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Ihtroduction

Let D denote the open unit disc {z € C:|z| <1}, let T denote the boundary
{z e C:|z| =1}, and let D™ denote the closure of D. By A =A4(D) we denote
the disc algebra, consisting of those continuous functions on D™ that are
analytic in D. We introduce also the Fréchet space O (D) of all holomorphic
functions on D, with the topology of uniform convergence on compact sub-
sets, and the space O(D™) of (germs of) functions holomorphic on neigh-
borhoods of D™, with the inductive limit topology. Strictly speaking the ele-
ments of O(ID ™) are equivalence classes, but we shall often regard them as
individual functions. A sequence { f;} in O(D~) converges to a function f if
and only if all the functions are analytic in some fixed open set U containing
D™, with f; — f uniformly on compact subsets of U.

Let X be a Banach subspace of O(D); more precisely, this means that X is
a vector subspace of O(D) and X has a norm with respect to which it is a
Banach space. We assume further that the injection map X — O (D) is con-
tinuous, and that X contains O(ID™) as a dense subspace. (The injection
map, O(D7) - X, is automatically sequentially continuous; see the remarks
following Lemma 1 below.) Since the point evaluation functionals at the
points of D are continuous functionals on O (D) it follows that they are also
continuous on X. (In fact, the continuity of these functionals is equivalent
to the continuity of the injection map of X into O(D); see Proposition |
of [6].)

Note that X must be separable. Indeed, every function in O(D7) is the
limit, in the topology of O(ID™), of a sequence of polynomials with rational
coefficients.

Let M (X) denote the space of multipliers of X, that is, the set of all those
functions ¢ € O(D) such that ¢ X C X. Using the closed graph theorem, one
shows that if ¢ € M(X) then multiplication by ¢ is a bounded linear trans-
formation on X. Also, by [10, Prop. 11] one has M(X) C H*, and the supre-
mum norm is less than or equal to the operator norm. Here H ® denotes the
space of bounded analytic functions in D with the supremum norm. Using
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this, one shows that M(X) is complete in the operator norm and thus is a
commutative Banach algebra with identity. If X contains the constant func-
tion 1, then M(X) CX.

We shall assume that M(X) D O(D ™). A closed subspace I of X is called
invariant (for the operator of multiplication by z) if z/ C 1. This is equiva-
lent to the condition O(D™ )71 C I; we obtain this as a corollary to the follow-
ing result, which asserts the automatic (sequential) continuity of certain in-
jection maps.

LEMMA 1. Let Y be a vector subspace of ©(D) with a complete, transla-
tion invariant metric, such that the point evaluation functionals at the points
of D are continuous on Y. If O(D™)CY, then the injection map is sequen-
tially continuous.

Proof. Let f;,— fin O(D7). Thus all the functions {f;} and f are analytic
in some fixed open disc containing D~. Let A, = A(rD) (r > 1) denote the
space of continuous functions on (D)~ that are analytic in rD, with the
supremum norm. By restricting to the disc rD we may regard all the func-
tions { f;} and fas being in A4,, with f; — fin the norm of A,, for each r suf-
ficiently close to 1. Fix such an r. We claim that { f;} also converges to f in
the metric of Y. Indeed, by restricting to D we may regard A, as being a
Banach space of analytic functions on D with bounded point evaluations,
and with 4, CY. The closed graph theorem shows that the injection map of
A, into Y is continuous, and thus f; — f in the metric of Y, as asserted. (See
Proposition 6 of [6].) L]

Returning to our previous situation, we see that the injection maps of O(D ™)
into X and into M(X') are both sequentially continuous.

COROLLARY. IfIisaclosed subspace of X and if zI C I, then O(D™)IC .

Proof. If p is a polynomial then pI CI. Let now ¢ be analytic in a neigh-
borhood of D~; we must show that ¢ CI. Choose a sequence of polyno-
mials {p,} that converges to ¢ uniformly in some neighborhood of D™, and
therefore in the topology of O(D™). By the lemma, with ¥ = M(X), we
have p; — ¢ in the norm of M(X), and the result follows. U]

A basic problem in the theory is the following.
PROBLEM 1. Characterize the invariant subspaces of X.
An interesting subproblem is the following.

PROBLEM 2. Let & be a collection of functions in X, and let 7(F, X) be
the smallest invariant subspace of X containing &. When is I(F, X) = X?

In other words, when is O(D™)J dense in X ? For some spaces X a solution
to Problem 2 leads to a solution to Problem 1. This is the case for X = H?,
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and this is how Beurling [4] proved his invariant subspace theorem. Next we
assume that & contains only one function.

PROBLEM 3. Let fe X, and let I(f, X) be the smallest invariant subspace
of X containing f. When is I(f, X)=X?

It is customary to say that f is cyclic (for the operator of multiplication by
z) if I(f, X) = X. Clearly a cyclic function cannot vanish anywhere in D. By
Beurling’s invariant subspace theorem a function fe H? is cyclic in H? if
and only if it is an outer function.

We are especially interested in the case X = D, the Dirichlet space, con-
sisting of those analytic functions f=3 a,z” in D such that

I|f||%=2(n+1)|an|2=2Ia,,|2+§ |f')? dA,
0 0 D

where dA denotes normalized area measure on D. We recall the related spaces
D,, 0 < a < 1, defined by the condition: ¥ (n + 1)*|a,|*> < «. They were
studied by Carleson in this thesis [7].

Let L2(D) denote the Hilbert space of square integrable functions on D
with respect to area measure, and let L2(D) be its analytic subspace O(D)N
L*(D); L2(D) is known as the Bergman space on D. A function f e O(D) is
in the Dirichlet space D if and only if f’e L2(D).

Let D, be the exterior disc (CU{e})\D™, and let L?(D,) be the Hilbert
space of square integrable functions on D, with respect to area measure on
the Riemann sphere (note that this is a finite measure). Also, let L2(D,) =
O(D,)NLAD,). Then ¢ =Y a,z "€ L3(D,) if and only if ¢ is square in-
tegrable in a neighborhood of the boundary. A calculation shows that ¢ €
L%(D,) if and only if 3 |a,|*/n < .

The Smirnov space, N, (D), consists of those analytic functions in D rep-
resentable as f/g, where f, ge H® and g is an outer function.

We call a closed subset E C T a Bergman-Smirnov exceptional set if every
function in O((CU{=})\E)NN,(D)NL3(D,) is constant. For information
about logarithmic capacity see [15, Chap. III].

LEMMA 2. If E is a Bergman-Smirnov exceptional set, then E has loga-
rithmic capacity zero.

Proof. Assume that E CT is a closed set of positive capacity; we shall show
that E is not a Bergman-Smirnov exceptional set. Because E has positive
capacity, there is a Borel probability measure u supported on E such that

) o> () & [ { logle —w| ™ du(z) duw) =$|ﬁ(n)l2/n.

For the calculation establishing the second equality see [6, p. 294]. (Here
p(n)={w"du(w), —c0o <n<oo; w=exp(id).) Now let
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g(z) = {(1-2)~" du(w).

Note that g is holomorphic in CU{oo}\ E. For z € D we have (see [6, (20),
p. 294)): g(z) =2¢ i(n)z". This is the “analytic projection” of the Fourier-
Stieltjes series for du, and hence is in H” for all p <1. In particular, it is in
N, (D) (see [9, Thms. 4.2 and 1.1]). ‘

For |z|>1 a calculation shows that g(z) =—X{° i(—n)z ~". Thus by (1),
geL2(D,) (recall that ji(—n)=j(n)* since p is a real measure; here * de-
notes complex conjugation).

If g is not constant, then E is not a Bergman-Smirnov exceptional set and
the proof is complete. If g is constant, then ji(n) =0 for all n7 0, and thus p
is normalized Lebesgue measure on T. But this means that £=T. Now T is
not a Bergman-Smirnov exceptional set; indeed, since T separates the Rie-
mann sphere we may define a function analytic in the complement by taking
any function holomorphic in D, in particular a function in N, (D), and any
function holomorphic in D,, in particular a nonconstant Bergman function.
This completes the proof. L]

As regards Problem 3, in this paper we show that if f is an outer function in
the Dirichlet space and in the disc algebra (fe€ DN A), and if the boundary
zero set of f is a Bergman-Smirnov exceptional set, then f is cyclic in the
Dirichlet space. We have a similar result concerning Problem 2. We also
show that every closed countable subset of T is a Bergman-Smirnov excep-
tional set. In [6, Thm. 5, p. 293] it is shown that if f€ D is cyclic in D, then
f is outer and the radial limit boundary function, lim f(re‘?) (r11), can
vanish only on a set of logarithmic capacity zero.

PROBLEM 4. Is every closed subset of T of logarithmic capacity zero a
Bergman-Smirnov exceptional set?

If the answer is affirmative then, combining this with the discussion above,
we would have the following result. An outer function fe DN A is cyclic in
D if and only if its boundary zero set has logarithmic capacity zero. This
would provide an affirmative answer (for f in DN A) to the conjecture in [6,
p. 296]: an outer function in D is cyclic if and only if the radial limit func-
tion vanishes only on a set of capacity zero.

In this connection we note that Carleson has proved [8, Chap. VI, Thm.
1(a), p. 73] that a compact subset E of C has logarithmic capacity zero if
and only if every function analytic and square integrable (with respect to
area measure on the Riemann sphere) in (CU{o})\ E is constant.

Duality

The bilinear form linking a Banach space and its dual space will always be
denoted by (-, -). Let X* be the dual Banach space to X. For \e C\D™ we
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define the function f; by fi(w)=(M\—w)~!, weD. We also define f,, =0;
thus f, € O(D7) and so f, € X for all Ae D,. The map \ — f; is an analytic
function on D,, with values in X. To every functional ¢ € X* we associate
the analytic function

(2) 5()\)=<f)\9 d)), XEDE,

which vanishes at . If ¢,, (w e D) denotes the functional of evaluation at
w, then ¢,,(\) =(A—w)7\.

Since the functions f,, A € D,, span a dense subspace of O(D ™), and since
O(D™) is dense in X, we see that ¢ is uniquely determined by ¢. This allows
us to identify the dual space X* with the space of analytic functions ¢ on
D,, where ¢ € X*. We shall make this identification, and we shall write ¢
instead of ¢.

Finally we note that if A € D, then, as is obvious from (2), point evalua-
tion at A is a weak-* continuous linear functional on X™*.

Let Oy(D, ) denote the space of functions analytic on D, (the closure of
D,) that vanish at co. The next lemma shows that Oy(D; ) C X*. Since the
functionals ¢,, (we D) are in Oy(D, ), we see that O,(D, ) is weak-* dense
in X*.

NOTATIONS. (i) If fe O(D) and ¢ € O(D,), then f, and ¢, denote the
functions f,(w)=f(rw) and ¥, (N\) = Yy(\/r),0<r<l1.
(i) If fe O(D) then f denotes the sequence of power series coefficients;

if ¢ € 9(D,) then ¢ denotes the sequence of power series coefficients about
oo, Thus

f(W)=§03f(n)W", weD; ¢(>\)=§<13(n)>r", AeD,.

Let fe X and ¢ € X*. We shall show that the following formula is valid if
either fe O(D™) or ¢ € Oy(D;, ):

3) Sy ¢>=§ f(m)d(n+1).

LEMMA 3.

(@) If feOD7) then (3) is valid for all ¢ € X*.
(b) If € Oy(D, ) then ¢ € X*, and (3) is valid for all fe X.
() If feX and if f,— f in norm, then

(frd)=lim(f,, ) =1lim T f(n)d(n+1)r"
r 0

rtl

=lim{f, ¢,> =lim(f;, ¢,)
Sor all p € X*.

Proof. (a) Since fe O(D7), the power series for f converges to f in the
topology of O(D™) and hence in the norm of X. Thus
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@ o dy= <§:i Fmyw", ¢> - % Fnyw™, 6.

This is valid for all fe O(D~) and ¢ € X*. If we take f = f,, so that fy(n) =
A=+ then from (2) and (4) we obtain

PN =(fr, Y= N KWk, 9.
1

Thus ¢ (k) = (w*~!, ¢), and (3) follows from (4).

(b) Let ¢ € Og(D; ) be given. To show that ¢ € X* we must produce a
continuous linear functional Y on X such that ¢(\) = (fy, ¢) for all A e D,.
The right side of (3) defines a pairing between O (D) and Oy(D, ). With this
pairing the elements of Oy(ID; ) become continuous linear functionals on
O(D) and hence on X (see, e.g., [12]). We define ¥ to be the functional on X
defined by ¢ in this manner:

) o ¢>=§ Amdn+1), fex.

If we put f=f, in this formula we obtain (f\, ) =¢(\), as desired. Thus
¢ € X*, and we may identify the linear functional ¢ with the analytic func-
tion ¢. Formula (3) now follows from (5).

(c) Let fe X be such that f, — f in norm. The first equality follows from
the continuity of ¢; the second follows from part (a) since f, e O(D~) and
(f,) (n) =f(n)r". For the third equality we replace the factor r” in the sum-
mation by the factor r”*!, which does not affect the validity of the formula.
We then group r"*! with ¢(n+1) to obtain (¢,)"(n+1), and apply part (b).
To obtain the last equality we replace r” by r2**!, grouping r” with f(n) and
r"*lwith ¢(n+1). O

Note that if both fe O(D™) and ¢ € Oy(D, ), then (3) may be rewritten as:
1 T . . .
Ser=5-|" ferpe)e’ av.
T Jd—7

We mention one more problem. Here we assume that X; and X, are two
Banach subspaces of O (D), with bounded point evaluations. Also, each con-
tains (D7) as a dense subspace. We represent the dual spaces X7, X3 as
spaces of analytic functions on D,, as above.

PROBLEM 5. If X} C X3, then must we have X, C X,?
The special case when X is the predual of H* and X, is the predual of the
Bloch space is proved in [2, Prop. 1].

The Principal Results

We now want to study the invariant subspace 7(f, X') generated by a func-
tion f in X. One way to do this is to identify the set of ¢ € X* such that
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¢ LI(f,X). For example, f is cyclic if and only if the only such function is
¢ =0. Let both fe X and ¢ LI(f, X) be fixed in the following discussion.

Let M(X*)={peO(D,): oX*C X*} denote the space of multipliers of
X*. We introduce an element 2 e M(X*)* by the relation

(6) (g, h)={f8g¢), geM(X™).

From now on we shall assume that O(D; ) C M(X*). For weD let g, &
Oo(D;) be defined by g,,(A\) = (A —w)~!, AeD,. We associate with 4 the
analytic function

(7) h(w)=<g,,h), weD.

The functions {g,,], weD, span Oy(D, ). Thus the analytic function #
determines, and is determined by, the restriction of the functional % to the
closure of Oy(D; ) in M(X™*).

To get some feeling for / we consider a special case. Let X = H2. Then X*
is identified (as above) with H¢(D,) (the H? functions in the exterior disc
that vanish at infinity), and M(X*)=H*(D,). Let f and ¢ in X and X™* be
given. Initially we do not assume that ¢ L I(f, X). Since both f and ¢ have
boundary values on T we may consider the product ¥ = f¢ € L'(T). We have

h(w)=<(f, 8,$) = % S _¥(e)ay(e)e” dv =3 P(nyw".
Thus # is the “analytic projection” of ¥, that is, the projection of the Fourier
series for ¥ onto its powers series part.

We now make the assumption that ¢ L I(f, X). This is equivalent to the
conditions: (w"f, ¢) =0, n = 0. One verifies that in this case we have: y(n) =
0, n <0. Thus the analytic projection of ¢ coincides with ¢. Therefore the
function A/f, which is meromorphic in D, should be a continuation of ¢, in
some sense; we shall make this precise in Lemma 5 below. We require the
following auxiliary operator.

For fe O(D) and weD, let

(wa)(z)=M, zeD, z#w;
Z—w
for z=w let (T,, f)(w) = f'(w). Clearly T,, f € O(D). Recall that g,(\) =
A—w)"L weD, A=w.

LEMMA 4. For each weD, T, is a bounded linear transformation map-
ping X into itself; for all fe X, ¢ € X*, and we D we have

(8) (was (b):(f’gwd’)‘

Proof. Note that the right side of (8) is defined. Indeed, g, € O(D_,) and
thus is in M(X*). Therefore g,,¢ € X*, and so the pairing with f is defined.
We first establish (8) when fe O(D7); then T,, fe O(D™) C X and so the
pairing with ¢ is defined.



98 HAKAN HEDENMALM & ALLEN SHIELDS

Consider the special case f=f, with fA(W)=(A—w)~!, |\|>1. One has
that 7,, /= (\—w)~1£y. Thus from (2) we have

(TS rs ) ==w)" o).

Applying (2) to the right side of (8) we obtain g,,(A)¢(\), thus establishing
(8) for the functions { f,}, e D,. It follows that (8) holds for all finite linear
combinations of these functions; the set of these linear combinations is se-
quentially dense in O(D 7).

If a sequence of functions converges in O(D7): f,—» f, then T,, f,, > T,, J
in O(D™) for each w e D. This implies convergence in X. Thus (8) holds for
all fe O(D™). For such f, and for we D and ¢ € X*, we have:

9 KT f, & =S x| D) x| gwlarcxs-

Now we show that 7,, X C X. Let fe X be given, and let {f,}CO(D™)
converge to f in the norm of X. Fix w e D. From (9) we see that {{T,, f,,, )]
is a Cauchy sequence for all ¢ € X*, and the limit defines a continuous linear
functional on X*. Since 7,, f,, is in O(D™) for all n, we see that in X** the
limit functional is in the closure of O(D™). But this closure is X (canoni-
cally embedded in X**). Thus there exists an element g € X such that, for
all ¢ € X*,

Lm(T, f, 6 = (8, 9.

If we choose for ¢ the functional of evaluation at a point z € D, then we
obtain (7, f,,)(z) — g(z). On the other hand, convergence in X implies con-
vergence in O(D), and so f,,(z) — f(z) uniformly on compact subsets of D.
One verifies that (7, f,,) (z) = (T, f) (z) uniformly on compact subsets. Thus
T,f=geX, and so T,, X C X for each we D, as asserted. Also, the closed
graph theorem shows that 7,, is a bounded linear transformation on X. Fi-
nally, since (8) holds for each function f,, it also holds in the limit for f,
as required. O

The following lemma is our principal technical result. If fe A, then Z(f) =
{zeD™: f(z)=0}.

LEMMA 5. Assume that XN A is a Banach algebra, containing O(D~) asa
dense subalgebra. Let fe XNA. If e X* and ¢ LI(f, X), then ¢ has an
analytic continuation to (CU[0})\Z(f). Further, on D\ Z(f) this contin-
uation coincides with h/f.

Proof. First we identify the maximal ideal space of XN A with D™, Indeed,
evaluation at each point of D™ is a multiplicative linear functional on X N A.
On the other hand, let ¢ be a given multiplicative functional, and let Yy (z) =
«. Here z is the identity function z(w) =w. Then y(p) = p(«) for all poly-
nomials p. We claim that « e D™. If not, let p=z—«. Then ¥(p) =0, and
so p is not invertible. This is a contradiction since 1/pe O(D™)CXNA. Ifq
is a polynomial with no zeros in D™, then from the equation 1 =(1/g)g we
obtain ¥ (1/q) =1/¥(q). Since rational functions with no poles on D™ are
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dense in O(D ™), which is dense in XN A, we see that  coincides with evalu-
ation at «.
Let I(f)=1(f, X) and observe that I(f)NA is a closed ideal in XN A.
Also,
AN=2)+I(f)NA

is an element of the quotient algebra (XNA)/(I(f)NA), and is invertible
if A\e C\Z(f). Indeed, a multiplicative linear functional on the quotient al-
gebra induces a multiplicative functional on XN A, that is, evaluation at a
point of D™. One sees that only the points in Z(f) give rise to functionals on
the quotient algebra.

Since ¢ LI(f, X), ¢ defines a linear functional on the quotient algebra.
The analytic continuation of ¢ promised in the statement of the lemma is
given by the formula:

(10) d(N) =\ —z+I(/)NA), ¢y, NeC\Z()),

and ¢(o0) =0. This defines an analytic function on CU {e0}\ Z(f). By com-
paring (10) with (2) we see that ¢(\) coincides with ¢(\) in D,.

It remains to show that the extension of ¢ given by (10) coincides with
h/f in D\ Z(f). From Lemma 4 we see that T, fe XN A, for all we D. We
claim that if w is in D\ Z(f), then T,, f/f(w) is an element of the coset

(w—z+I(f)NA)L

Indeed, one verifies that 1—-(w—2)T,, f/f(w)eI(f)NA, as claimed. Thus,
from (10) one has ¢(w)=<(T,, f, ¢)/f(w) for we D\ Z(f). Now from (8),
(6), and (7) we have:

d(W)f(W)=(T,, [, &) =< [, 8,®) = (8w, h) =h(W).
Thus ¢ = A4/f in D\ Z(f), as required. O

NOTE. The hypothesis that XN A is a Banach algebra containing O(D ™)
as a dense subalgebra is satisfied when X = D, the Dirichlet space, and when
X=D,, 0=<a<1 (see the Introduction for the definition of these spaces).

Lemma 5 gives us a concrete form for the analytic extension of ¢ to

CU{}\Z(f).

We shall seek conditions on f ensuring that ¢ vanishes identically.

We make the further assumption that M(X*)=H *(D,) (recall that we
always have M(X*) C H*(D,)). This assumption is satisfied when X is the
Dirichlet space or one of the D, spaces, 0 <a <1. If X =D, then X* is the
subspace of the Bergman space L2(D,) of the exterior disc consisting of those
functions that vanish at .

Let &(X) denote the class of closed subsets £ C T of Lebesgue measure
zero such that if ¢ is holomorphic on CU {eo}\ E and vanishes at o, if ¢ |D, €
X*, and if ¢ |D is in the Smirnov class N, (D), then ¢ vanishes identically.
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Note that for the Dirichlet space D, (D) coincides with the Bergman-Smir-
nov exceptional sets defined earlier.
In an appendix we list all assumptions made about X.

THEOREM 1. Let X be as above. Assume that M(X*)=H “(D,), and that
XNA is a Banach algebra containing O(D™) as a dense subalgebra. If fe
XNA is an outer function with Z(f) e 8(X), then f is cyclic in X.

Proof. Let ¢ LI(f, X) be given, and let /# be defined by (6); we must show
that ¢ =0. Since h € H*(D,)*, the restriction of 4 to A(D,) (the subalgebra
of functions that extend to be continuous on D) can be represented by inte-
grating against a complex Borel measure u on T:

an @m=|gdu, geam,.
Calculating from (6), (7), and (11) we have, for we D,
(12) h(w)=3 p(n+1)w".

0

Thus 4 is in H” for all p <1, and hence is in N, (D). Since f is an outer func-
tion, it follows that 4/f € N, (D). From Lemma 5, ¢ |D is in N, (D), and of
course ¢ |D,e X* since ¢ € X*. Thus ¢ vanishes identically, since Z(f) e
&(X), which completes the proof. 0

NOTE. In case X =D, the measure u in the proof is absolutely continu-
ous. Indeed, let fe€ D and ¢ € D*, with ¢ LI(f). Then ¢ is in L2(D,), and
¢ (o) =0. From (6) and Lemma 3(c) we have:

(8, )= ([, og) =lim(f, (¢g),> =Lim(f, ¢,8,), geH™(D,).

rtl
We claim that the right side can be replaced by lim(f, ¢g,). Indeed,

<fa ¢rgr> =<f9 ¢gr>+<fs (¢r—¢)g>+<f’ (¢r_¢)(gr_g)>-

We have |¢,—¢|p— 0, and so the second term on the right goes to zero.
Also,

|l(¢r_¢)(gr_g)"35 “¢r'—¢"B|{gr_g”oo Szllgllw'|¢r_¢||3 _)0’

and so the third term goes to zero also. Thus we have, for ge H*(D,),

(13) (&, 1y =lim( f, ¢g,y =lim(g,, hy =lim { g, dp.

The last equality follows from (11) since g, € A(D,). The existence of this last
limit for all g in H*(D,) (or even for all Blaschke products) implies that
is absolutely continuous (see [13, Thm. 2}).

In this example, if we multiply the formal Fourier series on T for f and for
¢, then all terms of negative index vanish, since ¢ L z”f and the terms of pos-
itive index coincide with £(rn), n=0. The connection with i is given in (12).
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A slight modification of the proof of Theorem 1 leads to the following
improvement of the result. A collection of functions & C H? will be said to
have inner factor 1if I(F, H*)=H?2 If F C A, let Z(F)=N{Z(f): fe F}.

THEOREM 2. Let X and &(X) be as in Theorem 1. Assume that M(X*) =
H>*(D,), and that XN A is a Banach algebra containing O(D~) as a dense
subalgebra. If ¥ C X N A has inner factor 1, and if Z(F) € §(X), then
I15F,X)=X.

Proof. Let fe§, let ¢ € X* with ¢ LI(F, X), and let i, be the element of
M (X*)* given by (6). Since ¢ LI(f), Lemma 5 tells us that ¢ has an analytic
continuation to CU{eo}\Z(f) that coincides (in D) with //f. Since this
is true for every f e F, we see that ¢ extends to be holomorphic in CU oo}
Z(F), and tllat the functions 4 r/f (f €F) coincide in D. As in the proof of
Theorem 1, iy e N, (D). Since § has inner factor 1, one can show that ¢ |D e
N, (D). The proof is completed as before. |

The following is an immediate consequence of Theorem 1.

COROLLARY. If feDNAisanouter function, and if Z(f) is a Bergman-
Smirnov exceptional set, then f is cyclic in D.

It is natural to ask what the Bergman-Smirnov exceptional sets look like.

PROPOSITION 1. If {zo} €T, then {z,} is a Bergman-Smirnov exceptional
set.

Proof. Let z5=1, and let ¢ be holomorphic in CU{w}\ {1}, with ¢ |De
N, (D) and ¢ |D,eL?(D,). We assume that ¢(c0) =0, and we must show
that ¢ is identically zero. Let ¢ |D = ¢/y, where ¢,  are bounded analytic
functions in D and y is an outer function. The fact that ¢ | D, is in the Berg-
man space of D, is equivalent to the convergence of the series X |d3(n)|2/n.
Applying the Cauchy (-Buniakovski-Schwarz) inequality, we have ¢(\) =
O((|]N =171 as |\|{ 1. We actually have “0”, as one sees by approximating
¢ | D, by polynomials in N1

Let y: CU{oo} - CU {oo} be the MObius map y(z) =(z+1{)/(z —i), which
maps the lower half plane onto D. Thus ¢+ is an entire function and, if
y=1Imz, then

2
(14) (¢°’Y)(Z)=O<]—zyL) as |z] - o, with y>0.

Also, Y-+ is bounded in {y <0}. We apply Lemma 4.4 of [11] to conclude
that ¢ o+ is an entire function of exponential type (—7), where

7=1lim sup log|(¥>7) (iy)] =lim sup %(l—r)loglnlx(r)l

y—o - Iyl rtl

and r=(y+1)/(y —1). Because ¢ is bounded, 7 <0. Also, since ¢ is an
outer function, log|y(r)|={(1—r?)|w—r|"2ds(w). Here w=exp(it), and
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do(w) =log|y(w)| dm(w), where dm denotes normalized Lebesgue measure
on T. In particular, ¢ has no point masses and so o({1}) =0. Using this, one
can show that (1—r)log|y(r)|—0, and so 7=0.

Thus F(z) = (¢ > v)(z)/(z — i) is an entire function of exponential type
zero. By (14), F is bounded on the half line: x =0, y > 0. Hence by [5, Thm.
6.2.14, p. 84], F is constant. Therefore (¢<y)(z)=c(z—i), and so ¢(\) =
2ic/(A—1). Hence ¢ =0; otherwise, ¢ | D, would not be in the Bergman space.
Thus ¢ =0, as required. [l

Note that the proof did not fully use the hypothesis that ¢ |D is in the Smir-
nov class. Indeed, all that was required was that the measure ¢ put no mass
at {1}. .

PROPOSITION 2. Let E| and E, be two disjoint closed subsets of T such
that E| is a Bergman-Smirnov exceptional set. Then every function ¢ holo-
morphic on CU{o}\(E{UE,), that lies in the Smirnov class in D and in
the Bergman space in D,, extends analytically across E,.

Proof. Let ¢ be such a function. Using the Cauchy integral we may decom-
pose ¢ as ¢ = ¢, + ¢,, where ¢; is holomorphic on the complement of E;,
i=1,2. We claim that ¢;|D,eL2(D,) and ¢ |DeN,(D), i=1,2. For the
Bergman space we need only verify square integrability near the boundary
T. This is clear for ¢, except near E;, but there we have ¢, = ¢ — ¢,, a differ-
ence of two functions that are each square integrable near E|,.

As regards the Smirnov class we recall that a holomorphic function f in
D is in NV, if and only if the family {log™|f,|}, 0 <r <1, is uniformly inte-
grablein L!(T) (see, e.g., [14, §§3.1, 3.3]). Here f,(w) = f(rw), |w|=1. Now
fix disjoint (linear) neighborhoods Uj, U, of E; and of E, in T. Then the
family {log*|(¢,),|} is uniformly integrable in T\U,. Also, this family is
the difference of two uniformly integrable families in U}, and so it is uni-
formly integrable there. Thus ¢, € N, (D), as claimed.

Since E; is a Bergman-Smirnov exceptional set, ¢; must be constant, and
thus ¢ extends analytically across £, as claimed. ]

COROLLARY. The union of two disjoint Bergman-Smirnov exceptiona!
sets is a Bergman-Smirnov exceptional set.

THEOREM 3. Every countable closed subset of the circle T is a Bergman-
Smirnov exceptional set.

Proof. Let ECT be a countable closed set and assume that there exists a
nonconstant function ¢ holomorphic in the complement of E, with ¢ in the
Bergman space in D, and in the Smirnov class in D. Let E; be the (closed)
subset of E consisting of those points across which ¢ cannot be continued
analytically. Then E; is not empty and, being closed and countable, £; must
have an isolated point. But, by Propositions 1 and 2, ¢ is continuable across
any isolated points. O
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The same argument shows that if £ CT is not a Bergman-Smirnov excep-
tional set, then there is a nonempty closed subset E; of E, with no isolated
points, that is not a Bergman-Smirnov exceptional set. A closed set E is the
union of a countable set (not necessarily closed) and a perfect set, called the
perfect core of E. (A perfect set is a set that is closed and has no isolated
points. If not empty it has the cardinality of the continuum.) Thus, if £ is
not an exceptional set then neither is its perfect core.

APPENDIX. For the convenience of the reader we list here all the assump-
tions made at various places in this paper about the space X.

(a) The embedding map of X into O (D) is continuous; X contains
O(D™) as a dense subset.

(b) O(D7)CM(X).

(c) O(D,;)CM(X™).

(d) XN A is a Banach algebra containing O(D™) as a dense subset.

() M(X*)=H>(D,).

Finally, the reader may consult [1] for further information about invari-

ant subspaces in spaces of analytic functions.

Added in proof. The editor notes with regret the death of Allen Shields on
September 16, 1989.
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