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0. Introduction

The first complete description of the closed ideals in a Banach algebra of analytic
functions was obtained for the disc algebra A (D) independently by Arne Beurling
(unpublished) and Walter Rudin [RUD 1}; D is the open unit disc. Later, Boris
Korenblum [KOR] described the closed ideals of the algebra

A.D)={fe A(D): f"€ AD)},

using a classical duality technique going back to ideas of Beurling and Carleman,
which is usually referred to as the Carleman transform. The Carleman transform
method has been applied successfully to other function algebras in [FEL], [GUR],
and [BEG]. However, it has never been applied to a nonseparable algebra like
H” = H"(D). In Section 2, we use it in the spirit of [DOM] to show that every closed
ideal in H" whose hull is contained in the fiber .#,(H") has the form k - J, where k
is the singular inner function

k(z)=exp(a(z +1)/(z — 1)), z€D, forsome a =0,

and J is a closed H™-ideal containing all functions whose Ge!fand transforms vanish
on JM,(H"). We also show that for analytic points in JM(H™), that is, points with
nontrivial Gleason parts, the primary ideals considered by Kenneth Hoffman
[HOF, pp. 100-101] are the only ones there are. A primary ideal is a closed ideal
that is contained in only one maximal ideal.

The Carleman transform technique can be used to reveal interesting properties
of the structure of closed ideals in other nonseparable algebras, too. We outline
what can be shown for the algebra H;={f € H": f'€ H"}. The maximal ideal
space of HY can be identified with D in the obvious way. Every primary ideal
Hi-ideal I at 1 with a(I)=0 (see Section 2) has the form

I={f€H: f(1)=0 and f € K},
where@ is the singular inner function k(z) = exp(a(z + 1)/(z — 1)), z €D, for some
a =0, and}K is a closed subspace of H™ that contains all functions whose Gelfand

transforms vanish on J(,(H™).
142

JOURNAL D’ANALYSE MATHEMATIQUE, Vol. 48 (1987)




BOUNDED ANALYTIC FUNCTIONS 143

Section 3 is devoted to the problem of comparing the structure of closed ideals in
a Banach algebra B of analytic functions on some planar domain ( = nonempty
open connected set) W with that of a subalgebra A which is characterized by the
condition that its elements are holomorphically extendable onto some of the
components of C\W. Our main tool will be the fact that we can use the
holomorphic functional calculus to produce continuous epimorphisms B— A/l
that are canonical on A for a large class of closed A-ideals I The technique has
some slight resemblance to Stout’s [STO 1] method of proving the corona theorem
for finitely connected planar domains.

Charles Stanton [STA] and others have generalized the Beurling-Rudin theorem
to finitely connected domains. The point here is that we can relate the structures of
closed ideals for very large classes of algebras of analytic functions.

Michael Behrens [BEH] was the first to discover a class of infinitely connected
planar domains for which the corona theorem is true. He also obtained a
description of the Gleason parts. For a fairly restricted class of infinitely connected
domains, we will try to investigate to what extent our epimorphism idea can be
developed along Behrens’ lines. Section 4 is devoted to this topic.

1. Notation and basic concepts

In our terminology, all algebras are complex and commutative. Recall that a
uniform algebra is a Banach algebra with a norm that is equivalent to the spectral
norm, or, which is the same, the supremum norm of the Gelfand transform. The
bilinear form linking any Banach space A with its dual Banach space A* will
always be denoted by (-,-).

For any Banach algebra B, we write (B for the Gelfand (or carrier) space of B,
equipped with the Gelfand topology. If B has a unit, this is its maximal ideal space.
For any element x € B, o(x, B) is its spectrum. The hull of a B-ideal I is the set

h(I, B)={m € M(B): £(m)=0 for all x €I},

which is a closed subset of #{(B). It is well known that if I is closed, one can
identify h(I, B) and #((B/I) (see [STO 2], p. 27). It is easy to see that if I is closed
and B has a unit, £(h(I, B)) = o(x + I, B/I) for every x € B. A subalgebra A of B
is said to be a Banach subalgebra if it is equipped with a norm stronger than that of
B and which makes A a Banach algebra. By the closed graph theorem, a
subalgebra can have (within equivalence) at most one Banach subalgebra norm.

For an open set QC C, 0(Q) denotes the Fréchet algebra of all holomorphic
functions on €, and if K is a compact subset of C, O(K) denotes the algebra of
germs of functions analytic in neighborhoods of K, endowed with the natural
inductive limit topology. H™(2) is the Banach algebra of analytic functions on Q,
and if Q is bounded, A (f) is the Banach algebra of analytic functions on () that
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extend continuously to Q. If Q is unbounded, A(£) consists of those analytic
functions that extend continuously to QU {e}.

We denote by z the coordinate function z(¢) = ¢, { €C. It will be obvious from
the context when we use z as a function or as a complex variable. We will now
describe more closely the class of Banach algebras that we will deal with. Until
Remark 1.2, W will be an arbitrary bounded domain in the complex plane C.

Definition 1.1. B is an admissible algebra on W if:

(a) B is a Banach subalgebra of H™ (W) containing O(W), and

(b) for each { € W, the point evaluation at ¢ is the only element of the set
M, (B) ={m € M(B): 2(m)={}.

For each f€ O(W) and « € W, let

T.f(0) = (FO)~ feN(¢ —a),  {€W\{a}

Thomas Wolff [WOL] calls B stable if T.f € B for all « € W and f € B. The
relation
f=fla)+(z—a)T.f, fEB, a€W,

shows that if B is'a stable Banach subalgebra of H*(W) containing O( W), B is
admissible on W.

Let B be an admissible algebra on W. Then Z7'(W) is an open subset of M(B),
and 2 is a bijective continuous mapping £~ (W)— W. It follows from the definition
of the Gelfand topology that Z is a homeomorphism 27Y(W)— W, making it
justified to identify 27'(W) with W. For every a € W, let

M. (B)={m € M(B): £2(m)=a};

this gives a natural fibering of /#((B) over W. A.(B) is the restriction of B to
M. (B).

For ease of notation, we will write Z(I, B) instead of Z(h(I, B)) for every B-ideal
I of course this can be done for nonadmissible algebras, too. One easily realizes
that

Z(IBYNW={z€ W: f(z)=0forall fEI};

here condition (b) of Definition 1.1 is important.

Remark 1.2. The concept of admissibility can easily be extended to include
all planar domains W such that W # C. We shall see how this is done. Suppose Wis
unbounded. Let a € C\' W, and denote by ¢ the function (P ({—a) ', L E wWu
{o0}, extended to have the value 0 at . Define B to be an admissible algebra on W
if Bog™' is an admissible algebra on the bounded domain e(W).

For an unbounded domain W, let O)(W) denote the subalgebra of O(W)
consisting of those functions f(z) which tend to 0 as | z|— o within W. Hi(W) is
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the algebra H*(W) N O,(W), which is an ideal in H"(W), and Ay(W) is the algebra
A(W)N O(W).
2. Closed ideals in H™ (D)

For any family % of functions in H™ = H™(D), put
a(%)=inf (— limsup (1— t)log[f(t)l) ,
feF t— -

which is a nonnegative real number. Also, recall the notation

Tf(2)=(f(2)~ f(z =), z{ €D, z#¢

Proposition 2.1. Let I be a closed ideal in H”™ such that h(I, H") C M,(H™)
and a(I)=0. Then I contains the ideal

L={f€H": f(m)=0 forall m eJa;(H“’)}.
Proof. For { €C\D, (z —¢+1I)"'=(z—¢)"' +1, and consequently
Iz =+ D=l = 8 | =sup |2 = ¢ = (I =17
Pick an arbitrary functional ¢ € I'* = (H"/I)*. Then the function
() =z=¢{+ D7 ¢),  (EC\2(h(LHT) D C\{1},
is holomorphic on its domain of definition, and
.1 leO)I=lel-(¢l-1)", ¢€C\D.

Select an arbitrary function f € I which does not vanish identically. The function
T:f(z)=(f(z)— f({))/(z — ¢) belongs to H™ for { € D, and one easily checks that

—(z-OTfIf(H)-1€l
for { €D\ Z(f), where Z(f) is the set {z €D: f(z)=0}. Hence
()= —(T.f, $)f(0), {ED\Z(f).
By the maximum modulus principle,
22 ITfI=20fla-1¢D)",  ¢eD.

By (2.1-2) and our assumption a(I) =0, Theorem 3.2 [BEG] shows that there is an
integer N such that

Q) =0(¢-11™)  as{—1.

Hence @ has a pole at 1, and by the estimate (2.1), it must be a simple pole.
Observing that ®(t)—0 as | {|— =, we conclude that
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d(O=r1-¢)", {EC\l,

for some complex constant A, |A | = || ¢ ||. This has the interpretation that ¢ acts as A
times the point evaluation at 1 on the functions (z — £)! for ¢ € C\D. Since finite
linear combinations of these functions form a dense subspace of A(D) and ¢ is
continuous, ¢ acts as A times the point evaluation on all of A(D). In particular,
(z—1,¢)=0, and hence z —1 € I, because ¢ € I'* was arbitrary. It is well known
and not too hard to see that the closure of the H”-ideal generated by (z — 1) equals
I,, and therefore I D I,. The proof is complete.

Keep the notation
Iy={f€ H": f(m)=0 for all m € M,(H")}.

Since I, is an intersection of maximal ideals, the quotient algebra H'/I, is
canonically isomorphic to its image under the Gelfand transform, which is the fiber
algebra A,(H™)= H” |,“|(,,x,. According to Gamelin [GAM 2], A\(H") is a uniform
algebra with maximal ideal space .#(,(H"). There is an obvious bijective correspon-
dence between the A,(H™)-ideals and those H™-ideals that contain I,; certainly,
closed ideals correspond to closed ideals. Let I be a closed ideal in H™ such that
h(I, H")C M,(H™). If k is the singular inner function
k(z)=exp(—9—g)l—u>, z €D,

1—2z
the closed ideal
J={fe H": kfe 1}

satisfies h(J, H")C #,(H™) and a(J)=0. Hence J contains I, by Proposition 2.1,
and by the previous discussion, J corresponds uniquely to a closed A (H")-ideal,
namely the one formed by taking the restriction of J to M(H). Since [ =k + J, we
find that k takes care of all “outside influence”, and that J only depends on its
behavior on the fiber .#,(H”). We collect our observations in a theorem.

Theorem 2.2. Let I be a closed H*-ideal such that h(I, H")C M:,(H™). Then
I =k - J, where k is the singular inner function

k(z)=exp<—g£2D—l—_—F—§>, z €D,

11—z
and J is a closed H™-ideal which contains
{(fe H": f(m)=0 and all m € M(H")}.
As a consequence, we have the following

Proposition 2.3. Let I be a closed H™-ideal such that h(I, H*)C M,(H").
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Then

Iz=¢+ D=4~ [¢]) e, {eD.

Proof. By Theorem 2.2, (z" —1)- k €I for every n €N. Once easily checks
that the function

- T ((z" = DR)/((&" — k()
belongs to the coset (z — ¢+ 1) for { €D. Observe that ||z" —1[|=2. By the
maximum modulus principle,
IT((z" - DRl =2)l(z" =Dk |- A=)
=4(1-1¢))", (€D,

and consequently

Iz = £+ D= T (2" = DRV = D]
=401 1= @O
S4-[eim e
— 4= [¢]y e

as n— o for { €D, which is the desired estimate.

We wish to state an open problem. An ideal I in H” is called primary at
m € M(H™) if it is closed and h(I, H) = {m}. If m is not specified, we simply say
primary.

Problem 2.4. Determine the primary ideals of H™.

John Garnett told me that this problem has been raised by Kenneth Hoffman.
For m €D, the situation is well known. It m belongs to a nontrivial Gleason part,
that is, by Hoffman’s theorem [HOF], [GAR, pp. 410-415], an analytic disc, the
primary ideals are easily computed, as we shall see. Let L: D— #((H”) be an
analytic disc mapping, and suppose m = L(z,), zo € D. Without loss of generality,
we can take z, to be 0. Hoffman [HOF, pp. 100-101] considered the primary ideals

L(m)={feH" feL €z"H}, n=12...,

and showed that in an appropriate sense, I, (m) is the nth power of the maximal
ideal, ker m. In Theorem 2.5 below, we will prove that each primary ideal at m
coincides with one of {I,(m)};.,. So the remaining case is when m belongs to a
one-point Gleason part. It is sufficiently challenging to attack this problem when m
lies in the Silov boundary of H”, which one usually identifies with the maximal ideal
space of L™(aD).
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Recall the definition of the primary ideals I, (m).

Theorem 2.5. If m € M(H”) belongs to a nontrivial Gleason part, every
primary ideal at m has the form I,(m) for some positive integer n.

Proof. Let I be an arbitrary primary ideal at m, and denote by n the largest
positive integer such that I C I, (m). We intend to show that I = I, (m).

Since IZ I,..(m), we can find an f&1 such that (foL)™(0)#0. The H"
factorization theorem shows f = bg, where b is a Blaschke product and g € H™ has
no zeros in D. By Lemma 2.2 [HOF], we cannot have g(m)=0, because then g
would have to vanish identically on the Gleason part containing m. Hence
5(m)=0, and b € I, because g is invertible modulo I. A theorem of Hoffman
(Theorem 5.3 [HOF]) now provides us with interpolating Blaschke products
bi, ..., b, with By(m)=---=b,(m)=0and a Blaschke product b, with by(m)#0,
such that b =by- b, --- + b,. We conclude b,- -+ - b, €L

Now is a good time to make the following remark. Applying our considerations
" this far to the special case I = I, (m), we find that I, (m) = (ker m)", where (ker m)"
denotes the set of all products fi- -« -f., fi €kerm, which is the smallest
conceivable candidate for the nth power of the maximal ideal ker m.

Let us carry on with the proof, and choose a b, 1 = k = n. Denote by {z;x};-0 the
(interpolating) sequence of zeros of by. For an arbitrary open neighborhood U of
m, let b,y be the (interpolating) Blaschke product corresponding to the subse-
quence {z,.}j-oN U. Then by y - -+ - b,y €I for every open neighborhood U of
m, since the closure of an interpolating sequence equals the zero set of the Gelfand
transform of the corresponding Blaschke product (Lemma IX.3.3 in [GAR]), and
two disjoint subsequences of an interpolating sequence always have disjoint
closures in J{(H™) (Theorem X.4.1 [GARY]). Since b, is interpolating,

H*/bH™=I"(N)= C(BN),

where BN denotes the Stone-Cech compactification of the nonnegative integers N.
By a theorem of Silov (the corollary is §36 of [GRS]) which we apply to the algebra
C(BN), the H"-ideal generated by the functions b,y with U varing over all open
neighborhoods of m is dense in the maximal ideal ker m. That is, given an arbitrary
h € H” with h(m) = 0, there exist for every £ >0 an open neighborhood U(e) of
m and a function g. € H™ such that

| v 8 —hll<e.

It is now fairly obvious ihat every function in I,(m)= (ker m)" can be approxi-
mated by expressions of the form

bl.U' e 'bn,U'g, gEHxa

which belong to I, of course. Since I is closed, the assertion now follows.
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Remark 2.6. Employing some of the arguments used in the proof of
Theorem 2.5, one can easily show that every closed ideal in H™ that contains an
interpolating Blaschke product equals the intersection of those maximal ideals
which contain it.

An antisymmetric set for the Douglas algebra H"+ Cisaset SCHM(H + C)=
M(H™I\D such that whenever f&€ H™+ C and f{s is real valued, then f]s is
constant. A set that is maximal with respect to this property is called a maximal
antisymmetric set. The maximal antisymmetric sets for H™ + C are much smaller
than the fibers J#,(H™), |a|=1. For a general primary ideal, we can say the
following.

Proposition 2.7. If Iis a primary H -ideal at a point in M(H™)\D, there is a
unique maximal antisymmetric set S for H™ + C such that I contains all functions in
H~™ that vanish on S.

Proof. After a simple rotation, we may without loss of generality assume that
h(I, H?)C #,(H™). Our first step is to show that I contains all functions that vanish
on ,(H™). By Theorem 2.2, it will be sufficient to show that the Gelfand transform
of the singular inner function k has more than one zero in M (H™) if a(I)>0. Of
course, all zeros of k lie in /,(H~). Choose an interpolating sequence {z,}; on the
interval [0,1). Then k(z,)—0 as n —%, so k vanishes on the cluster set in #((H")
of {z,}5, which is homeomorphic to BN\N [GAR, p. 190], where BN is the
Stone-Cech compactification of the nonnegative integers N. Since 8N is very huge,
k clearly vanishes at more than one point.

Now we know that I D{f&€ H™: f’,«,(m)EO}. Consider the closed (H™ + C)-
ideal

J={fe "+ C: f l,m(n“)ie I ,m(H“")},

which has the property that J N H™ = I. Bishop’s decomposition theorem for ideals
[GAM 1, p. 61], which is due to Glicksberg, states that a function f&€ H”+ C
belongs to J if (and only if) f {s eJ l s for every maximal antisymmetric set S for
H™ + C. Itis not hard to see that the fact that I is a primary ideal in H~ entails that J
must be primary in H™ + C. Now J [s =H"+C | s=H" [s for all maximal antisym-
metric sets S not containing the singleton h(J, H™+ C) = h(I, H"), because J ls
would not be contained in any maximal ideal of H~ ls. This is so because
/M(Hm{s)zs [STO 2, pp. 118-119]. Hence in order to check that a function
fEH"+C is in J it suffices to check that f ,s eJ Is for the unique maximal
antisymmetric set S that contains h(J, H™ + C). If we restrict our attention to H™
functions and recall that J N H™ = I the assertion follows.

Remark 2.8. I recently learned that Pamela Gorkin, in collaboration with
Raymond Mortini, has used Proposition 2.7 and a factorization theorem of Sheldon
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Axler to prove that every primary ideal at a point in the Silov boundary is maximal,
so the only case of Problem 2.4 that still evades us is when the ideal is primary at a
point outside the Silov boundary whose Gleason part is trivial. This result will
appear in a paper by Raymond Mortini, which also includes a similar result about
closed prime ideals in H™.

3. An epimorphism

The following is the program I wish to carry through. Throughout this section, B
is an admissible algebra on some bounded domain W.Let A be a closed subaigebra
of B which contains the unit and the coordinate function z, and let I be a proper
closed A -ideal. Lucien Waelbroeck [WAE 1] provides us with a morphism (= a
continuous homomorphism mapping unit on unit) 0(Z(I, A))— A/I taking z onto
z + I, which we will call the HFC (holomorphic functional calculus) morphism. If
B =[A, BN O(Z(I, A))], the algebra generated by A and B N 0(Z(1, A)), and the
canonical epimorphism (= surjective homomorphism) A — A/I and the HFC
morphism are compatible in such a way that they define a continuous epimorphism
L:: B— A/I, the quotient Banach algebras A/I and B/ker L, will be canonically
isomorphic, It is natural to link I and ker L;. If this can be done for a large class of
closed A-ideals, we would have a very satisfactory situation.

In the sequel, W will be a bounded planar domain, and two planar domains W,
and W, will be given, of which W, is bounded, such that W, N W, = W and
W, U W, = C. We will assume that W, is not dense in C. It is not hard to construct
two unique continuous projections P O(W)— O(W,) and P,: O(W)— Oy(W-)
that add up to identity; the uniqueness follows from Liouville’s theorem. Indeed,
let {V,}; be a growing sequence of finitely connected smoothly bordered subdo-
mains of W, such that V, contains C\ W, and U._, V., = W, and define

Pi@ =5 [ €-af@d  zeV.

aVy

This expression is independent of the chosen YV, and defines a continuous
projection O(W)— O(W,). A similar formula shows that there exists a P,, and that
P, and P, add up to identity. Clearly, P, takes H*(W) onto H*(W)), and P, takes
H*(W) onto Hg(W>).

Recall that B was an admissible algebra on W. Put By=B N H (W), B, =
B N H*(W,), and B = B N H(W,), which we equip with the obvious norms; then
B., B, and B are Banach subalgebras of B.

We have arrived at a point where it is convenient to specify our assumptions on
B. We assume that B, and B, are admissible algebras on W, and W2, respectively,
and that B = B, B?, meaning B =B, + B3 and BiN B ={0}. An equivalent
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formulation of the condition B = B, @ B is that Py(B)C B. By the closed graph
theorem, B, and B3, and consequently B, are closed subalgebras of B.

Now assume [ is a proper closed ideal in B,. B, will play the role of A in the
previously  described general setting. Waelbroeck’s HFC  morphism
O(Z(1, Bi))— Bi/I which takes z onto z + I, gives us a continuous homomorphism
B5— By/1if Z(I, B,)C W,. And the image of an arbitrary f € BY is by his definition
[WAE 1, p. 517]

__1__ v ~1 & o
e [ ==
aty

where UCCW, is some finitely connected smoothly bordered domain which
contains Z(I, B,). Denote by L, the linear mapping B = B, B~ B,/I defined to
be the canonical epimorphism on B, and the HFC morphism on B5. L, is
continuous by the closed graph theorem.

Lemma 3.1. LetIbeaclosed B-ideal such that Z(I, B,) C W,. If O(W, U {})
is dense in B,, L, is a continuous epimorphism B — B\/I.

Proof. By the holomorphic functional calculus, the assumption that O(W, U
{}) is dense in B, entails that finite linear combinations of (z — ¢)™', { EC\ W,
form a dense subspace of B3. In order to show that L, is a homomorphism, it will be
sufficient to show that

Li(z=0" H=L{(z= ") Li(f)

for all f € B,, { € C\ Wa. So, let f € B, and { € D\ W, be arbitrary. Since the HFC
morphism takes z onto z + I,

Li((z=¢))=(—-¢+D)7"
Since C\W,C W,, T;f, which was defined in Section 1, will belong to B and

H*(W)), and consequently to B,. By the definition of T;f, (z — {)T:f = f — f({),
and hence

L(TH=(-f(O+Dz-¢+D)7"
Now the formula
Li(z =07 )= LT+ f(OL (= ¢))
does the rest of the job.

Unfortunately, the assumption of Lemma 3.1 is pretty restrictive; for example, it
is not satisfied for B = H”(W). However, there is a cure for this difficulty, as we
shall see.

For the time being, let V| and V, be two finitely connected smoothly bordered
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domains such that
C\W,C V,CC W,
C\W,C V,C V,CW,, and
VinV.=2.

Definition 3.2. The algebra B satisfies the SD condition with respect to
(Vi, V,) if there exist an admissible algebra B® on W,N V, and an admissible
algebra B® on V,N W,, such that B® N H*(W,) = By, and B N H* (W)= B..

Remarks 3.3. (a) SD stands for shrinking domain.
(b) By the holomorphic functional calculus, B ® contains B, and B contains B,
and hence both contain B as a subalgebra.

Proposition 3.4. IfB satisfies the SD condition with respect to (V\, V2), Liisa
continuous epimorphism B — Bi/I that is canonical on B, for every closed Bi-ideal 1
with Z(I, B))C W-.

Proof. Let U be some finitely connected planar domain with smooth bound-
ary such that V.U Z([,B)CUC {J C W,. We intend to show that BiD Ao(U) is
an admissible algebra on W, N U. Clearly, H*(W,)@® A(U) is a uniform admis-
sible algebra on W; N U containing B, Au(U). Our first step is to show that

B. P A(U)=B"nN (H™ (W) P A1)

Let P, and P, denote the natural projections of H (W)@ Ai(U)onto H *(W,) and
Ao(U), respectively. If f€ BN (H*(W,)® Ay(U)), the holomorphic functional
calculus tells us that P,f € Ay(U) belongs to B®, and hence P.f € BN H*(W\) =
B,. The other inclusion is evident since A«(U)C B®, and the conclusion follows.
So far we have shown that B,@ A«(U) is a Banach subalgebra of H*(W, N U ). To
show that B, € A,(U) is an admissible algebra on W, N U, the only condition that
needs verification is (b) of Definition 1.1. So, assume m is a complex homomorph-
ism on B, AJ(U) such that m(z)=« for some a € W,NU. Since B, is
admissible, m(f) = f(«) for each f € B:. The same holds for f € Ao(U), and we're
done.

Since Z(I, B,) C U, we can define L; on the larger algebra B, Ao(U ). It follows
from Lemma 3.1 and Mergelyan’s theorem that L is a homomorphism, and since
we know L; to be continuous and surjective, the assertion follows.

We will now present a simple factorization technique that will prove useful.
Introduce the notation

Zof)={z€Q: f(z)=0},  fEO@)

for arbitrary planar domains (2.
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Lemma 3.5. Assume B satisfies the SD condition with respect to (Vy, V3), and
let f be a non-identically vanishing function in B. Then, for any set E, V,CEC
C\'V\, there exist f, € B, and f2€ B: such that f = f, - f,, Zuw,(f,) = Z (f)NE, and
Zw(f2) = Zw (\E.

Proof. Observe that Z,, (f) is a countable set of isolated points in W, since f
does not vanish identically. According to a theorem of Weierstrass (see [BUR], p.
237), there exist two functions, ¢, € O(W,) and 2 € O(W, U {ec}), such that

Zw(p)=Zy, (HNE and Zwp2) = Zy (O\E,

and the zeros of ¢, - ¢, have the same multiplicity as those of f; then

fller- @) € (O(W))™.

We would like to take the logarithm of f/(¢, - ©), but unfortunately, this may turn
out not to be a well-defined holomorphic function, since W is not simply connected.
There is a way to get around that difficulty. Choose two finitely connected smoothly
bordered domains U,, V,C U,ccW,, and U, V,c U.C U,C W,, such that
UUU,=C.ThenU=U,N U, is easily seen to be a finitely connected subdomain
of W with boundary oU = gU, U aU.. Clearly, P, and P, extend to be continuous
projections O(U)— O(U,) and O(U)— O(U,), respectively, adding up to identity.
Since U is finitely connected and smoothly bordered, it is not hard to find rational
functions h, € (O(U,)) " and h, e (O(U> U {}))" such that the winding number of

(@ @2 i+ hy) € (O(U))!

is zero around each component of C\ U. This enables us to form a logarithm of it in
O(U), which we denote by g. We have obtained a factorization f=f,- f, on U,
where

fi=e@h,exp(P,g) € O( U) and
) = (Pghz exp(Pzg) & @(Uz ] {oo})

As soon as we have shown that f; € B, and f2 € B,, the assertion will follow, since
fi=flf€ O(W,) and f2= f1fi € O(W,) have the correct zeros. By the choice of E,
fir€E(@(V))" and fE€(0(V,)), and the holomorphic functional calculus tells us
that f,€(B®)™ and f, € (B®)". Hence

f| =f/f2€ B(')ﬂ O(Ul U (Wﬂ Uz))z B(')ﬂ @(Wl)z B(l)ﬂ I'IW(W])= Bl.

A similar argument for f> does the trick.

Now let J be any nonzero ideal in B. Then, according to Waelbroeck [WAE 2],
there exist two unique B-ideals Ji and J; such that

() Z(J,B)=Z(J,B)NE,

(i) Z(J, B)=Z(J,B)\E, and
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Gi)) J=J,NJ,
where E is as in the formulation of Lemma 3.5. If J is closed, J, and J, are closed,
too.

Proposition 3.6. AssumeB satisfies the SD condition with respect to (V1, Va),
and let J be a nonzero ideal in B; J, and J, are as in (i)-(ii). Then each f € J has a
factorization f = f, f>, where fi€J. N B, and f>€ J:N Ba.

Remark 3.7. The functions f, and f. can be chosen as in Lemma 3.5.

Proof of Proposition 3.6. By Lemma 3.5, fi € B, and f, € By, s0 it remains
to show that f, € J,and € Jo. In order to obtain this conclusion, we will first show
that f,- B+J,=Band f,- B+Ji= B. We will only attack the first relation, since
the second one is verified in exactly the same manner. Since the left hand side is an
ideal, it suffices to show that it is not contained in any maximal ideal. So, let
m € M (B) be arbitrary. In order to annihilate J,, m must belong to h(J>, B). Since
B, is an admissible algebra on W, fi€B, and m(z)€ 2(h(J, B))=
Z(J,, B)C W,, we have that m(f,) = fi(m(2)). The observation that f1 has no zeros
on Z(J, B) rules out the possibility that m can annihilate f,- B +J,, and the
assertion follows. Hence there exist g, g2 € B such that gfi—1€hand g.fp— 1€
J.Since fEJ, f-g=fi-(f- g) € J, and applying the second of the last-mentioned
relations, we obtain f, € J;; similarly, f> € J,. The proof is complete.

Remark 3.8. Proposition 3.6 tells us that J equals (JN By)-(JN B,) in the
strongest conceivable way, since trivially,

(JlmBy)'(Janz)C.Il'JzC ];ﬂ];»:.f

Definition 3.9. The algebra B is said to satisfy the full SD condition if to
each open neighborhood Q of C\ W, there exists an admissible pair (Vi, V2) with
respect to which B satisfies the SD condition, such that V, C .

For a proper closed B-ideal J with Z(J,B)C W, let A;: B—> B/J be the linear
mapping defined to be the canonical quotient mapping Bi— (B + DN/J on By, and
the HFC morphism

BS— 0(Z(J,B))— B/J

on BS. A, is continuous by the closed graph theorem. In case J contains some
closed By-ideal I with Z(I, B,)C Wa, A, is the composition of L; and the canonical
homomorphism Bi/I— B/J.

Proposition 3.10. If B satisfies the full SD condition, A, coincides with the
canonical epimorphism B — B/J for all closed B-ideals J with Z(J,B)C W..

Proof. Recall that by definition, A, is canonical on By, and
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M =g | €240

for f € B, where U CC W, is some finitely connected smoothly bordered domain
which contains Z(J, B). Since

IG=z+07=00¢1)  as|¢]—o,

and the functions in BY tend to 0 as [{]—, we have the same formula if U is
exchanged by its union V with the unbounded component of the complement C\ U.
It will be sufficient to prove that

Af=f+J,  feB:.

By assumption, we can choose an admissible pair (Vi, V,) with respect to which B
satisfies the SD condition, such that V, CC Wi\ Z(J, B). By Proposition 3.6 and
Remark 3.7, there exists a function ¢ €J N B, which has no zeros on V.. Then

Lo(z)=(e(2)—@(W(z—¢), zeW,

belongs to B, for ¢ € C\V,D V, and varies continuously with ¢, because B
satisfies the SD condition with respect to (Vy, V,) and because the norm on B, is
equivalent to the natural one on B® N H™( W1). One easily checks that T,p/e(¢) is
a function in the coset ({ — z + J) " foreach { € V,. Readjusting our choice of U,
we may assume C\V C V.. By a simple calculation,

3t | oo @ 1O =)= o) 5 [ D ceway

av
for f € B3, and if we can show that the function
1 j’ f(£) .
zb 5 v dg,
2mi J o(O)({—2)

av

zewny,

is (the restriction to W,NV of a function) in B, the proposition will be
accomplished. This latter function equals P,(f/¢), where P, is the natural projec-
tion O(W,N V)— O,(V). Since ¢ €(0(V,N W,))™', the holomorphic functional
calculus tells us that ¢ € (B®)™!; hence flo € B®, and

Pyflo) € B® N O(W2) = B® N Hy( W.) = BS.

It is time to state the main result of this section. For a By-ideal I, I - B denotes the
B-ideal generated by I.

Theorem 3.11. Assume B satisfies the full SD condition. Then
(@) The mapping Iv»1-Bisa bijection from the set of all closed B,-ideals I with




156 H. HEDENMALM

Z(I,B,)C W, onto the set of all closed B-ideals J with Z(J,B)C W.. Also
Z(I- B,B)=Z(I, By), and the inverse mapping is given by J = JN B..

(b) L, is a continuous epimorphism B v B/l that is canonical on B, with kernel
I - B for all closed By-ideals I such that Z(I, B;)C Wa.

(c) The quotient algebras B,/I and B/I-B are canonically isomorphic for all
closed Bi-ideals I with Z(I, B;)C Wa.

Proof. First we check (b). That L; is a continuous epimorphism that is
canonical on B follows from Proposition 3.4. It remains to check that its kernel is
I - B. Obviously, ker L; D I B, since L; is canonical on B, and continuous, so part

of the assertion is that I - B is closed. To simplify the notation, write J = I B. Since
obviously

Z(J.B)=o(z +J,BlJ)Co(z + LBJI)= Z(I, B).

A, is well defined. More or less by the definitions of L; and A;, the composition of
L, and the canonical homomorphism B,/I—> B/J coincides with A;. By Proposition
3.10, A, coincides with the canonical epimorphism B— B/J, and it is now
immediate that ker L; = J. Since L, is canonical on B,, JN By =1 If we select an
admissible pair (Vi, V1), with respect to which B satisfies the SD condition, such
that

V. CC Wi\ Z({J, B),

Proposition 3.6 tells us that J=(JNB,) B=1I:B, and (b) follows.
Let us turn our attention to (c). For a closed Bi-ideal with Z(I, B))C W, the
epimorphism L; induces 2 Banach algebra isomorphism

I,: B/ker L, =B/I-B— Bi/L

Since L, is canonical on By, (L)™' must coincide with the canonical homomorphism
B,/ I—-B/I-B.
Finally, we attack (a). While proving (b), we discovered that

I-BNB,=1-BNB, =1

for closed Bj-ideals I with Z(I, B))C Wa, which makes the mapping I~ I-B
injective. We claim that it is surjective, too. So, let J be an arbitrary closed B-ideal
with Z(J, B) C W,. Keeping the previous choice of (V1, V.,), Proposition 3.6 tells us
that J = (J N B,)- B, and if we can show that J N B, satisfies Z(J N By, B1)C Wa,
the claim will follow. But this is obvious from the fact that J N By contains a
function which is nonzero on V., which is true because of Proposition 3.6 and
Remark 3.7. The only thing that remains to be verified is that Z(I- By, B)=
Z(I, B,) for closed B-ideals I with Z(I, B;)C Wa. We have already obtained the
inclusion Z(I - B, B)C Z(I, B:). To obtain the reverse inclusion, let m, € h(I, B1)
be arbitrary. Then m=L7i(m)€E (I-B)" is a complex homomorphism in
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h(I-B,B)=(I-B) N(B), the restriction to B, of which is m., since L, is
canonical on B,. Here, L%: I*— B* is the adjoint mapping of L,. Since Z(m)=
m(z) = m(z), we conclude that Z(I - B, B) = Z(I, B,). The proof of the theorem is
complete.

Remarks 3.12. (a) Assume B satisfies the full SD condition. For a closed
B-ideal J, let J, and J, be as in (i)-(iii) preceding Proposition 3.6. By Theorem 3.11,
Z(J.NB,B)=Z(J,,B)CW,, Ji={n By)- B, and the quotient algebras,
B\/J:N B, and B/J, are canonically isomorphic. We can change the roles of B, and
B, by a simple Mobius transformation C U {e}— C U {oc}, at least if we slightly
strengthen our assumption on B, so a similar statement can be made for J,. In a
sense, the problem of determining the closed ideals of B is solved once we can solve
it for B, and B,.

(b) Under the assumption of Theorem 3.11, L, is the only epimorphism
B — B,/I that is canonical on B,, for every closed B,-ideal I with Z (L, B)C W,,
This follows from the fact that ker L; = I - B by a simple argument. If @ is such an
epimorphism, ker ® must contain I - B, and since B = B, + I - B, ® must equal L,.
The adjoint mapping L%: I*— B* furnishes the functionals in I*(C BY) with
unique extensions in B* which annihilate I - B.

(c) It is not hard to check that Theorem 3.11 applies to the algebras H, (W)=
{f€e H(W): f”€ H(W)} and A, (W)={f€ A(W): f€ A(W)}. Since A, ()
is isomorphic to A, (D) in the obvious sense if ) CCC is simply connected and has
sufficiently smooth boundary, (a) shows that Boris Korenblum’s [KOR] description
of the closed ideals in A, (D) carries over to A, (W) for a class of finitely connected
domains W.

(d) A suitable application of Theorem 3.11 is to analytic Beurling algebras on the
integers

I'(w,Z)= {(a,,)fm: 2 [a, | w, <°°} )

supplied with convolution multiplication, where w = (w,)"..is a positive submulitip-
licative weight (see [GRS], §19). The algebra I'(w,Z) is analytic if

a = lim w,"<lim w,"= g,
so that its maximal ideal space is homeomorphic to the annulus {z €C: a <|z|=
B}. The natural decomposition of ['(w, Z) is

U'(w,Z)=1'"(w,N)D I'(w, Z).
The SD condition of Theorem 3.11 is met if w, = a"v, for n <0 and w, = B" v,

for n =0, where the sequence {v,}Z.. is submultiplicative. It is possible to construct
an analytic weight w such that ['(w, Z) does not meet the full SD condition.
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For results on the structure of the closed ideals in I'(w,N), see Feldman [FEL],
Gurarii [GUR], and Hedenmalm [HED]. For the specific weight w, =1, Feldman
characterized the closed primary ideals in terms of their annihilators, which
consisted of a certain class of entire functions restricted to N. By (b), the annihilator
of the I'(w,Z)-ideal generated by a primary [ '(w, N)-ideal I at some point z, €T
can be identified with I'* in the sense that (I #1'(w, Z))" consists of the restriction to
Z of the entire functions in I*.

4. Infinitely connected domains

The title of this section might be slightly misleading since, strictly speaking, we
did not make any assumptions concerning finite connectivity back in Section 3. But
we did assume that the intersection of the boundaries of W, and W, was empty. We
will not do so this time, and it will be necessary to make use of the estimate of
I(z = ¢ +I)"|| obtained in Section 2 in a crucial way. We will study a fairly
restricted subclass of those infinitely connected domains, or rather H” on them, for
which Michael Behrens [BEH] obtained the corona theorem.

Let {¢}; C (0, 1] be some strictly decreasing sequence tending to 0, and let {D;};
be a sequence of disjoint closed subdiscs of the open unit disc D such that D; is
centered at 1—¢;; we denote the radius of D; by r.

Moreover, we will assume that there exists a hyperbolically-rare sequence {A Y6
of disjoint closed subdiscs of D, such that A; has the same center as D, the radius R;
of A; is > r;, and 25 r;/R; <. By Behrens’ [BEH] definition, this means that there
are disjoint closed discs A; with centers 1 —¢; such that A; C A;C D, and such that
S5 R;/rad Aj< . Then 27 R;/¢; <%, and {D;}s is hyperbolically-rare in D, too.
Behrens obtained his results without the assumption that the sequence {A;}s be
hyperbolically-rare, so our situation is slightly more restrictive than his.

Put

v=c\ U D\,
U=c\ U A1), and

W=DNnV=D\ U D.
0

The existence of nontangential boundary values of bounded analytic functions on
this type of domains was settled by Zalcman [ZAL, §2]. For f€ H"(DN U) and
jEN={0,1,2,...} we define

1 5) .
0f(z) =5 f ;fi_%dg, z€C\A,.
a4;
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Then Q; is a continuous projection of H*(D N U) onto Hy(C\A;), the ideal in
H™(C\A;) of all functions vanishing at «, and Behrens shows in [BEH, §2] that for
f€ H*(DN U), the expression

0fz)=F Of),  ze€U

converges, uniformly on compact subsets of U, to a function in Hy(U); here we
needed our assumption that {A;}; is hyperbolically-rare. And of course Q is a
projection H*(DN U)— Hy(U). Again according to Behrens [BEH, §2], P=
I— Q is a projection onto H”(D). Here I denotes the identity operator. It should
be observed that by the generalized maximum modulus principle, H”(D) and
H™(U) are closed subalgebras of H™(D N U). The existence of P and Q shows that

H* (DN U)=H"(D)@ Ho(V),

and the closed graph theorem tells us that P and Q are continuous.

All this could have been done with V instead of U. For instance, the restrictions
to H (W) of P and Q are continuous projections onto H (D) and Hg(V),
respectively, making

H*(W)=H (D) Hs(V).

For a closed H*(D)-ideal I such that h(I, H*(D)) C 4(,(H"(D)), denote by L, the
linear mapping H (DN U)— H™(D)/I which coincides with the canonical
epimorphism on H”(D) and is defined by the expression

e 1< L IV AN
L'f—27ri,-=§;, (z—¢{+I) f(§)dg
ad;

for f € Hs(U); L, is well defined and continuous (by the closed graph theorem) if

li“ f lz=¢+D)7"||dg] <.

a4;

Let L, be the restriction of L, to H*(W). Since L, is given by the formula

—-___1__ S —_ —1 v 2
L’f“zm',z-;, (z—¢+I)7'f(&)d¢
an;

on Hy(V), one only needs to assume that

2 Iz=¢+Iy"-de] <

aD;
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to ensure that L, exists. For maximal ideals in M(H™(D)), Behrens [BEH] showed
that L, is a (complex) homomorphism. Recall that a(-) was introduced in Section
2.

Lemma 4.1. LetIbe a closed H"(D)-ideal with h(I, H*(D)) C M,(H"(D)). If

z(ﬁ/si)exp(a(l)(ej YY) <o,

which is automatically satisfied when a(I)=0,

S [ Ie-cenl-lag) <=

If

S (Ry/e)exple(D(g ~ RY )<,

=0
which is automatically satisfied when a(I)=0,
S [ -g+ 071 dg | <

=0
ah;

Proof. We will only show the first part of the lemma, since the verification
process for the rest is identical. By Proposition 2.3,

Iz = ¢+ D' [=40 -1 explay|1=¢D,  {ED.
Since r; = o(g;) as j—> %,
> f H(z-—<:+1)”‘u-|dcl§8ﬂj:Z,rf<s,~—ri)“-exp(a(r)/(s,—n))<oo

=0
aD;

as asserted.
Lemma 4.2. H*(V)C A(U).
Proof. This follows from Lemma 2.3 in [BEH].
Proposition 4.3. Let I be a closed H®(D)-ideal with h(I, H"(D))C
M(H™(D)). If
3 (R e exp(a(Di(e ~ R)) <=

which is automatically satisfied when a(I)=0, L, is a continuous epimorphism
H*(W)— H™(D)/L
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Proof. Let us first remark that by Lemma 4.1, [, is well defined and
continuous, and consequently L, is, too. Since the surjectivity of L, is obvious, it
suffices to show that it is a homomorphism. By Theorem 10.5 [GAM 1], rational
functions with poles off U are dense in A (U), and, as a consequence, finite linear
combinations of (z —¢)™', (¢ €C\U = U, A}, form a dense subspace of Ay(U).
Computational verification shows that

Lz=)Y=@-¢+D)"
for { €C\U, and that
L(z=&) @=L =@ -6+ D'z —&L+1I)"

for ¢, &, €C\U. Hence L, is a homomorphism when restricted to Ay(U).
Our last step will be to show that

Li(fe)=Li(f)-Li(g) for fEH(D) and g€ Ay(U).

The assertion will then follow because Hy(V)C Ay(U), by Lemma 4.2. Since a
dense subspace of Ay(U) is spanned by the functions (z — ¢)™', ¢ € C\ U, it suffices
to show that

Liz=¢)" =Lz = &L
=(z—¢+Iy(f+ D),

for all f€ H"(D) and { €C\U. To do this, choose a function f € H*(D) and a
¢ € C\U. Recall the notation

Tf(z)=(f(2)- fMz—=¢),  z{E€D, z#¢&
This is a function in H*(D), so the relation
(z—OTf=f~f({)

shows that

L(Tf)=(z={+ D' (fF - f(O)+ D),
and since

=7 f=Tf+(z =)' f()

in H*(W), we can conclude that

Lz=' )= (= ¢+ D¢+,
as desired.

Remark 4.4. Let I be a closed H™(D)-ideal with h(I, H*(D)) C #,(H"(D))
such that a (I) = 0. Then for every f € A(U), L;f = f(1)+ L To see this, recall that
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by Proposition 2.1, I contains the closed ideal
L={fe H" fim)=0forall me MAH™(D))}
Since z—1€1,, z—¢+I=1—-¢+1 for { €C, and consequently,

Lf=S50 [ G-evrDrroa

=S5k [ w-orenrow

=Y 0f+1

= f()+1

for f € A(U) (D Ho(V)).
We shall use the following lemma, the simple proof of which was kindly
communicated to me by Harold S. Shapiro.

Lemma 4.5. Suppose we have N functions fir..., fn €EH(D) such that
SN 1f.(2)|=1 on the sequence {1—¢}i. Then there exist functions gi,..., 8 €
H”(D) such that

N

> f1(2)8.(2)

n=1

=1 on {1—¢gls.

Proof. By the Schwarz inequality,

$ 1@ 5 I @FEUN

on {1— g} Since the sequence {1—gs is real, the choice
g,,(z)=N-f,,(z'), z€D, n=1,...,N,
meets all the required conditions.
We now state the main result of this section.

Theorem 4.6. Let I be a closed H(D)-ideal with h(I, H*(D)) C M,(H™(D)),
and assume

S: (R fe)expla(Di(e ~ R) <

which is automatically satisfied when a(I)=0. Then
(a) L; is a continuous epimorphism H*(W)— H*(D)/I.
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(b) The quotient algebras H*(D)/I and H”(W)/ker L, are canonically isomorphic.

(€) kerL,NH*D)=1.

(d) If h(I, H"(D)) and the closure of {1 — g;}; in M(H"(D)) are disjoint subsets of
M(H™(D)), then a(I)=0 and kerL, = I- H*(W)=1- H (W) (W); consequently,
Ly is the only homomorphism H"(W)— H"(D)/I whose restriction to H"(D)
coincides with the canonical epimorphism H*(D)— H™(D)/1.

Proof. (a) is the statement of Proposition 4.3. To obtain (b), mimic the
argument proving part (c) of Theorem 3.11. (c) is immediate since L, is canonical on
H*(D).

Finally, we turn our attention to (d). By a compactness argument, we obtain
finitely many functions fi,..., fv € I such that

N
Zl [f.(z2)]z1  on{l-g}.
But then at least one of f,,..., fx, say f,, must satisfy
a({fi) = —limsup (1 - 1)log|f(1)| =0,

making a(I) = 0. By Lemma 4.5, there exists a function ¢ € I such that |¢|=1 on
{1 - ). According to Lemma 2.4 in [BEH], or even simpler, by the elementary
estimate

le'I=Tel=2]leld-]¢)", (€D,

which is a consequence of Schwarz’ lemma, |¢|=3 on U_. A, if k is sufficiently
large. So, ¢ may have finitely many zeros on U,’:(: A;. Let b be a finite Blaschke
product having those very zeros with the same multiplicity. Then ¢/b € H”(D)
satisfies | /b | = 8 on U, A, for some & >0, and it is easily checked that ¢/b € I
(multiply by b and observe that b is invertible modulo I). Hence we may assume
without loss of generality that our ¢ € I was chosen so that | ¢ [=10on U[_,A,.

It is easy to check that — T;p/¢({) belongs to the coset (z — ¢+ 1) for { €D
such that ¢({)#0, and in particular for { € U:;o 4A;. Pick an arbitrary f € H*(V).
The estimate

ITel=2lella-I¢))", ¢e€D,

shows that the sum

Ill

Lif=30= 3 [ (- Tete@r

aD;

converges in the norm of H”(D), remembering that [¢|=1 on U}, A;, and our
assumption X/ r;/g; <. Modulo I, L{f equals L,f. A calculation shows that
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5 [ CTe@le@@d = 0f) - o0 (1))

aD;

for z €D\D,, where, perhaps somewhat incorrectly, Q;(f/¢) denotes the
H3(C\ D;) tunction

010D =5 | s ZEOD:

aD;

For z € A\ D,

1 _ @& 4
f@e(z) =75 J ¢(§)(§—Z)ds’

a(Aj\Dj))

and consequently,
1O (fle)l= sup, | O (fle)(2)]
=|fll- L+ RH(R; = 1)),

which has a bound independent of j since r; = o(R;) as j—> . Applying Lemma 2.1
in [BEH], we find that

;Qi(f/Q’)(Z), ZEYV,

converges, uniformly on compact subsets of V, to a function in H5(V). Summing
up, we have shown that

Lif)= ()= ¢ 3, O(f19)(2)
for z € W, and consequently,
f—LYf eI Hy(V).

Extending L linearly to H*(W) by defining it to be the identity on H™(D), we
obtain

f—-LifeI-Hi(V)
for every f € H(W). Since f € ker Ly if and only if Lif €1, it follows that
ker L, =1+ H*(W).

The uniqueness of L, follows by copying the arguments used in Remark 3.12(b).
The proof of the theorem is finished.
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Remarks 4.7. (a) Itis not hard to modify the proof of Theorem 4.6 so as not
to require Lemma 4.5. That makes it possible to obtain a Theorem 4.6(d) also for
discs not having centers on the real axis.

(b) Denote by ¥ the family of all closed H*(D)-ideals I with h(I, H*(D))C
M(H"(D)) such that h(I, H*(D)) and the #((H"(D))-closure of {1 — &5 are disjoint.
Using Theorem 4.6, it is not hard to show that the image of % under the mapping
I—I- H*(W) consists of those (closed) H*(W)-ideals J for which J N H*(D) & .
It would be nice to have a characterization of the image in terms of the hulls
h(J, H*(W)).

(c) For every m, € M,(H"(D)) Behrens [BEH] described the sets (‘“fibers”)

{m € MH(W)): m |y = Mo}

It would be nice to have the same analysis carried through for non-maximal closed
ideals in H™(D)) with hulls in #(,(H"(D)), too, that is, given any closed H”(D))-ideal
with h(I, H"(D)) C #M,(H"(D)), characterize the set of (continuous if you like)
epimorphisms H*(W)— H”(D)/I, the restrictions to H”(D) of which coincide with
the canonical epimorphism H™(D)— H™(D)/L
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