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Abstract. Let D be the open unit disk and C area measure, normalized so that D has mass 1. 
Suppose the weight LJ : D + [O. +x[ has log w subharmonic, and furthermore, that 
it has the reproducing property: 

h(0) = 
I 

h(2) w(z) (E(Z) 
n 

for all bounded harmonic functions h on D. Let r, be the Green function for the 
weighted biharmonic operator n w-’ n on D with vanishing Dirichlet boundary data. 
We prove that 0 5 I’, holds on D x D. This result has interesting applications to the 
operator theory of the Bergman spaces. 0 AcadCmie des SciencesElsevier, Paris 

Un principe du maximum ic la Hudamard pour les ophateurs 

biharmoniques avec des applications aux espaces 

de Bergman 

R&urn& Soient D le disyue unite ouvert et C la tnesure de Lebesgue dans le plan, normalisr’e 
telle que II9 .soit de mesure 1. On suppose que le poids w : D -+ [O. +I>o[ est tel que 
log J est sow-harmonique et que in possPde lu propvieW de reproduction : 

h(0) = 
I 

. fr(z)w(z) dC(z) 
.D 

pour chayue fonction h, borne’e et harmonique duns D. Soit I’, la function de Green pour 
1 ‘opPruteur biharmonique pond&-e A w- ’ A duns D pour le problbme de Dirichlet. Nous 
montrons que 0 5 F, duns D x D. Ce rP.wltat a des application inte’ressantes & 11 thPorie 
des op&ateurs duns les espuces de Bergman. 0 AcadCmie des SciencesfElsevier. Paris 

Note pr&enMe par Jean-Pierre KAHANB. 
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Version frangaise abrkge’e 

On considere l’operateur bilaplacien A2 dans le plan complexe C, et son extension aux surfaces 
riemanniennes feuilletees sur le plan complexe de man&e convenable. Soit R une telle surface 
riemannienne qui, de plus, est conformement Cquivalente au disque unite 03. On prouve que la 
fonction biharmonique de Green est positive pourvu que R verifie la propriete de reproduction : 

h(0) = I h(z) m(z) 
.R 

pour chaque fonction h bornee et harmonique dans R (oti dC(z) = ~-~dz dy, z = :C + iv, est la 
mesure de Lebesgue dans le plan - normalisee comme avant - que l’on &end a chaque feuille de R). 
Ceci correspond a un certain principe du maximum pour les fonctions sous-biharmoniques conjecture 
par Hadamard sous une hypothese differente (a savoir, R est un sous-domaine convexe de C). 
Neanmoins, il a Cte demontre que l’hypothese d’tladamard seule n’est pas suffisante pour la validite 
de ce principe. L’action de I’operateur differentiel A2 sur R correspond a l’action de l’operateur 
Al#-2A sur D moyennant une certaine transformation conforme $ : D -+ R. Plus generalement, on 
considbre les operateurs biharmoniques ponder& A we1 A agissant sur D, oh le poids w  est tel que 
log-w est sous-harmonique, et satisfait la propriete de reproduction : 

h(0) = 
I 

h(z) W(2) dC(z) 
I D 

pour chaque fonction h born&e et harmonique dans D. On prouve ainsi que la fonction de Green 
associee a AU-~ A - pour le probleme de Dirichlet - est positive. 

1. Introduction 

If A stands for the Laplace operator in IF!‘” (71 = 1, 2, 3, . . .), we say that a real-valued function 11 
is harmonic on an open set if AU = 0 there, and subharmonic if Au > 0. The maximum principle 
for subharmonic functions can be formulated as follows. Let u be subharmonic in a domain 0 in 
W”, and let D be a precompact subdomain. Suppose we have a function II, harmonic in D, such 
that 1~18~ 5 ~/;jg (we can assume that both functions are continuous on the closure of II, so that 
we need not worry about boundary values). Then 11. 5 v throughout D, with equality at some point 
in D if and only if u and 1: coincide. 

In 1908, Hadamard suggested that something similar may be true for the bilaplacian (also called 
the biharmonic operator) A2 on the plane R2, which we identify with 43, the complex plane. We 
say that a real-valued function u on a domain bt is biharmonic provided that A21~ = 0 there, and 
sub-biharmonic if A”u. 5 0 (one should think of A as a negative operator, which is the reason why 
the inequality is switched compared with the definition of subharmonic functions). At the time, it was 
known-more or less-that a variant can be formulated for circular disks. Let (1 be a planar domain, 
and D a precompact circular disk in 62. We suppose that u is a sub-biharmonic function on (2, and 
that ‘II is biharmonic on D. Then the following maximum principle holds: 
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where the normal derivative is calculated in the interior direction, and u = II at some interior point 
if and only if u and 21 coincide identically. In the special case that the first inequality is an equality, 
then this maximum principle simply expresses the fact that the Green function for A2 on .circular 
disks (with vanishing Dirichlet boundary data) is positive. When speaking of functions, the word 
positive is used to indicate that the function takes values in [O, +DO[. Hadamard, in his treatise on 
plaques e’lastiques encastrkes 1.51, suggested that the Green function for A2 should be positive for a 
much larger collection of domains than the disks, and indicated that it appeared likely to be so for all 
convex regions with smooth boundary. This was later shown not to be the case, by Duffin, Lawner, 
and Garabedian. In fact, Garabedian [4] shows that it is false for an ellipse as soon as the ratio of 
the major axis to the minor axis exceeds g/5. 

Here, we focus on a property exclusive to the circular disks: 

I h(z) d‘qz) = r2h,(zo) 
.D 

for all bounded harmonic functions on D, where zO is the center of the disk D, and T is the radius. We 
let dC stand for the area measure, normalized by the factor Al, so that the unit disk D gets area 1. 
There is, however, a plethora of Riemann surfaces R sheeted over some domain in the complex plane, 
with R conformally equivalent to the unit disk (so the Riemann surface is the image of D under some 
holomorphic mapping D + C), with the property that 

I 
h(z) dE(z) = r2h(z()) (1.1) 

. R 

holds for all bounded harmonic functions h on R, where zo E R and r is a positive parameter, and dC 
is lifted to each sheet of R. For instance, we obtain examples by considering the image of D under 
the mapping z H o Yv, where Q: is some positive constant, and N = 1, 2, 3, . . . . It is a consequence 
of our main result (formulated below) that the Green function for A2 is positive on all such sur$aces R 
(even when the surface has rough boundary, it is possible to make sense of the boundary conditions). 
That is, if we replace “convex” by “centered” (interpreted in the above sense as a mean value property 
for harmonic functions), then Hadamard was right after all! Let In(z, <) denote the biharmonic Green 
function on R. Applying Green’s formula twice shows that the positivity of In is equivalent to the 
following maximum principle, with u sub-biharmonic and 2, biharmonic: 

Let $ : D -+ R be the conformal map which takes the origin onto the center point zo of R. We may 
choose to view C$ as a holomorphic functions with values in 43, by composing the conformal map 
D --f R with the projection from the Riemann surface to the domain that it is sheeted over. It is well 
known that l$‘]-2A(u o 4) = (AU) o 4, and it follows from this formula that I’,(~(z),+(<)) is the 
Green function on the unit disk for the weighted biharmonic operator A)c$‘]-~A, denoted by I’I~,,z. 
The reproducing property for R, Equation (1 . 1 ), becomes 

I’ h,(z) I$‘(z)I’dC(z) = r2h(0), 
.D 

(1.2) 

for all bounded harmonic functions h on D. 
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2. Main result 

An area-summable function w  : D -+ [O: +cx)[ is said to be a weight; it is logarithmically subharmonic 
if log w  is subharmonic on D, and reproducing if 

I’ h(z) w(z) dC(z) = h(O) 
D 

holds for all bounded harmonic functions h on ID. In the context of (1.2), the function w  = rP21@j2 
is of this type. Our main result is the following: 

THEOREM 2. I. - Let w be u logarithmically subharmonic reproducing weight on 89. Then the Green 
function rd ,for the waeighted biharmonic operator Aup1 A-with respect to the Dirichlet problem-is 
positive throughout D x [19. 

A particular consequence is that the biharmonic Green function I’R on the Riemann surface R 
mentioned previously is positive. Let us translate Theorem 2.1 into the form of a maximum principle. 
We say that a function 71, defined on a domain is w-biharmonic provided that Aw-l Au = 0 there, 
and sub-w-bihurmonic if Awe1 Au 5 0. Suppose u is sub-w-biharmonic and w  is w-biharmonic. The 
positivity of the Green function then leads to the maximum principle: 

at least if u and ‘(1 are sufficiently smooth. 

3. Applications to the Bergman spaces 

For p with 0 < p < +x, the Bergman space Ap(D) consists of all holomorphic functions 
.f : D -+ a3 with bounded norm 

It is a Hilbert space for ?, = 2, a Banach space for 1 5 p < +CG, and a quasi-Banach space f?r 
0 < p < 1. An inner function in Ap(D) is a function cp E Ap(D) with the property that 

’ I h(z) Iv(z)/” dC(z) = h(0) 
.D 

(3.1) 

holds for all bounded harmonic functions h on 0. The function I’pIp is logarithmically subharmonic, 
and (3.1) expresses that this weight should be reproducing for 0. For p = 2, the function cp = ~‘4 
in ( 1.2) is of this type. The inner functions of AP( D) have been studied rather extensively in recent 
years, primarily because of their use for the factorization of functions with respect to zeros and 
their relevance for operator theory (see [7], [2], [3], and [l]). They are analogous to the classical 
inner functions which play a central role in the function theory of the Hardy spaces HP(D), for 
0 < p < +CQ. As we apply our main result to’the Bergman spaces Ap(!I.I), we arrive at the following. 
Given a zero sequence A in D for the space Ap(l[D), let MA be the subspace of all functions in Ap(D) 
that vanish at all points of A, with multiplicities as prescribed by the sequence. Subspaces of the type 
M.4 are referred to as zero-set subspaces. Let (~-4 be the function that maximizes Ip(O given that cp 
vanishes on A and has norm 1 (this does not define ‘p,4 uniquely, because we can always multiply by 
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a unimodular constant, but this is the only obstruction; if A contains the origin, we need to maximize 
the first non-vanishing derivative at the origin). The function p.4 is an inner function in Ap(lD), and 
it has no extraneous zeros; in fact, it generates MA as an invariant subspace [l] (see below for a 
definition of the term invariant subspace). Duren, Khavinson, Shapiro, and Sundberg coined the term 
canonical zero divisors for these functions (PA. For two zero sequences A and B, such that A is 
contained in B, it follows from Theorem 2.1 that 

for all holomorphic functions f on D. This means that the canonical zero divisors are monotonic 
with respect to Korenblum domination along the lattice of zero-set subspaces. Following Korenblum 
[lo], we say that given two function F and G in Ap(D), G dominates F, written F + G, provided 
IIFqllAp 5 IIG~llA~ holds for all polynomials 4. The relation PA + PB for A c B was conjectured 
by Hedenmalm in [8], [9] as well as in Problem 12.13 in the Havin-Nikolski problem book 161. A 
consequence of this result is the following. We say that a closed subspace IV of AI’(D) is invariant 
provided that Sf E M whenever f E M, where S is the shift operator: Sf(z) = zf(~). A particularly 
simple collection are the zero-set subspaces, as described above. These have the property that they 
have index 1 (with the exception of the trivial invariant subspace {O}), meaning that the dimension 
of M/SM is 1. !f an invariant subspace M with index 1 contains a zero-set subspace, then M itself 
is a zero-set subspace. 

4. Method of proof 

A few words should be said about the proof of the main result, the positivity of the Green function 
Pw. An application of the laplacian with respect to both coordinates leads to the identity 

az a, rd(z, C) = 42) b&l - 42) ~(0 Qw(z; 0: (z,<) E D x D, 

where a, is the Dirac point mass at C, and Q, stands for the reproducing kernel of the space 
HP’(D, w) obtained as the closure of the harmonic polynomials with respect to the norm 

A necessary condition for I?, to be positive is that Q, is negative away from the diagonal on T x T. 
We have found the following reverse implication. We first prove that off the diagonal, 

(4.1) 

and second, that this implies the positivity of r, by a successive integration along the weighted 
Hele-Shaw flow to be described. 

Let R be a smoothly bordered finitely connected bounded domain in 43, and suppose LV : (2 --+ 
[0, +oc[ is a logarithmically subharmonic. For simplicity we consider only weights iu’ that are real 
analytic up to the boundary and have 0 < W(Z) at all points of 2. For a point ~(1 E 12 and a radial 
parameter r, 0 < r < +m, we consider precompact subdomains D (generalized disks centered at 
~(1 with radius r) with the reproducing property 

I h(z) u(z) dC(z) = r2h(za) 
.n 

(4.2) 
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for all bounded harmonic functions /t, on D. We add the requirement that there be an inequality 5 
in (4.2) when h is bounded and subharmonic on D. Then there is at most one Hele-Shaw flow domain 
D = D(r) (up to sets of zero area), and when they exist, the domains grow with the parameter 7’. 
There exists a critical “radius” value p(q)) at which the boundary of the w-disk touches dS1 for the 
first time. and below that value, the generalized disks are well-defined, and above, they simply do 
not exist. Assuming that the underlying domain 11 is simply connected, each w-disk D(r) is simply 
connected. and its boundary is a regular real analytic closed curve. Also, the domains D(r) depend 
on 1’ in a real analytic fashion. The proof of these statements is based on Sakai’s classification of 
free boundaries [I 1 1. 

We wish to point out that the above results have been obtained in dimension rl = 2 only. It is not 
clear what the appropriate generalization to higher dimensional R’“, for 71, = 3. -1. 5.. ., should look 
like. These problems deserve further investigation. 

The details of this paper will appear elsewhere. 
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