reiθ)
]t∣∣ dθ

2π
≤ CB

(1− r)B|t|2 ,

for all complex t with |t| ≤ t0, where t0 is some positive absolute constant. We shall apply this
estimate to negative t. Switching the sign of t, we get from the weak type estimate of Kolmogorov
that ∣∣Mf (r, α)

∣∣
s
≤ CB e−αt (1− r)−B|t|2 ,

where on the right hand side we are free to optimize the right hand side over t with 0 < t < t0.
The optimal t is

t =
α

2B log 1
1−r

,

which belongs to the interval ]0, t0[ provided r is in the indicated interval. Plugging in this value
of t, we get the indicated estimate.

3. An application: comparison of harmonic measure with Hausdorff measure

We get an improvement of the constant in Makarov’s distortion theorem; the size of the constant
is important, because different constants give rise nonequivalent Hausdorff measures.

Corollary 3.1. Suppose that A is Borel set of positive linear measure on ∂D, and that f is a
conformal mapping from D onto a simply connected domain in the complex plane. Suppose the
constant C has

C > 6

√√
24− 3

5
= 3.6977 . . . .

Then 0 < Λϕ(f(A)) ≤ +∞, where

ϕ(t) = t exp

{
C

√
log

1
t

log log log
1
t

}
, 0 < t < 10−7.

Proof. Careful consideration of the proof of Theorem 10.6 from the book [9] (p. 229) shows that
Makarov’s distortion theorem holds with constant C, provided C is greater than 3 times the
constant appearing on the right hand side of the displayed equation in Corollary 2.5. The assertion
is immediate.

Remark 3.2. We do not know if the factor 3 of the above proof is an artefact of the proof, or a
genuine obstacle.
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4. The estimate from below

To prove a lower estimate we use a construction which generates fractal type mappings. Let f be
a conformal mapping from D into D with f(0) = 0, such that f ′′/f ′ ∈ H∞(D); here H∞(D) is the
usual space of bounded analytic functions in D. We write F for the related function

(4.1) F (z) = log
zf ′(z)
f(z)

,

which is the holomorphic logarithm with F (0) = 0. We consider the associated functions

fm(z) =
{
f(zm)

}1/m
, m = 1, 2, . . . ,

which also map D into D. For q = 2, 3, 4, . . . and n = 1, 2, 3, . . ., we define

(4.2) gq,n(z) = fq ◦ fq2 ◦ fq3 ◦ · · · ◦ fqn(z),

which then map D into D. We also consider the limit as n → +∞:

(4.3) gq,∞(z) = lim
n→+∞

gq,n(z).

It is easy to see that
fqj

(
zq
)

= fqj+1(z)q;
a consequence of this is that

gq,n+1(z) =
{
f ◦ gq,n(zq)

}1/q
,

so that in the limit as n → +∞, we get

(4.4) gq,∞(z) =
{
f ◦ gq,∞(zq)

}1/q
.

We remark that a construction of this type was first used by Pommerenke to produce a bounded
univalent function in D whose Taylor coefficients do not decrease as fast as O(1/n0.83). We need
the concept of asymptotic variance:{

σh

}2 = lim sup
r→1−

∫ π

−π

∣∣h(reiθ)
∣∣2 dθ

2π

log 1
1−r

,

where h is assumed analytic in D.

Lemma 4.1. Suppose that gq,∞ as given by (4.3) is a Hölder continuous mapping. Then, for almost
all θ ∈ [−π, π], the following equality holds:

(4.5) lim sup
r→1−

∣∣ log g′q,∞(reiθ)
∣∣√

log 1
1−r log log log 1

1−r

= σlog g′q,∞
.

Remark 4.2. It may be possible to obtain this result by analyzing the methods of the paper [10]
by Przytycki, Urbanski, and Zdunik (see also [11]). We prefer, however, to supply a direct proof.

Proof. We begin with the identity

(4.6) fqk+1 ◦ fqk+2 ◦ · · · ◦ fqk+n(z) =
{

fq ◦ fq2 ◦ · · · ◦ fqn

(
zqk)}1/qk

=
{
gq,n

(
zqk)}1/qk

,

valid for k = 0, 1, 2, . . . and n = 1, 2, 3, . . .. By letting n → +∞ in this identity, we see that

(4.7) lim
n→+∞

fqk+1 ◦ fqk+2 ◦ · · · ◦ fqk+n(z) =
{
gq,∞

(
zqk)}1/qk

.
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By the chain rule, we have

log g′q,n(z) =
n∑

k=1

log
{

f ′qk

(
fqk+1 ◦ · · · ◦ fqn(z)

)}
;

here, the term with k = n is to be interpreted as log f ′qn(z). We check that

log f ′qk(w) = log
wqk

f ′
(
wqk)

f
(
wqk

) +
1
qk

log
f
(
wqk)
wqk ,

so that by (4.6),

log f ′qk

(
fqk+1 ◦ · · · ◦ fqn(z)

)
= log

gq,n−k

(
zqk)

f ′
(
gq,n−k

(
zqk))

f
(
gq,n−k

(
zqk
)) +

1
qk

log
f
(
gq,n−k

(
zqk))

g
(
zqk
) .

Thus,

log g′q,n(z) =
n∑

k=1

log
gq,n−k

(
zqk)

f ′
(
gq,n−k

(
zqk))

f
(
gq,n−k

(
zqk
)) +

n∑
k=1

1
qk

log
f
(
gq,n−k

(
zqk))

gq,n−k

(
zqk
) ,

which implies ∣∣∣∣ log g′q,n(z)−
n∑

k=1

F ◦ gq,n−k

(
zqk)∣∣∣∣ ≤ C

n∑
k=1

1
qk
≤ Cq

q − 1
,

where C is the positive constant such that∣∣∣ log
f(w)

w

∣∣∣ ≤ C, w ∈ D;

the function F is given by (4.1). We shall be concerned with the limit as n → +∞ in the above
identities. We get that

(4.8)
∣∣∣∣ log g′q,∞(z)−

+∞∑
k=1

F ◦ gq,∞
(
zqk)∣∣∣∣ ≤ Cq

q − 1
.

Let
{
ĝq,∞(k)

}
k

denote the sequence of Taylor coefficients of the function gq,∞. Since gq,∞ is
assumed to be a Hölder map, we know from the work of Smith and Stegenga [12] that

(4.9)
∞∑

k=1

k1+ε
∣∣ĝq,∞(k)

∣∣2 < +∞

holds for some ε > 0. Since (4.9) is equivalent to having∫
D

|g′q,∞(z)|2

(1− |z|2)ε
dA(z) < +∞,

we see that (by using that F ′ is bounded, which follows from the condition f ′′/f ′ ∈ H∞(D)) the
same is true for the Taylor coefficients of the function F ◦ gq,∞(z):

(4.10)
∞∑

k=1

k1+ε
∣∣∣F̂ ◦ gq,∞(k)

∣∣∣2 < +∞.

Next, we consider the polynomial

Gq,N (z) =
N∑

k=1

F̂ ◦ gq,∞(k) zk,
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and form the series

Hq,N (z) =
+∞∑
k=1

Gq,N

(
zqk)

.

It is easy to see that the Taylor series for Hq,N is a lacunary, with Hadamard gaps λ = 1 + 1/N .
For such a gap series, Mary Weiss [13] proved a law for the iterated logarithm:

(4.11) lim sup
r→1−

|Hq,N (reiθ)|√
log 1

1−r log log log 1
1−r

= σHq,N
.

Our next step is to consider the difference function

(4.12) Rq,N (z) =
+∞∑
k=1

F ◦ gq,∞
(
zqk)

−Hq,N (z) =
+∞∑
k=1

{
F ◦ gq,∞

(
zqk)

−Gq,N

(
zqk)}

=
+∞∑

j=N+1

+∞∑
k=1

F̂ ◦ gq,∞(k) zjqk

.

We shall argue that

(4.13) ‖Rq,N‖B → 0 as N → +∞.

Suppose for the moment that (4.13) has been established. Then, by Makarov’s theorem,

lim sup
r→1−

|Rq,N (reiθ)|√
log 1

1−r log log log 1
1−r

≤ C1‖Rq,N‖B → 0 as N → +∞,

so that in view of (4.11) and (4.8), we have

lim sup
r→1−

∣∣ log g′q,∞(reiθ)
∣∣√

log 1
1−r log log log 1

1−r

= lim
N→+∞

σHq,N
.

It follows from (4.13) that σRq,N
→ 0 as N → +∞, which implies that

σHq,N
→ σlog g′q,∞

as N → +∞.

So, once (4.13) is established, the assertion of the lemma follows.
We now turn to the proof of (4.13). By the Cauchy-Schwarz inequality and (4.12),

∣∣z R′
q,N (z)

∣∣ = ∣∣∣∣ +∞∑
j=N+1

+∞∑
k=1

jqk F̂ ◦ gq,∞(k) zjqk

∣∣∣∣ ≤ +∞∑
k=1

+∞∑
j=N+1

jqk
∣∣F̂ ◦ gq,∞(k)

∣∣ |z|jqk

≤
+∞∑
k=1

qk

{ +∞∑
j=N+1

j1+ε
∣∣F̂ ◦ gq,∞(j)

∣∣2}1/2{ +∞∑
j=N+1

j1−ε|z|2jqk

}1/2

,

and as a consequence of (4.10), we have

+∞∑
j=N+1

j1+ε
∣∣F̂ ◦ gq,∞(j)

∣∣2 → 0 as N → +∞.
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It remains to verify that
+∞∑
k=1

qk

{ +∞∑
j=N+1

j1−ε|z|2jqk

}1/2

≤ C

1− |z|
, z ∈ D,

for some positive constant C. It is easy to show that
+∞∑
j=1

j1−εx2j ≤ C

(1− x)2−ε
, 0 < x < 1,

for some other positive constant C, at least for 0 < ε < 1. It follows that

+∞∑
k=1

qk

{ +∞∑
j=N+1

j1−ε|z|2jqk

}1/2

=
+∞∑
k=1

qk |z|q
k

{ +∞∑
j=N+1

j1−ε|z|2(j−1)qk

}1/2

≤ C
+∞∑
k=1

qk|z|qk

(1− |z|qk)1−ε/2
≤ C

+∞∑
k=1

qk|z|qk[(
qk|z|qk

)
(1− |z|)

]1−ε/2
=

C

(1− |z|)1−ε/2

+∞∑
k=1

qkε/2|z|q
kε/2.

All that needs to be done is to verify that
+∞∑
k=1

qkε/2|z|q
kε/2 ≤ C

(1− |z|)ε/2
,

with a different positive constant C. If we look at z along the circle |z| = 1−q−m, for some positive
integer m, then beyond the first m terms, the decay of the terms is very rapid, and it suffices to
only estimate the sum of the first m terms. We get

m∑
k=1

qkε/2 =
q(m+1)ε/2 − 1

q − 1
,

which is comparable to
1

(q − 1)(1− |z|)ε/2
,

as desired. The case with intermediate values of |z| is easily treated in a similar fashion.

We recall that F is given by (4.1).

Proposition 4.3. Suppose that

‖F‖H∞(D) = sup
z∈D

|F (z)| < log q.

Then the function gq,∞ is a Hölder mapping.

Proof. By (4.8), we have ∣∣ log g′q,∞(z)
∣∣ ≤ Cq

q − 1
+

+∞∑
k=1

∣∣F ◦ gq,∞
(
zqk)∣∣,

where C = ‖ log[f(z)/z]‖H∞(D). As gq,∞ maps D into D and gq,∞(0) = 0, we see from the Schwarz
lemma that ∣∣gq,∞(z)

∣∣ ≤ |z|, z ∈ D.

Similarly, as F is bounded with F (0) = 0, we have∣∣F (z)
∣∣ ≤ C ′ |z|, z ∈ D,
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where C ′ = ‖F‖H∞(D). Combining the two estimates, we get∣∣F ◦ gq,∞
(
zqk)∣∣ ≤ C ′|z|q

k

,

so that ∣∣ log g′q,∞(z)
∣∣ ≤ Cq

q − 1
+ C ′

+∞∑
k=1

|z|q
k

.

It is easy to see that

(4.14)
+∞∑
k=1

xqk

∼ 1
log q

log
1

1− x
,

1
2
≤ x < 1,

asymptotically as x → 1−, so that for C ′ = ‖F‖H∞(D) < log q, we have∣∣ log g′q,∞(z)
∣∣ ≤ (1− ε) log

1
1− |z|

+ O(1), z ∈ D,

for some positive ε. The assertion is now immediate, in view of the classical characterization of
Hölder maps in terms of the growth of the derivative.

We can now obtain a lower estimate for Makarov’s constant CM.

Proposition 4.4. We have CM > 0.91.

Proof. We use the example from the paper [7]:

(4.15) f(z) =
z

K
exp

z∫
0

exp
{
(a/b) sinh(bt)

}
− 1

t
dt

where a = 1.906, b = 1.246 and K is the constant

K = exp

1∫
0

exp
{
(a/b) sinh(bt)

}
− 1

t
dt = 73.677030 . . . ,

which guarantees that f(D) ⊂ D. Let us remark that in [7], it was established that the function
f is univalent in the unit disk for a = 1.906 and b = 1.24. But the same method shows that this
function will be univalent for b = 1.246 as well. It is evident that f ′′/f ′ is in H∞(D). Since

F (z) = log
[
zf ′(z)
f(z)

]
=

a

b
sinh(bz),

we have
sup
z∈D

|F (z)| = a

b
sinh(b) = 2.43891 . . .

Hence, by Proposition 4.3, the function gq,∞ defined by (4.7) is a Hölder map for q ≥ 12. Comparing
with Lemma 4.1, we see that we need an estimate from below of the asymptotic variance of gq,∞.

It follows from (4.4) that

gq,∞(z) = γ1z +
∞∑

j=1

γjq+1z
jq+1,

where
γ1 = K−1/(q−1).
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It is easy to see that the Taylor coefficients of gq,∞(z) are all positive (or zero). Indeed, the function

F (z) = log
zf ′(z)
f(z)

has positive Taylor coefficients, so by exponentiation, zf ′(z)/f(z) does, as well. By integration,
then, log[f(z)/z] has positive Taylor coefficients, which entails that log[fm(z)/z] also has positive
Taylor coefficients, and hence each fm has positive Taylor coefficients. It is immediate that each
gq,n has positive Taylor coefficients, whence the assertion that gq,∞ has positive Taylor coefficients
follows. We finally note that also F ◦ gq,∞ has positive Taylor coefficients.

It follows from the definition of asymptotic variance and from (4.8) that

(4.16)
{
σlog g′q,∞

}2 = lim sup
r→1−

1
log 1

1−r

∫ π

−π

∣∣∣∣ +∞∑
k=1

F ◦ gq,∞
(
rqk

eiθqk)∣∣∣∣2 dθ

2π
.

We see that

(4.17)
+∞∑
k=1

F ◦ gq,∞
(
zqk)

=
+∞∑
k=1

+∞∑
j=1

F̂ ◦ gq,∞(j) zjqk

.

Suppose that hn is a sequence of analytic in the disk functions with positive Taylor coefficients.
Then the following inequality holds:∫ π

−π

∣∣∣∣ +∞∑
n=1

hn(reiθ)
∣∣∣∣2 dθ

2π
≥

+∞∑
n=1

∫ π

−π

∣∣hn(reiθ)
∣∣2 dθ

2π
.

This inequality is an immediate consequence of Parseval’s formula. Hence, by (4.17),∫ π

−π

∣∣∣∣ +∞∑
k=1

F ◦ gq,∞
(
rqk

eiθqk)∣∣∣∣2 dθ

2π
≥

+∞∑
k=1

+∞∑
j=1

F̂ ◦ gq,∞(j)2r2jqk

.

Next, we note that by (4.14),
+∞∑
k=1

r2jqk

∼ 1
log q

log
1

1− r2j
∼ 1

log q
log

1
1− r

, as r → 1,

as long as j is fixed. As a result, we obtain from (4.16) that{
σlog g′q,∞

}2 ≥ 1
log q

+∞∑
j=1

F̂ ◦ gq,∞(j)2,

It follows from (4.4) and the positivity of the Taylor coefficients that

F̂ ◦ gq,∞(j) ≥ γ
j/q
1 F̂ ◦ fq(j), j = 1, 2, 3, . . . .

This implies the inequality {
σlog g′q,∞

}2 ≥ 1
log q

∞∑
j=1

γ
2j/q
1 F̂ ◦ fq(j)2.

Straightforward calculations based on this estimate, with the choice q = 34, yield

σlog g′q,∞
> 0.910462.

The assertion is now immediate.
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A combination of Lemma 4.1 and Proposition 4.4 gives the following.

Theorem 4.5. We have

0.91 < CM ≤ 2

√√
24− 3

5
= 1.2326 . . . .

Remark 4.6. It probably follows from the results of Przytycki, Urbański, and Zdunik [10] together
with Proposition 4.4 that the optimal constant C in Corollary 3.1 is at least greater than 0.91.
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