HÅKAN HEDENMALM

Section 0

Let B_n be the open unit ball of C^n , and let $H^{\infty}(B_n)$ be the algebra of bounded analytic functions on B_n , endowed with the uniform norm on B_n . The ball algebra is the space $A(B_n) = C(\overline{B}_n) \cap H^{\infty}(B_n)$, also given the uniform norm on B_n . We will write $S_n = \partial B_n$, $D = B_1$, and $T = S_1$. For a collection \mathcal{F} of functions in $A(B_n)$, associate the zero set

$$Z(\mathscr{F}) = \{ z \in \overline{B}_n : f(z) = 0 \text{ for all } f \in \mathscr{F} \},\$$

and if $E \subset \overline{B}_n$, introduce the closed ideal

$$\mathscr{I}(E) = \{ f \in A(\boldsymbol{B}_n) : f = 0 \quad \text{on} \quad E \}.$$

In Section 2, we will show every closed ideal I in $A(B_n)$ has the form

$$I = \mathscr{I}(Z(I) \cap S_n) \cap [I]_{w^*},$$

where $[I]_{w^*}$ denotes the weak-star closure of I in $H^{\infty}(B_n)$. However, we have not yet said what the weak-star topology on $H^{\infty}(B_n)$ is. The space $L^{\infty}(S_n)$ is the dual space of $L^1(S_n)$, so it has a weak-star topology. One can think of $H^{\infty}(B_n)$ as a subspace of $L^{\infty}(S_n)$ via radial limits, and it turns out that as such it is weak-star closed. We define the weak-star topology on $H^{\infty}(B_n)$ by saying that a set $U \subset H^{\infty}(B_n)$ is open if there is a weak-star open set $V \subset L^{\infty}(S_n)$ with $U = V \cap H^{\infty}(B_n)$. It is not hard to check that $[I]_{w^*}$ is a (weak-star closed) ideal in $H^{\infty}(B_n)$.

Let us look more closely at the case n = 1. Every weak-star closed ideal in $H^{\infty}(\mathbf{D})$ has the form $uH^{\infty}(\mathbf{D})$, for some inner function u. It follows that every closed ideal I in $A(\mathbf{D})$ has the form

$$I = \mathscr{I}(Z(I) \cap T) \cap uH^{\infty}(D),$$

where *u* is the inner function determined (up to a constant multiple) by $[I]_{w^*} = uH^{\infty}(D)$. This result is known as the Beurling-Rudin theorem [3, pp. 82-89].

Unfortunately, when n > 1, no concrete description of the weak-star closed ideals in $H^{\infty}(\mathbf{B}_n)$ is known. Indeed, it is rather unlikely that one will ever be found. This of course limits the usefulness of Theorem 2.1.

For a function $f \in A(B_n)$, let I(f) be the closure of the principal ideal generated by f, and put

$$Z(f) = \{ z \in \overline{\boldsymbol{B}}_n : f(z) = 0 \}.$$

Say that f is BR-outer if $Z(f) \subset S_n$ and $I(f) = \mathscr{I}(Z(f))$. In Section 3, we will show the following. If $f \in A(B_n)$ is BR-outer, then

$$\log|f(0)| = \int_{\mathcal{S}_n} \log|f| \, d\rho, \qquad (0.1)$$

Received 16 March 1988; revised 28 August 1988.

Bull. London Math. Soc. 21 (1989) 469-474

¹⁹⁸⁰ Mathematics Subject Classification 32E25, 46J15, 46J20.

This research was supported by the Swedish Natural Science Research Council (NFR) and the National Science Foundation (NSF).

for all Jensen measures ρ for 0. If, on the other hand, (0.1) holds for all representing measures ρ for 0, it follows that f is BR-outer. If n = 1, there is only one representing measure, namely normalized Lebesgue measure on T. This yields the well-known result that a function $f \in A(D)$ is BR-outer if and only if it is outer in the sense that

$$\log |f(0)| = \int_{-\pi}^{\pi} \log |f(e^{i\theta})| \, d\theta/2\pi.$$

If n > 1, not every representing measure for the origin is a Jensen measure.

Section 1

Let σ_n denote normalized Lebesgue measure on the sphere S_n , and let $M(S_n)$ be the space of finite Borel measures on S_n . We may regard $M(S_n)$ as the dual space of $C(S_n)$ via the dual action

$$\langle f, u \rangle = \int_{S_n} f d\mu, \quad f \in C(S_n), \quad \mu \in M(S_n).$$

We will write $f\mu$ for the Borel measure with $d(f\mu) = f d\mu$.

A representing measure for 0 is a Borel probability measure on S_n such that

$$f(0) = \int_{S_n} f d\rho, \quad f \in A(\boldsymbol{B}_n).$$

We will denote by $M_0(S_n)$ the convex set of representing measures for the origin. A measure $\rho \in M_0(S_n)$ is a Jensen measure if

$$\log |f(0)| \leq \int_{S_n} \log |f| \, d\rho, \quad f \in A(\boldsymbol{B}_n).$$

Section 2

THEOREM 2.1. Every closed ideal I in $A(\mathbf{B}_n)$ has the form

$$I = \mathscr{I}(Z(I) \cap S_n) \cap [I]_{w^*}.$$

Proof. Let $\phi \in A(B_n)^*$ be such that $\phi \perp I$. By the Hahn-Banach theorem, there is a Borel measure $\mu \in M(S_n)$ such that

$$\langle f,\phi\rangle = \langle f,\mu\rangle = \int_{S_n} f d\mu, \quad f \in A(\boldsymbol{B}_n);$$

then $\mu \perp I$. If we can show that $\mu \perp \mathscr{I}(Z(I) \cap S_n) \cap [I]_{w^*}$, the assertion will follow, again by the Hahn-Banach theorem. By the Glicksberg-König-Seever decomposition theorem (see [5, p. 194]), $\mu = \mu_a + \mu_s$, where μ_a is absolutely continuous with respect to some representing measure $\rho_0 \in M_0(S_n)$, and μ_s is totally singular, that is, μ_s is singular to every representing measure in $M_0(S_n)$. If $f \in I$,

$$f\mu_a + f\mu_s = f\mu \perp A(\boldsymbol{B}_n),$$

so by the Cole-Range theorem [5, p. 198], it follows that $f\mu_s = 0$. This implies that μ_s is supported on $Z(f) \cap S_n$. By varying $f \in I$, we conclude that $\sup \mu_s \subset Z(I) \cap S_n$, and hence $\mu_s \perp \mathscr{I}(Z(I) \cap S_n)$. By Henkin's theorem [5, p. 189], μ_a is a Henkin

measure, so by Valskii's theorem [5, p. 187], $\mu_a = \nu + g\sigma_n$, where $\nu \perp A(B_n)$ and $g \in L^1(\sigma_n)$. Since $\mu_s \perp \mathscr{I}(Z(I) \cap S_n)$, $\mu_a \perp I$, and therefore $g\sigma_n \perp I$. It is clear that $g\sigma_n \perp [I]_{w^*}$, so that $\mu_a \perp [I]_{w^*} \cap A(B_n)$. The desired conclusion

$$\mu = \mu_a + \mu_s \perp \mathscr{I}(Z(I) \cap S_n) \cap [I]_{w^*}$$

follows.

Section 3

Let us recall the definition of the BR-outer functions.

DEFINITION 3.1. A function $f \in A(B_n)$ is said to be *BR*-outer if $Z(f) \subset S_n$ and $I(f) = \mathcal{I}(Z(f))$.

In [4], Rubel and Shields introduced the following class of functions.

DEFINITION 3.2. A function $f \in H^{\infty}(B_n)$ is exterior if $fH^{\infty}(B_n)$ is weak-star dense in $H^{\infty}(B_n)$.

We have the following result.

THEOREM 3.3. The following are equivalent for $f \in A(B_n)$:

- (a) f is exterior;
- (b) f is BR-outer;
- (c) there are $g_i \in A(B_n)$ such that $|g_i f| \leq 1$ and $g_i f \to 1$ normally on B_n ;
- (d) there are $g_i \in H^{\infty}(\mathbf{B}_n)$ such that $|g_i f| \leq 1$ and $g_j f \to 1$ normally on \mathbf{B}_n .

Proof. If f is exterior, we must have $Z(f) \subset S_n$, so that by Theorem 2.1, f must be BR-outer. This shows that (a) implies (b).

If f is BR-outer, there is a function $p \in A(B_n)$ which peaks at Z(f) [5, p. 204], and a sequence $\{h_j\}_0^{\infty}$ in $A(B_n)$ such that $fh_j \to 1-p$ uniformly on \overline{B}_n as $j \to +\infty$. Fix $\varepsilon > 0$. Then

$$f \cdot \frac{h_i}{1 + \varepsilon - p} \to \frac{1 - p}{1 + \varepsilon - p}$$

uniformly on \overline{B}_n as $j \to +\infty$. The norm of $(1-p)/(1+\varepsilon-p)$ is < 1. This means that we can find a subsequence $\{h_{j(k)}\}_{k=1}^{\infty}$ such that the functions

$$g_k(z) = \frac{h_{j(k)}(z)}{1+1/k - p(z)}, \quad z \in \overline{\boldsymbol{B}}_n,$$

have the properties $||fg_k|| \le 1$ and $f(0)g_k(0) \to 1$ as $k \to \infty$. This shows that (b) implies (c). That (c) implies (d) is obvious.

If condition (d) is satisfied, then as $j \to +\infty$, $f(z)g_j(z) \to 1$ boundedly and normally on B_n , so that $fg_j \to 1$ weak-star in $H^{\infty}(B_n)$. It follows that f is exterior, so by Theorem 2.1, f must be BR-outer.

The following result shows that all representing measures behave like Jensen measures on the class of ball algebra functions that are zero-free on B_n .

PROPOSITION 3.4. If $f \in A(B_n)$ has $Z(f) \subset S_n$, then

$$\log|f(0)| \le \int \log|f| \, d\rho$$

for all representing measures ρ for 0.

Proof. Let $f_r(z) = f(rz)$. Then f_r has a logarithm in $A(\boldsymbol{B}_n)$. Thus

$$\log|f_r(0)| = \int_{S_n} \log|f_r| \, d\rho$$

for any such ρ . Now let r increase to 1 and apply Fatou's lemma.

THEOREM 3.5. If $f \in A(B_n)$ is exterior, then

$$\log|f(0)| = \int_{S_n} \log|f| \, d\rho$$

for all Jensen measures for 0.

Proof. By Theorem 3.3, we can find functions $g_j \in A(B_n)$ such that $|g_j f| \le 1$ and $g_j f \to 1$ on B_n . Then $\log |f(0)| = -\lim \log |g_j(0)|$

$$\log |f(0)| = -\lim_{j \to \infty} \log |g_j(0)|$$

$$\geq -\lim_{j \to \infty} \int_{S_n} \log |g_j| \, d\rho$$

$$\geq \int_{S_n} \log |f| \, d\rho$$

because ρ was a Jensen measure and $\log |g_j f| \leq 0$. The reverse inequality is the defining inequality for Jensen measures.

THEOREM 3.6. If $f \in A(B_n)$ satisfies $f(0) \neq 0$ and

$$\log|f(0)| = \int_{S_n} \log|f| \, d\rho$$

for all representing measures ρ for 0, then f is exterior.

Proof. Apply Edward's theorem [1, pp. 3-4] to the function $-\log |f|$, to obtain a sequence g_i in $A(B_n)$ with

 $\operatorname{Re} g_i < -\log |f|, \quad \operatorname{Re} g_i(0) \to -\log |f(0)|.$

Then $h_j = \lambda_j \exp(g_j)$, with $\lambda_j \in T$ suitably chosen, satisfies $|h_j f| \leq 1$ and $h_j f \to 1$ normally.

THEOREM 3.7. For the ball algebra $A(B_n)$, there are representing measures for 0 which are not Jensen measures if n > 1.

Proof. For simplicity, consider the case n = 2 only. Fix a point $\alpha \in D \setminus \{0\}$, and let v_1 be normalized arc length measure on the slice

$$\{\alpha\}\times(1-|\alpha|^2)^{\frac{1}{2}} T = \{z \in S_2 : z_1 = \alpha\},\$$

and let v_2 be given by the formula $dv_2 = P_2(\theta_1) d\theta_1/2\pi$, where $d\theta_1$ is the arc length measure on $T \times \{0\}$, and

$$P_{\alpha}(\theta_1) = \frac{1 - |\alpha|^2}{|e^{i\theta_1} - \alpha|^2}$$

is the Poisson kernel. Then v_1 and v_2 are both representing measures for the point $(\alpha, 0)$. Consider the measure ρ given by the formula

$$d\rho = d\theta_1 / 2\pi + \varepsilon (dv_1 - dv_2),$$

which is a representing measure for 0 if $\varepsilon > 0$ is small. This representing measure cannot be a Jensen measure because the function $f(z_1, z_2) = z_1 - \alpha$ satisfies

$$\int_{S_n} \log |f| \, d\rho = -\infty,$$

and $\log |f(0,0)| = \log |\alpha| > -\infty$.

REMARK 3.8. There is a certain discrepancy between the necessary and sufficient conditions for a function f to be exterior, which we obtained in Theorems 3.5 and 3.6. The reason why this occurs is that the set $\log |A(B_n)|$ does not form a cone.

QUESTION 3.9. (a) If $f \in A(S_n)$ and

$$\log|f(0)| = \int_{S_n} \log|f| \, d\rho$$

for all Jensen measures ρ for 0, must then f be exterior?

(b) Is there an exterior function f in $A(B_n)$ such that

$$\log|f(0)| < \int_{S_n} \log|f| \, d\rho$$

for some representing measure ρ for 0?

Section 4

In a concrete situation, it is hard to use Theorems 3.5 and 3.6 to determine whether a function is exterior, primarily because the structure of representing measures for 0 is rather poorly understood (for some examples of representing measures, see [5, p. 201]). In [2], the author establishes the following. Maybe it will lead to some better understanding of representing measures.

THEOREM 4.1. Let
$$f \in A(B_n)$$
 have $Z(f) = \{(1, 0, ..., 0)\}$. Then f is exterior if
 $\log 1/|f(z)| = o(1/(1-|z_1|))$ as $z \to (1, 0, ..., 0)$.

It can be shown that if $f \in A(B_n)$ is exterior and has $Z(f) = \{(1, 0, ..., 0)\}$, then

$$\log 1/|f(z)| = 0(1/(1-|z|))$$
 as $z \to (1, 0, ..., 0)$.

QUESTION 4.2. Is this necessary condition sufficient as well?

It is natural to ask whether it is possible to obtain an analog to Theorem 2.1 for the polydisc D^n . The author will discuss this situation in another paper.

ACKNOWLEDGEMENT. The author wishes to thank the referee for his or her useful comments.

References

- 1. T. W. GAMELIN, Uniform algebras and Jensen measures, London Math. Soc. Lecture Note Series 32 (Cambridge University Press, 1978).
- 2. H. HEDENMALM, 'Outer functions of several complex variables', J. Funct. Anal. 80 (1988) 9-15.
- 3. K. HOFFMAN, Banach spaces of analytic functions (Prentice-Hall, Engelwood Cliffs, N.J., 1962).
- 4. L. A. RUBEL and A. L. SHIELDS, 'The failure of interior-exterior factorization in the polydisc and the ball', *Tôhoku Math. J.* 24 (1972) 409-413.
- 5. W. RUDIN, Function theory in the unit ball of C^n (Springer, Berlin, 1980).

Department of Mathematics Uppsala University Thunbergsvägen 3 S-75238 Uppsala Sweden