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TRANSLATES OF FUNCTIONS OF TWO VARIABLES

H,KAN HEDENMALM

0. Introduction. For f e LI(R2) and x R2, introduce the translation operator

Tf(t) f(t x), R2

Let R+ (0, ) and R2+ R+ x R+, and regard LI(R2+) as a closed subspace of
LX(R2) by extending the functions to vanish on R2\R2+. Iff is a function in L(R2+),
let I(f) be the closure of the linear span of the combined right and upper translates
Txf, x e R2+, of f. The aim of the present paper is to attempt to solve the following
problem, which was raised by B. Ya. Levin in the late 1950s, according to Boris
Korenblum, and recently appeared in [Levi:

LEVIN’S PROBLEM. Describe the cyclic vectors ofL (RE+), that is, characterize those
functions f L(R2+) for which I(f) L(R2+).
The one-dimensional analog of this problem was solved by Bertil Nyman in his

1950 thesis [Nym] and later independently by V. P. Gurarii and B. Ya. Levin
[GuLl: the right translates Txf, x R+, of a function f e LI(R+) span a dense
subspace of L (R+) if and only if

(a) f(z) e-Zf(t)dt :/: 0 for all z e H+ {w e C: Re w > 0}, and
(b) f does not vanish almost anywhere on any interval (0, a), a > 0.

Since both of the above references are somewhat inaccessible, we refer the inter-
ested reader to Garth Dales’s survey article [Dal], where a proof is given (pp.
196-201), and GurariFs monograph [Gur]. Judging from Nyman’s result, one
might guess that the right condition in our two-dimensional situation is that

(a’) f(z, z2) e-’’-zf(t, t2)dt dt2 :/: 0 for all (zl, z2)e +2 +
H+, and

(b’) f does not vanish almost everywhere in any neighborhood of the origin.

Clearly (a’) and (b’) are necessary. However, they are far from sufficient. Namely,
there are other types of conditions that remain invariant under right and upper
translations, too; for instance,

t2) dt 2 (0, 1),0 for almost all

is one.
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Nyman’s method of proof, which also was the one used later by Gurarii and
Levin, was to take an arbitrary L(R/)= LI(R+)* such that _L Txf for all
x R/, and study its Laplace transform

E](z) fo etZ(t) dt,

which is well defined and analytic in the open left halfplane H_ {w 6 C: Re w < 0}.
He showed that e[b] extends analytically to the set C\Z(f), where

zff) {w o},

and that the extension is given by a concrete formula in the open right half plane.
In particular, if f meets (a), &a[] extends to an entire function. Finally, Nyman
demonstrated that if f also satisfies (b), then that will force [] to vanish iden-
tically, and so 0; thus I(f) LI(R+), by the Hahn-Banach theorem.

In our two-dimensional situation, we would be inclined to consider for b L(R2+)
its Laplace transform

[q](z,z2)=ffeZ,+zq(t,t2)dtdt2, (zl, z2) 1-I2 l-I_ x lI_,

and hope that if ff +/- Txf for all x RE+, where f satisfies (a’), then ’[ff] would
extend to an entire function, this being the case in one dimension. Unfortunately,
this is not true. Take, for instance, #i(t 1, rE) for (t 1, t2) (0, 1) x R+ and #i(t 1, t2) 0
elsewhere. Then +/- Txf for all x e R2+ if f is the LI(R2+) function defined by the
relations f(tl, t2) e-- for (tl, t2) [1, ) x R/ and f(tl, t2) 0 elsewhere.
The Fourier transform f of f does not vanish anywhere on 2+, and yet

&aE](z,, z2) (ez 1)/(glz2),

does not extend to an entire function.
A crucial property of the Laplace transform in one variable is that the image of

a function in L(R+) with compact support is an entire function of finite exponential
type. Likewise, we should expect a "good" transformation on L(R2+) to turn a

L(R2+) with support contained in a region

R(xl, x2) {(t:, t2) 2+. tl < X1 or t2 < x2},

for xl, x2 > O, into an entire function, and hopefully one of finite exponential type.
Clearly, the Laplace transform is unsuitable for this purpose. In this respect, the
transformation

[q](2)=fffH(tl, t2)b(tl, t2)dtldt2,
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where

Hz(t 1, t2) rc-I/2(t + t2)-3/2((4 + 2)t t2/(t + t2) + 1/2)

exp((4 + 2)ttt2/(tl + t2)- t t2),

is much more appropriate. Later, we shall see that if b 2_ I(f) and f meets (a’), then
cg[b] does indeed extend analytically to the whole complex plane.
The space L (R2+) is a commutative Banach algebra (without unit) when equipped

with convolution multiplication:

f* a(x, x2) f(x t, x2 t2)/(t, t2) dt dt2, X1, X2 >0,

for f, g e LX(R2+). Denote by Ao(H2+) the Banach algebra of holomorphic functions
on H2+ (H+ is the open right half plane) that extend continuously to H2+ w } and
have value 0 at . The Fourier transform

f(Zl, Z2)=ffe-t’z’-tzzzf(tt, t2)dtldt2, Z1, Z2 l-I+,

f LI(R2+), defines a continuous monomorphism (injective homomorphism)
LI(R+) Ao(lI+) with dense range. Since a closed (right and upper) translation
invariant subspace of LI(R+) is the same as a closed ideal, a uniform norm version
of Levin’s problem would ask the following:

UNIFORM LEVIN PROBLEM.

dense in Ao(H2+)?
Which functions f Ao(H2+) 9enerate an ideal that is

In the sections to follow, we shall show that if f Ao(H2+) has no zeros on 2+
and satisfies the additional condition

(0.1) log 1/If(z)l-- o(Izl)

as Izl with z 2+, then f generates a dense ideal in Ao(1-I2+). We will also show
that (0.1) is necessary as Izl --, if z stays within a domain f2 f, D, for some
< rt/2, where

(w C: Iwl > 1 and larg wl < }.

Our precise result, as formulated in Corollary 1.7, the remark thereafter, and
Theorem 3.4, narrows the discrepancy between necessary and sufficient conditions
even further.

Similar results hold for the algebra L(R2+): iff L(R2+) has a Fourier transform

f that does not vanish anywhere on II2+, f has bounded derivatives of order



254 H/KAN HEDENMALM

some region H2+ \K, where K is a compact subset of 2+, and

(0.2) log 1/If(z)l o(Izl)

as Izl ov with z e 2+, then f generates a dense ideal in LI(R2+). Conversely, as for
Ao(II2+), (0.2) is necessary as Izl - oe for z f2 if < n/2. Our sharpest results are
formulated in Theorems 1.8 and 3.1.

In section 4, we study the two-dimensional Volterra algebra LI([0, 112), with
restricted convolution as multiplication. Observe that the radical Banach algebra
LI([0, 1] 2) is isomorphic to L(R2+)/J, where J is the closed ideal

J {f e L(R2+): f 0 almost everywhere on [0, 112}.

In [-Str], Elizabeth Strouse was interested in the following problem, which is closely
related to Levin’s problem:

STROUSE’S PROBLEM. Which functions f Lx([0, 1] 2) are cyclic, that is, 9enerate
an ideal that is dense in LX([0, 112).9

In section 4, we will show that this is the case if

log 1/If(z)l o(Izl)

as z approaches the point (oe, o) along certain cones inside H2+. The precise result
is contained in Theorems 4.6 and 4.7; necessary conditions are stated in Corollary
4.5. Here, f denotes the Fourier transform of f:

f(z) f fj e-tlzl-tzzzf(tl, t2) dtx dt2

It should be observed that the Fourier transform is not a homomorphism on
L([0, 112).

1. Necessary conditions. In the sequel, we let D denote the open unit
disc {z C" Izl < }, and denote by A(D") the polydisc algebra, which consists of all
continuous functions on D" that are holomorphic in D"; when equipped with the
supremum norm and pointwise multiplication, A(D") is a Banach algebra with
maximal ideal space D". The space A(D) is called the disc aloebra, and A(D2) is
usually referred to as the bidisc algebra. For a function f A(D"), let

Z(f) {z e D"" f(z) 0}

be its zero set, and denote by I(f) the closure of the principal ideal generated by f.
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For a set E c D", introduce the notation

J(E) {f e A(D"): f 0 on E}.

After a M6bius transformation in each variable, we may identify the algebra Ao(H2+),
as defined in the introduction, with the closed A(DZ)-ideal J(({ 1 } x D)w(D x { 1 })).
Then the uniform Levin problem takes the following form:

PROBLEM 1.1. For which functions f 6 (({ } x D) w (D x { 1 })) does I(f)
(({1} x D)w(D x {1}))?
When ({ 1 } x D) w (D x { }) is replaced by the set { } x D, or a subset thereof,

this problem was solved by the author in [Hed2]. In [Hed3], the author introduced
the following terminology: A function f A(D2) is called BR-outer if Z(f) O(D2)
and I(f) de(Z(f)). Problem 1.1 asks for a concrete description of those BR-outer
functions f A(D2) for which Z(f) { 1} x D) w (D x }).
We will need a few preparatory results. The following lemma is an easy con-

sequence of the Herglotz representation.

LEMMA 1.2. If f A(D) has Z(f) { }, the followin9 conditions are equivalent"

(a) f is an outer function.
(b) lim,_l- (1 t) loglf(t)l 0.
(c) log 1/If(z)l o(1/(1 -Izl)) as Izl--, 1-,

The next lemma is a simple modification of Lemma 1.1 in [Hed2].

LEMMA 1.3. Let {f,} be a bounded sequence of functions in H(D) that are

zero-free on D, which converges uniformly on compact subsets of D to a function
f H(D), also zero-free on D. If, for some sequence {,} = D, , 1,

lim (1 -I,l)loglf,(,)l- - I--c, 03,

then

lim (1 t)loglf(t)l < -ft.
tl

In particular, fl cannot be infinite.

PROPOSITION 1.4. Let f C(D x K), where K is a compact subset of a finite-
dimensional vector space over R or C, and suppose f(., ) A(D) for all K. If f
is zero-free on D x K, then the followin9 are equivalent:

(a) log l/If(z, )l o(1/(1 -Izl)) as Izl for all K.
(b) supr log1 )l o(1/(1 -Izl)) as Izl--, 1,



256 H/KAN HEDENMALM

Proof. The implication (b) (a) is trivial. To attack the other one, assume (b)
does not hold, that is, there is a sequence {z,} c D, Izl--, 1, such that

lim (1 Iz.I) sup log 1/If(z,, )1 (0, 3.
n- eK

After taking a subsequence and rotating, we may assume without loss of generality
that z, 1. Since K was compact and f was continuous, there is a sequence
{,}o c K such that

log 1/If(z., .)1-- sup log 1/If(z., )l-

Replacing {,} by a subsequence, we may assume that , converges to some r/ K
as n . If we apply Lemma 1.3 to the functions f,(z) f(z, ,) and f(z) f(z, rl),
we conclude that

lim (1 t)log1 r/)l > cr > 0,
t-l

so (a) cannot hold either. The proof of the proposition is complete.

The pseudohyperbolic metric p on D is given by the formula

p(z, w)= z,wD.

Extend it to D by saying that if either z or w has modulus 1, z say, then p(z, w)
if z - w and p(z, w) 0 if z w. For z (Za, z2) and w (wa, w2) in D2, let the
formula

p(z, w) max{p(zx, wx), p(z2, w2)}

define the pseudohyperbolic metric on the bidisc. It enjoys the property (see [Jan,
pp. 10-13]) that

p(z, w) sup{lf(z)l" f A(D2), Ilfllo < 1, f(w) 0}, Z, W 2.

The equivalence relation p(z, w) < defines the Gleason parts of D2.
Let q/be the collection of all continuous mappings L: D D2 such that f o L e

A(D) whenever f A(DZ), and L(z) ({1} x D)w(D x {1})if and only if z 1.
Also, introduce the subclass consisting of the analytic discs L(z) (z, z), z D,
L(z) (z, ), z e D, and L(z) (, z), z e D, where e D\ { 1 }.

LEMMA 1.5. If f e A(D2) has I(f) J(({ 1} x D) w (D x { 1 })), then f o L is
outer for all L
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Proof. Let us first show that the A(D)-ideal generated by o(({ 1 } x D)w(D x { 1 }))o
L is dense in ({ 1 }). Consider the function

o(z, z)= (1 z)(1 z:), (Zl, zz)eD2,

which belongs to (({ 1 } D) w (D x { 1 })). Then

g o L(z)= (1 Lx(z))(1 L2(z)), zD,

L(z) (Ll(z), Lz(z)), z D.

Observe that L1, L2 e A(D), and [[Lxlloo, IlL2lloo 1. If IL(0)I, IL2(0)I < 1, then by
Schwarz’s lemma,

p(L(z), L(O)) < Izl, z e D,

so that

ILj(z)l
o(L(z), L(O)) + p(L(O), O)
+ p(L(z), L(O))p(L(O), O)

IL(0)l + Izl z e D, j 1, 2.
+ ILj(0)zl’

Hence

+ ILa(O)zl- ILa(O)l- Izl
1 + Lj(0)zl

--(1 -ILa(O)l) + IL(O)zl > (1 -ILj(O)l)(1 -Izl), zD,j= 1,2,

and since g o L only vanishes at the point 1, the above estimate forces it to be an
outer function, by Lemma 1.1. If either IL(0) or IL2(0)I is 1, IL (0)1 1 say, then

L1 is identically constant by the maximum principle, and Lx (z) 1. In this case,
too, g o L is outer by a similar argument. We conclude that g o L is outer for all
L //, so by the Beurling-Rudin theorem [Hof, pp. 82-89], the A(D)-ideal gen-
eratedby(({1} x D)w( x {1}))o LisdenseinC({1}).IfI(f)= o(({1} x D)
( x { 1 })), then f o L and o(({ 1 } x ) w (D x { 1 })) o L should generate the same
closed ideals in A(D), and therefore f o L must be outer, again by the Beurling-
Rudin theorem, for all L

THeOReM 1.6. Let f A(D2) have Z(f) ({ 1 } x D) w (D x { 1 }). Then the fol-
lowing three conditions (a)-(c) are equivalent:
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(a) f o L is outer for all L
(b) f o L is outer for all L
(c) For every compact K

(i) log 1/If(z)l o(1/(1 -Izxl))as z {1} x K,
(ii) log 1/If(z)l 0(1/(1 -Iz21))as z --, g (1), and
(iii) log 1/If(z)l 0(1/(1 -Izxl) / 1/(1 -Iz21))as z --, (1, 1).

Proof. Clearly, (b) implies (a), because c q/. Let us proceed to check that (c)
implies (b). We can distinguish the following three cases:

Case 1" L(0) D2, that is, ILI(O)I, IL2(0)I < 1. By Lemma 1.1 it suffices to show
that

logl/IfoL(z)l=o(1/(1-lzl)) as zl.

By (i)-(iii), (iii) holds as z Z(f). If we combine this with (1.1), we get

log 1/If(Zl(Z), L2(z))l- 0(1/(1 -ILl(z)l) / 1/(1 -IZ2(z)l))

o
(1 -Igx(0)l)(1 -Izl)

+
(1 -Ig2(0)l)(1 -Izl) o i -Izl

as z 1,

so the assertion follows.

Case 2: LI(0) T\{1}, IL2(0)I < 1. Then L(z) LI(O), so by (ii) and (1.1),

log 1 o L(z)l o(2/(1 -IL2(z)l))= o(1/(1 -Izl)) as z--, 1,

so by Lemma 1.1, f o L is an outer function.

Case 3: ILI(0)I < 1, L2(0) e T\ { 1}. This is dealt with in the same way as case 2.

It remains to show that (c) follows from (a). By Proposition 1.4, the assumption
that f(., ) and f(,.) are outer for all
({1} x D)w(D x {1}),let

L,,l(z (oz, flz), z e D;

clearly, L,a e q/. By (a),_ f o__Lx, is outer, and by (i) and (ii), f o L,a is outer for all
other (, fl) in ({ } x D) w (D x { }). Proposition 1.4 together with Lemma 1.2 now
shows that

sup_ log 1 o L,a(z)l o(1/(1 -Izl)), Izl- 1,
(ot,/) ({1} D)(D {1})

which in turn implies that

sup log 1/If(z)l-- o(1/(1 r)),
zerD

r-.1.
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This is equivalent to

log 1/If(z)l- o(1/(1 -Izxl) + 1/(1 -Iz2l)), z c3(D2),

and (iii) follows. The proof of the theorem is complete.

Remark. In [Hed2], the author characterized which functions f e A(D2) have
I(f) ({ 1} x D). If f A(D2), Z(f) ({ 1} x D) w (D x { 1}), and If(z)l >
Ig(z)" h(z)l, z _D2, where g and h are functions in A(D2) for which I(g)= o(__{ 1 } x D)
and I(h) J(D x { 1}), it is not hard to show that I(f) J(({ 1} x D)w (D x { 1 })).
It is not clear which functions f can be dominated from below in this fashion.

Let us translate Theorem 1.6 to the algebra Ao(H2+). The compactification of
2+ that we will use is (+ w {o })2. The class q/. will consist of all continuous
mappings L: 17+ w {__ } (H+ w o})2 such that f o L Ao(H+) whenever f
Ao(H2+), and L(z) H2+ if and only if z 0. Moreover, the subclass , will consist
of the "analytic half-planes" L(z) (z, z), z 17+ w {o }, L(z) (z, ), z H+ w {o },
and L(z) (, z), z I-I+ w {o }, where H+.
COROLLARY 1.7. Let f Ao(II2+) be zero-free on 2+. Then the followint three

conditions (a)-(c) are equivalent:

(a) f o L is outer for all L q,.
(b) f o L is outer for all L
(c) For every compact K c I’I+,

(i) log1 o([Zll2/Re zx) as z {} x K,
(ii) log 1/If(z)l o([z2[2/Re z2) as z K x {o}, and
(iii) log1 o(IZl IZ/Re Z "[-Iz2lZ/Re Z2) as z

Remark. By Lemma 1.5, each of the three equivalent conditions in Corollary
1.7 is necessary for f to generate an ideal that is dense in Ao(H2+).

Let us try to translate condition (a) of Corollary 1.7 to L(R2+). To do this we
need to introduce some notation. Iff Loc(Rn), let supp f be its essential support,
that is, the smallest closed set E c R such that f vanishes almost everywhere off
E. Iff L1(R2+ ), let

lf(Zl, t2) f e-’lzlf(tl, t2) dt g 6 I-I+, 2 6 R+

be its partial Fourier transform with respect to the first coordinate, and let

2f(t, z2) f e-t2z2f(tl, t2) dr2, t R+, Z2 l-I+,

be its partial Fourier transform with respect to the second. If f L (R+) is such
that f is zero-free on 2+, and 0 +, the condition that f(., ) is an outer function
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on l-I+ is equivalent to 0 supp 2f(’, ) (see [Koo], pp. 183-184), and similarly,
f(, .) is outer if and only if 0 supp lf(, "); the condition that f o L is outer for
the diagonal L(z) (z, z) is equivalent to 0 supp 9, where

9(x) ff f(t, x t) dt, x>0.

Let us collect these observations in a theorem.

THEOREM 1.8. If f LI(R2+) is cyclic, then

(a) f(z) 4:0 for all z 2+,
(b) 0 supp If(o, .) for all l-I+,
(c) 0 supp 2f(’, ) for all l-I+,
(d) 0 supp 9, where

9(x) ff f(t, x t) dr, x>O.

Moreover, if a function f LI(R2+) satisfies condition (a), then it meets (b)-(d)/f and
only if f satisfies one of the equivalent conditions (a)-(c) of Corollary 1.7.

There are other conditions, similar to (d) of Theorem 1.8, which are necessary for
a function f L(R2+) to be cyclic. Let 9x, be the LI(R+) function

gx.(x) ;] f(2t, x t)e -’ dt, x>O

for 2 > 0 and H+. It is not hard to see that 0 must be in the essential support
of gx, if f is to be cyclic in L(R2+). The strength of Theorem 1.8 is that it asserts
that this condition is satisfied if (a)-(d) are met. This is so because if f meets (a),
then 0 supp g, if and only iff o L, is outer (compute the Fourier transform of
g,, compare it with f o L,, and use [Koo, pp. 183-184]), where

L,(z) (z, ,z + ), zri+,

and clearly, L, //,.

Question 1.9. Is the necessary condition obtained in Lemma 1.5 also sufficient,
that is, if f A(D2) has Z(f) ({ } x D) w (D x { 1 }) and f o L is outer for all
L //, does it follow that I(f) (Z(f))?

Question 1.10. Iff LI(R2+) meets (a)-(d) of Theorem 1.8, does it follow that f
is cyclic in L (R+).29

Clearly these questions are strongly interrelated. If the answer to Question 1.9 is
negative, then most likely the answer to Question 1.10 is negative as well.
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The proof of Lemma 1.5 can be modified to show that if f A(D2) has
I(f) J(({1} x D)w (D x {1})), then f o L is outer for all continuous mappings
L (L1, L2): 2 such that L1, L2 A(D) and L(0) D2. It is not clear whether
this follows from any one of the equivalent conditions (a)-(c) of Theorem 1.6.

In section 3, we shall see that iff A(D2) has Z(f) ({ 1 } x D) (D x { 1 }), then
I(f) (Z(f)) holds if

log 1/If(z)l o(1/d(z)) as D2 z Z(f),

where d(z) is the Euclidean distance between z and Z(f).

2. An analytic semigroup. Let

O
"(tlt2)(a-1)/2"(tl + t2)-/2-1 tl, 2 > 0a’(t’ t2)--

2v/-F((e + 1)/2)

for Re > 0, which is a locally integrable function on R2+. Then the function

A(t, tz) a(tl, t2)e -t’-t, t, z > 0

is in L1(R2+), and we shall see that A is an analytic semigroup in L1(R2+) over H+.
An extensive theory of analytic semigroups in convolution Banach algebras has
been developed in recent years (see [Sin]). For instance, Jean Esterle lEst] has
shown that Wiener’s Tauberian theorem follows from the existence of a certain
analytic semigroup in L: (R).

THEOREM 2.1. The functions A form an analytic semigroup in L(R2+) over II+,
that is,

(a) the mapping A, 1-I+, is analytic, and
(b) A+ A AJ for all , fl 17/.

Moreover,

Hat(z1, z2)--(N/I -" N2) (zx, z2) rI+,

and

A’(zx, z2) (x//zl + 1 + x//z2 + 1)-’, (zx, z) e +,

Remark. It follows that a satisfies all reasonable criteria for being an analytic
semigroup in Ltoc(R2+) over II/.

Proof of Theorem 2.1. Clearly, A’(t, t2) is an analytic function of when
(t, t2) e Rz+ is fixed, and IIA’II varies continuously with l-I+, so by Lemma 2.7
in [Sin, p. 16], (a) follows.
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We will concentrate on showing that

a’(zl, z2) e-"zl-t2Z2a’(tx, t2) dtx dt2

(z, z) rI+,

because the other statements are an easy consequence of this. By formula 3.383.7
in [GrR, p. 319],

f xV(x + fl)-v-/2e-"X dx 2F(v)fl-metJU/2. D_2(x/#),

where D_2v is defined on p. 1064 [GrR], so if we plug in x t, zl, fl t2, and
v ( + 1)/2, we get

f t]-x)/z(t + t2)-’/Z-t e -tlz dtx

so that

2t+1)/21(( + 1)/2)tme"zl/zD__(v/2tzz),

a=(ta t2)e -’’z’ dt, 2t=-1)/2" --" --1x tz/Z-e’"’/ZD (v/2tzZ)

According to formula 7.725.6 in [-GrR, p. 887],

f t/2-1 e,=Z 1/2 D-=-a (w/2t2 z e-’=z= dr2

21/2-3=/2"N//-Z=/2" F(( + 1)/2, /2; ot + 1; 1 -z1/z2)

if Re(z2/zl) > 1/2, and so

a’(z,, z2) 2-=z=/2"F(( + 1)/2, a/2; a + 1; 1 z1/z2).

According to formula 9.132.1 in [GrR, p. 1043],

F(( + 1)/2, /2; + 1; 1 -zx/z2)

(Z2/Z1)(+1)/2 "(-a2") F((a + 1)/2, a/2 + 1; 3/2; z2/zl)

+ (z2/z,)’/2" 2 F(t/2, ( + 1)/2; 1/2; z2/z),
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and by formulas 9.121.2 and 9.121.4 in [GrR, p. 1040],

F((t + 1)/2, /2 + 1; 3/2; z2/zl)

-(2)-1" zX/Zz]’+*)/z((x + x/2)-’- (x/x- x2)-=),
and

F(o(2, ( + 1)/2; 1/2; zzlz) (1/2)z/2(( + x/2) + (w/ x/2)-’).
It follows that

a=(z, z=)= 2-’z/2. zz,=. 2-1 ((x// + x/2)-- (x/x- x/2)

when Re(zz/z) > 1/2, and since a is holomorphic on H2+, the above equality holds
on all of 1"I2+, and the assertion follows.

There are many other interesting semigroups in LX(R2+). One is the fractional
integration semigroup (see [Sin])

U(t, t2) (F())-2 "(tt t2)-1 e -t’-t2, t, 2 > 0, Re a > 0.

Its Fourier transform is

l(Zl, Z2) --(Z + 1)-(zz + 1)-, Z1, Z2 I-I+.

The reason why we prefer to use the analytic semigroup A" instead of I" is that the
/ aFourier transform A’(z, z2) of decreases at the same rate in all directions as

I(z, z2)l --* o, whereas U(z, z2) decreases faster along the diagonal than when one
ofthe variables is fixed as I(Zl, z2)l --* o. Why this behavior is preferable will become
clearer in the next section (see the remark after Corollary 3.3).

PROPOSITION 2.2. The function

Ha(t, t2) -l/2(t + t2)-3/2"((4 4- 2)t lt2/(t + t2) + 1/2)

exp((4 + 2)tlt2/(t1 + t2)- tl t2), tl, 2 >0,

is in LI(R2+) for Re 2 < 0 and has the Fourier transform

Hx(Zl, Z2) %//Z + 1 + %//Z2 4- 1

(x//z 4- 4- x//z2 +1)2- 4- 2
Z1, Z2 I-I+.
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Moreover, the LI(R2+) norm of Hx satisfies

(2.1) IInll < 25(5 + I1)(1 + IRe 21-2), Re 2 < 0.

Proof. Let us first show that H LI(R2+) for Re 2 < 0 and that (2.1) is satisfied.
Introduce the regions

fo {(t, t) R2+: t2 + tz < 1),

"1 {(tl, t2) R2+: t21 + t2 > 1, tz < tl/2},

and

2 {(tl, t2) ff R2+" t + t22 > 1, t/2 < t2 < tl};

by symmetry,

(2.2)

f;f:lHx(tl, t2)ldtldt2=ff. IHx(tl, t2,ldtldt2+2ff. IHx(t,tz)ldtdtz

+2ffn [H(tl, t2)[dtldt2.

Since

(tl + t2)-3/2(14 + 1tl t2/(tl -l- t2) + 1/2)

(ll + 4)(t + tz)-/4 + 1/2(t + t)-3/4, (tl, t2) R2+,

and

(2 + 4)tlt2/(t1 + t2)- tl t2 ,tlt2/(tl + t2)- (tl t2)2/(t + t2),

it follows that for Re 2 < 0,

(2.3) [gx(tl, t2) -1/2((1A[ + 4)(tea + tzz)-x/4 + 1/2(t2 + t2)-3/4), (tl, t2)e 112+,

and

(2.4) IHz(t 1, t2) < zr-1/2(121 + 5)exp(2tl t2/(t + t2)- (t t2)2/(t + t2)),

(t, t2) e R+ \fo.
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From (2.3) we obtain, by shifting to polar coordinates, that

fffl 1/2( ; 1; __1/2 )[Ha(tx, t2)[ dtx dt2 < -- (12[ -t- 4) r 1/2 dr + - r dr
o

1/2
--{211/ + /) < I1 + 4.
Z

On the region f, 2 /> t/2 and + 2 < 3t/2, SO that for Re 2 < 0,

f(u [Ha(tx, t2)[dtdt2<rc-/2([2[ +5) f:e-tl/6(tl/2)dr1 < 12([2[ + 5),

by (2.4). On "2, /71 t2 >/t/2 and + 2 < 2t, so that for Re 2 < 0,

IHx(t, t2)l dr1 dt2

< zr-1/2(121 + 5) f: e-IReal"/4"(tx/2)dtl < 5(11 + 5). IRe 21-2,

again by (2.4). The assertion (2.1) now follows from (2.2).
Let us show that Ha has the prescribed Fourier transform. Observe that

Ha (4 + 2)"A2"+, 14 + 21 < 4.
n=O

Hence

/N /N

))2n+lHa(z1, z2) (4 + 2)"(Al(zx, z2
n=0

AI(z, z2)(1 (4 + 2)A2(zl, z2))-1

v/z + 1 + x//z2 + 1

(x//zl + 1 + x//z2 + 1)2 4 2
Z1, Z2 rI+,

for 14 + 21 < 4, and since Ha is analytic in 2 e rI_, the assertion follows.

For an ideal I in LX(RZ+), let

Z(I) ( Z(f),
fel

265
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where

THEOREM 2.3. Let I be a closed ideal in LI(R2+) such that Z(I)= , and let
e L(R2+) annihilate I. Then the function

c[-1(2)=(H,)=ffH(tl, t2)(tl, t2)dtldt2, Re2<0,

where H is as in Proposition 2.2, extends to an entire function. Furthermore, if
d2/d22 c[] 0 for every L(R2+) that annihilates I, then I LI(R2+).

Proof. Let Le (R2+) denote the unitization of L (R2+), where we identify the unit
with the Dirac measure 60 at the origin (0, 0). The maximal ideal space of Le(R2+)
can be identified with 1-12+ w{} in a natural way. Extend b to Le(R2+) by defin-
ing (60, b) 0. The element 60 (4 + 2)A2 + ! of the quotient Banach algebra

2L (R+)/I is invertible for all 2 C, because it is not contained in the unique maximal
ideal (corresponding to the point at infinity) of Le(R2+)/I. By checking Fourier
transforms, it is easy to see that

Hz A1, (dio -(4 + 2)A2)*-1 Re2<0,

and

2H,/t22 2A5 *(6o (4 + 2)A2)*-3, Re2<0;

it follows that (2H,/22 LI(R2+) for 2 II_. The formula

[](2) ((A + I),(6o -(4 + 2)A2 + 1)*-1, ),

defines the analytic extension of [b] to the whole complex plane.
If d2/d22 [b] 0 for every b L(R2+) that annihilates I, then c32H/d22 I for

all 2 H_, in particular for 2 -4, so that A5 I. By Lemma 2.8 in [Sin, p. 17],
A5 L (R2+) is dense in L (R2+), and hence I L (R2+).

3. Sufficient conditions. In this section, we shall obtain some sufficient conditions
for Levin’s problem and the uniform Levin problem, mainly in terms of the decrease
of the Fourier transform of the given function. Our proofs will follow the strategy
outlined in [Hed3], where a general method to attack problems of this type was
developed.
For the algebra LI(R2+), the best result we have been able to obtain is the

following.
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THEOREM 3.1. Let f LI(R2+) be such that f has bounded derivatives of order < 2
on some region 2+ \K, where K is a compact subset of2+, and let w(z) (x/zl + 1 +
N/Z2 + 1)2 4. Moreover, let M" (0, o) --, [1, o) be a continuous decreasing function
such that

log M(x) dx < 0.

Then f is cyclic in LI(R2+)/f
(a) f(z) :/: 0 for all z 2+,
(b) 0 supp lf(Zl,’) for all Zl H+,
(c) 0 supp -2f(’, z2) for all z2 II/,
(d) log 1/If(z)l o(Izl2/Re w(z)) for Re w(z) > 1, as 2+ z --. (o, ), and
(e) log 1/If(z)l O(exp(elzl 1/2) + M(Re w(z))) as Izl --* o with z 2+ for all e > O.

Remark. Of these conditions, (a)-(c) are necessary by Theorem 1.8, and (d) is
somewhat stronger than condition (d) of Theorem 1.8. The global condition (e) is
necessary to make our proof work; it would be interesting to know whether the
result remains true without it.

Before we prove Theorem 3.1, let us state two corollaries.

COROLLARY 3.2. Let f L(R2+) be such that f has bounded derivatives of order
<2 on some reIion 2+ \K, where K is a compact subset of 2+, and let w(z)=
(x/z1 + 1 + x//z2 + 1)2 4. Then f is cyclic in L(R2+)/f

(a) f(z) # 0 for all z 2+, and
(b) log 1/If(z)l o(Izl2/Re w(z)) as Izl-, o with z 2+.

Proof. Condition (d) of Theorem 3.1 is trivially satisfied. Conditions (i)-(iii) of
Corollary 1.7 follow from (a) and (b) by the simple estimate

Izl2/Re w(z) < Izl2/(Re z + Re z2),

so conditions (b) and (c) of Theorem 3.1 are met by Theorem 1.8. Finally, condition
(e) of Theorem 3.1 is satisfied if our choice ofM is M(x) 1 + x-2.

COROLLARY 3.3. Let f L(R2+) be such that f has bounded derivatives of order
2 on some region 2+ \K, where K is a compact subset of 2+. Then f is cyclic in

LI(R2+) f
(a) f(z) 4:0 for all z 2+, and
(b) log 1/If(z)l o(Izl) as Izl--* o with z 2+.

Remark. Had we used the fractional integration semigroup (Ia}Re>0, defined
in section 2, instead of {A’}Re,>o, in a way we have not made precise, we would
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have replaced condition (b) of Corollary 3.3 by the stronger condition

log 1/If(z)l o(IZl -+- 111/21z2 + 111/2) as Izl with z 2+,

which is fine near the diagonal zl z2, but requires a different order of magnitude
when one of the variables remains bounded.

Proof of Theorem 3.1. Observe that w(H2+) H+, so that Re w(z) > 0 for all
z 172+. By Theorem 1.8 and the observation that (d) is stronger than condition (d)
of that theorem, we have that for every compact X c H+,

(3.1) log 1/If(z)l o(Izxl2/Re zl) as z and z2 6 X,

and

(3.2) log 1/If(z)l-- o(Iz212/Re z2) as z2 and zl X.

We want to obtain estimates of log 1/If(z)l in terms of the function w(z). Since Iw(z)l
is proportional to Izl as Izl--, with z 2+, (d) states that

log 1/If(z)l o(Iw(z)lZ/Re w(z)) for Re w(z) > 1, as 2+ z (, c),

or, in other words, given an e > 0, there is an R(e) such that

(3.3) log 1/If(z)l elw(z)12/Re w(z)

for z 2+ with Izl, [z21 > R(e) and Re w(z) > 1. If [z21 R(e) and > 0, then by
(3.1) there is an S(6, e) such that

(3.4) log 1/If(z)l < 61zxl2/Re zl for Izll> S(6, e).

We will now show that there is a number A(e) such that Re z > Re w(z)/2 on the
set

U() (z 2+, Iz21 R(e) and A(e)(1 + Iw(z)l /2) Re w(z)}.

To this end, observe that

I/Zx + 11 Izx + 11 x/2 I(/zx + 1 + w/z2 + 1)21 /2 < Iw(z)l x/2 + 2,

and that

Ix//z2 + 11 < R(a)1/2 + 1, z U().
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If A(e) is suitably chosen, it now follows that

Re z2 + 2 Re(v/z1 + 1 w/z2 + 1 1) < 1/2 Re w(z), z e U(e),

from which the assertion immediately follows, since

Re w(z)= Re z + Re z2 + 2 Re(w/Za+ 1 w/Z + 1 1).

If z e 2+ and Iw(z)l 10, Izx 12 21w(z)l 2, so by (3.4),

(3.5) log 1/If(z)l < 46lw(z)lZ/Re w(z),

for z U(e) with Iw(z)l 10 and Izal s(& ). There is a corresponding statement
if we switch the roles of zl and z2. This, together with (3.5) and (3.3), shows that if
we choose 6 e/4, there is an N?(e) such that

(3.6) log 1/If(z)l elw(z)12/Re w(z)

for z e 2+ such that Iw(z)l () and

A()(1 + Iw(z)l x/2) Re w(z),

possibly with a bigger A(e) than previously. From (e) we get the global condition

(3.7) log 1/If(z)l O(exp(elw(z)l 1/) + M(Re w(z)))

as Iw(z)l oo with z e 2+ for all e > 0.
Let I(f) denote the closure of the ideal generated by f. We wish to show that

l(f) LI(R2+). Let b LOO(R2+) L(R2+)* be an arbitrary functional that annihi-
lates I(f), and let c-g [b] be as in Theorem 2.3, which is an entire function by (a). If
we can show that d2/d)t2 c[q] (2) 0, then the assertion I(f) LI(R2+) will follow
from Theorem 2.3. By Proposition 2.2, we have the estimate

(3.8) Icg[b](2)l < 2511bl1 (5 + 121)(1 + IRe 21-2), Re 2 < 0.

We will need to estimate [] in the right half plane as well. In order to do so, we
need to produce elements of the coset

(A + I(f)),(6o -(4 + 2)A2 + i(f)),-x

for Re 2 > 0, which will be done by solving a certain t? problem.
Let tp C(R+) be a function such that q9 1 on [0, 1/3], 0 < q < 1 on (1/3, 2/3),

and q 0 on [2/3, oe). It is not hard to find a function q such that, in addition,
Idq)/dxl < 6, Id2q)/dx2l < 150, and Id3q)/dx3l 7,500. In the following, unless ex-
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plicitly stated otherwise, 2 is to be a complex parameter with Re 2 > 0. Introduce
the function

Z;(z) tp(Iw(z)- 21/Re 2),

and observe that it is supported on the set

{z e 2+. Iw(z) 21 < -23 Re 2}.

For multi-indices (1, 02) N2 and fl (ill, f12) N2, where N {0, 1, 2,... },
introduce the partial differential operator

here, I1 x + 2 and I/1 :/1 +/2. If 10l + Ifll > 1, the function Dt"a)X is sup-
ported on the set

f(,,],) {z 2+.1/2 Re 2 < Iw(z) 21 < - Re 2}.

Now and onwards, let I]’ll be the supremum norm on 2+, and let II’llnt) be
the supremum norm on f(2). If we use the estimates for the derivatives of tp,
the chain rule, and the fact that Dt"a);t is supported on f(2) for I1 / 1/31 > 1, we
obtain, after quite a few tedious but straightforward calculations, the following
estimates:

IIDt’a)xll 8(121 + 2)/Re 2 if

(3.9) IIDt’a)ll 150((11 + 2)/Re 2)2 if I1 + I/1- 2, and

IlOt’a);all < 50,000((121 / 2)/Re 2)3 if

I1 + Ifll 1,

I1 + I/1 3.

The 0 problem we wish to solve is

(3.10) ul (1 + z)(1 + z2)
tgZ’/a

A j= 1,2,
(1 --(2 + 4)AZ(z))f(z)

and we want to control the supremum norm of the solution ux and its derivatives
of order < 2. problems have been studied on the bidisc D2 rather than on I-I2+, so
let us introduce the coordinates

(#__
1 -z#

z# e FI+, j= 1,2;
l+z#
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then ( (1, 2) D2 if and only if z H2+. In these coordinates, (3.10) takes the
form

(3.11) ul o, =-( + zx)(1 + z2) /(
/ j= 1,2.

(1 -(2 + 4)A2(z))f(z)
A necessary__cnditin for (3.11) to be soluble is that the (0, 1)-form o94,1 dl +
eo, 2 d(2 be 0-closed, or in other words, that

which clearly holds in our situation. We will use the notation

Mario Landucci [Lan] has shown that there exists a solution u to (3.11) such that

(3.12) max IIO’ull < C max ]lO’)o,jl[.
I1 + Itl < 2 I1 + Itl < 2, j= X, 2

Here and throughout the rest of this proof, C will denote a positive real constant,
not necessarily the same at different occurrences. If the constant depends on any of
the relevant parameters, we will indicate this with a subscript. Ifwe use the estimates
(3.9) for the partial derivatives of Zz, the chain rule, the fact that ogz,j is supported
on f(2), and the assumption that the partial derivatives of f of order <2 are
bounded outside a compact set, we obtain, after quite a few rather tedious but
straightforward computations, which are omitted, the following estimate:

3max IIO’w) Ilx2
Il+lwl2,s--x,2

’sll < C(Re )4" II1/flln<)

when 121 r, for some constant r > 1. By (3.12), we get

3(3.13) max IIO’)uxll C 112
latl+jl<2 (Re 2)4 "ll 1/flln(x),

for 121 r, Let

K(z) (1 + zx)-x(1 + z2)-Xu;t(z), z 2+.

We want to show that on (iR)2, Kx is the Fourier transform of an L(R2) function
ka, and we wish to control the norm of kx. Let (iyl, iy2) be the coordinates on (iR)2.
If G is a function in L2((iR)2), then there is a function g LE(R2) such that G,
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and

If, in addition, t3G/t3y 1, G/c3y2, 2G/cylc3y2
_
L2((iR)2), then

f_

_
(1 4- t2)(1 4- t)lg(tl, t2)l 2 dtl dt2 < ,

so by H61der’s inequality,

f.oo j’-o I(t, t2)l dtl dt2 < o3.

Moreover, there is a norm inequality:

(3.14)

From (3.13) it is easy to deduce that

max lID(’)u < C
I1 / I/1 < 2

I&l x2

(Re 2)4
II1/f 3

for 121 > r. A few more computations show that

max II(1 + z)(1 + z2)Dt’CJ)KII <C
I1+ IBI < 2

for IAI > r, and since (z:, z2)-(1 4- z1)-1(1 4- z2)-1, (z1, z2)(iR)z, belongs to
L2((iR)2), we conclude by (3.14) that there is a function kx LI(R2) such that

x Kx on (iR)2, and

IIkllL, < C 12112
(Re 2)" 1/flltx),

again for I&l > r. Let

Q= 1-z /x-l+f’Kx=-z+(2+4) 1-Z+f.K,"
-(2 + 4)A2 w- 2

we intend to show that Qx is the Fourier transform of a function q LI(R2+), and
we want to control IIqllr.,. By (3.9) and the fact that ;t is supported on the set

{z 2+. Iw(z) 21 < -23 Re 2},
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we have

II(zx + 1)(z2 + 1)Dt’a)zll <C1214 +
1

(Re ,)2

for I1 + I/1 2. By (3.14), we obtain

121 + 1
z L < c

(Re ,)--------

here IlOll" Ilgll., for g L(R2). Observe that we should actually have restricted
Z to (iR)2 in the above expression. The formula

1-Z-’’(1-Z+(2+4)lw-2w-2
shows that what remains for us to do is to estimate

A few computations show that

II(z + 1)(z2 + 1)O(=’a)/" 1--/

w-,)
<C1213

(Re )3

from which we can conclude that

I,13
(Re )3

and so

(2+4)
1

+ <C1216
(Re ,)3

Thus we obtain

IIq,zll,., IIQ,IIL -Z,z + (2 + 4)
w 2 + Ilfllz., IIkllz.,

L

+ (Re 2)4
II1/f 3

n(x) < C
(Re 2)(1 +
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for [2[ > r. But we also wanted to show that qx LI(R+), or in other words, that
supp qx c [0, 0)2. The following observation will be helpful: If g LI(R2) has a
Fourier transform that is the restriction to (iR)2 of a function in Ao(II+), then
supp c [0, 0)2. Expressed differently, LI(R+) LI(R2) Ao(1-l+). One way to
show this is to take a sequence {e}] LI(R2+)c C(R2) such that II,ll,, 1,
e > 0, and supp e. c [0, l/n] 2, and observe that

a)^ e ’O e

which by standard Fourier analysis implies that supp(e.,O)c [0, 0(3)2; here
H2(II2+) is the usual Hardy space on II2+, which is the image of L2(R2+) under the
Fourier transform. The conclusion follows if we let n o.
By the definition of Q,

1 (2 + 4)A2

/x 4-f (l+zl )-1(1 + z2)-1 aut/a o
(2 + 4)A2

for j 1, 2, and hence Q is analytic on 1-I2+. Since Q is also continuous on 2+ and
vanishes at infinity, we have Qx Ao(I-12+), so by the previous observation, q
LI(R2+). Our next step is to check that 6o + q, where o is the Dirac measure at
(0, 0), as in the proof of Theorem 2.3, is an element of the coset (6o (4 + 2)Az +
I(f))*-1. Now

((3o + q,)*(6o (4 + 2)A2)) (1 + Q)(1 (4 + 2)A2)
A A

((1 X)/(1 (4 + )A2) + f" Kz)(1 (4 + 2)A2)

where
+ f.G,

G -)/f + (1 (4 + 2)A2) Kz.

We wish to show that G LI(RZ+)^. To see that /fl(R)2 LI(R2)^, find a function
q; LI(R2) such that q3.f on supp (iR)2, which is possible since f does
not vanish there and LI(R2) is a regular algebra, and observe that

z/fI.R)2 0x" ZI(iR)’- LI(R2)^,

because zal(i) LI(R2)^. It is now obvious that GxI(iR) LI(R2)^, and since Gx
Ao(II2+), which one checks just as with Qx, we conclude Gx LI(R2+)^. We have now
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verified that 6o + qa is an element of the coset (60 (4 + 2)A2 + i(f)),-1, so by the
proof of Theorem 2.3,

[b](2) <A + A ,q, b>, Re2>0,

and hence by (3.15),

(3.16) ]cg[b] (2)1 < C.(Re -’ (1 +

for 2 such that Re 2 > 0 and 121 r. From here on, 2 is no longer confined to the
right half plane. By (3.8), we already know that

(3.17) 1[](2)1 < C(ll + 1)(1 + IRe 21-z), Re 2 < 0.

Our next and final step will be to show that (3.6) and (3.7), together with the above
estimates (3.16) and (3.17), will force the entire function d2/d22 cg[b] to vanish
identically, from which the assertion follows, by Theorem 2.3. Some of the function-
theoretic arguments used below are similar to those used in [Hed 1].

Ifwe modify the function M slightly, we obtain from (3.7), (3.16), and the definition
of f(2) the estimate

(3.18) I[q-I()l exp{C.(exp(el2l /2) + M(Re 2))}

for 2 s II+, and all e > 0. Introduce the functions

,,(2) exp{-C exp(eltlX/2)}[q](2 + it),

for R and e > 0. We will restrict 2 to the region

2 {2 s C: IRe 21 < 2, IIm 21 < 2}.

If the C used to define t, is chosen adroitly, we have by (3.18)

I,,()1 exp{C. M(Re 2)},

for all e > 0. By (3.17), we have

for all e > 0. The functions ,,, are holomorphic on 2 for all R and e > 0. Now,
because

M(x) <dx
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we can apply a classical theorem in function theory known as the Levinson-SjSberg
log-log-theorem [NLe, p. 127], [Gur, p. 40], which states that

independently of R, where

1 {2 C: IRe 21 < 1, IIm 21 < 1}.

Together with (3.18), this implies that

(3.19) 1[ff](2)l < exp{C exp(121x/z)}

for Re 2 > -1, and all e > 0. From (3.6), (3.16), and the definition of f(2), we get
for all t5 > 0 the estimate

I1 x2

(3.20) I[](,)1 < C’(Re 2)------ exp(61212/Re 2)

for 2 17+ such that A(6)(1 + 121 x/2) Re 2 and 121 (6), where we may have to
modify our constants A(6) and (6). It will be more convenient to state (3.20) in
the form

(3.21) Iql-b] (2) < C exp(61212/Re 2)

for 2 e II+ such that A(6)(1 + 121 x/2) Re 2, where again a modification of A(6)
may be necessary. Consider the region

"//’(6) {,,1, C: 1 < Re 2, < A(6)(1 + 11/2)}.

We will assume that A(6) is chosen > 1. Then, on the right boundary component
of (), given by the equation Re 2 A(6)(1 + 1211/2), we have, by (3.21),

(3.22) I[qq(2)l < G exp(61213/2)

On the left boundary component Re 2 1, we have, by (3.17),

(3.23) ICgE](,) < C(1 + 121).

We will use a Phragm6n-Lindel6f type argument to show that (3.22) holds inside
(6) as well. For R, let

tot {2 C: Im 2 and -1
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and let O(t) denote the length of this interval. It is not hard to see that

(3.24) O(t) < C.(1 + Itl) 1/2.

Introduce the regions +(6)= {2c (6): Im 2 > 0} and "U_(8) {2e (8): Im <0}.
By (3.22) and (3.23), the holomorphic function

%(2) =-- exp(2i(2 + 2)3/2) CEb] (2), Re2> -2,

has the estimate

1%(2) < c,, 2 +(6) v _(6).

Then the function

vn(2) loglq(2)/Cl, Re2> -2,

is subharmonic, and vo < 0 on 0+(6) w 0_(6). For 20 (6) and > Im 20, let
c%(2o, ) be the harmonic measure at 2o of the interval (R) in the domain +(6, )
{2 e +(6): Im 2 < }. If Mo() denotes the maximum of vo on (R), we have the
estimate

v,() < M,()o,(2, ), +(6, ).

By [Hal, p. 3], the Ahlfors distortion theorem can be used to show that

c%(2, ) <-exp 4re- zr
m;t

when m z dt/O(t) > 2, so that by (3.24),

v() < M()expz 4n
m;t (1 - -t) l/z

(3.25)
4
Mo(’exp {4zr 2rr }- -(( -+- 1) 1/2 (Im 2 + 1) 1/2) , +(6, ),

again when (mX dt/O(t) > 2, which holds if is sufficiently large. By (3.19), we have
for every e > 0

M,() < C," exp(el/2),

so if we pick an e < 2n/Co and let o in (3.25), it follows that vo < 0 on +(6).



278 HKAN HEDENMALM

A similar argument shows that vo < 0 on C_(6), and hence

(3.26) Ii-]()1 < Ca exp(61213/2), 2 (6),

for all 6 > 0. Similar Phragm6n-Lindel6f-type arguments for the regions {2 C"
Re 2 > 1 and Im 2 > 0} and {2 C: Re 2 > 1 and Im 2 < 0} show that (3.21),
(3.23), and (3.26) imply

(3.27) I[l (2)1 < C6 exp(6121), Re 2 > 1,

for every 6 > 0. Yet another application of the Phragm6n-Lindel6f principle for the
region {2 e C: Re 2 > } shows that (3.23) and (3.27) together imply that

IE](,Z)I < C(1 + I1), Re 2 > -1,

so by (3.17) and the fact that [] is entire, [] must in fact be a polynomial of
order < 1. Hence d2/d22 cg[b-I (2) 0, so by Theorem 2.3, I(f) LI(R2+). The proof
is complete.

Remarks. (a) If we study the proof of Theorem 3.1 carefully, we realize that the
theorem will remain valid if we replace condition (d) by the weaker condition

log 1/If(z)l- o(Izl2/Re w(z)) as 1-12+ z (c, c) with 1 + Igl x/2 6 Re w(z),

for some fixed 6 >0, and we may also replace the quantity Igl a/2 in (e) by IIm w(z)lm +
IRe w(z)l, which grows faster as Izl .

(b) One may wonder why we need to assume that f has bounded derivatives of
order < 2 off a co/xmpact set. One reason is that 0 problems have not been studied

with spaces like L in mind. But even in situations where this is not a problem, there
is a need to impose regularity conditions on f due to a property of the L norm,
which is related to the fact that the Wiener algebra/(N) does not possess the
so-called uniformly bounded inverse property, which was discovered by Harold S.
Shapiro [Sha]; see [Hed2, section 5] for more details.
Theorem 3.1 has the following analog for the uniform algebra Ao(rI2+), which is

a lot easier to prove, in part because we only need to control the supremum norm
while solving the relevant t3 problem, which can be done using [HeC, p. 676]. We
omit the proof; if the reader needs guidance beyond the proof of Theorem 3.1, he
is referred to [Hed3l. An interesting feature is the fact that we do not need to impose
any additional regularity on the function in question.

THEOREM 3.4. Letfbe a function in Ao(H2+ ), set w(z)=(x//zx + 1 +x//z2 + 1)2-4,
and, moreover, let M: (0, o [1, be a continuous decreasin9 function such that

’l

log M(x) <dx
0
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Then f generates a dense ideal in Ao(I-IZ+)/f
(a) f(z) # 0 for all z 2+,
(b) f(zl, ") is outer for all z H+,
(c) f(., z2)is outer for all z2 H+,
(d) log 1/If(z)l o(IzlZ/Re w(z)) for Re w(z) > 1, as z+ z -o (, ), and
(e) log 1/If(z)l O(exp(elzl /2) + m(Re w(z))) as Izl with z 2+ for all > O.

Remarks. (a) By Corollary 1.7 and the remark thereafter, conditions (a)-(c) are
necessary; (d) is somewhat stronger than condition (iii) of Corollary 1.7.

(b) It appears that Theorem 3.4 remains true when we change the function w to

W(Z) (NI -}" 2)2’ although I haven’t checked all the details. The main difficulty
is that this w does not have bounded first-order derivatives, so one has to be more
careful when defining the function . However, the author has no idea whether this
is possible for the algebra L(R2+) as well, that is, whether we may replace w by the
above expression in Theorem 3.1. It should be mentioned that a simple argument
makes it possible to replace w in both Theorems 3.1 and 3.4 by the expression
W(Z) N//Z1 -" g, -" %//Z2 4r- ,)2 4e, if e > 0.

Just like Theorem 3.1, Theorem 3.4 has a number of corollaries.

COROLLARY 3.5. Let f be a function in Ao(H2+), and set w(z)= (x//za + 1 +
//g2 d- 1)2 4. Then f generates a dense ideal in Ao(H2+)/f
(a) f(z) :A 0 for all z H2+, and
(b) log 1/If(z)l o(Izl2/Re w(z)) as Izl c with z 2+.
COROLLARY 3.6. A functionf Ao(H2+) 9enerates an ideal that is dense in Ao(H2+)

(a) f(z) 0 for all z 1-I2+, and
(b) log 1/If(z)l o(Izl) as Izl- with z II2+.
The following corollary, together with Lemma 1.5 and Theorem 1.6, provides a

partial answer to Problem 1.1.

COROLLARY 3.7. If f A(D2) has Z(f) ({ 1 } x ) w( x { 1 }), then f is BR-
outer, that is, I(f) J(Z(f)) holds, if

log 1/If(z)l o(1/d(z)) as Dz z-o Z(f),

where d(z) is the Euclidean distance between z and Z(f).

4. The two-dimensional Volterra algebra. Let [0, 1-12 [0, 1-1 [0, 1] be the
unit square in R2. The space L([0, 112), endowed with restricted convolution
multiplication, is called the Volterra algebra. More precisely, the algebraic (and
topological) properties of LI([0, 1] 2) come from identifying it with the quotient
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algebra LI(R2+)/J, where J is the closed ideal

J {f LI(R2+): f 0 almost everywhere on [0, 112}.

The Volterra algebra can also be thought of as a subspace of La(R2+) by extending
the functions to vanish outside [0, 112; it should be observed, however, that the
extension mapping L([0, 1] 2) L(R2+) is not an algebra homomorphism. We will
use the symbol for the restricted convolution multiplication in L([0, 112). As was
mentioned in the introduction, Elizabeth Strouse suggested the following problem
in [Str].

Strouse’s problem. Which functions f e Lx([0, 1] 2) are cyclic, that is, generate
an ideal f LI([0, 1] 2) that is dense in L([0, 112)?
The spaces LP([0, 112), with 1 < p < , are also Banach algebras with restricted

convolution multiplication, and each of them is dense in LX([0, 112). The following
result states that the structure of closed ideals in LP([0, 112), 1 < p < , is indepen-
dent of p. The proof is very similar to that of Theorem 4.1 [Str].

PROPOSITION 4.1. The mapping I- I LP([0, 1] 2) is a bijection from the closed
ideals of L([0, 1] 2) onto the closed ideals of LP([0, 112), < p < .

Proof. We cannot apply Theorem 4.1 [Str] directly, because LP([0, 1] 2) does
not possess a bounded approximate identity. Let {e,}] c C(R2) be a sequence
such that e, > 0, supp e. c [0, l/n] 2, and lie, IlL, 1. Then {e,}] is a bounded
approximate identity in La([0, 112). Let I be a closed ideal in LP([0, 112), and let
be the closure of I in LI([0, 112), which is an ideal in the Volterra algebra because
LP([0, 1] 2) is dense in LI([0, 112). We want to show that [ c L([0, 1] 2) I. So,
let f, f in LI([0, 1] 2) for some sequence {f,}] = I, and assume f LP([0, 112).
Now since ek C([0, 112), fn ’ ek LP([0, 112), and by Minkowski’s inequality for
integrals,

so that we may conclude that f;, ek e I. Letting k oe, f;, ek fin LP([0, 112), and
the assertion follows.

Next, let J be a closed ideal in L([0, 112). We want to show that the L([0, 1]2)-
closure of J c LP([0, 1] 2) equals J. So, let f e J be arbitrary. Then ek 7’ f e J
LP([0, 112), and ek 7 f f in L([0, 112), and the assertion follows. The proof is
complete.

Proposition 4.1 states in particular that a function f L2([0, 1] 2) generates
a dense ideal in the Hilbert space L2([0, 1]2) if and only if it generates a dense
ideal in L([0, 112). This should make the problem interesting to operator
theorists.
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The Fourier transform defines a continuous monomorphism LI(R2+) - Ao(I-12+).
Let K denote the ideal

K e-ZAo(rI2+) + e-ZAo(rI2+),

and its closure. If J denotes the closed L (R2+)-ideal

J {f La(R2+): f 0 almost everywhere on [0, 1]2},

its image under the Fourier transform is contained within K, and (see [Str-])

a {fe L(R+):f ).

It follows that the Fourier transform induces a continuous monomorphism. L([0, 1] 2) LI(R2+)/J Ao(1-12+)/.

For a function f e Lt([0, 112), let

f(z) ff ff e-t’z’-t2z2f(tl, t2) dt dt2, zC2

The next proposition follows from Theorem 4.6 [Str].

PROr’OSITION 4.2. ThemapI---(I) {_f LX([0, 112): f I} isabijection
from the set of all closed ideals in Ao(1-I2+)/K onto the set of all closed ideals in

L([0, 112). In other words, the map I-{f LI(R2+): f I} is a bijection from the
set of all closed ideals of Ao(H2+) containin9 K onto the set of all closed ideals in

LX(R2+) containin9 J. In particular, a function f L([0, 1] 2) 9enerates a dense ideal
in LX([0, 1] 2)/f and only if f and ( together 9enerate a dense ideal in Ao(H2+).

The following proposition is proved the same way as Lemma 1.5. The class
was defined back in section 1.

PROPOSITION 4.3. If I is a dense ideal in Ao(H2+), I o L 9enerates a dense ideal in

Ao(H+) for all L ql,.

COROLLARY 4.4. Let f Ao(H2+), and let L (L, L2) q/, be such that

lim inf Re Lj(t)/t > O, j 1, 2.

Then if f and generate a dense ideal in Ao(rIa+),

log 1/If o L(rei)l o(r) as r--, +,

for almost all 0 (-r/2, r/2).
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Proof. The closed ideal K is generated (after closure) by the two functions
kl(Z) (zl + 1)-1(z2 + 1)-le -zl and k2(z)= (z + 1)-1(z2 + 1)-e -z’. By Proposi-
tion 4.3, f o L, k o L, and k2 o L must generate a dense ideal in Ao(H/). For this
to be possible, either

lim sup - loglkl o L(t)l-- 0,

lim sup - loglk2 o L(t)l 0, or

lim sup -1 loglf o L(t)l 0

must hold. The first two possibilities are excluded by the condition on L, and
now the assertion follows from an application of the Ahlfors-Heins theorem [Boa,
p. 116].

COROLLARY 4.5. Let f L([0, 112), and let L (L, L2) d//’, be such that

lim inf Re L(t)/t > O, j 1, 2.

Then if f generates a dense ideal in LI([0, 112),

log 1/If o L(rei)l o(r) as r +oe,

for almost all 0 e (-re/2, r/2).

Our main result is the following.

THEOREI4.6. For e > O, set S={zeC’lzl<l, Rez>e},andlet K be the
cone K, t>o(tS, x tS.). Let f e LI([0, 112). Then f 9enerates a dense ideal in
L([0, 1]2)/f for all e > O,

(4.1) log 1/If(z)l

Proof. The assumption (4.1) implies that

(4.2) min{Re zl, Re z2, log 1/If(z)l} o(Izl)

as Izl o with z e 2+. To see this, observe that it is sufficient to show that
z e K if min{Re z, Re z2} > lzl, Let z t, with > 0 and Iffl 1. Then if
min{Re z, Re z2} > lzl, min{Re , Re (2} > e, and since 1, 2 e D, e S, x S,,
so that z t e K, as desired.
To a functional b e L(R+) L(R+)*, we can associate a functional qt acting on

the Fourier transforms of L (R+) functions via the relation
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Some functionals b will have the property that extends to a continuous linear
functional on the uniform closure of LI(R2+)", which equals Ao(H2+). Such an
extension is necessarily unique whenever it exists, so we will keep the symbol b for
it as well.

Let I(f, J) denote the closed ideal in LI(R2+) generated by f and J, and let I(f, K)
be the closed ideal in Ao(I-12+) generated by f and K. By Proposition 4.2,

(4.3) I(f, J) {9 Lt(R2+): 0 I(f, K)}.

We want to show that I(f, J)= L(R2+), or, equivalently, that I(f, K)= Ao(H2+).
Let b e L(R2+) be an arbitrary functional that annihilates I(f, J) and satisfies
e Ao(l-12+)*. By Theorem 2.3, the function cg[b] is entire, because Z(I(f, J)) .

If we run through the proof of Theorem 2.3, we see that

(4.4) cg[b](2) ((A + I(3 K)).(1 -(4 + 2)A2 + l(f, K))-x, q),

where the inverse is taken modulo l(f, K) in the unitization of Ao(1-I2+). If we
can show that d2/d22 c6’[q](2) 0 for all such b’s, then A 5 e I(f, K), so by (4.3),
A5 I(f, J), and l(f, J) LI(R2+) follows just as in the proof of Theorem 2.3.

Since b J, b is supported on [0, 1] 2, and therefore

c[q](2)=ffH(tx, t2)q(t,t2)dtxdt2, ,L C.

The estimates ofH obtained in the proof of Proposition 2.2 now show that

IEq](,)l < c-(] / 121), Re < 0,

and

I[q3(2)1 < C.(1 + 121)exp(Re 2/2), Re2>0.

It follows that the entire function [b] has finite exponential type (see [Boa, p. 66]),
and that the type is < 1/2. If we can show that

(4.5) (2)=O(exp(e2)) as Rm2+,

for all e > 0, a Phragm6n-Lindel6f-type argument will force CgEb] to collapse, in
the sense that it has to be a polynomial of degree < 1, and so d2/d22 cg[b] (2) 0.
By the previous discussion, the assertion I(f, J) LX(R2+) would then follow. To
obtain the estimate (4.5), we need to construct elements of the coset

(1 -(4 + 2)A2 + I(j K))-1
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for R 2 > 1, just as in the proof of Theorem 3.1. For the time being, let 2 be a
complex parameter with Re 2 > 0. Introduce the regions

U(2) {z e2+" ]w(z)- 21 < a2-Re 2} and

V(2) {z e 2+. Iw(z) 21 < 1/2 Re 2},

and put

f (z) y(z),

f(z)- (zx + 1)-X(zz + 1)-e-z,

f3(z) (zl + 1)-1(z2 + 1)-le -z2.

As was mentioned in the proof of Corollary 4.4, f2 and f3 generate (after closure)
the ideal , so that f, f2, and f3 together generate I( K). We need to construct
functions g, g2, 3 Ao(I-12+), depending on the parameter 2, such that

f

(4 + 2)A2
Ao(H2+),

and in doing so, we want to control the norm of qx. In particular,

3

j=l

on {z e ff . x},

so that the gj are solutions to a corona-type problem on (2). The function 1 + qa
will then be an element of the coset

f

(1 -(4 + 2)A2 + l(J K))-
so that

f

cg[b] (2) (A "(1 + qz), q), Re 2 > 0.

Fortunately, the functions f have certain regularity properties, which makes our
task easier.
For j 1, 2, 3, put
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and observe that

3

f(z)qg(z) 1, z +.
j=l

The qg’s need not be analytic. To rectify this, we will use the Koszul complex (see
[H6r-I and [Gar, pp. 364-366]), a general algebraic mechanism which converts
smooth corona solutions into analytic ones. First we need a few estimates. Let
It’11 be the supremum norm on 2+, and let I1"11 t) be the supremum norm on U(2).
Put

A(2)= sup min { 1 }zeUO,) j=1,2,3 IfM)I

and observe that

(4.6) < A(,)2

By (4.2), the definition of U(2), and the fact that Iw(z)l is proportional to Izl
as Izl--, with z II2+,

(4.7) log a() o(121) as I1

with 2 H+. It is easy to check that

(4.8) O(")f Ao(1-I2+), j 1, 2, 3,

for all multi-indices N2; for j 1 this follows from the fact that f is supported
on [0, 1] 2, and for j 2, 3, it follows by direct computation. The differential
operator D’’a) was introduced in the proof of Theorem 3.1. After a few computa-
tions, (4.6) and (4.8) imply that

IIqjllu() < C" A(L)2,

(4.9) IID(’)qjllv() < C’A(2)4 for I/1 1, and

IID(’a)ojllv(x) < C, A(2)6 for I//I 2.

Here and in the rest of the proof, C stands for a positive constant, not necessarily
the same at different occurrences.

If is a subalgebra of C(1-I2+), let (p,q) denote the -module of (p, q)-forms with
coefficients in . Clearly, (p,q) {0} if p > 2 or q > 2. For ck(II2+), we write
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C,)(1-I2+) instead of k 2 Define :(C (n+)).,. Co,(n2+)- Co,+(nz+) by

Oh Oh
Oh =x A da /2 A d-2,

ch c3h2O(h ^d2x +h2 ^d22)-2 ^ d22 ^da +--_ ^d2x ^d22czx

-\c c2] ^ dl ^ d2, and

c3(h ^ dx A d2)--0,

for h, hi, h2 e Cl(I-I2+). Let A(tp,q)) tp, q), and let A (tp,)) be the vector space
of all expressions

3

j=l

where the ej are place markers.
The space A2(p,q)) consists of all vectors

<j,k< 3

and A3(,(p,q))consists of all vectors

Z (Dj, k, A j A ek A et,
<j,k,l<3

(Dj, k, {p,q)

where we require that

j A k--" k A

The vector spaces AS(,{p,q}) are defined similarly for all s e N. However, AS({v,})
{0} for s > 3, because e ^ ej 0. Let 17 e AS(o,q,)) and 0) e At(to,2)). The wedge

s+t +2)) is defined by declaring thatproduct 17 A 0) e A ({o,q,

fAg=fg, f A e,=ek A f, f A d=d A f, di A ek=ek A dSj,

for all f, g e , j 1, 2, and k 1, 2, 3, and by requiring that

I72) A ((D + 0)2)--171 A 0)1 + 171 A 0)2 + 172 A 0)1 + 172 A 0)2
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for all zl, "i2 A (to,q,)) and 0)1, 0)2 At((o,q2)) We define

A (C o :

by differentiating the coefficients of the place markers ej, ej A ek, or el A e2 A e3.
That is,

(E Uj ej) E (uj) ej,

#(u ^ e /x e2 A e3)= C3U A el A e2 A e3

for all u., U,k, U Ct,q)(1-I+). Let

f fx A e + f2 ^ ez + f3 ^ e3 e A(Ao(1-I2+))

and

(1) (01 A ex + (/92 A e2 q- (93 A e3 A1 (C(R)(H2+)).

Define

Pr: AS(Go,q(Fl+)) + A-1 (Cto,(rI2+))

by

Pf(u ^ e ^ e2 ^ e3)= f A U ^ e2 ^ e3- f. A U ^ 1 ^ e3 -t-f3 ^ u ^ 1 ^ 2,

for all u, U,k, U Cto, q) (I-12+ ). Also, Pf0)= 0 for 0)e A(Go,)(n2+)) if s > 3. In
particular,

3

j=l

Important properties of and Pf are

P O, and Pf Pf.
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Extend the norms I1"11 and I1"11 vt) to AS(to,q)) (s < 3, q < 2) by defining the respec-
tive norms of a form co i,sut,s ^ dU ^ e (llI= q, IJI s) to be

IIoll max Ilu,ll and
I,J

I1o 1)= max Ilu,ll),
l,J

where I (I1, I2)e {0, 1} 2 and J (J1, J2, J3)e {0, 1} 3 are multi-indices. Here,
dU d2’ ^ d2/2 and es es’ /x e2s2 ^ e3, where d 1, e 1, d d, and
e) ej. Let Zz be as in the proof of Theorem 3.1, and set

h Z/ ^ 0 e A(Co,(+)),

which is supported on U(2), and has the estimate

(4.10)

by (4.9). Observe that

Pth Z ^ c30 and

c3h cq,; ^ ^
Let

u (1 (4 +/].)A2)-1 A Oh
w(z) + 4

w(z)- ;

the zeros in the denominator are absorbed by the factor OZ, because c3Z 0
on V(2). Now because u is supported on f(2)= U(2)\ V(2), we get by (3.9) and
(4.9),

(4.11) Ilull < C. (Re /$)-2(1 + 121)z. h(,)6.

Since u e A2(Co,2)(2+)), it has the form

U-" E ttj, A d- A d2 A ej A e,
j,k:j<k

with Uj, k e C(2+) supported on f(2). Consider the problem

lj, k
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in terms of the (bidisc) coordinates

1-z
zs FI+, j= 1,2,(=1 +z’

it becomes

(4.12) -+/-(zl + 1)2Uj, k
8(1 2

The supremum norm of the right-hand side of (4.12) is bounded by

C.(Re 2)-2 .(1 + [2])*. A(2)6,

because of (4.11) and the estimate

[Z -- 1[ < C.(1 + [2[) on U(2).

By a solution formula for the problem on the disc D (see [-Gar, p. 319]), we can
find a V,k C((H+ w o0 })2) solving (4.12), such that

V),k < C’(Re 2)-2(1 + ]2])4. A()6.

Then

V--

_
Vj, k A dg2 A ej A ek e A2(C(o,1)((1-I+ w {o0})2))

j,k:j<k

solves the c problem Ov u, and satisfies

(4.13) ]]v]] < C(Re 2)-2(1 + 121)’. A(2)6.

Let

k h -(1 (4 + 2)A2) ^ v A2(C(o,1)((+ w {o0})2)).

Then 0k 0,

Pfk Pfh- (1 -(4 + 2)A2) ^ Pfv Z; ^ 0- (1 -(4 + ,)A2) A efv,

and

(4.14) Ilkll < C.(Re )-2(1 + IAI)" A(2)6,
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by (4.10) and (4.13). Consider the cO problem

cow (zx + 1)-2(z2 + 1)-2 ^ k,

which is soluble because Ok 0. If we rewrite this differential equation in terms of
the coordinates (1, z) and use the solution to the problem on the bidisc Dz

obtained in [HeC, p. 676], we get a solution w A2(C((/ w { })z)) with

(4.15) Ilwll C.(Re )-2(1 + I1)4. h(2)6,

by (4.14). Let

P Z. ^ - (Zx + 1)2(z2 + 1)2 ^ Z; ^ Pfw A1(C(2+)).

Then p is supported on U(2),

Pfp Xa2 / PfcD- (zl + 1)2(z2 + 1)2 / X/ Pw Xa2,

and

P 224 ^ Zx ^ + 2 ^ O- (zl + 1)2(z2 + 1)2 A (Zt A Pfw + a A Pfw)

2;t ^ Zx ^ O + (1 -(4 + )A2)z, A Pfv- (z + 1)2(z2 + 1)2 A Zx A Pfw.

Let b be a solution to

1)(22 + 1)(1 (4 + 2)A2)-1 A c3p (21 + 1)(22 + 1)(1 (4 + 2)A2)-1

^ ?Za ^ (2Za ^ @- (zl + 1)2(z2 + 1)2 A Pfw)+ (a + 1)(a2 + 1)Za ^ Pfv;

it is not hard to check that the right-hand side is 0-closed. If we write this O problem
in the coordinates (1, 2) and use [HeC, p. 676], (3.9), (4.9), (4.13), and (4.15), we
find a b A1(C((17/ u {})2)) such that

(4.16) Ilbll C.(1 + 121)lZ.(Re 2)-4. a(2)6.

Write

and set

3

j=l

,Z2

1 (4 + 2)Az

3

-1 + (zl + 1)-1(z2 + 1)-1 E fjbj.
j=l
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Then qz e C((II/ w {oe})2), qz vanishes at infinity, and Oqz 0, so we must have
qz e Ao(H2+). Moreover,

A A 3

(1 -(4 + 2)A2)(1 + q.) 1 Z] + (zx + 1)-X(z2 + 1)-x(1 (4 + 2)A2) fbj
j=l

where

]j "--pj- (Z -[-" 1)-1(22-- 1)-1(1- (4 + 2)A2)bj,

and p Zjpj ^ ej. Now ge C(1-I+ w {oo})2) vanishes at infinity and satisfies

09 0, so that 9 Ao(l-I2+). Thus 1 + q is an element of the coset

(1 -(4 + 2)A2 + I() K))-1

and so

cg[q6] (2) (A .(1 + q), ), Re 2 > 0,

by (4.4). By (4.16) and a trivial estimate of the first term in the definition of q, we
obtain

(4.17) I[-I()1 < C’(Re 2)-4(1 + I1)a2. A(2)6, Re 2 > 0.

In particular, (4.5) holds by (4.7), so the assertion l(f, J) L (R2+) follows. The proof
is complete.

The sufficient condition (4.1) of Theorem 4.6 is not necessary. Part of the reason
for this is that a function f can be cyclic in L([0, 1] 2) and yet have a Fourier
transform that vanishes along some sequence {z,}’ c K converging to (, c), for
some fixed e > 0. It is, however, possible to weaken (4.1).

In the proof of Theorem 4.6, we only used the fact that we could control A(2) for
real 2, although the assumption (4.1) implied control of A(2) for all 2 e H+. If we
use the Ahlfors-Heins theorem in combination with the Phragm6n-Lindel6f prin-
ciple, we only need to control A(2) for a rather scattered set of 2’s. Also, we can
shrink the support set of Zx somewhat without changing the proof of Theorem 4.6.
The result obtained is the following.

THEOREM 4.7.
and set

Let {2,} be a sequence of positive real numbers tending to infinity,

G(6) {z e 2+. [w(z) 2,1 < 62, for some n},
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where w(z) (x//zl + 1 + x//z2 + 1)2 4. If f LI([0, 1-12), and, for some 6, 0 <
< 1, and all e > O,

(4.18) log 1/If(z)l o(Izl) as Ks c G(6) z (, ),

where K, is as in Theorem 4.6, then f 9enerates a dense ideal in L([0, 112).

Proof. It is possible to find a function ;t which is supported on

2+.lw(z)_21<Re2
equals 1 on

+" ]w(z)-- 21 < Re 2

and has the estimate (3.9), possibly with different constants. If we put

A(2)= sup min ( }zCUa(2) j=1,2,3 If(z)l
we obtain from (4.18) just as in the proof of Theorem 4.6 that

log Ao(2) o(11) as I1 +

with 2 H(6) {( e 17+" I( 2,1 < 62./3 for some n}. From the estimate (4.17),
with A(2) replaced by Ao(2), we get

1"b](2) O(exp(el21)) as H(6) + -+

for all e > 0, so that

lim inf r- logl[b] (re)l < 0

for all 0 in the interval (-, a), where arctan(6/3). By the Ahlfors-Heins theorem
(see [Boa, p. 116]), the limit

lim r-x loglCg[b] (rei)l

exists for almost all 0, -z/2 < 0 < z/2, and equals fl cos 0, where

/3 lim sup - loglCg[b] (t)[.
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We conclude that fl 0, so that (4.5) holds. The assertion I(f, J) LI(R2+) now
follows just as in the proof of Theorem 4.6.

Remarks. (a) The proofs of Theorems 4.6 and 4.7 can be modified so as to
show that if fl, f, e LI([0, 1] 2) and (4.18) holds with If(z)l replaced by
maxlf(z)l, then the functions f, f, together generate a dense ideal in
L([O, 112).

(b) It should be observed that what determines whether a function f L*([0, 1] 2)
generates a dense ideal in L*([0, 1] 2) is the behavior off near the origin (0, 0). More
precisely, f generates a dense ideal in L*([0, 1] 2) if and only if its restriction to
[0, e] 2 generates a dense ideal in the corresponding Volterra algebra L*([0, e] 2)
(0 < e < 1). In fact, something even stronger is true: a collection g of functions in
L* ([0, 1] 2) generates a dense ideal in L* ([0, 1] 2) if and only if the restriction
generates a dense ideal in L([0, el2). The "only if" part of the assertion is trivial.
For the "if" part, observe that it is sufficient to prove the assertion for e 1/2,
because we can then iteratively obtain the result for e 2-", n 1, 2, 3, If
restricted to [0, 1/2] 2, generates a dense ideal in L*([0, 1/212), then by Proposition
42,

a(’. Ao(H2+) + e -z’/2Ao(H2+) + e -z/2 Ao(1-I2+)

is dense in Ao(I-12+), where v@ denotes the collection of Fourier transforms of
functions in . We need to show that

:". Ao(H2+)+ e-Z’Ao(H2+) + e-ZAo(1-I2+)

is also dense in Ao(H2+), because then 3g generates a dense ideal in L([0, 112), again
by Proposition 4.2. Because

3"" Ao(H2+) + e -z’/2 Ao(H2+) + e -z2/2 Ao(1-I2+)

is assumed dense in Ao(I-l+), we must have that

,. Ao(II2+) + e-Z,/2(f/’. Ao(H2+) + e-Z,/2 Ao(H2+) + e-Z2/2 Ao(ri2+))

+ e-Z2/2(3 Ao(II2+) + e-Z,/2 Ao(H2+) + e-Z2/2 Ao(H2+))

:?’. Ao(1-I2+) + e -z, Ao(H2+) + e-=Ao(1-I+) + e-Z,/-z/ Ao(H2+)

is dense in Ao(II2+) as well. But we also see that

e-Z,/Z-z/2(: Ao(H2+) + e-Z,/2 Ao(H2+) + e-Z2/2 Ao(H2+)),
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which is a subset of

:. Ao(rI2+) + e-Z’Ao(H2+) + e-ZAo(1-I2+),

is dense in e -z’/2-z2/2 Ao(H2+). The assertion now follows.

5. Comments and further results. The reader has probably wondered silently
what happens in higher dimensions than 2. Basically, one should be able to do
everything in higher dimensions as well, but some work needs to be done. One has
to obtain a concrete formula for A, Re g > 0, where

A’(z) (V/z + 1 + ""+ V/z,, + 1)-’,

Also, it appears that no one has published the kind ofsolution we need to c3 problems
on the polydisc D" when n > 2.

Consider the space LX(R x R+), which is a convolution subalgebra of Lx(R2) if
we extend the functions to vanish outside R x R+. The following problem is the
L (R x R+) analog to Levin’s problem.

Problem 5.1. Characterize those functions fL(R x R+) for which f.
L (R x R+) is dense in L (R x R+).

This problem should be a lot easier than Levin’s problem because the solution
to the uniform algebra version of it is well known, as we shall see. Let Ao(iR x H+)
be the closed subalgebra of C((iR H+) u { o3 }) consisting ofthose functions which
are analytic in the second variable and vanish at infinity. The Fourier transform
defines a monomorphism LI(R x R+) - Ao(iR x l-I+) with dense range. By [Gam,
p. 61], all the closed ideals in Ao(iR x H+) can be described in terms of the
Beurling-Rudin theorem. In particular, a function f Ao(iR x H+) generates a
dense ideal if and only if

(a) f(z) # 0 for all z iR x II+, and
(b) f(zl, ") is outer for all z iR.

Forf L (R x R/), letfbe the partial Fourier transform with respect to z"
olf(Zl, t2) f_ e-"’f(t, t2) dr1, 2 > 0, g 6 iR.

Let f La(R x R+). Iff generates a dense ideal in LI(R x R+), then f must satisfy
the conditions (a)-(b) above, or equivalently,

(i) f(z) 4:0 for all z iR x +, and
(ii) 0 supp .f(zx, .) for all zx iR.

Question 5.2. Do (i)-(ii) imply that f generates a dense ideal?
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One can probably show that (i)-(ii) imply that f generates a dense ideal, provided
we assume that f has some regularity property, like having bounded derivatives of
order < 2 off some compact subset of iR x 17/. This is a test question for whether
the regularity condition imposed on f in Theorem 3.1 is superfluous.

Let B be the open unit ball ofC2, and let A(B) C(B) H(B) be the ball algebra.
Let f e A(B) be a function which vanishes at the point (1, 0) only. Using techniques
similar to those found in section 1, it can be shown that the condition

(5.1) log 1/If(z)l o(1/(1 -Izl)) as z (1, 0),

is necessary forfto generate (after closure) the maximal ideal {7 e A(B): 9(1, 0) 0}.
In [,Hed3], the author showed that the slightly stronger condition

is sufficient.

Question 5.3.
at (1, 0)?

log 1/If(z)l o(1/(1 -Izxl)) as z (1, 0)

Is (5.1) a sufficient condition for f to generate the maximal ideal

This question should be easier to answer than Question 1.9. The author believes
that both questions have the same answer, and suspects that it is negative.

Part of the reason why we cannot expect the method used in section 3 to prove
that the necessary conditions obtained in section 2 are sufficient is that we need to
impose restrictions on the decrease off (or f, in the case of Theorem 3.4) along the

disti/xnguished boundary (iR)2 of 172+. This is due to the fact that all nonempty level
set A2(z) 2 of the function

AZ(z) (,v//Z1 --t- -- N///z2 -- 1)-2, z 2+,

intersect the distinguished boundary. As we shall see, this is a phenomenon that
cannot be avoided.

PROPOSITION 5.4. Let a A(D2) have Z(a) = ({1} x D) w (D x { 1}). Then
a(T2) a(Z).

Proof. As a first step, let us show that a(T x D) a(DZ). Fix a (Zo, Wo) D x D,
and let 2 a(zo, Wo). We plan to show that there is a point (,/) T x D such that
a(z,//) 2. Without loss of generality, we may assume that 2 a(T, Wo), so that in
particular, 2 :# 0. Let

aw(z) a(z, w), z, w e D.

Consider the set U(2) of all w e D for which 2 e aw(D), which is nonempty because
Wo e U(2). We wish to show that this set is relatively open in D. To this end, let
(zl, wl)s D x D be such that 2 awl(Z), and introduce the function q)w(Z)=
aw(z)- 2. Let 7 be a circle in D surrounding z such that qgwl has no other zeros
than z inside 7, and (Pwl 0 on 7. By Rouch6’s theorem, if w is sufficiently close to
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wl (so that II0w, qwll is small), then qg, must have the same number ofzeros inside
as does qw,, and hence 0 q,(D), that is, 2 a,(D). This shows that U(2) is

relatively open. Clearly, there is a neighborhood of 1 which is disjoint from U(2),
because 2 - 0, and so the boundary of U(2) relative to D must be nonempty. Pick
a fl dU(2)\T. Let wn e U(2) form a sequence converging to ft. Then there is an
associated sequence {Zn} c D such that a(zn, w)= 2. By replacing {(z, w)} with
a subsequence, we can make it converge to some point (, fl), and since fl U(2)
and a(, fl) 2, we must have I1 1, so the assertion follows.
The second step is to show that a(T2) a(T x ). This is done by iterating the

argument used for the first step.

Acknowledgements. The author wishes to thank Boris Korenblum, Yngve
Domar, Allen Shields, and Elizabeth Strouse for stimulating discussions.

REFERENCES

-Boa-] R.P. BOAS, JR., Entire Functions, Academic Press, New York, 1954.
l-Da1] H.G. DALES, Convolution algebras on the real line, Lecture Notes in Math. 975, Springer-Verlag,

Berlin, 1983, pp. 180-209.
I-Est] J. ESTERLE, A complex variable proof of the Wiener Tauberian theorem, Ann. Inst. Fourier

(Grenoble) 30 (1980), 91-96.
[Gam] T.W. GAMELIN, Uniform Algebras, Chelsea, New York, 1984.
l-Gar] J.B. GARNETT, Bounded Analytic Functions, Academic Press, New York, 1981.
I-GrR] I.S. GRADSHTEYN AND I. M. RYZHIK, Table of Integrals, Series, and Products, Academic Press,

New York, 1980.
[Gur] V.P. GURARIT, Harmonic analysis in spaces with a weight, Trans. Moscow Math. Soc. 35 (1979),

21-75.
[GuL] V.P. GURARI[ AND B. YA. LEVIN, On the completeness of a system of translates in the space

Z’(0, ) with a weight, Zap. Meh. Mat. Fak. Harkov Mat. Obg. (4) 30 (1964), 178-185
(in Russian).

[Hall K. HALISTE, Estimates of harmonic measures, Ark. Mat. 6 (1965), 1-31.
[-Hedl] H. HEDENMALM, On the primary ideal structure at infinity for analytic Beurling algebras, Ark.

Mat. 23 (1985), 129-158.
[Hed2] ,Outer functions in function algebras on the bidisc, Trans. Amer. Math. Soc. 306 (1988),

697-714.
[Hed3] ,Outer functions of several complex variables, J. Funct. Anal. $0 (1988), 9-15.
[HeC] G.M. HENKIN AND E. M. (IRKA, Boundary properties of holomorphic functions of several

complex variables, J. Soviet Math. 5 (1976), 612-687.
[Hof] K. HOFFMAN, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[H6r] L. HRMANDER, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73

(1967), 943-949.
[Jan] M.R. JANEBA, Analytic structures in certain compactifications of the unit ball and polydisc in

Cn, dissertation, University of California, Santa Barbara, 1983.
[Koo] P. KoosIs, Introduction to Hp Spaces, London Math. Soc., Lecture Note Series 40, Cambridge

University Press, 1980.
[Lan] M. LANDUCCI, Uniform bounds on derivatives for the --problem in the polydisk, Proc. Sympos.

Pure Math. 30 (1977), 177-180.
[-Lev-] B. YA. LEVIN, "Translates of functions of two variables," Problem 7.20 in Linear and Complex

Analysis Problem Book, 199 Research Problems, Lecture Notes in Math. 1043, Springer-
Verlag, Berlin, 1984, p. 421.



TRANSLATES OF FUNCTIONS OF TWO VARIABLES 297

[NLe]

[Nym]

[Sha]

[Sin]

[Str]

N. LEVINSON, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ., vol. 26, Providence,
RI, 1940.

B. NVMAN, On the one-dimensional translation 9roup and semioroup in certain function spaces,
thesis, Uppsala 1950.

H. S. SHAPIRO, A counterexample in harmonic analysis, Banach Center Publications 4, PWN,
Warsaw, 1979, pp. 233-236.

A. M. SINCLAIR, Continuous Semigroups in Banach Algebras, London Math. Soc., Lecture Note
Series 63, Cambridge University Press, 1982.

E. STROUSE, Closed ideals in convolution algebras and the Laplace transform, preprint.

DEPARTMENT OF MATHEMATICS, UPPSALA UNIVERSITY, THUNBERGSV.GEN 3, S-75238 UPPSALA,
SWEDEN


