HÅKAN HEDENMALM (Uppsala, Sweden)

Superalgebras and closed ideals

Abstract. Let A be a Banach algebra (complex, commutative, unital) which is equipped with a collection \mathcal{F} of closed ideals whose intersection is $\{0\}$. For Banach superalgebras B containing A as a dense subalgebra, we define what it should mean that B inherits \mathcal{F} from A. The main result is that there exists a pseudo-Banach superalgebra $\mathcal{A}(\mathcal{F})$ of A such that B inherits \mathcal{F} from A if and only if the injection mapping $A \to \mathcal{A}(\mathcal{F})$ extends to a bounded monomorphism $B \to \mathcal{A}(\mathcal{F})$.

Introduction. All algebras we will consider are assumed complex, commutative, and unital. For a Banach algebra, an ideal theory is a characterization of its closed ideals and the corresponding quotient algebras. In Hedenmalm [2], [3], the ideal theories of closely related Banach algebras were compared in some typical situations. Here, we will explore the same problem from a different angle, namely when one of the algebras is a dense subalgebra of the other.

1. Notation and basic concepts. An epimorphism is a surjective homomorphism, and a monomorphism is an injective homomorphism. Let A be a Banach algebra. We will denote by $\mathcal{M}(A)$ the space of complex homomorphisms on A, endowed with the weak * topology induced by the (topological) dual space A^*; this is the Gelfand space or maximal ideal space of A. Recall that a complex homomorphism is a nonzero homomorphism $A \to C$, where C denotes the complex field. We will denote by $\text{EUN}(A)$ the set of all equivalent submultiplicative unital norms, that is, those equivalent norms p which satisfy

$$p(x \cdot y) \leq p(x)p(y), \quad x, y \in A, \quad \text{and} \quad p(1) = 1.$$

It is well known that this set is never empty.

Bornological algebras will appear in this paper. Good references are Allan, Dales, and McClure [1] and Waelbroeck [4], [5].

The so-called pseudo-Banach algebras (Allan, Dales, McClure [1]) constitute a particularly interesting subclass — they are roughly speaking unions of Banach algebras that are directed with respect to inclusion, endowed with the natural inductive limit bornology.
A linear mapping between two bornological algebras is called bounded if it maps bounded sets onto bounded sets.

A subalgebra A of a pseudo-Banach algebra $B = \bigcup_{\alpha \in I} B_{\alpha}$ (where B_{α} is a Banach algebra for every α in the index set I) is said to be a Banach subalgebra if it is equipped with a norm that makes A a Banach algebra and the injection mapping $A \to B$ is bounded. By the way the bornology on B is defined, a Banach subalgebra A of B must be contained in one of the Banach algebras B_{α}, and by the closed graph theorem, its norm is determined within equivalence. We speak of B as a pseudo-Banach superalgebra of A, or in case B is a Banach algebra, it is a Banach superalgebra of A. B is a minimal Banach superalgebra of A if it is a Banach superalgebra of A and A is dense in B.

Let \mathcal{I} be any family of ideals in an algebra A. For ease of notation, we will use the convention of writing

$$\text{rad}(\mathcal{I}) = \bigcap_{I \in \mathcal{I}} I.$$

2. Preliminaries. Let A be an arbitrary Banach algebra. The following lemma will prove useful.

Lemma 2.1. Suppose $p_1, p_2 \in \text{EUN}(A)$. Then there exists a $p \in \text{EUN}(A)$ such that $p \leq \min(p_1, p_2)$.

Proof. Put

$$B_1 = p_1^{-1}([0, 1]) \quad \text{and} \quad B_2 = p_2^{-1}([0, 1]),$$

the respective closed unit balls. Since p_1 and p_2 are equivalent norms, there exists a $\lambda \geq 1$ such that

$$\lambda^{-1} B_1 \subset B_2 \subset \lambda B_1.$$

Let B be the closed convex hull of $B_1 \cdot B_2$, which is a subset of λB_1 containing $B_1 \cup B_2$. It is easily checked that B is a convex balanced neighborhood of 0 such that

$$B \cdot B = B.$$

Let p be the Minkowski functional of B, which is an equivalent norm on A. Then $B = p^{-1}([0, 1])$, and, by (2.1), p is submultiplicative. Hence $p(1) \geq 1$, but since $1 \in B_1 \cap B_2$, $p(1)$ must equal 1. We conclude that $p \in \text{EUN}(A)$; that $p \leq \min(p_1, p_2)$ is obvious.

3. The problem and its solution. From now on, A is a fixed arbitrarily chosen Banach algebra and \mathcal{I} is a family of closed A-ideals such that

$$\text{rad}(\mathcal{I}) = \bigcap_{I \in \mathcal{I}} I = \{0\}.$$
Let B be a minimal Banach superalgebra of A. Φ_B denotes the closure operation in B. For every $I \in \mathcal{I}$, $\Phi_B(I)$ is a (closed) B-deal, since A was dense in B. We write $\mathcal{J}(B)$ for the image of \mathcal{J} under the mapping Φ_B.

Definition 3.1. We say that B inherits \mathcal{J} from A if
(a) $\Phi_B(I) \cap A = I$ for all $I \in \mathcal{I}$, which makes Φ_B a bijection $\mathcal{J} \to \mathcal{J}(B)$,
(b) $\text{rad}(\mathcal{J}(B)) = \bigcap_{J \in \mathcal{J}(B)} J = \{0\}$, and
(c) the quotient algebras A/I and $B/\Phi_B(I)$ are canonically isomorphic for all $I \in \mathcal{I}$.

Remark 3.2. It should be observed that it follows from (c) of Definition 3.1 that $A + J = B$ for every $J \in \mathcal{J}(B)$, and since $(A + J)/J$ is canonically isomorphic to $A/(J \cap A)$, it follows that $\Phi_B(I) \cap A = I$ for all $I \in \mathcal{I}$. Hence (a) is a consequence of (c).

The object of this paper is to characterize those algebras B which inherit \mathcal{J} from A. Our main result, Theorem 3.8, states that there exists a pseudo-Banach superalgebra $\mathcal{A}(\mathcal{J})$ of A such that B inherits \mathcal{J} from A if and only if the canonical monomorphism $A \to \mathcal{A}(\mathcal{J})$ extends to a (unique) bounded monomorphism $B \to \mathcal{A}(\mathcal{J})$.

It is now our intention to introduce a family $\{\mathcal{A}_p\}_{p \in \mathcal{P}}$ of minimal Banach superalgebras of A such that \mathcal{A}_p inherits \mathcal{J} from A. The main reason for doing so is that we will be able to show that every minimal Banach superalgebra B of A which inherits \mathcal{J} from A is a (dense) Banach subalgebra of some \mathcal{A}_p. The pseudo-Banach algebra $\mathcal{A}(\mathcal{J})$ will be the union of all \mathcal{A}_p.

For all $I \in \mathcal{I}$, we will consider the norms in $\text{EUN}(A/I)$ as seminorms on A. Let $\mathcal{P} = \mathcal{P}(\mathcal{J})$ be the family of all mappings $p : A \times \mathcal{J} \to [0, \infty)$ such that $p(\cdot, I) \in \text{EUN}(A/I)$ and

$$p(\cdot, I) \leq C \cdot \| \cdot \|_{A/I} \quad \text{for all } I \in \mathcal{I},$$

for some constant C independent of I. One should observe that \mathcal{P} is nonempty. By our condition $\text{rad}(\mathcal{J}) = \{0\}$, the expression

$$\|x\|_p = \sup_{I \in \mathcal{J}} p(x, I)$$

is an algebra norm on A for every $p \in \mathcal{P}$. A_p denotes the completion of A in the $\| \cdot \|_p$-norm, which is a (minimal) Banach superalgebra of A. Put

$$\mathcal{A}_p = A_p/\text{rad}(\mathcal{J}(A_p)), \quad p \in \mathcal{P}.$$

If we can show that

$$\text{rad}(\mathcal{J}(A_p)) \cap A = \{0\},$$

the composition of the injection mapping $A \to A_p$ and the canonical epimorphism $A_p \to \mathcal{A}_p$ will be a bounded (= continuous) monomorphism
$A \rightarrow \mathcal{A}_p$. By the definition of the norm in A_p, the canonical epimorphism $A \rightarrow A/I$ has a unique bounded extension $L_I: A_p \rightarrow A/I$, which is also an epimorphism, for every $I \in \mathcal{J}$. Clearly, $\ker L_I \supseteq \Phi_{A_p}(I)$, and since L_I is canonical on A, $\ker L_I \cap I$. The assertion follows, and hence we may regard \mathcal{A}_p as a minimal Banach superalgebra of A.

Proposition 3.3. A minimal Banach superalgebra B of A inherits \mathcal{J} from A if and only if the injection mapping $A \rightarrow \mathcal{A}_p$ extends boundedly to a monomorphism $B \rightarrow \mathcal{A}_p$ for some $p \in \mathcal{P}$.

Proof. We may assume without loss of generality that the norms of A and B are chosen in $\operatorname{EUN}(A)$ and $\operatorname{EUN}(B)$, respectively.

Let us deal with the "only if" part of the assertion first. So, assume B inherits \mathcal{J} from A. Since the norm of B belongs to $\operatorname{EUN}(B)$, the induced norm on $B/\Phi_B(I)$ belongs to $\operatorname{EUN}(B/\Phi_B(I))$, and by (c) of Definition 3.1, its restriction to A is in $\operatorname{EUN}(A/I)$ for every $I \in \mathcal{J}$. Put

$$p(x, I) = \|x + \Phi_B(I)\|_{B/\Phi_B(I)}, \quad x \in A, \ I \in \mathcal{J}.$$

In order to show that $p \in \mathcal{P}$ it only remains to check that

$$p(\cdot, I) \leq C \|\cdot\|_{A/I}$$

for some constant C independent of I. But evidently,

$$\|x\|_B \leq C \|x\|_A, \quad x \in A,$$

for some constant C, since A is a Banach subalgebra of B, and consequently,

$$p(x, I) = \|x + \Phi_B(I)\|_{B/\Phi_B(I)} \leq C \|x + I\|_{A/I}, \quad x \in A, \ I \in \mathcal{J}.$$

Hence $p \in \mathcal{P}$, and since $p(x, I) \leq \|x\|_B$,

$$\|x\|_p \leq \|x\|_B, \quad x \in A,$$

so the injection mapping $A \rightarrow A_p$ extends to a (unique) bounded homomorphism $j: B \rightarrow A_p$. Our next step is to show that j is a monomorphism. Let $y \in \ker j$ be arbitrary. Then there exists a sequence $\{y_n\}^\infty_{n=0}$ in A converging to y in the norm of B. Since $y \in \ker j$, $\|y_n\|_p \rightarrow 0$ as $n \rightarrow \infty$, and consequently $\|y_n + J\|_{B/J} \rightarrow 0$ as $n \rightarrow \infty$ for all $J \in \mathcal{J}(B)$. Hence $y \in \operatorname{rad}(\mathcal{J}(B)) = \{0\}$, and the assertion follows.

We will now show that the composition $l: B \rightarrow \mathcal{A}_p$ of j and the canonical epimorphism $A_p \rightarrow \mathcal{A}_p$ is a monomorphism, too. Let us for simplicity regard B as a subalgebra of A_p. By the definition of the norm in A_p, the canonical epimorphism $B \rightarrow B/J$ extends to a (unique) bounded epimorphism $A_j: A_p \rightarrow B/J$ for every $J \in \mathcal{J}(B)$. Clearly, $\ker A_j \supseteq \Phi_{A_p}(J)$, and since A_j is canonical on B, $\ker A_j \cap B = J$. The assertion follows, since

$$\ker l = \operatorname{rad}(\mathcal{J}(A_p)) \cap B = \bigcap_{J \in \mathcal{J}(B)} \Phi_{A_p}(J) \cap B = \bigcap_{J \in \mathcal{J}(B)} J = 0.$$
Let us turn to the “if” part of the assertion. So, assume B is a Banach subalgebra of \mathcal{A}_p for some $p \in \mathcal{P}$. We have mentioned before that the canonical epimorphism $A \to A/I$ has a unique bounded linear extension $L_I: \mathcal{A}_p \to A/I$, an epimorphism which is canonical on A. Denote by \mathcal{L}_I the restriction to B of L_I, which is bounded since B is a Banach subalgebra of \mathcal{A}_p. We now intend to show that $\ker \mathcal{L}_I = \Phi_B(I)$ for all $I \in \mathcal{I}$. Obviously, $\Phi_B(I) \subseteq \ker \mathcal{L}_I$. Choose a B-Cauchy sequence $\{x_n\}_{n=1}^\infty \subseteq A$ converging to an arbitrary $x \in \ker \mathcal{L}_I$. Then $\|x_n - y_m\|_A \to 0$ as $n \to \infty$ for some sequence $\{y_m\}_{m=1}^\infty \subseteq I$ since $\|x_n + I\|_{A/I} \to 0$ as $n \to \infty$, and it follows that $\{y_m\}_{m=1}^\infty$ is another B-Cauchy sequence converging to x. We conclude that $\ker \mathcal{L}_I = \Phi_B(I)$. Since \mathcal{L}_I is canonical on A, $\ker \mathcal{L}_I \cap A = I$, and A/I and $B/\ker \mathcal{L}_I$ are canonically isomorphic. This shows that conditions (a) and (c) of Definition 3.1 are met. (b) follows trivially, since $\text{rad}(\mathcal{J}(\mathcal{A}_p)) = \{0\}$. The proof of the proposition is complete.

Remark 3.4. A consequence of Proposition 3.3 is the following. Let \mathcal{J} be the set of all closed A-ideals which contain an ideal in \mathcal{J}. Then a minimal Banach superalgebra of A inherits \mathcal{J} from A if and only if it inherits \mathcal{J} from A.

Putting $B = \mathcal{A}_p$, Proposition 3.3 has the following consequence.

Corollary 3.5. For every $p \in \mathcal{P}$, \mathcal{A}_p inherits \mathcal{J} from A.

There is a natural order relation on the set $\{\mathcal{A}_p\}_{p \in \mathcal{P}}$: for $p, q \in \mathcal{P}$, write $\mathcal{A}_q \preceq \mathcal{A}_p$ if for some constant C,

$$\|x\|_p \leq C \|x\|_q, \quad x \in A.$$

Clearly, $\{\mathcal{A}_p\}_{p \in \mathcal{P}}$ is partially ordered by “\preceq”. We have the following result.

Proposition 3.6. For any two $p_1, p_2 \in \mathcal{P}$, there is a $p \in \mathcal{P}$ such that $\mathcal{A}_{p_1} \preceq \mathcal{A}_p$ and $\mathcal{A}_{p_2} \preceq \mathcal{A}_p$.

Proof. For every $I \in \mathcal{J}$, Lemma 2.1 tells us that there exists a $p(\cdot, I) \in \text{EUN}(A/I)$ such that

$$p(\cdot, I) \leq \min(p_1(\cdot, I), p_2(\cdot, I)).$$

Clearly this p will do.

The following proposition tells us that we may regard \mathcal{A}_q as a (dense Banach) subalgebra of \mathcal{A}_p if $\mathcal{A}_q \preceq \mathcal{A}_p$, and therefore the order relation “\preceq” is just ordinary inclusion.

Proposition 3.7. If $\mathcal{A}_q \preceq \mathcal{A}_p$ for two $p, q \in \mathcal{P}$, the injection mapping $A \to \mathcal{A}_p$ has a (unique) bounded extension $\mathcal{A}_q \to \mathcal{A}_p$, which is a monomorphism.

Proof. By the assumptions on p and q, the injection mapping $A \to \mathcal{A}_p$ extends uniquely to a bounded homomorphism $l: A_q \to A_p$. Clearly, this will
define a bounded monomorphism $\mathcal{A}_q \rightarrow \mathcal{A}_p$ which extends the canonical monomorphism $A \rightarrow \mathcal{A}_p$ if we can show that

\begin{align}
(3.1) & \quad l(\Phi_{A_q}(I)) \subset \Phi_{A_p}(I) \quad \text{and} \\
(3.2) & \quad l^{-1}(\Phi_{A_p}(I) \cap l(A_q)) \subset \Phi_{A_q}(I)
\end{align}

for all $I \in \mathcal{F}$, since then

\begin{align}
 l(\text{rad} \left(\mathcal{F} (A_q) \right)) \subset \text{rad} \left(\mathcal{F} (A_p) \right) \quad \text{and} \quad l^{-1}(\text{rad} \left(\mathcal{F} (A_p) \right) \cap l(A_q)) \subset \text{rad} \left(\mathcal{F} (A_q) \right).
\end{align}

For $I \in \mathcal{F}$, denote by $L_{I,p}$ the bounded epimorphism $A_p \rightarrow A/I$ which extends the canonical epimorphism $A \rightarrow A/I$, and let $L_{I,q}: A_q \rightarrow A/I$ be defined analogously. It is easy to see that $L_{I,q} = L_{I,p} \circ l$; just check on A and remember that A is dense in A_q. Thus

\[\ker L_{I,q} = l^{-1}(\ker L_{I,p} \cap l(A_q)), \]

and if we can show that $\ker L_{I,p} = \Phi_{A_p}(I)$ and $\ker L_{I,q} = \Phi_{A_q}(I)$, (3.1)–(3.2) will follow easily from this relation because $l \circ l^{-1}$ is the identity mapping on the set of subsets of $l(A_q)$. It suffices to verify the assertion for $L_{I,p}$ only, since the proof for $L_{I,q}$ would be identical. We will employ the same type of argument as we used in the proof of Proposition 3.3. Obviously, $\Phi_{A_p}(I) \subset \ker L_{I,p}$. Choose an A_p-Cauchy sequence $\{x_n\}_{0}^{\infty} \subset A$ converging to an arbitrary $x \in \ker L_{I,p}$. Then $\|x_n + I\|_{A/I} \rightarrow 0$ as $n \rightarrow \infty$, and hence there is a sequence $\{y_n\}_{0}^{\infty} \subset I$ such that $\|x_n - y_n\|_{A} \rightarrow 0$ as $n \rightarrow \infty$. It follows that $\{y_n\}_{0}^{\infty}$ is another A_p-Cauchy sequence converging to x, and we conclude that $\ker L_{I,p} = \Phi_{A_p}(I)$. The proof of the proposition is complete.

We will regard \mathcal{A}_q as a subalgebra of \mathcal{A}_p if $\mathcal{A}_q \leq \mathcal{A}_p$ ($p, q \in \mathcal{P}$). Let

\[A(\mathcal{F}) = \bigcup_{p \in \mathcal{P}(\mathcal{F})} \mathcal{A}_p, \]

which is a pseudo-Banach algebra when endowed with its inductive limit bornology. We are now ready to formulate our main result.

Theorem 3.8. A minimal Banach superalgebra B of A inherits \mathcal{F} from A if and only if the injection mapping $A \rightarrow A(\mathcal{F})$ extends boundedly to a monomorphism $B \rightarrow A(\mathcal{F})$.

Proof. The "only if" part is clear by Proposition 3.3. On the other hand, if B is a Banach subalgebra of $A(\mathcal{F})$, then B must be contained in some \mathcal{A}_p, $p \in \mathcal{P}$, by the way the bornology on $A(\mathcal{F})$ is defined, and therefore Proposition 3.3 proves the other direction, too.

Examples 3.9. (a) Let A be the disc algebra $A(D)$, which consists of those holomorphic functions on $D = \{ z \in \mathbb{C} : |z| < 1 \}$ that extend continuously to the boundary ∂D, and let \mathcal{F} consist of the ideals $z^n \cdot A(D)$, $n \geq 0$, where z is the coordinate function $z(\zeta) = \zeta$, $\zeta \in D$. Then $A(\mathcal{F}) = \mathbb{C}[[z]]$, the
algebra of formal power series at the origin, and the sets
\[\{ \sum_{n=0}^{\infty} a_n z^n \in C[[z]] : |a_n| \leq M_n \}, \]
where \(\{M_n\}_0^\infty \) ranges over all positive sequences, form a base of the bornology on \(\mathcal{A}(\mathcal{J}) \).

(b) Assume \(A \) is semisimple, and let \(\mathcal{J} = \mathcal{M}(A) \), the set of maximal ideals. Regard \(A \) as a subalgebra of \(C(\mathcal{M}(A)) \). Then \(\mathcal{A}(\mathcal{J}) \) is the uniform closure of \(A \).

4. Acknowledgements. I should like to thank professor Yngve Domar, who aroused my interest in this type of questions. I should also like to thank the Sweden-America Foundation for financial support.

References

DEPARTMENT OF MATHEMATICS
UPPSALA UNIVERSITY, SWEDEN