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BOUNDARY VALUE PROBLEMS
FOR WEIGHTED BIHARMONIC OPERATORS

PER JAN HAKAN HEDENMALM

§1. INTRODUCTION

Let © be a bounded domain in R” (n = 1, 2,3,...) with C*°-boundary; this means that
99 has finitely many connected components, each being a compact (n — 1)-dimensional
C°-surface. Let dV,, be the volume measure in R?, and dV,,.; the (n — 1)-dimensional
area measure on 0f).

For any integer m = 0,1,2,..., the Sobolev space W™ () consists of all complex-
valued functions in L?(Q2) whose partial derivatives of order not exceeding m also belong
to L2(Q). In particular, W°(Q) coincides with L*(Q2). The subspace Wg*(Q) is the
closure of C$°(Q2), the space of C°°-smooth compactly supported complex-valued func-
tions on 2, in the Hilbert space W™ (). 1t is useful to view W{*(Q2) as the subspace of
W™(§2) consisting of functions whose normal derivatives of order not exceeding m — 1
vanish on Q. We shall need the (fractional exponent) Sobolev spaces W™~1/2(8%2) on
the boundary 9); these spaces are defined as follows. Locally, 02 is C'*°-equivalent to
R"-!, and Fourier analysis allows us to define W™~ 1/2(R"~1) as a space of distribu-
tions (functions for m > 0); this gives us W™ /2(9Q) locally, and hence globally. A
standard technique based on partitions of unity offers a possibility to work locally with
Wm=1/2(R*1) whenever we want to demonstrate some regularity property of the func-
tions in W™1/2(90Q). For instance, one can show that, for m =1,2,3,..., the functions
in W™(Q) have well-defined boundary values in the sense of distribution theory, and that
the restriction to 09 of the space W™((2) is precisely W™~1/2(9Q) (see [15]).

The Green solver for the Laplacian A is the operator I': W(Q) — Wi (Q) N W2(Q)
with ATy = ¢ for ¢ € W°(£2). In a more classical language, one would say that for any
f € W°(Q), I'f solves the Poisson equation

AT'f = f on €,
T'f=0 ondf,

at least in a weak sense. The operator I is usually expressed in terms of a kernel function,
T'(z,y), as follows:

To(z) = /Q T(e,y) o(y) dValy), € WO(Q).

By the general ellipticity theory (see [1, 13, 15]), T maps W™(£2) to W™*2?(Q), and the
kernel T'(z,y) is C° on (Q x Q) \ 6(Q), where §(£2) is the diagonal,

§(Q) ={(z,x):x€Q}.
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The Green solver I' is related to the Poisson solver P; for f € W1/2(9Q) the latter
produces a function Pf € W(Q) satisfying

APf=0 ong,
Pf=F ondf.

In a natural way, the operator P extends to a mapping W~1/2(8Q) — HW 9(Q2), where
HW?®(€) is the closed subspace of W°(£2) consisting of harmonic functions. In general,
P maps W™=1/2(89) to (and onto) HW™ (), the harmonic subspace of W™(f)). For
f € WY2(Q), Pf is given by the formula

Pf(z) = ; P(z,y)f(y) dVe-i1(y), =€,
Q
where P(z,y) is the Poisson kernel. The Poisson kernel is obtained from the Green
function with the help of the identity

P(z,y) = — I(z,y), (z,y)e€Qxo0.

_9
on(y)
From the regularity properties of the Green kernel T'(z,y) it follows that P(z,y) is C*>
on (2 x 90) \ §(%), where §(01) is the boundary diagonal,

6000 ={(z,z):z € o0}

The Green kernel I'(z,y) is negative, and the Poisson kernel P(z,y) is positive. In a
sense, these facts are the two faces of a coin, the maximum principle.

For elliptic partial differential operators of order 4 or higher, there is no simple general
maximum principle. Still, there is a good reason to believe that strong interplay exists
between the Green functions and the analogs of the Poisson kernel for the operator in
question. Let w be a real-valued C*°-function on the closure Q of 2 that satisfies w(z) > 0
throughout ; such functions will be referred to as wetghts. The Green solver for the
weighted biharmonic operator Aw™'A is the operator U, : WO(Q) — WZ(Q)n W 4)
for which Aw™'AU,, is the identity operator W0(Q) — W0(Q). Again, in more classical
terms, for f € W9(Q) the function U, f solves the boundary value problem

AwT'AU f=f onQ,
{ Uuf, (8/on)U,f =0 on o,
in the weak sense; here d/0n stands for differentiation in the direction of the inward
normal. From the general ellipticity theory [1, 13, 15] it follows that U,, maps W m(8)
to W§(Q) NW™+4(Q); moreover, the associated kernel U, (z,y) is C> on (§I x )\ 6(Q).
The analog of the Poisson solver for the operator Aw™!A is an operator D, which we

call the Dirichlet solver for Aw™1A; for any f € W/ 2(89) this operator produces a
function D, f € W2(Q) such that (in the weak sense)

Aw 'AD,f=0 onf,
D,f=0 on o9,
(0/on) D, f = f on O9.
The associated kernel D, (z,y) is obtained from U, (x,y) via the formula

2
Dy(z,y) = w(y)*l%%jg Uo(z,y) = w(y) "0y Us(z,y), (2,y) € Qx9N0
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The regularizing properties of U, imply that D, maps W™~1/2(90) to W™+1(Q) for
m > 0; moreover, D, has a natural extension to a map W~/ 2(60) — W(Q). Also, it
follows that the associated kernel D, (z,y) is C* on (€ x 99) \ §(9Q). With the help of
the above identity, it can be shown (see [10]) that if the kernel U,, (z, y) is positive on 2 x
(the word positive is used in the Bourbaki sense, requiring only that U,, (z,y) > 0), then
D, (z,y) is also positive, on 2 x 9Q. On the other hand, if  is starlike and w is constant,
then the reverse implication is also true [10]. In fact, no concrete example seems to be
known in which D, (z,y) is positive but U, (z,y) fails to be positive, although it is very
likely that this can occur. On the other hand, there are plenty of examples of regions )
in R? for which U(z,y) is not of fixed sign (we drop the subscript w when we talk about
w = 1); for instance, Paul Garabedian [4] found that elongated ellipses {with the quotient
of axes exceeding 1.5934) can serve as such examples. The biharmonic Green function
U(z,y) is related to plate bendings and creeping flows. The function U(z,) expresses
the vertical deflection at z €  of an infinitesimally thin planar plate having the shape
of §2 and clamped at the boundary, under a point load at y € . A standard reference
is the Hadamard treatise [5, 6]. The relationship with creeping flows is as follows: if we
have a thin layer of viscous fluid spread over Q, and make the fluid rotate slowly about
a point y € €2, then the level sets of U(z,y) are the flow lines, and if for fixed y €
the function U(z,y) has a local minimum in  (which is necessarily the case if U (z,y)
is negative somewhere), then the flow has an eddy (i.e., the flow rotates in the direction
opposite to that of the main flow around y).

More general weighted biharmonic operators of the form Aw=!A and their Green
solvers were studied by Garabedian [4]. In R2, they arise naturally when one studies the
biharmonic equation with the help of conformal mappings. It is of value to know general
criteria on {2 and w guaranteeing that U, (=, y) is positive throughout Q x . The highly
nonlinear dependence of U, on the weight w makes explicit computation awkward. In
this paper we propose a variational method, which can potentially provide a large family
of weights w for which U, (z,y) is positive.

Suppose we know that U, (z,y) is positive for some weight w. In which directions in
the space of weights may we deviate from w so that to keep positivity, and how far away
from w may we go? More precisely, if x is another weight and w; = w+ tp (t is a positive
real number), then when can we claim that U,,(z,y) is positive? Our purpose in the
present paper is to show that if D, (@, y) < Dy (z,y) on Qx9Q, then D, (z,y) < D,, (z,y)
on § x 09, and Uy, (z,y) + tUu(z,y) < U,,(z,y) on Q x Q. Then, the result generalizes
as follows: if wy, wy, ..., wy are finitely many weights subject to the condition

le (173/) < Dwz(xyy) <o < Dwk(may)7 (iU,y) € x 897

and w = ¢jwy + - + tpwi, where the t; are positive real numbers, then Dy (z,y) <
D, (z,y) on Q x 99, and

Uy (2, 9) + -+ + tUs, (z,y) < Uu(z,y), (2,9) € Q x Q.

In particular, if all the U.,(z,y) are positive, then U, is positive as well. This result is
applied in §7 to show that the factorization theory for the standard Bergman spaces on
the unit disk developed in [2, 3, 7, 9, 10, 11] extends to a much more general context of
weighted Bergman spaces with radial weights.

§2. SOBOLEV SPACES AND BOUNDARY VALUES

We mention a few standard results about restrictions of Sobolev spaces to the bound-
ary (traces); see, for instance, [15]. The simplest way to convince oneself of the validity
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of Lemmas 2.1 and 2.3 is to use a C®°-deformation of £ such that a given piece of the
resulting domain look like a half-space in R™, and then do the necessary computations
there. Lemma 2.2 can be obtained as a consequence of Green'’s theorem and Lemma 2.3.
Lemma 2.4 is implied by the ellipticity of the Laplacian.

Lemma 2.1. The space of restrictions to ) of the functions in W(Q) coincides with
W1/2(8). The restriction of a function to O is 0 if and only if this function belongs
to W(9).

Let HW®(Q) = HL?(Q)) be the closed subspace of W%(Q) consisting of harmonic
functions.

Lemma 2.2. The space of restrictions to O of the functions in HW°(Q) coincides with
W-1/2(a0).

Lemma 2.3. The image of both spaces W2(§2) and W2(Q)NWg (98) under the operation
of taking the (inward) normal derivative at the boundary coincides with W/2(9Q). A
function in W2(Q) N WE(Q) has normal derivative 0 if and only if it belongs to WZ(Q).

Let W~"(£2) denote the dual space of W§*(Q); this is a space of distributions on 2.
Consider the space X(€2) of all functions f € WO(Q) for which Af € W~(Q).

Lemma 2.4. X(Q) = HWO(Q) + W3 (£2).

By Lemmas 2.1, 2.2, and 2.4, the mapping of restriction to the boundary 92, which
we refer to as R, is well defined and maps 2(Q2) onto W~1/2(0Q).

§3. PRELIMINARIES

We equip L2(€2) with the standard dual pairing

()= [ f@)g(e) dVila).
Then the adjoint T* of an operator 7' is defined by the formula

(T*f,9)0 = (/, T9)a-

If the operator T is given by an integral kernel T'(z, y),

Tf(z) = /Q T(2,y) £ (4) Va(y),

then so is T*, and in fact T*(z,y) = T'(y, z). »

Let w be a weight on (2, as before. Since Aw AU, : WO(Q) — WO(Q) is the identity
operator, it follows that w™'AU,, = I" + H,,, where AH,, = 0. Since I acts from W™ ()
to W™t2(Q) and U, from W™(Q) to W™4(Q), we see that H,, acts from W™(Q) to
HW™2(Q) (m = 0,1,2,...). The kernel H,(z,y) associated with H,, is real-valued.
The operator H,, equals —Q,wI', where the operator

Quwf(z) = / Quley) FW) wv) dValy), €,

is the orthogonal harmonic projection in the weighted Hilbert space L?(£2,w) with the
norm

2wy = </Q |f(2)|Pw(x) an(m)>l/2.
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One way to see this is to use the Green theorem; this yields
/Q AU, f(z) g(x) dViy(z) = /Q Uof(x) Dg(x) dVa(z),  fog € C®(@),

whence it follows that AU, maps W9(Q) to the orthocomplement of the harmonic func-
tions in Wo(Q). Since AU, = w(I' + H,,), momentary reflection leads to the identity
H, = —Q,wl', as stated. The associated kernel Q,(z,y) is real-valued and selfad-
joint: Qu(z,y) = Qu(y,x). Let H:: WO(Q) — W(Q) be the adjoint to H,,: W9(Q) —
W2(Q) € WO(Q); its kernel is H*(z,y) = H,(y,z). Since H, = —Q, < T', we have
H: = -TwQ,.

Lemma 3.1 (regularity of kernels). The kernel U, (z,y) is C* on (2 x Q) \ 6(2), and
the kernels H, (z,y) and Qu(z,y) are both C* on (2 x Q) \ §(582).

Proof. 1t has already been mentioned that U, (z,y) has the above degree of regularity.
The formula

Qu(z,y) = —w(@) w(y) ' AAUL(z,y), (2,y) € (2 x )\ §(9),

shows that Q. (z,y) is also C™ on (2 x Q) \ §(£2). ‘The kernel Q. (z,y) is harmonic in
each variable separately on (2; hence, it must be C°° on (2 x Q) \ 6(89Q). The regu-
larity of Q. (z,y) implies the regularity of H,(z,y) claimed above, because Q. (z,y) =
—w(y) 1Ay H,(z,y). O

The following statement is a consequence of the fact that the operator Aw™'A with
the zero Dirichlet boundary data is selfadjoint.

Lemma 3.2. The kernel U, (z,y) is real-valued and selfadjoint, U,(z,y) = U,(y,z).
The corresponding fact pertaining to the operator U, is that it maps the real-valued
Junctions to real-valued functions, and (U, f,9)a = (f,U.g)q for f,g € Wo(Q).

We turn to the properties of the mapping H,.

Lemma 3.3. The identity U,Aw™ = T + H? is valid on W2(S2). It follows that, for
m=0,2,3,4,..., the operator T + H? acts from W™(Q) to W™2(Q) N WE(Q), so that
HE: W™ (Q) — WmH2(Q) n WEH(Q).

Proof. Let f € W2(Q) and g € W°(£2). By Lemma 3.2 and the Green formula, we have

<UwAfa g)Q = <Af> Uwg>Q = (fa AUwQ)Q»
and the definition of the operation of taking the adjoint implies that

(T+H)wf,g)a = (wf,(T'+ Hy)g)a = (f,w(l’+ Hu)g)a.

We identify the right-hand sides, and hence the left-hand sides. It follows that U, Aw ™! =
I+ H on W2(Q), so that T+ H maps W™ (Q) to W™H2(Q)NWZ(Q) form = 2,3,4,... .
The operator @, acts on W(Q), whence H? = ~Tw@Q,: Wo(Q)) — W2(Q). We conclude
that T' 4+ HY: W°(Q) — W?2(Q). Approximating functions in W0(£2) by elements of
W2(S2), we see that, actually, I' + H*: W°(Q) — WZ(Q). The lemma follows. O

Lemma 3.4. Form =0,2,3,4,..., the operator Q,, maps W™(Q) to HV™(Q2). More-
over, the kernel Q. (z,y) is real-valued and selfadjoint: Q. (z,y) = Qu(y,x).

Proof. We have already seen that Q(z,y) is real-valued and selfadjoint. By Lemma 3.3,
the operator H? acts from W™(Q) to W™T2(Q), so that Q, = —w 'AHY: W™(Q) —
W™ (). By definition, the image under @, consists of harmonic functions. O

In view of Lemma 3.3, the following assertion is immediate.




666 PER JAN HAKAN HEDENMALM

Lemma 3.5. The operator U,Aw ™A is the identity on W*(Q)NWE(); since it equals
TA+HEA, and T A is the identity on W (2), it follows that HA = 0 on W4(Q)NWE(Q).
In particular, if v is another weight on §, then HXAU, =0 on W°(Q).

Lemma 3.6. Ifw and v are weights, then

Uy~ U, =+ H)(w—v)(T+ H,) = (U + H)(w—v)(T + H,).

Proof. By Lemma 3.5, we have
U,=TAU, =T+ H)AU, =T+ H}) < (T'+ H,).
On the other hand,
U, =U,A(l'+ H,) = U,Av YW@+ H,) =T+ H)v(T + H,).
Now, the first identity in the formulation of the lemma follows; the second can be obtained

by interchanging the roles of w and v. O

Remark. Lars Hérmander has pointed out to me that Lemma 3.6 expresses the usual
resolvent identity

ATt Bl =A"YB-A)B™!
for the operators 4, B: W4HQ)NWZ(Q) — W°(Q) givenby A = Aw™'A and B = Av™'A
(in the calculation, the identity w™!(w — v)r~! = v~ — w1 must be used).

§4. THE DIRICHLET PROBLEM

We introduce duality on the boundary by the formula

(f. g)on = /a @) 0(e) Vi @)

this formula makes sense at least for f,g € L?(92). In terms of this dual action, the
spaces W1/2(5Q) and W—1/2(9Q) are dual to each other. Let R: HL2(Q) — W~1/2(5Q)
be the restriction operator; by Lemma 2.2, R is onto. We recall that Q. : L?(Q) —
HL%(Q) is defined in such a way that Q. : L*(Q,w) — HL?*(Q,w) is the orthogonal pro-
jection. The operator RQ,,: L?(Q) — W~1/2(9Q) is associated with a kernel Q. (z,),
(z,y) € 00 x Q,

RQ.f(z) = /Q Qule,y) FW) dVily), € O,

and the adjoint operator (RQ,,)*: W1/2(9Q) — HL?*(Q) C L?(R) is associated with a
kernel Q. (z,y), (z,y) € 1 x 89,

(RQu)"f(z) = | Qulz,y) f(y)dVaa(y), ze.

90
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Theorem 4.1. The mapping D, = (RH,)* = —Tw(RQ.)*: WY2(8Q) — W2(Q)n
WE(8)) can be written as follows:

Dy, f(x) = QQHw(y,w) F@) dVaoily), feWY?(09).

It has the property that for f € W/2(8Q) the function u = D, f solves the Dirichlet

problem
Aw tAu=0 onQ,

u=0 ondQ,
OufOn=f ondN

(n is the inward normal).

Proof. We check that u = (RH,,)* f solves the above Dirichlet problem. To this end, we
start with the observation that, by the Green formula, U,A = (AU,)* on W2(Q), that
is, for ¢ € W2(Q) and ¢ € W°(Q),

<UwAS0aw>Q = (A(,D, Uw¢>9 = <(P7 Awa>Q

It follows that (AU, )* = Tw + HX*w maps WO(Q) to W(Q), so that HY maps W°(Q)
to W2(Q) N WE(Q). By Lemma 3.3 and the properties of @Q,,, the image of W°(f)
under H is contained in the kernel of Aw™'A, i.e., in the space of functions h satisfying
Aw AR = 0. Writing H? = (AU,)*w™! — T, we see that for any ¢ € W%(Q) the
function Hp satisfies

Aw™'AHp =0 on {,
(4.1) Hip=0 on J9Q,
(8/0n) Hxp = P*p on 99,

where P*: Wo(Q) — W'/2(89) is the adjoint to the Poisson solver P: W~1/2(9Q) —
HWO(Q) ¢ W9(Q). This follows from the identity

P p=—(0/0n)Ty on dN.

In order to convert (4.1) into information useful for us, we need to further analyze the re-
striction operator R, and in particular, to introduce an adjoint to it. Let R*: W1/2(9Q) —
WO(Q) denote any of the operators that satisfy

(Rg, hyoq = (g, R*R)a, g € HWO(Q), h e W'/2(9);

we observe that (RH,)* = H*R* and that P*R* is the identity operator. If we put
@ = R*f in (4.1), the assertion follows. O

§5. A VARIATIONAL FORMULA

By Lemma 3.6, for any weights w and v we have
(5.1) U, -U, =T+ H})(w—v)(T+ H,).

Putting w; = w +ty, where 0 <t < 400 and p is a weight, we observe that the operator
Aw; A WHQ) NWE(Q) — WO(R) is a real-analytic function of t. Since this operator
is invertible, the inverse U, : W%(Q) — W*(Q) N WE(Q) possesses the same property.
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It follows that H,,: W°(Q) — HW?(Q), and the adjoint operator Hp, , which we regard
both as a mapping W°(Q) — W2(Q2) N W3 () and W2(Q) — W4(Q) N Wi (), are
real-analytic functions of t. Hence, from (5.1) we conclude that

dit Upo =T+ H;,)u(T + Hy,)

= U+ Ho )T+ Hy) + (T + H )pu(He, — Hy)
= U+ U+ H)p(Ho, — Hy) + (HS, — H)p(Hy, — Hy)
= Uy + (Hg, — Hp)pu(Hy, — Hy),

that is,

d

(5.2) o

U,, = Uu + (H:;t - HZ)/’L(sz - H#)'

£
This is the basic identity of the paper. From it we shall be able to derive the main result
by appealing to the Picard method of solving first-order differential equations. To see
why this is at all possible, we first resort to a heuristic argument.

Heuristic argument. Suppose we know that H, < H,, for a particular value of ¢,
(here the inequality between the operators is to be interpreted as the corresponding
relationship between the associated kernels). Then H: < H7,, so that U, < (d/dt) U,,,
by (5.2). When applied to a suitably smooth positive function f on £, both sides of the
inequality vanish along with their normal derivatives on 9. Consequently, the inequality
remains valid if we apply the Laplacian to both sides and restrict to the boundary, i.e.,

pH, f < (d/dt) (weH,,)f on Q. This can be rewritten as follows:

% (we(Ho, —H,))f >0 on 0.

Thus, as long as H, < H,,, the operator Rw,(H,, — H,) increases with ¢ (R is the
operator of restriction to 9Q). Combined with the maximum principle for harmonic
functions, this reinforces the first inequality, so that the inequality H, w < H,, remains
valid if ¢ is replaced by ¢ + dt, for an infinitesimally small positive dt. So, starting with
H, < H,, we successively get H, < H,,, for all positive t. Combined with (5.2), this
leads to U, +tU, < U,,, which is an inequality of required type.

We apply the Laplacian A to both sides of (5.2) to get

d

(5.3) 7 (we(Ho, — H,)) = AH, — Hu(Ho, — H,)

= (HQy — Wi Quy (o, — H,).

The right-hand side of (5.3) is an operator W%(2) — W?2(Q). Using the general identity
H, = ~Q, <TI, we rewrite (5.3) as follows:

7)
at (Wt(QuN - thwt)r) = (,“Q;t = wiQu, Ju(Hy, — HH)'

If we apply the restriction operator R to both sides, we get

& (@ R(Qui — Quon)T) = (1RQ, — weRQu u(H, ~ Hy),
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and if we then pass to the adjoint operators, the result is

d * * * * * *

C-'lz (F(“(RQM) - wt(Rch) )wt) = (Hwt - Hu)ﬂ((RQu) H— (Rth) wt)-

We recall that, in general, (RQ,,)*: W1/2(8Q) — HW°(£), so that the right-hand side
of the above identity should be viewed as an operator acting from W1/2(98) to W2(Q)n
W3 (). Now we apply the Laplacian to both sides to obtain

d

7 ((RQW)" — wi(RQu,)"Jwr) = (1Qu — weQuy ) ((RQp)" 1 — (BQu,)"wy),

and rewrite the left-hand side as follows:

(5.4) % (we (RQu) 1 — (RQu, ) wr)) = (1Qu — wiQu, )1((RQu) "1 — (RQu, ) we).
The expression written after the d/dt operation on the left and the expression on the
right are operators W1/2(9Q) — (), where X(Q) = HW°(Q) + W} () is the space
introduced in §2. Indeed, if f € HW°(Q) and g € C>°(Q), then fg € (), which
can be shown by taking the Laplacian: A(fg) = fAg +2Vf Vg € W™(£). Since
the restriction operator R is well defined on 3(f2), applying it to both sides of (5.4) we
obtain

d

(5.5) T (Rwi ((RQW)" 1 — (RQu, ) wt)) = (WRQu — wi RQu, ) ((RQy) "1t — (RQu, ) wr).

In terms of the operators

Ti = (RQu)* 1 — (RQu, ) w:: WH2(8Q) — HWO(Q) c WO(Q),
T} = pRQy — w RQu, : WO(Q) —» W/%(89),

equation (5.5) turns into

d
(5.6) b (thTt) =T T

The above identity involves only the operator T}; this is an improvement of (5.3), where
the Laplace operator occurs in addition to the difference H,, — H,,. We shall start with
applying the Picard process to (5.6), and then work our way up to (5.3) and (5.2).

In terms of Gy = H,,, — H,: WO(Q) — HW?(Q), identity (5.3) simplifies as follows
(after application of R to both sides):

d .
(5.7) ZE(R‘Uth) =T} uG,
and (5.2) becomes

d

(5.8) Us, = U, + GG

dt

In (5.7), we regard R and T} as mappings W2(Q) — W3/2(0Q).
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§6. THE MAIN RESULT

We say that an operator T acting from a vector space of distributions on a manifold
to a vector space of distributions on another manifold is positive (in symbols: 7' > 0)
if it maps the positive distributions to positive distributions. We recall that the posi-
tive distributions may be identified with locally finite positive Borel measures. If T is
associated with a kernel T'(x,y), then T is positive if and only if the kernel is positive.

Remark. The above concept of positivity differs from the standard one for operators on
Hilbert space, where T is declared to be positive whenever (Tw,u) > 0 for all vectors u.

Lemma 6.1. IfTy > 0, then T; > 0 for all 0 <t < +4o0.

Proof. As an operator W'/2(8Q) — HL?*(Q) C L?(Q), T; is uniquely determined as the
solution of equation (5.6) with initial value Tp. We shall find approximate solutions by
modifying the standard Picard process for ordinary differential equations (see [14]; the
method dates back to Cauchy and Liouville). For continuous operator-valued functions
Y (t): WY2(8Q) — HWO(Q), with adjoints Y (£)*: WO(Q) — V=1/2(8Q), we put

F[Y|(t) = Pw; ! (wRTo + /Ot Y ()" uY (s) ds),

where P: W~1/2(9Q) — HW?®(f) is the Poisson solver. For each continuous Y (1),
F[Y](t) is continuously differentiable as a function with values in the operator space
WY2(69) — HWO(Q). Moreover, if Y (t) > 0 for all positive ¢, then also F[Y](t) > 0
for all positive ¢. In other words, I’ preserves the cone of positive-valued functions. The
function Y (t) = T} is a fixed point of the mapping F[Y], i.e., it satisfies the equation

By the standard fixed point theory associated with the Picard theorem, a fixed point
is unique. Let us see how the argument runs when we restrict our attention to a short
interval [0, §]. We have two competing fixed points X (¢) and Y (t), and wish to show that
they must coincide. The two operator-valued functions are assumed to be continuous:
in particular, their norms are uniformly bounded on [0,6]. Thus, choosing a suitable
positive constant M, we can make sure that

(6.1) 1Pw; el (X O+ 1Y ONl) < M, te0,6],

where the norms are the operator norms on the appropriate spaces. Since X (t) and Y ()
are fixed points of F, we can write

X(@) - Y(t) = FIX](t) - FIY](?)

= P! </t(X(s)* — Y (s) )X (s) ds +

0 0

t

Y(5)*m(X (s) — Y(s) ds),
whence, taking the norms and applying (6.1), we obtain
(62) IX() — Y () < MiL@), te[0,8),

where
L(t) = sup { | X(s) ~ Y(s)]| 0 < s <t}.
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Passing to the supremum over ¢ € [0,6] in (6.2), we arrive at the inequality L(§) <
M6 L(6). By taking § small, we can ensure that M§ < 1, which implies that L(6) =0,
whence X (t) = Y'(t) on [0,6]. To get uniqueness on the entire interval [0, +oo[, we argue
as follows. If uniqueness does not occur, then there are two solutions X (t) and Y'(2)
and a point ¢g €]0, 400 such that the functions X (¢) and Y (t) coincide on [0, tg}, but
fail to be equal at some points located arbitrarily close to ¢y and lying to the right of
to. Then we make the coordinate shift ¢ — ¢ — to, which pushes tg to the origin. Then
the above uniqueness argument applies again, showing that X (t) and Y (¢) coincide in a
small neighborhood of ¢y, and uniqueness follows.

We shall show that the fixed point Y (¢) is a positive operator for each t € [0, +oo[ by
approximating it with positive operator-valued functions. We define inductively Y5(¢t) =0
and Yp11(t) = F[Y;|(t). It is clear that each Yi(t) is positive, for t € [0, 4+o0[. Finally,
for small ¢ (say, t € [0,6] with § > 0) the Yi(¢) converge in norm to the fixed point
Y (t) = T}, which shows that T} > 0.

Now we prove that T, > 0 for all ¢ € [0, +o0], not only for ¢ close to 0. Arguing by
contradiction, we suppose that there exists a real number n > 0 for which the inequality
Ty = 0 fails. Let 79 be the infimum of all such 7. From what we have done so far
it follows that 1y > 0. Since T; > 0 for all ¢ with 0 < ¢ < no, we have T, > 0 by
continuity. Now, putting S; = Ti—p, for 0 <t < 400, we obtain a family of operators
of the same type as T}, so that the above argument applies to S, and we get S; > 0 for
all ¢ € [0, <[ for some small positive . This contradicts the definition of no. The proof is
complete. O

Remark. In the above construction, with Y () = T, it can be checked that if 0 <Yi(t) <
Y (t) on [0,+o00], then

0= F[Yi](t) = Yiqa () < F[Y](t) = Y(2) on [0, +o0].

Since 0 <Y, <Y for k = 0, this inequality is true for all k = 0,1,2,... . Consequently,
the approximate solutions Y} (¢) do not blow up even for large values of ¢, and we see
that they actually converge on the entire interval [0, +ool.

Lemma 6.2. If Gy >0, then G; > 0 for all 0 <t < +c0.
Proof. First, we establish that Tp > 0. We recall that, in general, H* = —T'w(Q,, so that

(6.3) G =H} — H =TuQ, — TwiQ.,.

By Lemma 3.3, G} maps W™(2) to W™*+2(Q) N WZ(Q), for m = 0,2,3,4,... . The
assumption Gg > 0 implies that G§ > 0. If f € C*°(Q) is an arbitrary positive function,
then the function Gof also belongs to C'°(Q), is positive on €, and vanishes along
with its normal derivative on 8. Its second normal derivative, which coincides with its
Laplacian, must then be positive on 92, that is, RAGSf > 0. By (6.3), we have

RAGY = pRQ, — wRQ,, =T},

so that 75 f > 0. Since smooth functions are dense in WO((2), this shows that 15 > 0,
whence Ty > 0. By Lemma 6.1, 7, > 0 for all £ € [0, +o0].

The remaining part of the proof is similar to that of Lemma 6.1. We observe that, as
a function of ¢ with values in the space of operators W(§2) — HW (), G; is uniquely
determined as the solution of equation (5.7) with the initial value Gy.

For continuous operator-valued functions Y (¢): W°(9Q) — HW 2(Q), we put

F[Y)(t) = Pw;! (wRGo + /Ot T Y (s) ds),
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where P: W3/2(8Q) — HW?(Q) is the Poisson solver. For each continuous Y (¢), the
function F[Y](t) is continuously differentiable. Moreover, if Y'(t) > 0 for all positive t,
then F[Y](t) > 0 for all positive ¢, because T; > 0. In other words, F' preserves the cone
of positive-valued functions. The function Y (¢) = G; is a fixed point of the mapping
F[Y], i.e., it satisfies the equation

By the standard fixed point theory associated with the Picard process, a fixed point is
unique. We show that the fixed point Y (¢) is positive-valued on [0, +co[ by approximating
it with positive operator-valued functions. We define inductively Yy(t) = 0, Yiq1(t) =
F[Y%](t). It is clear that each Yy(t) is positive for ¢ € [0, +oo[. Finally, for small ¢ (say,
t € [0,6] with § > 0) the Yj(¢) converge in norm to the fixed point Y (t) = G, which
implies that G; > 0.

The argument showing that G is positive for all ¢ € [0, +oo[, not only for ¢ close to
0, is precisely the same as in the proof of Lemma 6.1 and, therefore, is omitted. d

Theorem 6.3. If D,(z,y) < D,(z,y) on Qx 05, and wy = w-+1p, then the inequalities

Do, (z,y), (z,y) € Qx8Q,
Us,(z,y), (z,y) €QxQ,

are valid for all 0 <t < +co.

Proof. For an arbitrary weight v, we have H,(z,y) = D,(y,z) for (z,y) € 0 x €, and
on §) x § the function H,(z,y) is harmonic with respect to . Hence, the assumption
is equivalent to H,(z,y) < Hy,(z,y) on 2 x . On the other hand, this is precisely the
statement that Gy > 0. By Lemma 6.2, G¢ > 0 and G > 0 for ¢ € [0, +00], so that

i
U,, =U, +tU, +/ GiuGsds > U, +tU,, t€0,+00],
0

by (5.8), and the theorem follows. O

For any t > 0, if v is a weight, then so is tv, and U, = tU,, Dy, = D, (that is, U,
is homogeneous of degree 1 in the weight space, and D, of degree 0). This observation
allows us to prove the following generalization by iteration.

Corollary 6.4. Let wy,...,w be weights satisfying
Dy, (z,y) < -+ < Dy, (z,y), (z,y) € Qx

Let w be a weight of the form w = tyw; +- - - +tpwy, where the t; are positive real numbers.
Then D, (z,y) < D,(z,y), and

tlle (33,:1/) + e +tkka(x7y) < Uw(may), ($7y) €N x.

Corollary 6.5. Suppose w1, ...,wy are weights satisfying the assumption of Corollary
6.4. Suppose, moreover, that U,(z,y) 2 0 on QI x § for w = wy,...,wr. Then U, >0
for all weights w in the cone spanned by w1, ..., wg.

Remark. The class of weight functions for which the above results can be obtained may
be extended. For instance, one may consider weights of lower degree of regularity, or
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weights that vanish or are singular on some parts of Q2. Another (in my opinion, more
interesting) possibility is to consider weights of variable sign. More precisely, we may
require that w be C°° up to the boundary of 2, strictly positive on 9§2, and such that,
for harmonic functions f € HW O(Q)

| r@Pe@ avi@) < [ (7@ avi (o),

where the symbol < means that two quantities are comparable in size (the left-hand side is
bounded, from above and from below, by positive constants times the right-hand side).
Then the harmonic kernel @, (z,y) is well defined, being a sum over an orthonormal
basis with respect to the weighted norm on HW°(Q2). Going backwards, we see that the
function H,(z,y) is well defined, as well as the Green function U, (z,y). This works in
spite of the difficulties that arise from the surfaces where w vanishes. It then appears
that the main result, Theorem 6.3, remains valid if w and p are taken from this wider
class of weights, provided that u satisfies the following additional condition:

/ (@) g(z) () dVa(z) > 0
for all positive harmonic functions f and g.

§7. APPLICATIONS TO FACTORIZATION THEORY IN BERGMAN SPACES

We identify R? with the complex plane C; the domain of interest is the open unit disk

D. For a > —1, the weights
ve(2) = Ya+ 1)|2]%%, zeD,

were studied in [10], where the properties of the associated operators U, and H,_ were
found. For instance, U,, > 0 and H, < H,, for all o, 8 such that -1 < 8 < o < +oco0.
It follows that D,, < D,, for all a, 8, =1 < # < & < +o00. In general, the weights v,
are not C'° near the origin, and they may have a zero there, or a singularity. Thus, they
are not weights in the restrictive sense used earlier in this paper. However, off a fixed
neighborhood of the origin, they are C*° up to the boundary, and are bounded away
from 0. Modulo a few technical points based on this observation (which are omitted),
the results of the previous section apply to such weights as well.

Corollary 7.1. Let p be a Borel probability measure on | — 1, +o0o[, and let

00
w(z) = 7! /_1 (a+1)|2Pdp(a), zeD.

Then
+00
U, > / U, dp(c) > 0.
J-1
Proof. The assertion follows immediately from Corollary 6.4 and the above remark if p is
supported on a finite set. The general case is obtained with the help of an approximation
argument. O

Asin [3, 9, 10], this yields the following result on factorization in the weighted Bergman
space AL*(D,w); we say that f € AL?*(D,w) provided f is holomorphic on D, and

1l = ( [ 1rGPe) dS(z)>1/2 e

Corollary 7.2. Ifw is as in Corollary 7.1, then for the zero set Z of an arbitrary function
in AL?(D,w) there is a function Gz in AL>(D,w) having norm 1, vanishing precisely on Z,
and such that every function f € AL*(D,w) vanishing on Z has a factorization f = Gzg,
where g € AL*(D,w) and ||glle < || flle-




674 PER JAN HAKAN HEDENMALM

We shall refer to the assertion of Corollary 7.2 as stating that factorization occurs for
the weight w. In [16], Sergel Shimorin showed that factorization occurs for the weights
np(z) = (B +1)(1 — [2%)?, with —1 < 8 < 0. Expanding the weight 15(2) in a Taylor
series in the variable |z|?, we see that this is a special case of the weights covered by
Corollary 7.2. In [8] it was shown that factorization occurs also for ug with 8 = 1,
later, Shimorin [17] obtained factorization for 0 < 8 < 1; in [12], it was shown that
factorization fails for 8 > 1.
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