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A COMPUTATION OF GREEN FUNCTIONS FOR
THE WEIGHTED BIHARMONIC OPERATORS

A[z[-2A, WITH 0 > 1

PER JAN HtKAN HEDENMALM

0. Introduction. Let f be a simply connected bounded domain in the complex
plane rE, with smooth boundary 0f. The Green function for the Laplace operator
A is the solution F(z, (; f), with parameter values z, (f, to the Poisson
equation

AF(., (; fl) ; on

F(z, (; ft) 0 z e Of,

where denotes the unit point mass at the interior point ( f; it is well known
and easily checked that this function is symmetric in its arguments: F(z, (; f)=
F((, z; t2). A fundamental fact in the potential theory of the region t2 is the fact
that the Green function has constant sign: F(z, (; f)< 0 on f2 t2 x t2. This
has the physical interpretation that a membrane always follows the direction of
the force, no matter where it is applied. In his 1908 memorial [9, pages 541-5431,
1-10, pages 1298-1299], Jacques Hadamard mentions a conjecture, which he as-
cribes to Tommaso Boggio [4], stating that the Green function U(z, ; f) for the
squared operator A2, which solves

AzU(’, ; fl) 6 onlY,
U(z, ; f) O, z Of,

V U(z, ; ) O, z

where Vz denotes the gradient taken with respect to the z variable, should also
have constant sign, in this case positive, throughout 2. Hadamard also adds the
comment that he considers this very likely for convex regions f. That it is so if f
is the unit disk ID was well known before Hadamard wrote his paper, although I
do not really know who first noticed this fact. Still, i should like to point out the
1901 papers 1-4], [19] by Boggio and John Henry Michell as possible sources. It
deserves to be mentioned that there is an 1862 book on elasticity theory by Alfred
Clebsch, and papers very close to those of Boggio and Michell by Emilio Almansi
(1896) and Giuseppe Lauricella (1896). The solution for the disk has the explicit

Received 5 May 1992. Revision received 22 September 1993.
This research was partially supported by the Swedish Natural Science Research Council (NFR),

and by the Wallenberg Prize from the Swedish Mathematical Society.

51



52 PER JAN H/KAN HEDENMALM

form

U(z, ; ID) -Iz SIzl"(z, 5; ID) + (1 -IzlZ)(1 -Il), (z, )e ID,
where

F(z, ; lD)= log z-[2

(z, )e I
I :

and in Section 2, we verify, for the sake of completeness, the positivity of the
function U(z, ; ID). In an appendix to the 1908 paper, Hadamard computes the
Green function for the Pascal limaqon D [10, page 637], which is the image of
the unit disk D under the conformal mapping

o(z) z +

for parameter values I1 < 1/2, and claimed that it is positive for such [10, page
1299]. The formula he obtains is, in the coordinates of the disk,

u(q,(z), 0(); )
o(z)- 2

U(z, ; ))

2ll2 (1 -Izle)z(1 -l12)2, (z, ) ID

Hadamard refers to an earlier paper by Almansi [1], where this formula, or at
least the solution to the related Dirichlet problem, was originally obtained.

Replacing the operator A by its square A2 has the physical interpretation that
we replace the membrane by an (infinitesimally) thin elastic plate, spread over
f, and clamped at t3f (see 15, pages 250-252], [2, pages 232-239]), and the
issue that Boggio and Hadamard were concerned with is whether the deflection,
resulting from a downward point load at an arbitrary point in f, is always
directed downward with the load. This Boggio-Hadamard conjecture, as I have
decided to call it, was later disproved by Richard Duffin 1-6] for an infinite strip,
by Charles Loewner [18] and Gabor Szeg6 [21] for certain nonconvex regions,
and by Paul Garabedian [8] for a sufficiently eccentric ellipse. Garabedian’s
example is interesting, and deserves some attention. He takes the ellipse

x2/a2 + y2 < 1,

with a > 1, and places a point load near the boundary point (x, y)= (a, 0). His
computations then show, more or less, that there exist two absolute constants ao
and al, with < ao < 2 < al, such that, for ao, < a < ao, the deflection of the
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plate near the boundary point (x, y)= (-a, 0) is in the same direction as the
point load, but for parameter values ao < a < al, it goes the other way. Torbj6rn
Lundh has assisted me with the computation of ao and al; they have the approxi-
mate values ao , 1.5933 and a 2.4716. Garabedian also calculates the deflec-
tion near the boundary point (0, 1), keeping the same point load as before, and
shows that a switch of direction occurs, but for a higher critical value of the
parameter a. I believe the situation first described is the critical one for the ellipse,
and that in fact, the Boggio-Hardamard conjecture does hold for ellipses of the
above type, provided that 1 < a < ao. It should be mentioned that there is a
much earlier paper by Boggio [3-1 dealing with the Dirichlet problem for A2 on
ellipses.

In later work associated with the Boggio-Hadamard conjecture, the focus seems
to have been on finding counterexamples, which is exemplified by the more recent
papers by Mitsuru Nakai and Leo Sario [20-1, and by Vladimir Kozlov, Vladimir
Kondrat’ev, and Vladimir Maz’ya [17]. In [11], however, Walter Hayman and
Boris Korenblum show that the Green function for (-A) on the unit ball of IR,
with Dirichlet data, is always positive.

In this paper we shall compute explicitly the Green functions for the singularly
weighted biharmonic operators Alzl-2A on the unit disk D; this corresponds
to obtaining the Green function for A2 on the Riemann surface which is the
image of ID under the mapping z- zn+. We shall in fact study the Green func-
tion U(z, ) for the weighted biharmonic operators Alzl-2A on the unit disk
ID, for parameter values > -1, and consider integers n a special case. In
Section 3, we discuss the domain of definition of the partial differential operator
Alzl-2A, and the uniqueness of the associated Dirichlet problem. In Section 4,
we carry out the explicit computation of the functions U,,(z, ) for n 0, 1, 2,
3,..., and obtain an integral representation for the more general U(z, ). The
formulas obtained may be useful for calculating other Green functions, such as
those associated with the operators A(1- Izl2)-A. In Section 5, it is demon-
strated that the functions U(z, ) may be expressed in terms of a certain function
E(z, ). The function Eoo(z, ) is shown to be positive, which, by the nature of the
relationship between U,(z, () and Eoo(z, ) immediately leads to the positivity of
U(z, ).
As before, let f be a simply connected bounded domain in the complex plane,

but this time it should be star-shaped and have real analytic boundary. In Section
6, an ingenious idea due to Hadamard [9], [10] is exploited to show that a
clamped plate the shape of f bends (everywhere) in the direction of a point load,
no matter where applied, once this is true at application points "infinitesimally"
close to the boundary Of. The argument is sufficiently flexible to apply to weighted
problems as well, and thus leads to a different proof of the positivity of U,(z, ). It
is possible to getaeralize the method to higher dimensions and higher-order ellip-
tic partial differential operators. This then yields a simpler proof of the positivity
of the Green function for the operator (-A) on the unit ball of IR" than the one
produced by Hayman and Korenblum [11].
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The positivity of U,(z, ) is applied in Section 7 to produce new factoring theo-
rems for the Bergman Lp spaces on the disk (see [7], [12], [13], 1-14], [15] for
related developments).
Thanks are due to Vladimir Maz’ya for historical and mathematical comments,

and to the referee for careful reading of this manuscript.

2
1. Some words on notation. If we write z x + iy, with x, y real, and

1, we define the partial differential operators

=-(c9/c9x + id/dy),

A aza -4(alax" + 2/y2);

we shall frequently omit the subscript z if in the context there can be no mis-
understanding regarding what variable we are differentiating with respect to. The
definition of the Laplace operator A is somewhat nonstandard; it usually is
defined to be 4 times bigger than here. The advantage with our notation is that if

f is a holomorphic function, we get the beautiful identity Alfl 2 -If’l 2. Another
nonstandard feature in this paper is that given a domain f in the complex plane
rE, we consider locally integrable (dm2) functions u on f as distributions via the
duality relation

(q, u5 fta u(z)q(z)dm2(z)fiz’ b C(f),

where din2 denotes the usual planar area measure. This, together with the unusual
definition of the Laplacian, makes our Green functions for A and A2 bigger than
usual, by the factors 4r and 16r, respectively. We frequently write dS for dm2/rc.

In this paper, we shall use the symbols Re and Im to indicate the operations of
taking real and imaginary parts of a complex number.

2. The Green functions F(z, ) and U(z, ) for the operators A and A. It is
well known that the Green function for the Laplacian A on the unit disk ID is
given by the formula

F(z, ()= log z-[2

(z
(z,)D2.

It is also known, albeit not so well, that the Green function for the bi-Laplacian
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A2 on the unit disk D has the form

U(z, )- Iz 12F(z, ) / (1 -Iz12)(1 -112), (z, ) ID.
As indicated above, we frequently suppress the D’s in the expressions F(z, ; D)
and U(z, (; D) when it is clear that we are dealing with the unit disk. One can
show that U(z, ) > 0 for all (z, ) ID2. In fact, by the elementary inequality

log x > 1- 1/x, 0 < x < 1,

we have

r(z, ) >
(1 -Izl)(1 -I1)

from which the assertion U(z, ’) > 0 immediately follows for (z, () ]1) 2.

3. Domain of definition for A IzI-2A; uniqueness of the Dirichlet problem. We
have to clarify upon which classes of functions the singularly weighted partial
differential operator Alzl-eA is well defined, and in what sense we expect the
boundary conditions to determine the function U(z, ) uniquely. Since the func-
tion Iz1-2 is C on D\{0}, we can define the operator Alzl-eA unambiguously
as an operator acting on the space ’(D\{0}) of distributions on D\{0}. We
have trouble defining the operator on the space ’(D) of distributions on D,
because it may be impossible to make sense out of the product of the function
Iz1-2 with an arbitrary distribution on D. Some distributions, however, coincide
with LI(dS) functions near 0; denote by (D) the space of such distributions. If
u (ID) is such that Au belongs to (D) too, we may safely multiply Au by
Iz1-2 to get a distribution on D\ {0} and a measurable function near 0; if, more-
over, this measurable function belongs to LX(dS), then Izl-2Au can be regarded
as an element of (D), and we have no difficulty applying another Laplacian.
We consider the space of such distributions u the domain of definition for the
operator Alzl-2=A, and denote it by ..,(D).
We should now like to say a word or two about uniqueness of the Dirichlet

problem. To this end, the following Almansi-type representation formula shall
prove useful.

LEMMA 3.1 (-- < t). Suppose u ,(ID). Then u has Alzl-2Au 0 on ID if
and only if u is of the form

u(z) v(z) + (1 -Izl+)w(z), z ID,

where v and w are harmonic on D. Moreover, if u is given by the above expression,
then

Au(z)- -( + 1)lz12(( + 1)w(z)+ zOw(z) + fw(z)),
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Proof. We first check that if u is of the indicated form, then it solves the
differential equation. A computation reveals that Au is given by the above for-
mula, so that Izl-2Au is in 0(ID), and

Alzl-2Au(z) -( + 1)A(( -I- 1)w(z)+ zOw(z)+ -w(z))= O, z ID.

To see that the middle expression equals 0, we argue as follows. The function w is
harmonic, thus Ow is holomorphic, and zOw is holomorphic, too. The conclusion
that zOw(z) + Ow(z) is harmonic is immediate.
We proceed to check that any solution u to Alzl-2=Au- 0 has the prescribed

form. One obtains Izl-2Au h, where h is harmonic, that is, Au(z)= Izl2h(z). It
is convenient to write h f + , where f and 9 are holomorphic, and 9(0) 0.
These functions have power series expansions

f(z) a,,z", z D,
n=O

o(z) b.z", z D;
n=l

associate with them the holomorphic functions

angnf(z) -o ( + 1)( + n + 1)’
z6ID,

b.z"G,(z) -,=x ( + 1) n + 1)’
zeID.

The function

H(z) (1 -IzlZ/Z)(f(z) + (z)), z6ID,

then solves AH,(z)= Izl2=h(z), and therefore u- H, is harmonic. The proof is
complete, rq

The uniqueness result for the Dirichlet problem is as follows.

LEMMA 3.2 (-- < ). Suppose u ’o.,(lD) solves Alzl-2Au 0 on ID, and that
u is of class C on \{0}. If both u and Vu vanish on the boundary 7y, then
u(z) 0 throughout ID.

Proof. By Lemma 3.1, u has the form

u(z) v(z) + (1 -IzlZ/2)w(z), z6ID,
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where v and w are harmonic on ID. By radial symmetry, the functions

Un(Z, e’) e-’"u(e’z), z lD,

Vn(Z e iO) e-inOv(eiOz), z ]I),

w,,(z, e’) e-"w(ez), z ID,

retain the properties of u, v, and w, for integers n Z, and real 0, and the same
can be said for their averages over 0,

a,,(z) f,, u,,(z, ei) dO/2rc, z e ]I),

O.(z) ff,, v.(z, ei) dO/2rc, z ID,

,.(z) f,, w,,(z, e) dO/2n, z .ID.

These averages satisfy a.(yz) y"a.(z), .(yz)
so that, being harmonic, the functions .(z) and .(z) are of the form constant
z" for n 0, 1, 2, and of the form constant -" for n -1, -2, -3,
The relation between u, v, and w translates to a.(z)= .(z)+ (1- Izl’+z)v.(z),
and the vanishing of u along with its gradient on qr entails that the same holds for
a.. Hence the functions . and . both vanish identically. But then v and w must
vanish identically, too, because . and . may be interpreted as their Fourier
coefficients. The conclusion follows.

4. Definition of the Green function U,(z, ) for the operator A lzl-2%. Fix
the real parameter > 1. The Green function U(z, ) solves, for a fixed D,
the partial differential equation boundary value problem

Azlzl-2Az U(z, )-- %(z), z ID,
U,(z, ) O, z e "It,
v V(z, ) o, z e r.

The singular partial differential operator AIzI-2"A was defined and discussed in
the previous section. We understand as implicit in the boundary condition that
u,(., () should extend as a C function up to the boundary 1I’. This determines
the Green function U,(z, ) uniquely, as we saw in Section 3. If U,(z, ) solves the
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above partial differential equation on D, then clearly

Izl-2mU(z, ) r(z, ) + n(z, ), (z, () ID:,

that is,

(4.1) AzU,(z, ) -Izl2(I’(z, ) + n(z, )), (z, ) ID2,

for some harmonic function H,(., () on D. As a consequence, we see that U,(., ()
is smooth (in fact, real analytic) on D\ {0, (}.
By general ellipticity theory, we can expect the Green function U,(’, () to extend

real analytically across the boundary It, if ( e D is kept fixed. In particular, it is
not a serious restriction to decide to look only for a function H,(., () satisfying
the regularity condition that it extends continuously up to the boundary qr. By
Green’s theorem and the boundary conditions on U,(z, ), we have, again for
fixed ( ID, the identity

(4.2) Az V,(z, ()o(z) dS(z) f V,(z, ()Az0(z) clS(z),

valid for C2 functions q9 on . If we specialize to harmonic qg, we get

a C,(z, ()o(z) dS(z) O,

and consequently,

(4.3) n(z, C)q(z)lzl2 aS(z) -f r(z, C)q(z)lzl2 as(z).

It deserves to be pointed out that if H(z, ) is any nice harmonic function on D
in the z variable, and we simply define U(z, ) as the solution to the Poisson
equation (4.1) with zero boundary values, then (4.3) is equivalent to requiring
Vz U(z, () 0 on It. If we apply the operator A to both sides of equation (4.3), we
obtain

(4.4) f mCn(z, )q(z)lzl2 dS(z) -0()1(I2,

for all harmonic q9 that extend to C2 functions on . An approximation argu-
ment shows that the above relation holds for all q9 Ln2(ID, 00, where Lh2(ID, 00 is
the Hilbert space of all harmonic square integrable functions on ID, supplied with
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the norm

Io(z)llzl dS(z)

We can interpret (4.4) as saying that A;H(z, () equals __[([2t times the harmonic
reproducing kernel function for the space LhE(lD, ). Relation (4.3) determines
the function H(., () uniquely; in fact, we see that H(., () coincides with the
orthogonal projection L2(]D, ) -* Lh2(]O, ) of the function F(., (). Here, of course,
L2(ID, o) denotes the Hilbert space of all square integrable functions with respect
to the positive finite Borel measure [z[2 dS(z); the expression for the norm is the
same as the above one concerning the subspace LhE(D, ).

Before we continue our computations, it is necessary to note the following fact,
which will be used but not be explicitly mentioned in the sequel: if 2 > 0, and j, k
are nonnegative integer, then

A(lz[ZZzJk) (j + 2)(k + i],)[z[2-2zJk.

THEOREM 4.1. The function H, has the representation

/-/(z, ()= (a + 1)-x(1 -1’12+2)--
I1 -(z[2

(z, ) e ID2

Remark. (a) Note that the function H(z, () is positive on IO2. If it were nega-
tive at some point, one could show that the Green function U(z, () would have to
attain a negative value somewhere in ID2.

(b) The resemblance between H and the usual Poisson kernel is not acciden-
tal. By inspection, the function (- H(z, () solves, for fixed z e , the partial
differential equation boundary value problem

al(I-2aH=(z, ()- 0,
/-/,(z, () 0,
O/&(()I4,(z, ()

]D,

where c/c3n denotes differentiation in the inward normal direction. This fact can
actually be argued without knowing the explicit expression for H(z, (), and then
the formula for H(z, ) follows (more or less) from Lemma 3.1, for z e IF. The
extension to the bidisk is then obtained by observing that the function is har-
monic in the z variable.

Proof of Theorem 4.1. First, observe that for j 0, 1, 2,...,

(4.5)

dS(z) -( + + +()lzl 2= 1)-l(j 1)-1(1
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We also have, for j 0, 1, 2, 3,...,

(zJ(1 "Z)-x zJ)lzl2 dS(z) 0,

zJ(1 )-Xlzl2 dS(z) J/(( ..Ji- j + 1),

and considering that

1 -I(zl 2

=2Re- 1,
11 z[2 (z

we see that

-I(zl 2

l1 (z[
zJlz]2 dS(z) (J/(o -F j -+. 1).

It follows that, if H is given by the formula

n(z, ) (x + 1)-x(1 -I(IZ=+z)
1 -Izl2

I1 (zl 2’
(z, () ID -,

then we have

()zJIzl2 dS(z) (o + 1)-l(j + + 1)-1(1 -1(12+2)(j,

so that, by (4.5), we have

n(z, ()p(z)lzl2 dS(z) -; r(z, ()p(z)lzl2 dS(z),

for all analytic polynomials p. Taking complex conjugates, we obtain (4.3) by a
simple approximation argument. E!

COROLLARY 4.2. If U(z, ) is the Green function for the operator A]zl-2A,
then

ZXzU(z, )= Izl’-=(r’(z, ) + H(z, )), (z, ) IO.
COROLLARY 4.3. The followin# identity holds:

U(z, ) y F(z, )(1-’(, () + H(, ’))11z dS(), (z, ) IO.
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PROPOSITION 4.4. We have the formula

r(z, )n,( ()11" dS()

--( + 1)-2(1 --]z12’z+2)(1 --]’l 2’+2)

x 2Re -(z+ (z,’)ID2

a+j+

Proof. Note that the expression on the right-hand side vanishes for z "lr, and
if we apply the operator A to the right-hand side, we obtain

( )( + 1)-llz12(1 -ICI2+2) 2 Re JgJ--
j=0

1 -ICzl 2

which coincides with ]zl2H(z, ). The assertion is now evident.

COROLLARY 4.5. We have the formula

U(z, ) n) r(z, )r(, )112 dS() ( + 1)-2(1 -Izl2+2)(1 -I[2+2)

2 Re ( + 1)-x
a+j+

It is rather difficult to evaluate the integral expression appearing in Corollary
4.5; in view of later results, we may turn things around and consider Corollary 4.5
as a convenient vehicle for evaluating this very integral, which pops up in different
circumstances as well; see Corollary 4.7.
We now present a formula giving U,(z, ) for integers n 0, 1, 2,...; the posi-

tivity of this function, however, is not completely obvious from the representation.

THEOREM 4.6. For n 0, 1, 2,..., we have the formula

(n + 1)2Un(z, )= IZn+l "+Xl2F(z, )

+ 2 j-l(1 -IzlJ)(1 -]CI2j) Re{((z)"+l-j}

+ (n + 1)-1(1 -l(12n+2)(1 -Izl2"+2).
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Proof. Let us decide to write V,(z, () for the expression on the right-hand side.
Since V,(., ) vanishes on the unit circle qr, it suffices to verify that, if we apply A
to it, then we obtain (n + 1)ZlzlZ"(F(z, ) + H.(z, )). If we apply A to the expres-
sion z"+ "+ 12F(z, ), we get, after some computation,

A{Iz"+ ("+lr(z, )} --(n + 1)21zl2"r(z, ()

+ 2(n + 1)(1 -I(I 2) Retii --z)-(z- ()

We also have the identity

Az{(1 -Izl-)(1 -I1) Re(((z)n+x-J)}

-j(n + 1)lzl2-z(1 -I’12) Re{(z)"+l-g},

valid for j 0, n + 1. Consequently, we obtain the formula

AzV(z, ) (n + 1)lzl 2" (n + 1)r(z, ’) + 2(1 -I’l Retzn(1 z)(z )

2
j=l

(1 -I12) Re{(r/z)"+l-j} -(1 -112"/2)),
The problem now reduces to showing that

l_((/z)n+x

_
2(1 --I(I 2) Re (1 5-/z)) 2

j=l
(1 --Il2j) Re {(’/z)"+-} -(1 -I(I2n+2)

or, if we change the order of summation,

2(1-1’]2) Re{(1- z)-
=o ((/z)} 2 (1 -I12"/2-2) Re{(’/z)}

j=l

2(1 -I(I2n+2)Re

We will do this by proving that

(1 -Irl z) (/z) -(1 z) (1 -I’[z"+z-z;)(’/z) 1
j=O j=l
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if we divide both sides by 1 -(z and take real parts, the desired assertion then
follows. The left-hand side of this new expression simplifies,

(1- I’12) ((/z) -(1- (z) (1- 1’12"+2-2j)((/z)
j=0 j=l

(’- I’1) , (lz)’- (’- 1’12"+-2’)(’/z) + " (1’12- 1’12"+--’)(’/z)
j=0 j=l j=0

n-1

(1 -1(12)(1 + (lz) + (1 -I(I2) ((Iz)S (1 -I(l:)((/z)"
j=l

n-1 n-1

(1 -112"+2-2j)(/z) + 112(1 -Il2") + (112 -l12"+2-2j)(/z)
j=l j=l

n-1 n-1

1 -Il2 + (1 -I12) (lz)S + y (112 1)(Uz)S + I12 -I12n+2
j=l j=l

which does it. FI

Corollary 4.5 and Theorem 4.6 have the following consequence.

COROLLARY 4.7. For n O, 1, 2,..., we have the formula

(n -+- 1)2 ;D F(z, )F(, ()11" dS()

Izn+l ,+ll2F(z, r) + 2 j-1(1 --Izl2J)(1 --I’12j) x Re{(’z)"+’-j}
j=l

oo jzj
2(1 -Izl2+2)(1 -I12+2) Re

j=on+j+l

5. The Green function for the operator A exp(2 Im z)A on the upper half plane.
Let IE+ denote the open upper half plane,

E+ {z e IE: Im z > 0).

The Green function F(z, (; IE+) for the Laplace operator A on IE+ has the form

r(z, ; IE+) log
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for a fixed rE+, it solves the partial differential equation boundary value prob-
lem

Azr(Z, ; ;+)= (z)
r(z, ; +) 0,

From the elementary estimate

1-1/t < log < -1, t>0,

with equal signs if and only if 1, and the identity

2 Im z Im (
=1--4

Iz- (I

we see that

Im z Im (
-4

Iz (I 2 < F(z, (; rE+) < -4
Im z Im (

from which we derive the inequalities

0 < [z ([2F(z, (; +) + 4 Im z Im ( < 16
(Im z Im )z

z, " e + uIR.

In the notation

U(z, (; rE+) Iz (12r(z, (; rE+) + 4 Im z Im (, z,+ wlR,

we get

(Im z Im ()2
(5.1) 0 < U(z, (; rE+) < 16 z, ( + w IR,

with strict inequality for z, IE+. The reason why we call this function U(z, ; rE+)
is that it happens to be the Green function for the operator A2 on rE+, that is, it
solves (for a fixed ) the partial differential equation boundary value problem

; +) 6 on +,
U(z, ; +) O, z IR,
VU(z, ; +) 0, zR.

For our purposes, however, it shall be sufficient to know that if ( IE+ is
kept fixed, U(z, , /) and VzU(z, , rE/) both vanish for all z IR, and that
U(z, , +) > 0 on +.
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For fl > 0, write

Eta(z, ) 2Ut_ (e ’/tJ,

and note that this function is periodic, with period 2flr, in the two coordinates z
and . From the change of variables formula for the Laplace operator, together
with Theorem 4.1 and Corollary 4.2, we see that

(5.2) AzEt(z, ) e-: ’mZ(F(eZ/t, e/tJ; ID) + Ht_ (e iz/t, ei/t))

e-2’m’(F(ei/a, e’/a; ID) + (1 e-21m)P#(2, )),

where

P(z, )=/-
1 e-2(Imz+ImO/#

SO that if we multiply by e21mz and apply another Laplacian, we get

(5.3)

Aze21mZAzE( ., ) AzF(ez/t, elt; D) ’, 6o(Z + 2nflrt), ze+,

where 60 denotes the Dirac measure at the point 0 in the complex plane E. For
fixed " IE/, the function Etj(z, ) vanishes on z IR together with its normal
derivative, so (5.3) suggests that we should have

(5.4) Ea(z, ) Eo(z, + 2nflrO,

where Eoo(z, ) is the Green function associated with the operator A exp(2 Im z)A,
and clamped boundary values:

(5.5)
Ae21mAEoo( ", ’)= 6 on +,
Eoo(z, ) O, z IR,
V,Eoo(z, ) O, z IR.

To get uniqueness for the solution to this problem, one needs to impose addi-
tional growth restrictions near infinity; however, it is not necessary here to go
into detail on this matter.
Our next job is to find an explicit expression for Eoo(z, ) and verify that (5.4)

holds. As the notation suggests, we get Eoo(z, ) by letting the integer n tend to
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+ in the identity

En(z, () lei ei12F(ei/", ei/"; ID)

+ (j/n)-1(1 e-2O/,)mz)(1 e-Zt/,)m)
/ j=l

+ n-(1 e-)(1 e-21m),

valid by Theorem 4.6. As n +or, F(e z/", eiUn; ID) tends to F(z, (; +), and the
sum

2 ,,1 (J/n)-1( e-ZO/n)Imz)( e-ZtJ/n)Im) Re{et-/")t-b}
n j=l

+ n-l(1 e-21mz)(1 e-21m)

converges to the integral

(1 e-2tlmz)(1 e-2tlm) Re{ei{-t){z-b} dt/t

2e-lmz-lm (e’lmz e-tlmz)(etlm e-tlm) cos((1 t)(Re z Re ()) dt/t.
0

We thus define

(5.6) E(z, ) lez elZF(z, ; +)

.q_ 2e-lmz-lm ; (etlmz e-tlmz)(etlmr, e-tlm)

x cos((1 t)(Re z Re )) at/t,

and note that this function solves (5.5). The convergence E,(z,) Eoo(z, ) is
such that AzE,(z, ) AzEoo(z, ) as n +o, at least in the sense of distributions,
so by (5.2),

AzEoo(z, ) e-21mz(I"(z, ’; (E+) + (1 e-2m)Poo(z )),

where

Po(z, ) 2
Im z + Im
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because as n +o, F(e ’/", eiUn; ]D) tends to F(z, ; rE+), and Pn(z, ) tends to
Poo(z, ).
The functions Pt(z, ) and P(R)(z, ) play the rble of the Poisson kernel on +/Z

and +, respectively. Here, Z stands for the group of horizontal translations
z z + 2nflzr, n e
The next step toward obtaining (5.4) is to show that

AzEa(z, )= AE(R)(z, + 2n/z).

This is actually a simple consequence of the basic periodicity identities

F(ez/a, e;/a; ID) F(z, + 2nflz; {E+),
-"

z,e+,

and

Pt(z, ) P(z, + 2nflz0, z, e rE+.

For a fixed e rE+, consider the difference function

Y(z) Eta(z, ) Eoo(z, + 2nflr),
rl

which is harmonic on rE+, and extends real-analytically across the real line ]R,
because the involved functions Eta(z, ) and Eo(z, ) do (since AEt(z, ) and
AE(z, ) are nice), and because the summation process converges comfortably.
Thus AY(z) 0 in a neighborhood of IR, and in view of the boundary conditions
on Eta(z, ) and Eoo(z, ), Y(z)= 0 and VY(z)= 0 both hold on IR. The unique-
ness principle for the Cauehy problem (the Cauchy-Kovalevskaya theorem, or
Holmgren’s theorem) asserts that Y(z) =- 0 throughout the region where Y is real
analytic, in particular on rE+; hence (5.4) holds. To emphasize this fact, we formu-
late it as a theorem.

THEOREM 5.1. Let the function Eo(z, ) be 9iven by relation (5.6). Then, for
fl > O, the followino identity holds:

Eta(z, ) E(z, + 2nfln).

In view of the definition of the functions Eta(z, ’), the following consequence is
immediate.



68 PER JAN H/KAN HEDENMALM

COROLLARY 5.2. For o > 1 and k 1, 2, 3,..., it is true that

k-1

U(+)/k_(Zk, k)= k2 G(z, e;(k)),
j=O

where

e;(k) exp(2ji/k), j =0,...,k- 1,

are the k different roots to the equation Zk 1.

In this section, it will be demonstrated that the Green function Eoo(z, () is posi-
tive throughout (E+ x (12/, whence that U(z, ) is positive on ID2, for e > 1.

In terms of the function

(5.7) (p(x) (e e-:’)/(2x) x2./(2j + 1)!, x lR,
j--O

the expression (5.6) for Eoo(z, ) takes the form

E(z, ) le eilF(z, ;

+ 8 Im z Im ( e-Imz-lm p(t Im z)tp(t Im ()
o

x cos((1 t)(Re z Re ()) at,

or, if we use the function U(z, ; +) instead of F(z, ; +), we get

(5.8) (z, )=
2

U(z, ; rE+) + 4 Im z Im (

2e-Imz-lm f (p(t Im z)tp(t Im ()

x cos((1 t)(Re z Re )) dt

The next lemma enables us to rewrite (5.8).

LEMMA 5.3. If q) is as in (5.7), we have for z, IE+ the identity

2 (
2e-lmz-lmg q(t(Im z Im ()) cos((1 t)(Re z Re )) at.

o
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Proof. Recall the hyperbolic functions

cosh(x) (e + e-X)/2, xIR,

sinh(x) (e e-0/2, xIR,

and note that, for w e rE, we have the identity

l1 eWl2 2e-mw(cosh(Im w) cos(Re w)).

If w is replaced by ( z on both sides, and the equality is multiplied by e-2m’,
this results in

lez e12 2e-mz-m(cosh(Im z Im () cos(Re z Re ()),

Consider, for real parameters , r/, the definite integral

I(, r/) f cos((1 t))go(tl) dr;

by the previous identity, our job is now to check that

I(, r/) (2 + r/2)-t(cosh r/- cos ).

By continuity, we may assume, without loss of generality, that both and r/differ
from 0. From the definition of the function go, we have

I(, r/) f/cos((1 t)) sinh(tr/) dt/l,

so that, if we apply integration by parts once, we get

I(, r/) f2 sin((1 t)) cosh(tr/) dt/,

and if we do it once more, we obtain

I(, ) -2(cosh cos ) 2-2I(, ),

from which the desired assertion easily follows. 121
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In view of (5.8) and Lemma 5.3, we may express Eoo(z, ) in the form

(5.9) Eoo(z, )
2

U(z, (; +) + 8 Im z Im ( e-Imz-lm

(p(t Im z)cp(t Im )- p(t(Im z Im )))

x cos((1 t)(Re z Re )) dr.

We are now ready to prove the fundamental positivity result.

THEOREM 5.4. We have Eoo(z, ) > 0 for all z, +.
Proof. In fact, we shall prove that

(p(t Im z)cp(t Im ) p(t(Im z Im ))) cos((1 t)(Re z Re )) dt > O,

for all z, /, making the assertion a consequence of (5.9) and the positivity
fact (5.1). To this end, let us write y Im z, r/= Im , x Re z Re , and

(t; y, ) t(q(ty)q(t) q(t(y )),

so that what we wish to show is that

(5.10) W(x, y, r/) ; (t; y, r/) cos((1 t)x) dt > 0

holds for all x e IR, y, r/> 0. It will be instrumental in this aim to know that
O(t; y, r/) is a convex function of on the interval [0, 1]. Considering that O(t; y, r/)
has the form

(t; y, ) A(n; y, rl)t+
n=l

where

yjn-j
A(n; y, r/)=

j=o (2j + 1)!(2n 2j + 1)!
(y-n)"

>
y"+n" _(Y-n)" >0,

(2n + 1)! (2n + 1)! (2n + 1)!

so that

(t2/cOt2)O(t; y, tl) n(n + 1)A(n; y, r/)t"- > 0,
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with strict inequality for > 0, we see that, as a function of t, (t; y, r/) is positive
on the interval ]0, +o[, has (0; y, r/) d/c3t(0; y, r/) 0, and is convex on the
interval 1-0, +o[, and thus in particular on I-0, 1]. If the integration by parts
formula is applied twice to the definition (5.10) of W(x, y, r/), and the data that

(t; y, r/) vanishes along with its derivative at 0 are used, the result is

2(I)
V(x, y, r/) -1 (1 cos(x(1 t)))-T (t; y, rl) dt,

which is clearly positive. The proof is complete.

Remark. The last trick involving the integration by parts is known as P61ya’s
lemma.

By Theorem 5.1, Theorem 5.4 has the following immediate consequence.

COROLLARY 5.5. Given fl > O, Ea(z, ) > 0 holds for all z, ( +.
This result, in its turn, has the following consequence, in view of the definition

of the function Ea(z, ().

COROLLARY 5.6. Given o > 1, U(z, ) > 0 holds for all z, ID.

6. Another approach, based on an idea of Hadamard. In retrospect, we can
say that the essential tacit ingredient in the previous section is the fact that the
operator A exp(2 Im z)A is invariant under the Moebius subgroup of horizontal
translates of the upper half plane. It is of course also of importance that it was
possible to identify the upper half plane modulo a discrete subgroup of the hori-
zontal translations as the unit disk, and that the thus transformed operator
A exp(2 Im z)A coincided with Alzl-2A on the disk. It is possible to generalize
this idea, but unfortunately, the scope is rather limited, because in contast with
the Laplacian itself, (weighted) bi-Laplacians are usually invariant only with re-
spect to small subsets of the Moebius group.

There is another method to obtain the positivity of a biharmonic Green func-
tion, suggested by Hadamard in [9-1, [10]. The idea is to consider a continuous
movement of the boundary, and calculate the change in the biharmonic Green
function along the way. It should be pointed out that this idea of Hadamard has
been largely neglected in subsequent developments.
We begin with a bounded simply connected domain f in the complex plane,

having real analytic boundary, for simplicity. The Green function for the bi-
harmonic operator A2 on f, given clamped boundary conditions, is denoted
by U(z, (; f). It can be checked that it is symmetric in the arguments z, (:
U(z, ; f) U(, z; ) (see [8]). By Green’s theorem,

(6.1) Az U(z, ; f)q,(z) aS(z) U(z, ; f)AzO(z) dS(z)
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holds for C2 functions 99 on . It is easy to see that

(6.2) A, U(z, (; fl) r(z, (; n) + H(z, ; fl),

where F(z, ; f) is the Green function associated with the Laplace operator A on
f, and the function H(z, ; f) is harmonic in the z variable throughout f. By
elliptic regularity and the smoothness assumption on the boundary Of, the func-
tions z F(z, ; f) and z U(z, ; t2) extend, for fixed e f, harmonically and
biharmonically, respectively, across cot2. For fixed e f, the function z-- H(z, ; )
thus extends harmonically across Of.

Introduce another region fg, subject to the same conditions as f, which is
slightly larger, but only by so much that z- U(z, ; f) remains biharmonic on
f’\ {} and Cz up to the boundary. If we appeal to Green’s formula, we obtain, as
in (6.1),

U(z, ; n) aU(z, ; n)au(, ; n’) dS()

and

U(z, ; n’) I., aU(z, ; n)acu(, ; n’)

From the above identities, it is immediate that

(6.3) U(z, ; n’) U(z, ; n) f.,\.
By (6.2), this may be written as

aU(z, ; n)acu(, ; n’) dS().

(6.4) U(z, ; n’) U(z, ; n)

(F(, z; fl) + H(, z; fl))(F(, ’; fl’) + H(, ; iT)) as().

At this point, we introduce a family of regions f(t), depending on the parameter
[0, 1] in a C fashion; these regions are to expand as increases. Furthermore,

we assume f(0)= , f(t) for 0 < < 1, and that all the regions t2(t) (for
0 < < 1) are subject to the requirements imposed earlier on . The condition
that f(t) depend on in a C way has not been spelled out in detail; the reader
may use whatever definition he sees fit, and check that the reasoning below is
permitted. It is convenient to assume implicit in this requirement that the inter-
section of all f(t), 0 < < 1, be finite. If, for 0 < < 1, we plug f f(t) and



A COMPUTATION OF GREEN FUNCTIONS 73

12’ l)(t + 6) into (6.4), with 0 < 6 0, the result is

(6.5) U(z, (; l’(t)) lim
1

H(, z; (t))H(, (; fl(t)) dS(),

(z, ) fl(t): fl(t) x fl(t).

The terms in (6.4) involving the Green functions F(, z; 12(t)) and F(, (; 12(t + 6))
for fixed z, ( 12(t) disappear because, on fl(t + 6)\12(t), the values of these
functions tend to 0 as 6-+ 0. If dSt.o denotes area measure (normalized by the
factor n-1, as usual) restricted to the thin band f(t + 6)\12(t), then, as 0 < 6 0,
6-1 dSt.o converges in a weak sense toward a positive finite Borel measure d/t,
supported on Off(t). Relation (6.5) then reduces to

(6.6) U(z, ; (t)) H(, z; (t))H(, ; (t)) dl,(), (z, ) (t)2.
f(t)

The function U(z, ; f(t)) vanishes for (z, ) c(12(t)z), and thus

(6.7)

U(z, ; n(t)) fo(z,
H(, z; fl(z))H(, ’; ()) d/2,() dr,

) (,)
O(z, ) 1;

here O(z, ) stands for the infimum over all 0, 0 < 0 < 1, for which z, 12(0)
holds. It is clear from (6.7) that U(z, ;f)(1))> 0 holds on f)(1)2 provided
H(, ; f(t)) > 0 on 0f(t) x f(t), for 0 < < 1.

Conversely, if U(z,;f)(1))>0 on (1)2, then for a fixed
AzU(z, ; f)(1)) > 0 on z 0f(1), because the Green function has value and nor-
mal derivative 0 on the boundary 012(1), making its Laplacian equal a quarter of
the second normal derivative on the boundary. Thus U(z, ; f)(1))> 0 on (1)2

implies that H(, ; 12(1)) > 0 on 012(1) x
Given a star-shaped region f, "centered" at the origin, a convenient family of

expanding domains is f(t) tf, 0 < < 1. And, for geometric reasons, it is easy
to see that H(, ; l)(t)) > 0 holds on Ol)(t) x l)(t) for all t, 0 < < 1, if and only if
this is so for 1. The above reasoning then leads to the following conclusion.

THEOREM 6.1. If f is star-shaped, with real analytic boundary, then U(z,
0 holds on ,)2 if and only if H(z, ; 12) > 0 on 012 x

We proceed to find a physical interpretation of the function H(z, ; f). Let us
agree to equate the expressions 6(z)= 6()= 6o(Z- ), which makes sense in
the distribution theory of the region 122. By the symmetry property U(z, ; 2)
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U(, z; ), the function A U(z, ; ) solves

U(z,
; n) /o(Z ) n,

aU(z, (; n) 0, (
O/On()aU(z, ; n) 0, e

where O/On is differentiation along the inward normal direction, as before. Thus,
by (6.2) and the identity AF(z, () A6o(Z () A6o(Z (), H(z, (; fl) solves
(for z e n)

mz, ; n) 0 n,
H(z, ; n) O,
O/On()H(z, ; n) -O/On()r(z, (; n), n.

The function P(z, ; )= -O/On(()F(z, (; fl) we recognize as the Poisson kernel
on . The Poisson kernel tends to a Dirae point mass as the z variable approaches
a boundary point, so that we can say that, for z e Off, the function H(z, (; )
solves

AH(z, ’; fl) 0

H(z, (; n) O, ( On,
O/On(()H(z, ; fl) 6(),

It is natural to think of the function Q(z, ; )= H((, z; ) as a biharmonic
Poisson kernel; it may be regarded as the limiting case of the Green potential
U(z, ; fl) as ( approaches the boundary 0fl, provided the potential is rescaled by
a suitable positive multiple C((), which is inversely proportional to the square of
the distance between and 0ft. One particularly attractive consequence of this
way of looking at the function H(z, ; ) is that Theorem 6.1 has the following
consequence.

COROLLARY 6.2. Suppose is star-shaped, with real analytic boundary. Let A
be the intersection of a neighborhood of O (in ) with . Then U(z, ; ) 0 on
2 it holds on the set x A. This has the physical interpretation that, in order to
know that a clamped plate the shape of bends in the direction of a point load
everywhere, no matter where the load is applied, you just need to check that this is
so when the point load is applied near the boundary.

The above considerations apply to weighted problems as well. The formula
corresponding to (6.7) for the operator A[z[-2A turns out to be

(, t (/, /t(/, /t s(t
ax{Izl, gl}- H,(e’, z/z)H,(ei, /) dO
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where ds stands for linear measure in , normalized so that the unit circle 1r
gets total mass 1. The positivity of the Green potential is immediate from this
representation.

7. Applications to the factoring theory of the Bergman space. The positivity
of the Green functions U(z, ) for the operators AIz[-2A is important for the
factoring theory of the Bergman spaces LoV(lI)), as developed in [12], [13] for the
case p 2, and in the paper [7] by Peter Duren, Dmitry Khavinson, Harold
Shapiro, and Carl Sundberg for general p, < p < oe. The following theorem
contains the essentials of what has been known so far [12], [13], [7]; we formu-
late it for finite sequences, but it remains valid, mutatis mutandis, also for infinite
zero sequences. For parameter values 0 < p < oe, the Bergman p-space L,P(ID)
consists of all holomorphic functions on lD which also have

/[[fllLp (Dlf(z)lPdS(z)
For < p < , this is a Banach space, and for p 2, a Hilbert space.

FACTORING THEOREM. Fix a parameter value p, < p < oo, and suppose
A {aj) is a finite sequence of points in the open unit disk ID. Then there exists a

function G Lvo(ID), unique up to multiplication by a unimodular constant, such that
(a) G, vanishes precisely on A in the closed unit disk lD,
(b) G. has norm 1,
(c) Every f LV,(lD) that vanishes on A has a factoring f= G.’g, where

g LoP(D) has IlgllL, < IlfllL,.
This function G, has a holomorphic extension across the circle "lr, GI > 1 holds on
"It, and lGJl dS is a representing measure for the origin, that is,

h(O) f h(z)lG(z)l dS(z)

holds for all bounded harmonic functions h on ID.

Remark. We may choose to call these functions GJ finite zero-based inner
functions for the Bergman p-space, or finite Blaschke-type functions for the
Bergman p-space.

Obviously, the function G equals the constant function 1, so that in Koren-
blum’s terminology, where, given two functions f, g La(ID), f "<v g provided that

IlfhllL, h e H(ID),

we may regard the essential assertion of the Factoring theorem, that

IIahllL, IlhllL, h s La(ID),
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as saying that G -% G. It is natural to ask if this should be thought of as a
consequence of the trivial fact that is a subset of A. In other words, the issue is
whether the following conjecture holds.

CONJECTURE 7.1.
G< G,.

If A is a finite sequence in D and B is a subset of A, then

If O. {0, 0} denotes the sequence consisting of the point 0 repeated n
times, the corresponding Blaschke-type function G. can be computed explicitly,
and it has the form

G.(z) (1 + np/2)X/Pz", zlD.

Using the fact obtained in this paper that the functions U,(z, ) are positive (Cor-
ollary 5.6), we are now able to state a theorem corroborating the above conjec-
ture in a special situation.

THEOREM 7.2. If A is a finite sequence in D, which contains O. as a subsequence,
then G, -,(p G,, that is,

f L(ID).

Proof. For a finite sequence B of points in lD, let Of denote the solution to
the Poisson problem

Af(z)--IG(z)l 1,

f 0,

We then have the formula [12], [13], [7]

; [G(z)f(z)lP dS(z) [f(z)[P dS(z) + f(z)Az[f(z)[P dS(z),

for polynomials f in the z variable. Note here that, because f is a polynomial, Iflp
is subharmonic in the whole complex plane, in particular, Alf[ is a nonnegative
integrable function on D. The function f is also known to be nonnegative on D.
If we write W , $,, we get

f [G(z)f(z)l’ dS(z) f [G.f(z)[’ dS(z) + f tP(z)Alf(z)l*’ dS(z),

again for polynomials f. We plan to show that W > 0 on D; an approximation
argument then yields the desired assertion. Clearly, the function W solves the
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Poisson equation

AV(z)= (z)l G.f(z)]’,
(z) Ol "-I

It is known [12], [13], I-7] that tI),] and . extend real analytically across I1", and
have VO] V. 0 on I1". Consequently, the function W extends real analyti-
cally across qr, and solves the overdetermined partial differential equation bound-
ary value problem

lzl-"mIz) Ia.(z)/z"l’ (1 + np/2)-1

V(z) 0

V(z) o,

z61D,
zqr,
z qI’.

Since we have the extra boundary value information, we may apply a Laplacian
to both sides of the differential equation, and still have a uniquely determined
solution, according to Section 3. The result is then

Azlzl-"’AzW(Z) Az(IG.(z)/z"l’)
’e(z) O,
VV(z) 0,

z6ID,
z 6 "lr,
zqr;

note that

mz(IG(z)/z"l’) O, z ID,

because G/z" is holomorphic on D. We may then deduce the identity

W(z) ; U.,/_(z, )A(I G()/"I’) dS()( 0), z 6ID,

simply because the right-hand side solves the same partial differential equation as
q, and with a small effort of technical nature, one sees that it also meets the same
boundary conditions. 121
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