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BEURLING TYPE INVARIANT SUBSPACES OF THE
BERGMAN SPACES

HAKAN HEDENMALM, BORIS KORENBLUM anp KEHE ZHU

1. Introduction

Let D be the open unit disk in the complex plane C. For 0 < p < 400, the
Bergman space AL?(D) consists of analytic functions fin D with

1/p
1 e = (j If(Z)t”dA(Z)) <+oo,

where dA4 is area measure on [D, normalized so that D has mass 1. Equipped with
the above norm, AL?(D) is a Banach space for | <p < +oo0; when 0 <p <1, we
have that AL?(D) is a complete metric space if supplied with the distance
d(f,g) = || f—gll5.» The reader is referred to [20] for the basic theory of Bergman
and Hardy spaces.

Let z be the coordinate function on D: z(1) = A with A& D (the reader is asked not
to confuse this notational convention with the use of z as a complex number or a
complex variable elsewhere in the paper). Suppose that X is a topological vector space
of analytic functions on [D, with the property that zfe X whenever fe X. Multiplication
by z is thus an operator on X, and if X is a Banach space, then it is automatically a
bounded operator. A subspace I of X is said to be invariant (or z-invariant) if it is
closed and fe I implies that zfe I. Beurling’s successful characterization [2] (for p = 2)
of the invariant subspaces of the Hardy spaces H?(D) suggests the problem of
describing the invariant subspaces of the Bergman spaces 4L?(D). The purpose of the
present paper is to study a class of invariant subspaces of AL?(DD) which may be said
to be of Beurling type.

To every function fin the Hardy space H?(D), which does not vanish identically,
there corresponds a zero set (Blaschke sequence) Z(f) and a singular Borel measure
; on T. Here T denotes the unit circle in C. Beurling’s characterization of invariant
subspaces of H?(D) states that every invariant subspace I (with the exception of {0})
of H?(D) is uniquely determined by a zero set Z and a singular measure gz on T in
the following fashion:

I=I(Z,p; H?) ={fe H"(D): Z = Z(f), b < ps}-

Here the inclusion Z < Z(f) is to be understood as counting multiplicities. Another
way to state Beurling’s theorem is to say that every invariant subspace of H?(DD)
(other than {0}) is generated by a classical inner function. We are inclined to say that
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an invariant subspace of AL?(D) is of Beurling type provided it is given by a zero
sequence and a Borel measure y as above, with H?(D) replaced by AL?(D). The
problem with this definition is that it is not clear what we mean by the measure x, for
fe AL?(D), because AL?(D) is not contained in the Nevanlinna class of holomorphic
quotients of bounded analytic functions.

To remedy this difficulty, we recall some of the A~ theory developed in [13, 14].
For positive real-valued n, let 47" be the Banach space of all holomorphic functions
J on the unit disk D subject to the condition

fI<C(NHA—|z))™ forzeD

for some positive constant C(f). The union of all these spaces 47" is denoted by 47>,
and it is not difficult to show that it coincides with the union of all the spaces 4L?(D),
with 0 < p <+ 00. The space A~ is a topological algebra if thought of as the
inductive limit of the spaces 4" (with 0 < n < + ), and the topology remains the
same if we think of it as the inductive limit of the spaces AL?(D) (with0 < p < 4+ c0).In
analogy (see [13, 14]) with the theory of Hardy spaces, we associate to every fe A=
with f # 0, its zero set Z(f) (counting multiplicities) and a so-called x-singular measure
(the definition of which is deferred to Section 2) o, on T. It is proved in [14] that every
invariant subspace I of A~ is uniquely determined by a zero set Z and a x-singular
measure ¢ on [ in the following way:

I=9(Z,0,4) ={fed™.Z < Z(f), 0 < g

It is also shown in [14] that every invariant subspace of 4™ is singly generated.
Since every Bergman space AL?(D) is contained in 4=, we can consider invariant
subspaces of AL?(D) of the following form

H(Z,0; AL?) = {fe ALY(D): Z < Z(f), 0 < 0,3},

where Z is an AL?(D)-zero set and o is a k-singular measure on T. Such invariant
subspaces of 4L?(D) will be said to be of x-Beurling type. In the Banach space setting,
the permitted class of measures ¢ may be larger than for 4, provided that the zero
set Z is thick, because the space #(Z,0; AL?)/G, (here, G, is the canonical divisor,
as in [10, 7]) approaches the Hardy space H?(D) as Z gets saturated, and in H?(D),
all singular positive Borel measures play a role in the description of invariant
subspaces. One would then expect to have a class of Beurling type invariant subspaces
F(Z, p; ALP), where the measure u belongs to a set B(Z; AL?) of positive singular
Borel measures on T, containing the x-singular ones. A characterization of the set
B(Z: AL?) as the zero set Z varies would be desirable. To illustrate the possibility of
having a bigger relevant collection of singular Borel measures in the Banach space case
than for the soft topology space 4™, consider the space 4™ for a fixed n > 0, and
the saturated zero sequence Z constructed by Kuristian Seip in [19]. Seip [19] finds a
function F, in A™ which vanishes precisely on Z, with the property that if fe 4™
vanishes on Z, then f/F, belongs to H*(D). The sequence Z is thus maximal, in the
sense that a bigger zero sequence can only differ from Z by a Blaschke sequence. If
u, is the singular inner function associated with a positive singular Borel measure g,
then
H(Z,pu;47") = F,u, H*(D)

is an invariant subspace of 47" of Beurling type. Since A™" is nonseparable, only
weakly closed (with respect to an appropriate predual) invariant subspaces should be
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considered, so it should be pointed out that the above subspace qualifies. Thus
PB(Z; A (defined analogously) consists of all positive singular finite Borel measures
on T.

Unlike the cases of the Hardy spaces H?(D) and A~*®, there exist in AL?(D)
invariant subspaces which are definitely not of x-Beurling type, and not even of
Beurling type. Moreover, not every invariant subspace of AL?(D) is singly generated.
The existing examples of non-Beurling type and non-singly generated invariant
subspaces (see, for instance, [11]) have the codimension n property, with 2 < n < + 0.
An invariant subspace J is said to have the codimension n property if J/zJ has
(complex) dimension n. It is not difficult to see that all Beurling type and singly
generated invariant subspaces have the codimension 1 property. The question poses
itself: do the classes of (a) singly generated invariant subspaces, (b) Beurling type
invariant subspaces, and (c) invariant subspaces J having the codimension 1 property,
all coincide? The term Beurling type has never been properly defined, because the
relevant set of measures is not properly understood, so a part of the question is to
clarify this point.

A partial answer to the above question is supplied below. The main results of the
paper are Theorems A, B, C, and D below.

THEOREM A. Suppose that fis in AL?(D). If f belongs to the Nevanlinna class, then
the invariant subspace I(f) of AL?*(D) generated by f is of r-Beurling type. Moreover,

I(f) = S(Lf), 0, AL?) = {ge ALP(D): Z(f) < Z(g), 0, < 7,}.
For an invariant subspace 7 of 4L?(D) we consider the extremal problem

sup {Ref™(0): | fllsp» < 1.f€1},

where » is the smallest non-negative integer such that there exists an fel with
S(0) # 0. Itis shown in [8] that for 1 < p < + o0, this extremal problem has a unique
solution. We denote the solution by G, and call it the extremal function of 1. It is not
known whether the above extremal problem has a unique solution for 0 <p < 1.

THEOREM B (1 < p < +0). If Iis a x-Beurling type invariant subspace of AL*(D)
induced by a Blaschke sequence and o finite k-singular measure, then the extremal
Sfunction G, of I belongs to the Nevanlinna class and generates the whole invariant
subspace I.

Recall from [8] that if G, is the extremal function of an invariant subspace [ of
ALP(D) (with 1 < p < +o0), then || f/G,| 4rr < | flliz» for all fe {G)), the invariant
subspace generated by G,. Note that I(G,) may be smaller than /. Our next theorem
strengthens the result of [8] in the case of x-Beurling type invariant subspaces.

THEOREM C (1 < p <+ ). Let I be a k-Beurling type invariant subspace of
ALP(D). If G, is the extremal function of I, then || f/ G| o < | f | are for all fel.

The last theorem tells us how to find the extremal function of an invariant
subspace generated by a singular inner function whose measure is supported on a
finite set.
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THEOREM D (1 < p < +00). Suppose that u is a singular inner function, whose
singularity set is a finite subset E of T. Then the extremal function G associated with
the invariant subspace in AL*(D) generated by u has the form

G(2) = (R(2))**u(z) forzeD,

where R is a rational function with simple poles on E and nowhere else in the extended
complex plane, determined uniquely by the conditions that G(0) > 0, G(0) G(c0) = 1 and

(G@)™® = R() (u(2))"",

holomorphically extended to C\E, should have no residue at the points of E (id est, its
antiderivative should be holomorphic and single-valued throughout C\E).

2. Preliminaries on r-singular measures

The notion of x-singular measures is essential in the function theory of Bergman
spaces. The definition of a c-singular measure is based on the notion of Carleson sets
on T.

DErRINITION 2.1. A set F < T is called a Carleson set if it is closed, has Lebesgue
measure zero, and satisfies the condition

Ml

2
R(F) =Y 3 (logljnl-i—l) < 400,

where {J,} is the collection of complementary arcs of Fin T and |/, is the Euclidean
length of J,.

We use & to denote the collection of all Carleson sets and 4 to denote the
collection of all Borel sets B = T such that Be %. The collection of all G = |J2, F,
with F, e #, will be denoted by &,

The concept of Carleson sets is connected with the study on boundary zero sets
of certain function algebras. Recall that the disk algebra, denoted by </, consists of
analytic functions fin D which are continuous up to the boundary. It is well known
[1, 5, 12] that Carleson sets are precisely the boundary zero sets of functions in
o, = {f.f™ e/}, where n is any positive integer. Let 47 be the space of all analytic
functions in D all of whose derivatives belong to /. We shall need the following
slightly stronger version of the above characterization of Carleson sets.

LeMMA 2.2 [12). For every Carleson set F there exists a function ® in A*® such that
F={zeD:®(z) = 0} and ®™(z) = 0 for all ze Fand n = 1.

We can now introduce the notion of x-singular measures.

DEFINITION 2.3. A function 6:4 — [0, + c0) is called a (non-negative) x-singular
measure if ¢ is a finite (positive) Borel measure on every Carleson set and there exists
a constant C > 0 such that o(F) < CR(F) for every Carleson set F. A x-singular
measure o is finite if sup{o(F): Fe #} < + 0.

It is clear that a x-singular measure is completely determined by its values of &.
We shall need the following approximation theorem concerning x-singular measures.
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THEOREM 2.4 [14]. For every k-singular measure o there exists an increasing
sequence {F,} of Carleson sets such that

o(B) =lime(BNE,)
for all Be 4.

As a result of the above theorem, every x-singular measure can be uniquely
extended to a non-negative Borel measure & on T supported on a set Ge % so that
a(B) = 6(B) for all Be # and

G(M)=8MNG)=sup{o(B):Be#B,Bc M}

for all Borel sets M < T. Note that §(T) = §(G) = + «© is not excluded. In what
follows we shall make no distinction between a x-singular measure ¢ and its extension
to 4.

As another consequence of the above approximation theorem, we can conclude
that every finite positive Borel measure g on T admits a unique decomposition
1t = o+ p,, where g is a k-singular measure and g, is a positive Borel measure on T
with u,(B) = 0 for all Be . We shall call ¢ the x-singular part of u and u, the x-
smooth part of u. A finite positive Borel measure u on T is called a x-smooth measure
if w(B) =0 for all Be 4.

Given a (nonzero) function fe A™* and a Carleson set F let ® be a function in 4*®
such that F={zeD:®(z) = 0} and ®™(z) =0 for all zeF and n>0. For a
nonnegative Borel measure u on F set

(+z

fo kD) = f2) () eXp[ f C:dﬂ@] for zeD.

It is shown in [14] that the set

'%F,f = {lu:fF,/zEAﬂjo}

is independent of the choice of ® and has a maximal element g, ,. It is further shown
in [14] that there exists a unique x-singular measure g, on T such that g , is the
restriction of o, to F from every Fe % . This is how a x-singular measure is associated
to a function in 4™°. We note in passing that the function f; , above belongs to
AL?(D) provided that fe AL?(D) and u < o ;.

It follows from [13, 14] that the x-singular measures of functions in 4~® have the
property that ¢, = 0,4+ 0, whenever f and g are in 4™,

LeEMMA 2.5 (0 < p < + ). Suppose that Z is a zero set for ALP(D) and ¢ is a
w-singular measure on T. Then

I(Z,0; AL?) = {fe AL*(D): Z < Z(f),0 < 0}

is an invariant subspace of AL*(D). Here Z(f) is the zero set of f and the inclusion
Z < Z(f) accounts for multiplicities.

Proof. Let
J={fed™:Zc Z(f),0 <.
It is shown in [14] that J is a (closed) invariant subspace of A~*. Since
F(Z,6; ALP)y = J N ALP(D) and A~ is topologized as the inductive limit of the
Bergman spaces, we conclude that #(Z,0;AL?) is a (closed) invariant subspace of
ALP(D).
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Note that it may well happen that J(Z,0; ALP) is trivial in AL?(D); Z is called
an AL?(D)-zero set if #(Z,0; AL?) is nontrivial. Similarly, ¢ is called an AL?(D)-«-
singular measure if #((,0; AL?) is nontrivial, where J is the empty set.

DEFINITION 2.6 (0 < p < +0c0). An invariant subspace I of AL?(D) is said to be
of x-Beurling type if I = #(Z,0;AL?) for some AL?(D)-zero set Z and some k-
singular measure ¢ on T.

3. The invariant subspace generated by a Nevanlinna function

In this section, we investigate the invariant subspace generated by a Nevanlinna
function in AL?(D). First recall that if fe AL?(D), then the invariant subspace I(f)
generated by fin ALP(D) is the closure in AL?(D) of the set f? = { fp: ¢ P}, where
2 is the set of all complex polynomials. If I(f) = AL?(D), then we say that fis cyclic
in AL?(D).

Suppose fis in the Nevanlinna class with canonical factorization f'= B(S, /S, ) F.
Thus B is a Blaschke product, S, and S, are singular inner functions with (relatively
prime) singular measures g, and p,, and F is an outer function. It follows from [13]
that if f"also belongs to 4™ then p, is x-smooth and o, is the x-singular part of u,.
Recall from [15] that S,, is cyclic in every AL?(D). It follows easily that f and S.J
generate the same invariant subspace in AL?(D), provided that fis in 4AL7(D).

LemMa 3.1 (0 <p <+ ). Suppose that f = BS, where B is a Blaschke product
with zero set z and S is a classical singular inner function with singular measure y. If
W is k-singular, then I(f) = $(Z,u; AL?); in particular, I(f) is of k-Beurling type.

Proof. Since Z(f) = Z and o, = u, we have fe #(Z, u; AL?). But #(Z, u; AL?) is
an invariant subspace by Lemma 2.5, we conclude that I(f) = #(Z, u; AL?). To prove
the other inclusion, we first assume that Z is a finite sequence and y is carried on a
single Carleson set.

Take a function g from #(Z, u; AL?), where Z is a finite sequence in D and y is
a k-singular measure carried on a Carleson set F. Choose a function ® from 4** such
that F = {ze D: ®(z) = 0} and ®™(z) = 0 for all ze Fand n > 0. By [16], the function
gs = (g@°)/(BS) belongs to AL?(D) for every § > 0, where B is the Blaschke product
with zero set Z and S is the classical singular inner function with singular measure
u. Since ||g—g®’||,,»— 0 as d —» 0" and g®° = BSg; belongs to I(BS), we conclude
that g is in I(BS) = I(f).

To prove that #(Z, u; AL?) < I(f) in the general case, we assume that Z = {z,}
with |z, <z, < ... < |z,] < ... and y is supported on the union of an increasing
sequence {F,} of Carleson sets. For every integer N > L let Z,, = {z,, ..., z,} and let u,,
be the restriction of u to F,,. Now if f'is a function in #(Z, u; AL?), then f belongs to
each I(B, S,) by the special case proved in the preceding paragraph; here B, is the
Blaschke product with zero set ZS, and S, is the singular inner function with
singular (as well as #-singular) measure y,,. This easily implies that each fB,, S, be-
longs to I(BS), where B, is the Blaschke product with zero set Z—Z,, and S, is the
singular inner function with singular measure g — . Letting N — + co and applying
the dominated convergence theorem, we conclude that || fB, S, —f | .»— 0. This
shows that fe (BS) = I(f) and hence the proof of Lemma 3.1 is completed.

We can now prove the main result of this section.
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THEOREM 3.2 (0 < p < +o0). Iffisin ALP(D), and if f is in the Nevanlinna class,
then I(f) = I(Z,0; AL?), where Z is the zero set of f and o = o, is the k-singular part
of the singular measure in the canonical Nevanlinna factorization of f.

Proof. Since S(Z,0;ALP) is an invariant subspace of AL? (D) and f is in
F(Z,0; ALP), we have I(f) =« #(Z,0; AL").

To prove the other inclusion we may as well assume that f'is in the Smirnov class,
that is, fadmits the factorization f = BSH, where B is the Blaschke product with zero
set Z, S is a singular inner function with singular measure u (whose x-singular part
is 0), and H is an outer function; see the paragraph preceding Lemma 3.1. For every
& > 0, let H, be the outer function whose modulus on T satisfies

{IH(C)! if[HQ)| = &,

IH O] = i 1HQ)| < e

Since 1/H, is bounded, we see that the function
f= Jf _BSH
°"H, H,

& &

belongs to I(f). The construction of H, ensures that |H(z)| < |H{z)} on D, so that
|f,i—BS | 4z — 0 (as e — 0%) by dominated convergence. It follows that BS is in I(f).
Write u = o+py, with ¢ being k-singular and u, being x-smooth. Accordingly,
S=3S5, Sﬂ , where S, is the singular inner function corresponding to o and S, is the
singular inner functlon corresponding to 4,. Since S, is cyclic in 4L7(D) by [15] the
relation BS = BS, S, €1(f) easily implies that BSael(f ), and hence I(BS,) < I(f).

Using Lemma 3.1 we ‘conclude that .# (Z,0;AL?) = I(BS,) < I(f). This completes the
proof of Theorem 3.2.

Recall that for 1 < p < + oo the extremal function of an invariant subspace / in
ALP(D) is the solution to the extremal problem

sup{Ref™(0): | /1l sp» < 1, f€1},

where # is the smallest nonnegative integer such that there exists a function fin / with
F™(0) # 0. We now obtain some properties for the extremal function of an invariant
subspace generated by a Nevanlinna function in AL?(D).

THEOREM 3.3 (1 < p < +0). Suppose that [ = #(Z,0; AL?) is a k-Beurling type
invariant subspace of ALP(D) with Z being a Blaschke sequence and o(T) < +co. Then
the extremal function G of I belongs to the Nevanlinna class with Z, = Z and o, = o.

Proof. Let B be the Blaschke product with zero set Z and S be the singular inner
function with singular measure o. If Z is finite and ¢ = 0, then by [7, 10] G is the
product of the finite Blaschke product B and a function H(z) which is analytic in a
neighbourhood of D and satisfies |H(z)| = 1 on D. Theorem 3.3 is obviously true in
this case.

Next consider the case where Z is finite and o is carried on a single Carleson set
F. By [16, Theorem 3] (slightly modified to include a finite zero set Z) we can
construct a sequence {Z,} of finite sets in [ such that Z < Z, (counting multiplicities)
forallnand |G, —G| ,.» — 0 as n — + oo, where G, is the extremal function of the -
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Beurling type invariant subspace .#(Z,,0; AL?) (or the invariant subspace generated
by the finite Blaschke product B, whose zero set is Z,). Since the construction of Z,
in [16] ensures that the Blaschke product B, with zero set Z, tends to BS as n — + o0,
we obtain the factorization G = BSH, where |H(z)| = 1 on D. This clearly implies that
G is in the Nevanlinna class with Z, = Z. By Theorem 3.2 and the fact that 1/H is
bounded in D, we have

[=I(BS)=KG/H) < I(G) = I.

It follows that J(G) = I and hence 6, = o by Theorem 3.2 again.

Now consider the general case. Let {Z }={zeZ:|z| <n/(n+1)} (counting
multiplicities) and let {5,} be an increasing sequence of r-singular measures carried
on single Carleson sets such that ¢, -0 as n —>+o0. Let [, = #(Z,,0,; AL?). It is
clear that /= [, 1,. By the special case discussed in the preceding paragraph, the
extremal function G, of I, admits the factorization G, = B, S, H,, where B, is the
Blaschke product with zero set Z,, S, is the singular inner function with singular
measure o, and H, satisfies |H,(z)] = 1 on D. Since the G, are unit vectors, we can
use a normal family argument to find a subsequence {n,} such that G, — BSH
uniformly on compact sets, where H is an analytic function with modulus greater than
or equal to 1 on D, By Fatow’s lemma, the function f = BSH belongs to AL?(D) with
I/ 1.» < 1. If we can show that f = G, then G is in the Nevanlinna class with Z, = Z,
and the argument at the end of the preceding paragraph shows that g, = . Thus it
remains to show that f= G.

It is easy to see that G, — fin the topology of A=, Let

= {gEA_OO:Zn < Z(g)a g, < ag}
and
={ged ™ ZcZ(g,o<a,

Since G, €I, =J, <J, for all k>, letting k — +co leads to feJ, forall i It
follows that f e/ =J. But fisin ALP(D), so that feJ N ALP(D) = L On the other
hand, if m is the number of times 0 appears in Z, then the inequalities

G(lm)(()) > G(zm)(O) > ... > G(m)(O)

imply that /*”(0) = G"”(0). Recall that | ] ,.» < 1. It follows from the extremal
property of G that f= G. This completes the proof of Theorem 3.3.

CoROLLARY 3.4 (1 < p <+0o0). Suppose that [ = $(Z,0; AL?) is a x-Beurling
type invariant subspace of ALP(D) with Z being Blaschke and o(T) <+ o0 (or,
equivalently, I is the invariant subspace generated by a Nevanlinna function in AL?(D)).
Then I is generated by its extremal function.

Proof. This follows from Theorems 8 and 9. It is also a consequence of the proof
of Theorem 3.3.

COROLLARY 3.5 (1 < p <+ ). Suppose that I = (Z,0;AL?) is a k-Beurling
type invariant subspace of ALP(D). Then the following conditions are equivalent

(1) Z is Blaschke and o(T) < +0;
Q) the extremal function G of I belongs to the Nevanlinna class;
(3) I contains nonzero elements of the Nevanlinna class.
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Proof. 1tis trivial that (2) implies (3). That (1) implies (2) follows from Theorem
3.3; (1) follows from (3) by the definition of Beurling type spaces.

Explicit formulas for extremal functions G, are hard to come by, except in very
simple situations, such as for the invariant subspace associated with a multiple zero
ata pointin D, or a point mass at the boundary T. Recently, however, Jonas Hansbo
[9] obtained a beautiful formula for the case with two points, inside the disk, or on
the boundary.

THEOREM 3.6 (Hansbo) (1 < p < +o0). Suppose that the positive Borel measure pi
on T is supported on the two-point set {a, f}, and write p, = p({o}), pg = p({f}). Let J
be the Bessel-type function
J(z) = i z withzeC
B n=0 (n ')2 ’
and write Q(z) = J'(2)/J(z). Then the extremal function for the k-Beurling type
invariant subspace $(J, u; ALP) is given by the formula

Gfz) = H(0)'*H(2) withzeD,
where

HG) = exp(—ua“” s “)

cx—z—'uﬁﬂ—z

Pls | Pl Py 2 NI
x 41 2 — - with ze D.
{142y Py DUl O yla—f] it ze

Hansbo’s result is an explicit special case of the following statement on the
structure of extremal functions of invariant subspaces generated by a singular inner
function.

THEOREM 3.7 (1 < p < +00). Suppose that u is a singular inner function, whose
singularity set is a finite subset E of T. Then the extremal function G associated with
the invariant subspace in ALP(D) generated by u has the form

G(z) = (R(2))**u(z) withzeD,

where R is a rational function with simple poles on E and nowhere else in the extended
complex plane, determined uniquely by the conditions that G(0) > 0, G(0) G(0) = 1,
and

(G(2)""” = R(2) (u(2)"",

holomorphically extended to C\E, should have no residue at the points of E (id est, its
antiderivative should be holomorphic and single-valued throughout C\E).

Proof. We first show that the extremal function G has the above-mentioned
properties. Assume that p is rational; a continuity argument can then be used to cover
the general case. Approximate « with the nth power of a Blaschke product B,,,, with a
single zero along each ray emanating from the origin with endpoint on E, and no
other zeros. Since p is rational, we may assume the integer # is such that jnp is also
an integer.
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For a finite sequence Z of points in D, let B,(z) denote the Blaschke product with
zeros Z, and G%(z) the canonical zero divisor associated with Z relative to the space
AL? (D). Let us agree to write kZ for the sequence where each point of Z is repeated
k times. By [7], and the assumption that np is an integer,

Gram(2) = (GZ%’n)(Z))n = (G?np/z)d(n)(z))z/p with ze D,
and moreover, the representation
G(z) = (J5(0,0))"B,(2) (J3(z,0)*”  with zeD

is valid, where J2(z,{) is the reproducing kernel function in the L* Bergman space
with weight |B,|?:

f2) = f SO T3z, O1BAOI?dAL)  with zeD,

holds for fe AL?(D) (Z is finite). By [10], R,(z) = G%(z)/B,(z) is a rational function
with simple poles at the conjugate points of Z,
Z.={1/7:zeZ},

and it has no other poles. This remains equally true if the zeros of Z have
multiplicities. Moreover, the function G% is the derivative of a rational function H,,
whose poles are contained in the set Z,. As n tends to + oo, we have that B, ,,,(2)
tends to u(z), and G?%,,,(z) tends to the extremal function G(z) [16]. The rational
function with simple poles, R, 4 (2), must then converge (as n—+o0) to a
rational function R(z), with simple poles on E and nowhere else. The function
G’ a(2), Which possesses a single-valued antiderivative throughout C\A(n),,

tends to
(G(2))""* = R(2) (u(2))""*

as n — + oo, which thus also has a single-valued antiderivative, this time on C\E. The
conditions G(0) > 0 and G(0)G(0) = 1 are more or less obvious consequences of
similar statements about the zero divisors G2(z) [10].

It remains to check that the above conditions determine G(z) uniquely. Clearly, it
suffices to show that if

Sy =p(@u(z) forzeC\E
is the derivative of a holomorphic single-valued function Fon C\E, and p is a rational

function with simple poles on E (and nowhere else), subject to p(co) =0, then
f(z) = 0. Fix F by requesting that F(0) = 0. One checks that

f2) = 01—z asl>|z—1,
so that Fis in Lipschitz § on the unit disk D, and in particular, F is bounded there.
Make an elementary estimate of Fin the region C\D, near T by integrating from a
fixed starting point, and near infinity by noticing that f{oo) =0 forces F to be
bounded there. An appeal to the Phragmén-Lindel6f principle then yields
|F(z)| < C(Nlu(z)| for ze C\D. 3.1

We now need the identity (T is assumed to be positively oriented, and n = 0,1,2,...)

fﬂz)zﬂﬁd/i(z): ! J-—F(-Z)—dz (3.2)

2mi )z u(z)

where we make use of the fact that u(z) = 1/u(z) on T, valid because u is an inner
function. By (3.1), it is permitted to change the contour of integration in (3.2) to a
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larger circle RT, and as the radius R tends to + oo, the integrand approaches 0 so
rapidly that the right hand side of (3.2) must be 0. It follows that f'is perpendicular
to z*uforalln=0,1,2,..., and hence to the invariant subspace I(u) generated by u
in AL¥D). But fitself is in I(u), so f vanishes identically as asserted.

REMARK 3.8. For p = 2, Theorem 3.7 was known to Hedenmalm in 1991. Since
then, related results have appeared, exempli gratia, see [17].

4. Contractive divisibility in k-Beurling type subspaces

The recently revived interest in the function theory of Bergman spaces stems
mainly from the discovery of the contractive property of the extremal functions for
invariant subspaces. Specifically, if G is the extremal function of an invariant
subspace I in ALP(D), then || f/ G| » < || f]l4zr for all fe (G). This result is due to
Hedenmalm [10] when p = 2 and to Duren, Khavinson, Shapiro and Sundberg [7, 8]
when 1 < p < + 0. Since I(G) is generally smaller than I itself, a natural question
arises: does [ f/Gl» < || flla» hold for all fel? The answer is yes if
I=4(Z,0,AL"); see [10] for the case p =2 and [7] for the more general case
1 € p < + . The answer to the question above is also yes if I = #(Z, a; AL?) with
Z being Blaschke and a(T) < + o0, because in this case we actually have I = I(G) by
Theorem 3.3. The purpose of this section is to give an affirmative answer to the
question mentioned above in the case of a general x-Beurling invariant subspace.

TeEOREM 4.1 (1 < p <+ ). Suppose that I= I(Z,0;AL*) is a k-Beurling
type invariant subspace in ALP(D). If G, is the extremal function of I, then
1f7Gillaze < N fVae for all fel.

Proof. Let Z,={zeZ:|z| <n/(n+1)} (counting multiplicities). Choose a se-
quence {F,} of Carleson sets according to Theorem 2.4. Thus if o, is the restriction
of o to E,, then ¢, > 0. Let I, = #(Z,,0,; AL?) and let G, be the extremal function
of I,. Just as in the proof of Theorem 3.3, we can show that there exists a subsequence
{G,,} which converges to G uniformly on compact sets (and hence in norm, because
we also have |G, || 4» = |G| 4.2). Now if fis a function in 7, then f belongs to every
I, so that | f/G, |l i» < || fl4ze for all n. Let n— +co and apply Fatow’s lemma
again, we conclude that || /G|l ,.» < || f]l 4rs» completing the proof of Theorem 4.1.

5. Some applications

In this section we apply our main results to obtain an operator theoretic result and
a canonical factorization for Nevanlinna functions in AL?(D).

Let 1, and I, be two invariant subspaces of AL?(D). We say that I; and I, are
similar if there exists an invertible bounded linear operator T:I, — I, such that
M, T = TM,on I,, where M, is the operator of multiplication by z. We say that I, and
I, are quasi-similar if there exist bounded linear operators T:I, — I, and S:I, - I,
such that Tand S are one-to-one, have dense range, and satisfy 7M, = M, T on I, and
SM, = M, S on I,. It is clear that I, and [, are similar (or quasi-similar) if and only
if the operators M,:I, — I, and M,:I, — I, are similar (or quasi-similar). See {6] for
the notions of similarity and quasi-similarity of linear operators on Banach spaces.
It is shown in [3] that an invariant subspace I of AL?(ID) is similar to the whole space
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AL?(D) if and only if Iis generated by a Blaschke product whose zero set is the union
of finitely many interpolating sequences. Equivalently, [/ is similar to AL?(D) if and
onlyif I = #(Z,0; AL"), where Z is the union of finitely many interpolating sequences
in 0. We now characterize invariant subspaces of 4L?(D) which are quasi-similar to
the whole space AL?(D).

THEOREM 5.1. Let I be an invariant subspace of ALP(D). Then the following
conditions are equivalent :
(1) Iis quasi-similar to ALP(D);
(2) I is generated by a bounded function;
(3) I is generated by a classical inner function,
(4) Iis generated by a Nevanlinna function in ALP(D);
(5) I=9(Z,0;AL?) with Z being a Blaschke sequence and a(T) < + 0.

Proof. The equivalences of (2) through (5) follow from Theorems 8 and 9 and
their proofs. We show that (1) and (2) are equivalent.

First assume that I is quasi-similar to AL?([D), so that there exist bounded linear
operators T:1 — AL?(D) and S: 4L?(D) — I such that S and T are one-to-one, have
dense range, and satisfy M, S = SM, on AL?(D) and M,T = TM, on I. Let f= S1,
where 1 is the constant function with value 1. Since M, S = SM,, it follows that
pf = Sp for every polynomial p. The boundedness of S easily implies that f is
bounded, which in turn implies that Sg = gf for all ge AL?(DD). Since S has dense
range, we conclude that I is generated by f, and hence (1) implies (2).

Next assume that I is generated by a bounded function f. Let G be the extremal
function of I. Then by Theorem 3.3 we have I = I(G). Define T:1/ - AL?(D) and
S:AL?(D) - Ias follows: Tg = g/G for ge I, and Sg = fg for ge AL?(D). Then S and
T are both bounded, one-to-one, have dense range, and commute with M, so that /
is quasi-similar to 4L?(D), completing the proof of Theorem 5.1.

Next we present a factorization theorem for Nevanlinna functions in 4AL?(D). The
factorization is similar to the classical inner-outer factorization of functions in Hardy
spaces. Recall that a function fin AL?(D) is called a cyclic vector if I(f) = AL?(D).
A unit vector G in ALP(D) will be called an AL?(D)-inner function if it satisfies
NGf Nl spe = | f ]| 4 for all bounded analytic functions f. It is easy to show that a unit
vector in AL?(D) is AL?(D)-inner if and only if it is the extremal function of an
invariant subspace. A unit vector in 4L?(D) will be called 4L?(D)-singular-inner if it
is nonvanishing on D and if it is 4AL?(D)-inner. A unit vector in 4L?(D) will be called
a contractive zero divisor if it is the extremal function of some #(Z,0; AL?), where Z
is a zero set for AL?(D).

THEOREM 5.2. Suppose that 1 < p <+ oo and fe ALP(D). If [ belongs to the
Nevanlinna class, then [ admits a unique factorization: f=GSH, where G is a
contractive zero divisor, S is an AL?(D)-singular-inner function, and H is a cyclic vector
in AL*(D) belonging to the Nevanlinna class (not all factors have to be present).

Proof. Let Z be the zero set of f and let G be the contractive zero divisor
corresponding to Z. Let g = f/G. Then g is nonvanishing on D and ||gl] ;;» < | /| 423
see [7]. By Theorem 3.3, the function G is in the Nevanlinna class, so that g is also in
the Nevanlinna class. Let S be the extremal function of the invariant subspace
generated by g. Then § is AL?(D)-singular-inner and by Theorem 4.1 H=g/S
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belongs to ALP(D) with |H || ,,.» < |lgll 4 < I f || oz»- Since H is Nevanlinna, Z,, = ¢,
and oy = 0 (because g, = o), Theorem 3.2 implies that H is cyclic in AL?(D). Thus
we have established the factorization f= GSH.

To prove the factorization f= GSH is unique, assume that f also admits a
factorization f= G, S, H,, where G, is a contractive zero divisor, S, is AL?(D)-
singular-inner, and H, is cyclic in 4L?(D) belonging to the Nevanlinna class. It is
obvious that G = G,, since they are both determined by the zero set of f. Let
g=SH=_S§,H,. Then gisin AL?(D) and g is in the Nevanlinna class. Since H, is in
the Nevanlinna class, so must be S,. It follows that I(g) = I(S) = I(S,), because the
cyclicity of H, implies that its x-singular measure is zero. This easily implies that
S =8, and hence H = H,.

6. Remarks and questions

Recall that an invariant subspace I of AL?(D) is said to have the codimension 1
property if dim(I/z[) = 1. In the case of Hardy spaces, every invariant subspace
{except {0}) has the codimension 1 property. On the other hand, each AL?(D) has
invariant subspaces which do not. Every x-Beurling type invariant subspace I of
AL?(D) has the codimension 1 property (and so does every Beurling type invariant
subspace, if defined properly). This is so because multiplying or dividing a function
in I by z does not change its x-singular measure [14], and the zero set is distorted in
a predictable way.

Every singly generated invariant subspace of AL?(D}) has the codimension 1
property ([18], p. 596). The argument runs as follows, in case the generator ge AL*(D)
has g(0) s 0 (this restriction is really inessential). It suffices to show that if fe I(g) has
J0)=0, then f/zel(g). Choose a sequence {p,} of polynomials such that
| p.8—flsr = 0 as n— 4+ co. Since f{0) = 0 and g(0) # 0, we can adjust p, so that
p,(0)=0. Write f=zh and p, = zq,. It follows that |g,g—h|l,,»— 0, so that
J/z = hel(g).

Our first question here was raised in the introduction; namely, is there a
relationship between the class of singly generated invariant subspaces and that of
Beurling type invariant subspaces of ALP(ID)? We suspect that the two classes
coincide. We do not, however, believe that all singly generated invariant subspaces
are of x-Beurling type, because for saturated zero sets Z larger set P(Z; AL?) of
singular measures can be expected to play a role.

Even the following special case remains an open problem: let Z be an AL?(D) zero
set, so large that it is not Blaschke. Is the invariant subspace #(Z, 0; AL?) then singly
generated? Or, more boldly, is #(Z,0; AL?) generated by its extremal function G,?

Our second question involves cyclic vectors of AL?(D). It is easy to show that if
JSis eyclic in ALP(D), then Z(f) = & and g, = 0. The converse is also known to be
true in several special cases. By Theorem A of this paper, if fis in the Nevanlinna
class, and if Z(f) = J and o, = 0, then f'is cyclic in AL?(D). It was proved in [4] that
if fe AL?**(D) for some ¢ > 0, and if Z(f) = & and o, = 0, then fis cyclic in AL?(D).
The following conjecture seems natural: f'is cyclic in 4L2(D) if and only if Z(f) = &
and g, = 0. Still, there may be a phenomenon of the following type, which could
prevent the conjecture from being true: if a function fin AL?(D) with Z(f) = & has
critical growth near a large set E < T, then cyclicity of f'might require more than just
o, = 0; on E, one may need to consider a larger class of measures than the x-singular
ones. At the time of writing this manuscript, Borichev and Hedenmalm have a con-
struction which seems to produce a counterexample to the above conjecture.
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Finally, we ask a question about contractive divisibility. Recall that if G, is the
extremal function of a x-Beurling type invariant subspace I in AL?(D), then
/G ae < | fll,e for all fel. We wonder if the same result holds for singly
generated invariant subspaces. An affirmative answer will imply the following
canonical factorization for functions in the Bergman spaces: every function f in
AL?(D) admits a factorization f = GSH, where G is a contractive zero divisor, S is an
AL?(D)-singular-inner function, and H is a cyclic vector in AL?(D). Since this
question is directly related to the first question, the main point here is that even
though there (probably) are singly generated invariant subspaces which are not of x-
Beurling type, the contractive divisibility property may still hold for such spaces.
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