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Let M = {mj!k};r;il be an infinite complex-valued matrix
which acts contractively on £2. For the weighted short diagonal
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we obtain the estimate
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0<s<1.

Expressed more vaguely, |Sar(1)|? $ 2 holds in the sense of
averages. Concerning the optimality of the above bound, a
construction due to Zachary Chase shows that the statement
does not hold if the number 2 is replaced by the smaller
number 1.72. In the construction, M is a permutation matrix.
We interpret our bound in terms of the correlation E®(z)¥(z)
of two copies of a Gaussian analytic function with possibly
intricate Gaussian correlation structure between them. The
Gaussian analytic function we study arises in connection
with the classical Dirichlet space, which is naturally Mdbius
invariant. The study of the correlations E®(2)¥(2) leads
us to introduce a new space, the mock-Bloch space (or
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Blochish space), which is slightly bigger than the standard
Bloch space. Our bound has an interpretation in terms
of McMullen’s asymptotic variance, originally considered
for functions in the Bloch space. Finally, we show that
the correlations E®(z)¥(w) may be expressed as Dirichlet
symbols of contractions on L?(ID), and show that the Dirichlet
symbols of Grunsky operators associated with univalent
functions find a natural characterization in terms of a
nonlinear wave equation.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Basic notation in the plane

We write Z for the integers, Z for the positive integers, R for the real line, and C
for the complex plane. Moreover, we write Co := C U {00} for the extended complex
plane (the Riemann sphere). For a complex variable z = z + iy € C, let

. lde|

ds(z) : = @,

dA(z) :

2m T

denote the normalized arc length and area measures, as indicated. Moreover, we shall

1/ 0% o2
4= (5 * oyp)

for the normalized Laplacian, and

1/ .0 - 1/d .2
a"'_i(a_m_la_y)’ 32-—2(ax+lay)’

for the standard complex derivatives; then A factors as A, = 8,0,. Often we will drop
the subscript for these differential operators when it is obvious from the context with
respect to which variable they apply. We let D denote the open unit disk, T := 0D the
unit circle, and D, the exterior disk:

write

D:={z€C: |z| <1}, De:={2€Cux: [2| >1}.

We will find it useful to introduce the sesquilinear forms (-, -)c and (-, -)p, as given by

(f. o) == j F@a()dAR),  (f)p = / £(2)3(z)dA(z),
C D
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where we need fg € L!(C) in the first instance and fg € L!(DD) in the second. These are
standard Lebesgue spaces with respect to normalized area measure dA. Here, generally,
for a given complex-valued function f, we denote by f the function whose values are the
complex conjugates of f. To simplify the notation further, we write

(fle={ e, (fip=(f1p-

As for operators T on a Hilbert function space, we let T* denote the adjoint, while T
means the operator defined by

Tf=T7.
1.2. Complex Gaussian Hilbert space

A Gaussian Hilbert space is a closed linear subspace & of L?(Q2) = L?(€,dP), where
(Q, dP) is a probability space with a given o-algebra, with the property that each element
4 € & has a Gaussian distribution with mean 0. Since we will be working with the
complex field C, this means that the real and imaginary parts of « are jointly Gaussian,
and that the mean is 0 of each one. Here, the expectation (or mean) operation E is just
given by Evy := (y}q = fQ ydP. We say that v is symmetric if E(y?) = 0. Moreover, v is a
standard compler Gaussian variable if it has mean 0, is symmetric and has E(|v|?) = 1.
In other words, the values of « are distributed according to the density e*‘z‘sz(z)
in the plane. We will assume for convenience that & is conjugation-invariant, that is,
v € B < 7 € & We refer to [18] for an exposition on Gaussian Hilbert spaces.
We will write (7,7 )a = (v7)a = E~4’ for the inner product of &. We shall need
the following observation. If & is separable and infinite-dimensional, then there exists a
sequence i, ¥z, Y3, - - - in & consisting of i i d standard complex Gaussians, such that the
sequence i, 1, Yz, 2, - - - forms an orthonormal basis in &. In particular, & splits as an
orthogonal sum & = 9 @ 9., where ) is the closed subspace spanned by v1, 72,73, - -
while $, is spanned by 1,752, 7%3, .. ..

1.3. Gaussian analytic functions associated with the Dirichlet space

We now outline a more direct approach to the analytic part of GFF outlined in
the preceding subsection. Let A?(D) denote the subspace of L?(ID) consisting of the
holomorphic functions, which is a closed subspace and hence a Hilbert space in its own
right, known as the Bergman space. The Dirichlet space is the space D(D) of analytic
functions f with f’ € A%(D), equipped with the Dirichlet inner product

<f:g>V = (f’vg,hD'

The importance of the Dirichlet space comes from its conformal invariance property. For
instance, if ¢ is a Mébius automorphism of the unit disk D, we have that
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(f O(‘b,go ¢>V = (fag>V'
The Dirichlet inner product gives rise to a seminorm
115 == 1 20y = (£, f)m

which vanishes on the constant functions. So, to make it a norm, we could add the
requirement that the functions should vanish at the origin:

Do(D) == {f € D(D) : £(0) = 0}.

By the M&bius invariance of the seminorm, this choice is not restrictive as we may easily
move any other point A to the origin using a Mdbius automorphism.

In recent years, Gaussian anolytic functions have received increasing attention. For
instance, see [26] and the book [16]. In the space Dy(ID), we have a canonical orthogonal
basis

1 .
ej(z):=.7 sza Jj=12.3,...,

and we form a Dy-Gaussian analytic function (Dp-GAF)

—+0o0 “+00
(z) =D aye5(z) = Z%zf (1.3.1)

where the o; are i i d (independent identically distributed) standard complex Gaussian
variables, taken from a Gaussian Hilbert space &. Then for two points in the disk z, w €
D, we have the complex correlation structure

E(®(2)2(w)) =0, E(2(2)®(w)) = log

(1.3.2)

1—zw

Since Gaussian random variables are determined by their correlation structures, we may,
depending on the point of view, take (1.3.2) as the defining property instead of the more
explicit (1.3.1). On the right-hand side of (1.3.2), we recognize the reproducing kernel
for the Dirichlet space,

1
k[)U (Z, ’LU) = lOg m, (133)

with the point evaluation property

.f(w) = (.fa kDu('vw»V: .f S DO(D)

It is appropriate to think of the correlation structure (1.3.2) in terms of the matrix-valued
correlation structure
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B D(2)\ , = _ (E®(2)®(w) Ed(2)®(w)
taoldl(zw) =B (30)) (30 o) = (55006(0) Eo(jac))

B logﬁ 0
_( 0 log L ), (1.3.4)

1-zZw

and the associated 4 x 4 matrix

kow2[®](z,2)  kaxa[®](z,w)
(km[@}(z, w)* ]k2x2[‘1)](w,w)) (1.3.5)

is positive semidefinite (the asterisque * stands for the operation of taking the adjoint
of the matrix). The real part of ®(z) may be understood, up to an additive constant,
as the restriction of the Gaussian free field (GFF) on C conditioned to be harmonic
in D. For some background on GFF, we refer to the survey paper [25] as well as to
[11]. Alternatively, the process ®(z) may be identified as the limit of the logarithm of
the characteristic polynomial for random unitary matrices as the matrix size tends to
infinity (see Section 9 below).

1.4. Two interacting copies of the Dy-Gaussian analytic function process

The topic here involves two copies of the process (1.3.1),

®(z) : Z—zf Zﬁ? 2! (1.4.1)

where ®(2) is as before and the 3, are iid from N¢(0,1), taken from the same Gaussian
Hilbert space & C L2(). We will refer to (®(z), ¥(z)) as a pair of jointly Gaussian
Dy-GAFs. Consisting of jointly Gaussian variables with zero mean, the vector-valued
process (®(z), ¥(z)) is governed by the correlation matrix

®(z)
kyxa[®, P](z,w) :=E $E2 (®(w) @(w) Y(w) T(w))
U(2)
E®(:)B(w) E®()0(w) EO(:)(w) Ed(:)¥(w)
_ | E@(2)®(w) E®(2)®(w) E®(2)¥(w) E®(2)¥(w)
E¥(:)8(w) E¥(:)o(w) EV(:)¥(w) EV(:)¥(w)
E¥(z)®(w) EV(2)®(w) E¥(z)T(w) IElIl(z)\I!(w))
log -~ 0 E®(z)T(w) E®(z)¥(w)\
_ 0 log - E®(2)¥(w) E®(2)¥(w)
N U(2)P(w) E¥(2)®(w) log 1=y 0 ’
E¥(2)3(w) E¥(z)B(w) 0 log X /
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and the associated 8 x 8 matrix

k4X4[¢](za Z) k4x4[@}(z, 'u))
(k4><4[q’](za w)* k4x4[‘1>](w,w)) (1.4.3)

is positive semidefinite. Note that although there are eight unknown entries in (1.4.2),
in fact only two are needed, as clearly,

E(2(2)¥(w)) = E(2(2)¥(w)), E(®(2)¥(w)) = E((2)¥(w)),

and the remaining four only involve exchanging the variables z and w.
So we need only be concerned with the quantities

E(®(2)¥(w)) and E(®(2)¥(w)). (1.4.4)
In a sense they complement each other, as we see below.

Proposition 1.4.1. We have that

(M

1 3
(log 1—|’H}|2> 3 zZ,w e D.

Since for a given point with |z| = |w| each of the two terms on the left-hand side

B2 (w) + [E2()0(w)| < (log )

may reach up to the right-hand side bound, the estimate tells us they cannot do so
simultaneously. The proof of this estimate is presented in Subsection 3.2.

1.5. Growth of correlations in the mean along diagonals

We are interested in the behavior of the correlations
E®(2)¥(w), E®(2)¥(w)

as z,w € D approach the unit circle T. The first one we will refer to as the analytic
correlation, and the second the sesquianalytic correlation. We may study the growth
behavior by looking along complex lines through the origin w = Az for some parameter
A € C in which case our correlations are

E®(2)T(Az), Ed(2)T(Az). (1.5.1)

The alternative study of conjugate-linear lines w = pz with p € C is completely analo-
gous and essentially only corresponds to reversing the order of these correlations (in the
sense that w — ¥(uw) is a GAF). For this reason we will not consider such conjugate-
linear lines further. When |A| < 1 the process ®(z) dominates in the correlations since
U(Az) is analytic in the disk D(0, |A\|7!), while if |A| > 1 instead the process ¥(Az)
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dominates. The most interesting instance seems to be the balanced case when |A\| = 1,
in which case the line w = Az might be called a generalized diagonal. For || = 1, the
process ¥(Az) is just another copy of the Dy-GAF, so as long as A is fixed we might
as well consider A = 1. So the study of (1.5.1) for fixed A with |A| = 1 reduces to the
diagonal case

E®(2)U(z), E®(2)¥(z). (1.5.2)
‘We note that by Proposition 1.4.1,

- 1
[E®(2)T(2)| + [ E®(2)¥(z)| < log T2 (1.5.3)
Some examples should elucidate which term, if any, may be dominant on the left-hand
side.

Remark 1.5.1. We supply some examples which help us understand the size of the two
contributions on the left-hand side of (1.5.3).
(a) If ¥ = @, then

E®(2)U(z) = E(®(z)2) =0, E®(z)¥(z) = E|®()] = log ﬁ
In this case we have equality in (1.5.3), and on the left-hand side the first term vanishes,
while the second is dominant.
(b) If ¥(2) and ®(z) are stochastically independent, we have

E®(2)¥(z) = E®(2)¥(z) =0,

so that both contributions to the left-hand side (1.5.3) collapse.
(c) Consider ¥(z) = ®(Z), when

E®(2)¥(z) = E®(2)®(2) = log 1_—1z2 E®(2)¥(z) = E®(z)®(2) = 0.

So at least pointwise, E®(z)¥(z) may be the dominant contribution in (1.5.3).

The example in Remark 1.5.1(a) shows that the sesquianalytic correlation E®(z)¥(z)
may be maximally big in the sense of modulus everywhere in the disk 0. However, the
example in Remark 1.5.1(c) only says that the analytic correlation E®(z)¥(z) may be
maximal in modulus along the radius [0, 1] emanating from the origin. This leaves open
the possibility that the function might grow considerably slower “on average”. Inspired
by the work on growth of functions in the Bloch space (see [19], [3], [17], [9], [10]), it
would be of considerable interest to study for functions of the form f(z) = E®(2)¥(z)
the asymptotic variance
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o(f)? = limsup;l/|f(rg)|2ds(§). (1.5.4)
1—r2 T

r—1- log

In certain cases which can be described as “dynamical”, o(f)? captures very well the
boundary growth of the given function f. From a probabilistic point of view, it is based
on thinking of the evolution of the function r — f(r() as a Brownian motion in time
log i%: ~ log ﬁ However, since the analytic correlation f(z) = E®(z)¥(z) need
not be an element of the Bloch space B(D), we are not automatically assured that
the asymptotic variance is finite. However, it turns out that the asymptotic variance is
always finite for f(z) = E®(z)¥(z) nevertheless. Here, we recall that the Bloch space
B(D) consists of all complex-valued holomorphic functions f : D — C such that

I flls == sup(1 — [2|*)[f'(2)| < +o0.
zeD

Naturally, this defines a seminorm on 8(D), as constants get seminorm value 0.

Remark 1.5.2. Holomorphic functions with |f(z)| < Clog ﬁ in the disk D for some
constant C' = C(f) form a Korenblum-type space, see, e.g., [5] (compare with the bound
(1.5.3)). Such functions need not have a finite asymptotic variance, as follows from the
work of Abakumov and Doubtsov [1].

We now formulate the precise estimate which bounds the asymptotic variance.

Theorem 1.5.3. For all jointly Gaussian processes (®,V) consisting of Dy-GAFs, we
have the estimate

e
1—7r2"

f|IE'1>(rC)\I’(rC)|2ds(C) < 2rlog
T

This means that in the sense of L?-averages along concentric circles, the function
E®(z)¥(z) spends most of its time on |z| = r with values bounded by a constant times
the square root of log #, which is of course much smaller than what the bound (1.5.3)
would entail. In terms of the random variables a;, Bk, the left-hand side expression in
the above theorem equals

2

> (k)" 2 {ay, Br)o| - (1.5.5)

Jyk:j+k=l

+o0
JE O RO
T

=2

It is natural to wonder if the bound o(f)? < 2 for the asymptotic variance of the
analytic correlation f(z) = E®(2)¥(z) in Theorem 1.5.3 is optimal. By a construction
due to Zachary Chase [6], we have the following.
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Theorem 1.5.4. (Chase) There is a permutation 7 : Z — Z such that if B; = &
and f(z) = E®(2)¥(z), we have o(f)? > 1.72.

So, it remains to investigate the universal quantity Egper :=supso(f )2, where f runs
over all possible analytic correlations E®(z)¥(z). The subscript refers to the relation with
the norm contractive operators on L?(D) described in Subsection 1.8 below. Clearly, by
Theorems 1.5.3 and 1.5.4, we have 1.72 < ¥2_ <2,

oper

1.6. Matrices that are contractive on £2

We formulate a version for matrices that contract the #2 norm.

Corollary 1.6.1. Let M = {mj,k}?,iil be a complez-valued matriz which contracts the ¢*
norm. Then, for 0 < s < 1, we have the estimate

+occo L 2 e
oSl D0 R Em < 2slog .
=2 Jsk:i+k=I

One possible interpretation of the corollary is that on average, more precisely in the
sense of second Abel means, the squared sums

1NE P
> )

Jik:j+k=l

are bounded by 2. For fixed [ = 2,3,4,..., we note that the best bound of the sums is
much worse:

< Y (jik)é=mﬁ+0(1)

Jikig+k=l

N
R CORE

jikj+k=l

as | — +o0. This latter inequality is indeed optimal, as we see by letting M be a suitable
permutation matrix.

1.7. A trace norm estimate

For a complex-valued infinite matrix M = {m, ;r;;il, let || M ||y, denote the trace
norm, that is, the trace of (M*M )1/2, The dual version of Corollary 1.6.1 runs as follows.

Corollary 1.7.1. Suppose a = {aj};r:c"]) is in €%, and consider the associated weighted

Hankel matriz A(r) := {(jlc)_l/za.jJrkerrk}Ig‘;l. Then the trace norm of A(r) has the
estimate

e
A& < 2r?|lallZ log 1-,2 0<r<lL



10 H. Hedenmalm, S. Shimorin / Advances in Mathematics 372 (2020) 107301

The proof of the corollary is based on the standard duality between trace class and
bounded operators and therefore omitted.

Remark 1.7.2. The inequality of Corollary 1.7.1 has the flavor of a matrix Cauchy-
Schwarz inequality. However, it appears not to be a consequence of the general matrix
Cauchy-Schwarz inequalities formulated by Horn and Mathias [15].

1.8. The analytic correlation and Dirichlet operator symbols

For z € D, let s, denotes the Szegd kernel

1
C1-z¢

5:(0) (18.1)

For functions in the Bergman space A%(D), taking the inner product with s¢ is the same
as finding the average

(fis:)p = /f(zt)dt, f e A*(D). (1.8.2)

Definition 1.8.1. Let T be a bounded C-linear operator on L?(ID). The Dirichlet operator
symbol associated with T is the function

P[T](z,w) := (T(8,),54)D, z,we D,
which is holomorphic in D2, with diagonal restriction
@P[T)(2) = (T(5.),5:)p, 2 €D.
Remark 1.8.2. If T = M,,, the operator of multiplication by u € L> (D), then

H(E)dA(E)

(-2’ zeD, (1.8.3)

2PIM,(2) = (M, (5.).5.)0 = [
D

which shows that @P[T] is a generalization of the Bergman projection to the setting of
general bounded operators. There is a way to write £[T] which makes the analogy with
(1.8.3) clearer:

P[T](Zv w) = (T’Sw ® Sz)tr-

Here, we use the bilinear tensor product (f®g)(h) = (h, g) f, and the notation (A4, B}, =
tr(AB*) = tr(B*A) for the trace inner product, and the trace is taken with respect to
the Hilbert space structure of L(DD).
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The next result characterizes the analytic correlations E®(z)¥(w) as the Dirichlet
symbols associated with contractions on L*(D).

Theorem 1.8.3. (a) Given a pair of jointly Gaussian Dy-GAFs (®(z),V(z)) there exists
a norm contraction T : L?(D) — L?*(D) such that

(i) E®(2)¥(w) = z2w(T5s;,S4)D; z,we D.

(b) On the other hand, given a norm contraction T on L?(D), there exists a pair of
jointly Gaussian Do-GAFs (®(z), ¥(z)) such that (i) holds.

In particular, we see that in the sense of the theorem, the analytic correlations
E®(2)¥(w) may be identified with the Dirichlet operator symbols of contractions on
L°D):

E®(2)¥(w) = 2wP[T|(2, w).

1.9. Analytic correlations and the Bloch space

We recall that the Bloch space B(D) consists of all complex-valued holomorphic func-
tions f : D — C such that

I£lls = sup(1 - |22)If ()] < +oo.
zeD

This defines a seminorm on B(D), since constants get seminorm 0.

Definition 1.9.1. The mock-Bloch space 8™°%(D) is the space of functions

{@P[T]: T is a bounded operator on L*(D)}.

This mock-Bloch space is naturally endowed with a norm, which equals the infimum
of |'T|| over all operators T representing the same symbol @P[T|. An alternative name
suggested by Ilia Binder in the Blochish space. All functions in B(D) are in 8™°K(D).
This is well-known an easy to see using multiplication operators M, as in [9] (compare
with (1.8.3)). On the other hand, is 8m°%(D) contained in B(D)? This is answered in
the negative by the following.

Theorem 1.9.2. There exists a function f € B™°K(D) which is not in B(D).

To derive this theorem, we apply the following characterization of the mock-Bloch
functions that derive from finite rank contractions.
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Theorem 1.9.3. Let f : D — C be holomorphic. Then the following two assertions are
equivalent:

(a) f(2) = @P[T](2) for some finite rank contraction T on L*(D).

(b) 2°f(2) = 3, tjai(2)bj(2), for two orthonormal bases {a;}; and {b;}; in Do(D),
where the t; are reals with 0 <t; <1 and t; > 0 only for finitely many j.

It is well-known that B(D) is maximal among the Mobius-invariant spaces [24], so
Bmok(D) cannot be Mébius-invariant in the standard sense. For a Mobius automorphism
¢:D—D,let

Usf(2) =8 (2)f 0 6(2), Usf(2) :='(2)f 0 4(2), (1.9.1)
be the associated unitary transformations of L?(D).

Theorem 1.9.4. For a Mébius automorphism ¢ : D — D, and o bounded operator T
on L*(D), we write Ty = U¢TI_J;>, which has the same norm as T. If we write
Q[T|(z,w) := 2wP[T](z,w) and @Q[T](z) := 2°P[T|(z, z), we then have the identity

2Q[T] o ¢(z) — 2Q[Ty](z) = Q[T](4(2), ¢(0)) + QT](4(0), ¢(z)) — 2Q[T](¢(0)).

Typically, in Mobius-invariant spaces, the correction after a Mobius transform
amounts to the subtraction of an appropriate constant. Here, we instead subtract a
function in the Dirichlet space, and the expressions have a quadratic flavor.

Remark 1.9.5. The mock-Bloch space is intimately connected with the Hankel forms on
the Dirichlet space studied by Arcozzi, Rochberg, Sawyer, and Wick (see Subsection 6.2
of [2]). In a sense, that space of Hankel forms is predual to the mock-Bloch space. To
make this assertion more precise, let b(z) = ;:’20 B(Z)zl, and observe that

@QIT)(2)b' (z)dA(z) = ) (Tfj, fu)p,

/ = b+ k)
where f;(z) = jz/~!, j =1,2,3,..., is the standard orthonormal basis in A%*(D). That
means that &’ is in the predual space of the mock-Bloch space if and only if the infinite
matrix {(jk)~1/2b(j + k) ;rz‘;l is trace class. In turn, this supplies the connexion with
Theorem 8 of [2]. For background on Hankel matrices, we refer to Peller [22].

1.10. Symbols of Grunsky operators
Let ¢ : D — C be a univalent function. In other words, ¢ is a conformal mapping

onto a simply connected domain. The associated Grunsky operator T, is given by the
expression
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¢'(2)¢ (w) 1

T f(2) = / ( - f)dAw), zeD.  (1.10.1)
? J (p(2) —p(w))?  (z—w)? ’

It is well-known that I, is a norm contraction on L?(D), and it maps into the Bergman

space A%(D). This contractiveness is called the Grunsky inequalities, and in this form

it was studied in, e.g., [4] (see also [8]). For a given ¢, we may consider instead the

normalized mapping

e(2) — (0)
¢'(0)

which has ¢(0) = 0 and ¢'(0) = 1. It is easy to see that I's = I';,, so we might as well
replace ¢ by its normalized variant @, and require of ¢ that ¢(0) = 0 and ¢'(0) = 1.
The Dirichlet symbol associated with I, is then

P(2) =

QIT,)(z,w) = zwP[T,)(z,w) = log f;”f“’gp(z (E‘:B (z,w)eD?  (1.10.2)

with diagonal restriction

229’ (2)
o)’
We want to characterize the Dirichlet symbols of the above form (1.10.2) among all
Dirichlet symbols Q[T](z,w) of norm contractions T on L?(D).

@Q[T](z) = 2* @ P[Ty)(z) = log

f zeD.

Theorem 1.10.1. A function Q = Q(z,w) which is holomorphic on D? is of the form
QI',|(z,w) for a normalized univalent function ¢ : D — C if and only if
(a) Q(0,w) =0 and Q(z,0) =0, and

(b) @ = Q(z,w) solves the nonlinear wave equation

220,Q — w?0,Q

2wz —w)

0:0,Q + (0:Q)(0.Q) — =0.
Remark 1.10.2. This result ties in nicely with deformation theory. Let L denote the linear
wave operator

228,Q — w?0,Q

zw(z — w)

Q(Za w) = azan -

Let A € D, and suppose we look for an analytic family of solutions A — @, to the
above nonlinear wave equation LQ + (9.Q)(0.,Q) = 0. If Qo = 0, we Taylor expand
Q, = Z;";l )\ij and see that the nonlinear wave equation becomes a sequence of
linear PDEs for the coeflicient functions Qj. First, Ql solves the homogeneous equation
LQl = 0, while for j = 2,3,4,..., Qj solves an inhomogeneous equation LQj = F,
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where F is a nonlinear expression involving the lower order coefficient functions Qy, for
1<k<y.

Remark 1.10.3. It is a matter of substantial interest whether £2_ . := sup o 2> 1,
where the supremum is taken over all f of the form f = @Q[I',| for a normalized univa-
lent function ¢ : D — C. This question is related to the issue of whether I',, is special
among the contractions, which it of course is in accordance with Theorem 1.10.1. On
the other hand, for general contractions, we have Chase’s construction of Theorem 1.5.4
which gives a rather big asymptotic variance ~ 1.72.
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July 2016 as the result of a hiking accident. We thank several colleagues who helped
organizing a conference in his honor at the Mittag-Leffler Institute in June, 2018. Among
the organizers were Catherine Bénéteau, Dmitry Khavinson, Mihai Putinar, and Alan
Sola. We also want to thank Eero Saksman for a conversation on the fact that the mock-
Bloch space is bigger than the Bloch space, Oleg Ivrii and Bassam Fayad for their interest
in the asymptotic variance, and Zachary Chase for his contribution with the construction
of a permutation matrix with somewhat extremal properties.

2. The duality induced by the bilinear form of GAF

2.1. The GAF as o duality

Let us for the moment write ®,(z) for the Dy-Gaussian analytic function given by
(1.3.1), having in mind the notation e := (a1, a2, @s,...) for the vector consisting of
elements from our Gaussian Hilbert space &. We recall that they form an orthonormal
system in L?(2), and that (o, ax)o = Eaja = 0 for all j,k =1,2,3,.... For j # k,
this is a consequence of independence, while for j = k it follows from the symmetry
of the complex Gaussian o;. The closure in & of the linear span of the vectors «;,
i =12.23,..., will be denoted by 2. We shall also need the closure in & of the linear
span of the (complex-conjugated) vectors a;, 7 = 1,2,3,..., and we denote it by 2..
From the above, we see that 2 and 2l. are orthogonal to one another.

Continuing along the same line of thinking, we would write ®g(z) for ¥(z), the second
copy of the same Gaussian process.

If M is a bounded linear operator on 2, then Ma; € 2 and hence has a convergent
expansion in basis vectors:
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Maj =Y Mj o,

where the sequence k — M, ; is in [2. If we write Ma = (May, Mas, Mag, . ..), we may
speak of a Gaussian analytic function process

+oo +o0 +00 00
Pma(2) = Z(MGJ ej(z) = Z Z M; ko €5(z Z @k Z M;k e;(z)
Jj=1 j=lk=1

:ZakMTek(z), (211)

where e;(z) = j~327 as before. Moreover, the GAF transpose of M, given by
Mre(2) ZM xe;(z (2.1.2)

defines a bounded linear mapping on Dy (D), as it just corresponds to the transpose of the
matrix for M, and shifting the basis from that of the Gaussian space 2 to that of Dg(D).
This way we have a natural transpose mapping M — M. So, if M is a bounded linear
operator on the Gaussian Hilbert (sub)space 2, then its GAF transpose M becomes a
bounded linear operator on Dy(ID). We might of course also have started instead with
a bounded linear operator on Dy(D) and a similar transpose procedure would land us
a bounded linear operator on 2. If we denote that transpose by “{” as well, the double
transpose gives us back the operator we started with: (M)t = M.

Typically, (2.1.1) will define a Gaussian analytic function with a correlation kernel
which is different from that of ®4(z). Indeed, while E®nq (2)Pma (w) = 0 automatically
since 2 is orthogonal to 2., we see that

+oo
E®@na(2)PMal(w) = Z (Maj, Mayg)q e;(2)er(w), (2.1.3)
7,k=1

which need not coincide with the corresponding correlation for ®,. However, in the
special case when the restriction M|y = U is unitary on 2, so that U*U =1 on 2,
(2.1.3) gives us

+oo
= 1
E®ya(2)Pya(w) = Z (U*Uq;, ax)a ez Zej =log —— T
7,k=1
(2.1.4)

that is, the same correlation structure as for ®,(z). In other words, @y, is another copy
of the Dy-GAF. When U : 2 — 2 is unitary, its GAF transpose U' acts unitarily on
Dy(D), and the functions U'e;(z) form an orthonormal basis for Dy(D). Naturally, this
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goes the other way around as well, that is, if a unitary transformation V on Dy(D) is
given, this defines another unitary transformation V1 on 2 via (2.1.1) with V in place of
M. An important instance is when the unitary transformation on Dy(D) is generated
by a Mobius automorphism ¢ of the disk D. If ¢ : D — I is a Mdbius automorphism,
then the operator V4 given by

Vs f(2) :=fod(z) - fod(0)

is unitary on Dy(D) and therefore corresponds to a unitary transformation V; acting
on A such that

“+o0
Q)VLQ(Z) Z(Vqsaj ej(z) = Z%Vqse; Za;J% (2)? — #(0)7). (2.1.5)

2.2. GAF and Hankel-type duality

We describe a variation on the above-mentioned GAF duality theme. Suppose that
instead M is now a bounded linear operator 2 — 2. (like a Hankel operator). In the
same fashion as before, we write

+o0
MO{J = E Mj,k@ka
k=1

and obtain that

+oo 4o +oo
Dz ZMO&] e;j(z) = ZZMJ kg e;(z) = ZakZMjkeJ
j=1k=1
—+00
= @ Mlex(2), (2.2.1)
k=1

with M*, the GAF-Hankel transpose of M, given by the analogue of (2.1.2),

Mieg(z) : Z M; re;(z (2.2.2)

As with the GAF transpose, we let it be its own inverse, so that (M*)} = M. If M :
A — A, is isometric and onto, then M* acts unitarily on Do(D). On the other hand, if
V is unitary on Dy(ID), we have an associated Dy-GAF

“+o00 “+o0 “+o00 +oo “+o0o

—+00
YA Ve(z) =Y @y Vigei(z) =YY Vijane;(z) =Y (Via;)e;(2),
k=1

k=1 j=1 j=1k=1 j=1
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where
“+o0
Viaj= E kajﬁfk.
k=1

2.3. Representation of the correlations E®(2)¥(w) and E®(2)¥(w)

In view of the definitions of ®(z) and ¥(w), we have that

—+00
Br
() U(w) = S BTk ik, (2.3.1)

so that taking expectations, we obtain that

oo foo
ED(2)T(w) = (jk) 72 (Bayfe) 2w’ = Y (k)2 {ay, B} 2wk, zweD.
j k=1 k=1
’ ’ (2.3.2)

Our Gaussian Hilbert space & splits into three orthogonal parts:

Here, 9 is just the orthogonal complement of A @ 2. inside &. We denote by B the
closed linear span of the vectors 31, 82, B3, .. ., and by 9B, the closed linear span of their
complex conjugates. We define S to be the bounded linear operator & — & which maps
A, — B, according to the rule Sa; = B_j for j = 1,2,3,..., while Sy = 0 holds for
allvy e 80 A, = A DI Then S is a partial isometry: it vanishes on 2 & 91, and acts
isometrically on 2. In terms of this operator, we may rewrite (2.3.2):

“+oo “+o0
ED(2)T(w) = Y (k) 2{ey, Be)a 2w = Y (jk) "2 (ey,San) 2wk,  z€D.
Jk=1 g,k=1

(2.3.3)
While the representation (2.3.3) has some good properties, we need to proceed further
to obtain useful estimates. We split

where Pg and P# denote the orthogonal projections onto the subspaces & and &+ inside
a given Hilbert space (in this instance &). Then the process ¥(w) takes the form

“+o0 “+o00 +o00
W (w) = Z B ej(w) = Z(Pm Sa;) ej(w) + Z(Pi* Sa;) ej(w) =: ¥y (w) + Wy (w),
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with the obvious splitting of the process in two. Since
E®(2) ¥ (w) = (9(2), Ta(w))g = 0
as a consequence of the properties of the projections, we see that
E®(z)¥(w) = E®(2)¥(w),

and from the GAF-Hankel duality of (2.2.1),

+o0 oo
Uy (w) = Z(ng%) ej(w) = Z@j (Pa.S)te;(w).
It is now immediate that
“+oo
E®(2)¥(w) = EP(2)T,(w) = Z ej(z) (Pa.S)te;(w), z €D. (2.3.4)

Turning our attention to the other correlation E®(z)¥(w), we split
Bj = S@j = Pm*S&j + Pi*de — ﬂj = gOéj = PQ[SQJ’ + PiSaj,

so that the process ¥(w) takes the form

+o0 +oo +o0
U(w) = Zﬁj ej(w) = Zngaj ej(w) + ZPﬁgaj e;j(w) =: ¥z(w) + ¥a(w),

7=1 9=1

with the obvious splitting of the process in two. Since
E®(2) ¥4 (w) = (D(2), s (w))g = 0
as a consequence of the properties of the projections, we find that
E®(2)¥(w) = E®(2)¥3(w).

In addition, by the duality of (2.1.2),

+oo +o0
Us(w) = Z(ngaj) ej(w) = Z a; (PaS)'ej(w),

which gives the equality
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Ed®(2)¥(w) = Zej(z) (PaS)tej(w),  zweD. (2.3.5)

To simplify the notation, we write Q = (Pg_S)* and R = (PyS)! which are both
contractions on Dy(D). Then our main formulas become, for z,w € D:

+o0
E®(2)T(w) =) e(z) Qej(w),  Ed(2)¥ Zej z)Rej(w) (2.3.6)

j=1
3. An integral bound and the pointwise bound of correlations
3.1. A basic integral estimate
The following is our basic estimate of the correlations.
Theorem 3.1.1. For a,b € C, we have the estimate

sz

/|aw]E<I>(z)\1!( w) + bBE® () ¥ (w)|
D

1
—_ (|a‘2 |b‘ )log 1 ‘ |2) z € D

This may be interpreted as an estimate of the radial derivative (with respect to w) of
the harmonic function

aE®(2)¥(w) + BE®(2) ¥ (w).
Indeed, if F' is holomorphic in ID, then its radial derivative is
0, F(re'’) = e F'(rel?),

so that the estimate of Theorem 3.1.1 asserts that (8, is the radial derivative in the
w variable)

- 1
f |8r(w) (aE®(2)¥(w) + bE®(2) T (w)) |2dA(w) < (|a|® + |b]?) log =P z € D.
(3.1.1)
Interesting estimates are obtained for instance when (a,b) = (1,0) and (a,b) = (0,1).

We shall mainly focus on the first of these, when (a,b) = (1,0). We defer the proof of
this result to Section 5.
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3.2. The proof of the fundamental integral estimate

Proof of Theorem 3.1.1. The first observation is that by L?(D)-orthogonality,

[ lewE v w) + baEe() ¥ ) T
D
= |af? /|E<I> 2)¥( w)| dA(w) + |b? /|Eq> | dA(w

Next, we observe that by the representation (2.3.6) and the norm contractive property

of Q,

+o0 9 +oo 2 +oco
f o) ¥ (w)*adw) = | Y e;(2)Qe; | <|| X es(des| =D les(a)P
b j=1 i=1 Jj=1

=log —
Og1—|2|2’

and, that analogously, by the norm contractive property of R,

f|E‘D 2)W'( w)} dA(w) = HZBJ ReJH2 < ||Z€J(Z)63H Z|e] (2)?

=lo 1
BRSSP,

The proof is complete. O

3.8. The joint pointwise bound of correlations

Proof of Proposition 1.4.1. Essentially, we just need to use the property that the 8 x 8
matrix (1.4.3) is positive semidefinite. Since for complex constants a, b, ¢, d,
0 < |a®(2) + b®(2) — c¥(w) — d¥ w)|2
= (la|* + [B1*)|@(2)[* + (Ic|* + [d]*)[ ¥ (w)|* + 2Re(ab(2(2))*)
— 2Re(ac®(2)¥(w)) — 2Re(ad®(2)¥(w)) — 2 Re(be®(2)¥(w))
— 2Re(bd®(2)T(w)) + 2Re(cd(T(w))?),

the inequality survives after taking the expectation:

0 < E[a®(2) 153 (2)—cl(w) - d¥(w)|” = (Jaf* +]b[?) log +(lef?-+|dP?) log

1— 22 1—[w]?

— 2Re((ac + bd)E®(2)T(w)) — 2Re((ad + be)ED(2) T(w)).
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In other words, we have the inequality

2Re((ad + bc)E®(2)¥(w)) + 2Re((ac + bd)ED(2) T (w))

< (|af* + [b*) log

1
24 |d?) log ——.
[ el ) og

We now restrict the values of our parameters, and assume that b = a and d = ¢. The
above inequality then gives that

2Re(acE®(2)¥(w)) + 2 Re(afEP(2)¥(w)) < |a|* log 1_1—2 + |c|* log 1_;

2] jw|?
We write ac = |ac|w; and a€ = |ac|ws, where |w;| = |ws| = 1. Then
2 Re(w EB(2)U(w)) + 2Re(wnEB(2)T(w) < U log L 4 110y 1
1 ’ RGN E N T B T

On the right-hand side, we are free to minimize over |a| and |c[, while on the left-hand
side, we are free to maximize over the (freely choosable) unit vectors wy and wo. After
optimization, we arrive at the asserted estimate. 0O

4. Dirichlet symbols of contractions on L?(D) and analytic correlations of GAFs
4.1. The correspondence between Dirichlet symbols and the analytic correlation

We show the indicated relationship between the analytic correlation E®(z)¥(w) and
the Dirichlet symbols P[T|(z,w) for contractions T on L*(D).

Proof of Theorem 1.8.3. We begin with part (a), so we are given the orthonormal sys-
tems {e;}; and {B;}, in the Gaussian Hilbert space &, and need to construct the norm
contractive operator T on L?(ID) with the indicated property. We let S : & — & be the
bounded linear operator with Sa; = Bj for j =1,2,3,... while Sy =0 for all v € BOL,.
Given that S is a contraction, the product PgS is a contraction as well, and we may
decompose

—+o0
Pyl = PaSax = Y Aoy,
=1
where 3. |Ag;|* < 1. For j = 1,2,3,..., we write f;(z) = €}(2) = j2z9~1, which

constitutes an orthonormal basis in A%(D), and put

“+o0
T*kaZAk,lfl, k=1,2,3,....
=1
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By linearity and norm boundedness of the matrix (A;x);x, this defines T* on A?(D).
Then

+o0 too
(F T fidp = Aeilfs, fdp = Ak =Y Ariley, ara = (aj, PaSar)a = (@, Sar)o
=1

=1
= (%‘:Bk)m
and since
z +oo o —+oo
#:(0) = 75 = 2P = 2 a0, (4.1.1)
=1 =1
it now follows that
o0 _ +o0 _
zZw (gm T*§w>]]]) = Z ej (Z)Bk(ﬂ))<fj,T*fk>D = Z (aj,Bk)er (Z)Ek(ﬂ)) = Eq)(z)\ll(’w)’
J.k=1 j,k=1

so that condition (i) holds if T is the adjoint of T*. But to properly define T, we
need to extend T* to all of L?(D). To this end, we simply declare that T*f = 0 holds
for f € L*(D) & A*(D). It remains to check that so constructed, T* is a contraction
on L?(D), for then the adjoint T is contractive as well. For a polynomial f € A%(D),
we decompose it as a finite sum f = 3, by fr where ||f||%2(D) = > |bk|?, and since
T*f = El]k Ay by fi, we find that

2 2 2

T Fll 2y = D | D Arabr
A

= 10l = 1£13 2y
k

PyS Z bk
k

Zbk@k
k

and it follows that T* defines a contraction on A%(ID) and hence in a second step on all
of L?(D). This concludes the demonstration of part (a).

We proceed with the remaining task of obtaining part (b), which amounts to construct-
ing the Gaussian Hilbert space & and the sequence 3; and associated partial isometry
S for a given contraction T on L?*(D). We recall that 2 and 2. are two orthogonal
subspaces in &. However, the sum 2 & 2, need not be all of 8. We will assume that
N:= 6o (A A, is separable and infinite-dimensional which just amounts to consid-
ering a sufficiently big (separable) Gaussian Hilbert space &. We split 9t = 2 & I,
where 907 is the closed linear span of certain elements vy, v, v3, ... of 9, which are all
iid standard complex Gaussian variables (see Subsection 1.2). The space 9, is then
the closed linear span of the complex conjugates vy, s, /3, .... As for notation, we will
need the orthogonal (Bergman) projection P 42 : L?(D) — A?(D), and its conjugate P 42
defined by
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P () = Paa(f)-
We begin with the observation that
(Tfj: fk)lD = (.ijaT*fth = (jTj}PAZT*fk>D- Js k= 1: 2: 3: ceee

We need to find i i d standard Gaussian vectors 3y, 82, 83, ... in the Gaussian Hilbert
space @ such that

Eajﬂk = (aj:Bk>Q = <Tfj:fk)D = (.ijaf’AZT*fk)]D: J’k = 17233:' s

since by summing over j, k we arrive at

+00 too
E®(2)¥(2) = Y ej(2)en(w)Eayfx = Y ej(2)ex(w) (Tfy, fr)p
7,k=1 1,k=1
“+o00
Z 63 fj'?PAzT fk)lD = (SzaPAQT Sw)lDJ = (PAZSZ)T S'w)
7k=1

= (ng*Sw)D = (ng;sw)]l):

where we used (4.1.1).
The element P 42T* f;, is in the space of complex conjugates of A2 (D), and as such it
has an expansion

PpT fo =Y Arifi,
=1

where 37, |Ak j|* < 1. We need S to have the property that in terms of the above
expansion,

“+oo
Pgisa!k = A@k = ZA’“JGJ’

i=1

which defines A as an operator 2, — 20. As such, it is a contraction. Indeed, if v € A,
has expansion v = ), brau, we obtain that

2 ‘
which verifies the norm contractivity of A. We proceed to define the operator S and
hence the Gaussian vectors 3; = Sa;. To do this, we appeal to a standard procedure in

2
=D 1ol = I,

k

|AY[|g =

ZAk,jbk PAZTZbkék
k k

=[5
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operator theory. Since A maps 2, — 2, it has an adjoint A® which maps A — 2. We
now form the defect operator

D := (Iy, — A®A)Y2,
which maps A, — 2.. The square root is well-defined given that we are taking the

square root of a positive (semidefinite) operator. We use this defect operator to define
an associated operator D on 9, by declaring that if Da; = 3, D; rayx, then

ﬁ"jzsz,ka, §=1,2,3,....
k

Then D becomes a contraction on 9, and we may now define the operator S. For
v € o2, we declare Sy = 0. For v € 2, we expand in basis vectors v = ), bydy,
and define the Gaussian vectors

Br = Say, := Aax + Dy, € A DM, k=1,2,3,..., (4.1.2)
where PyS is as before. Since Dy, € M € N, we see that
PySa, = PygAar + me)l/k = Ao,

since Aay € 2 and we know that 91 is orthogonal to 2, so things are as they should be.
Moreover, S acts isometrically on 2, as we see from

I8Y11Z2 ) = AYIIZ2 () + IDYI* = [I7II*.

It follows that the functions f8; := S@&; form an orthonormal system in &. It remains
to verify that they are i i d standard complex Gaussians, which requires in addition to
orthonormality that Ej;3;, = 0 holds for all j and k. In view of (4.1.2),

EB;Br = {B;, Brya = 0,
given that Bj € A DM while i € A, ® M. and the subspaces A G M and A. O M, are

orthogonal to one another in &. This tells us how to construct the sequence f1, f2, s, . . .
starting from the contraction T on L?(D), and concludes the proof of part (b). O

4.2. Dirichlet symbols of finite rank contractions
If T is a finite rank operator on separable Hilbert space H of rank N, then the singular

value decomposition theorem (see any book on operator theory and linear algebra) asserts
that
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N
Thzztj (h,?}j)«]—{ﬂj, hE?"{,

=1

where the {t;}; are the singular values of T, while {u,},; and {v;}; are two orthonormal
systems in H. The singular values all fall in the interval [0, || T||], and max;¢; = ||T.
Moreover, any operator T of the above form is a finite rank operator and its norm equals
max; t;.

Proof of Theorem 1.9.3. We first obtain the implication (a) = (b). So, T is a finite
rank contraction on L?(DD). We recall the notation P42 and P 42 from Subsection 4.1,
and consider the compressed operator P 42 TP 42. We introduce the C-linear mapping J :
A?(D) — conj A%(D), given by J f; := f;, for f;(z) = e (z) = G229 withj =1,2,3,....
Then J is an isometric isomorphism, and its adjoint J* maps conj 4%(D) — A?(D), with
J*f =1 - _

By the singular value decomposition theorem applied to the operator T := P 42 TP 42J
acting on the Hilbert space H = A%(ID), we have

N
Tf=)Y t;(fo)puy, feA’D),

Jj=1

where the {¢;}; are reals in [0, 1], and the {u;}, and {v;}; are two orthonormal systems
in A2(D). The singular values are confined to [0, 1] since T is a contraction. If we write
r. :=J*(5.), or equivalently 5, = J(r.), it now follows that
@P[T](z) = (T(§2)7 Sz)]]}) = <T13A2J(Tz)a Sz)ID = (T(rz): 52)]]})
N N
5 (s v (uy 8:0m = 45 (37(52), v5)p (ug, 8:)m = Dt (52, I (v;)) (w5, 52)m
j=1 Jj=1

||'M2

t; (J(vy), 5:)p (45, 5:)D, zeD. (4.2.1)

||'M2

If we put, for j =1,2,..., N,

aj(z) = Z(T”Uj), Sz}D: bj(z) = Z(“jaSZ)Dv

we obtain two orthonormal systems in Dy(ID). Indeed, a;(0) = b;(0) = 0 with derivatives
a; = J(v;) and b} = u;, which form two orthonormal systems in A*(D). Moreover, we
see from (4.2.1) that

22 @ P[T](z Zt a;(2)b;(2), (4.2.2)

i=1

as claimed.
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We turn to the remaining implication (b) = (a). We are now given orthonormal
systems {a;}, and {b;}; in Dy(D), as well as numbers {t,}, in [0,1], where we may
assume that 1 < j < N. We need to find a contraction T on L*(D) such that (4.2.2)
holds. Tracing our steps backwards in the previous implication, we choose v; := J*(a})
and u; := b’;, which form two orthonormal systems in A?(DD). The finite rank operator

N
Th := th (h, JUj)]D 'LLj
j=1

is a contraction, and we check that (4.2.2) holds for it. O
4.8. Contractive matrices on £? and operator symbols

Proof of Corollary 1.6.1. We recall the notation f;(z) = €(z) = §1229-1, and let T*
be a linear operator with the property that

k

Then we have for scalars ¢; (only finitely many nonzero) that

2
o, - [ - m
J

= ”M {Cj}ngz < ||{CJ}JH£2

Z Cj Mk j fk
3.k
2
> il
j D

b

which shows that T* defines a norm contraction A*(D) — conj A?(D). In a second step,
we extend T* to all of A*(D) by declaring that T*f = 0 for all f € L*(D) © A*(D),
and this defines a contraction on L?(D). The Dirichlet symbol of T is then, in view of
(4.1.1),

+o0
2w P[T](z,w) = 2w(T5,,8,)p = 2w(E,, T*sy)p = Z e;(2)ex(w){f;, T* fe)p
J.k=1

+oo
= Z m; ej(2)er(w).

j,k=1

Taking the diagonal restriction, we have that

& SN S IR

=2 g,k:j+k=I



H. Hedenmalm, S. Shimorin / Advances in Mathematics 372 (2020) 107301 27

and it follows that the claim is a direct consequence of Theorem 1.5.3, in view of Theo-
rem 1.8.3. O

5. Hilbert spaces and diagonal restriction on the bidisk
5.1. Weighted Bergman spaces on the disk and bidisk

For real o > —1, we write A%(D) for the Hilbert space of holomorphic functions
f:ID — C subject to the norm boundedness condition

1£ 12 @) = (@ +1) f [F(2)*(1 = [2]")*dA(2) < +oo.
D

Moreover, we write A%l,D(Dz) for the Hilbert space of holomorphic functions f : D — C
subject to the norm boundedness condition

1z, o = [ [ 1£Gw)Pas(ahaqw) < +oc.

D T

For analytic functions f on the bidisk, we let @ denote the operation of taking the
diagonal restriction, @f(z) := f(z, 2). We may for instance write 8] @ (% f) to denote
the function

o (b f(zw)],,._,).

In [12], the following diagonal norm expansion theorem was obtained. The method was
applied further in [13] to analyze the small exponent universal integral means spectrum
of conformal mappings.

Theorem 5.1.1. For f € A%, ((D?), we have that
’C + 2)n k 2

— k k
n—k) (n+k+2)n ka @ (9uf)

2 = (n+2),
”‘fHAzl,()( Z (n+1

A3, 1(D)

5.2. The implementation of the fundamental estimate into the diagonal norm erpansion

Our starting point is the instance of (a,b) = (1,0) in Theorem 3.1.1:

f}a VE®(2)¥ (w | dA(w) < la(z )|Elog,‘1 1| 2 zeD.

We dilate each variable using r, 0 < r < 1, multiply by |a(z)|? for some a € H?(D), and
integrate over T x D:
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r f / |a(z)]E<I>(rz)\I"(rw)|2dA(w)ds(z) < ||a||3- log
T D(0,%)

1
1—r2

We now throw away a part of the domain of integration (but, by monotonicity, we may
remove the 72 factor at the same time):

//|a(z)IE¢'(7"z)\I!'(rw)|2dA(w)ds(z) < ||la||%- log 1_1—702 (5.2.1)

We recognize the left-hand side expression as the norm-square in the space AELO(]D)Q)
of the function f(z,w) = a(z)E®(rz)¥’ (rw). Clearly,

@(0F £)(2) = r¥a(2)E@(rz) ¢+ (r2),

so an application of Theorem 5.1.1 gives that

i n+2)n

x (1— |z| 2ﬂ+1dA(z)

(“D*E+2)nrr® (k+1) :
R Dm0 )

1
< |la||%= log 1,2 (5.2.2)

We choose for simplicity a(z) = 1, and expand the higher order derivative using the
Leibniz rule

a1k (E®(rz)U* ) (rz)) = - ’“Z I(n (n_kz (ERCRD () g ().

It follows that

n n—k

Fk+2)n-rr* n—k (k+1)
kzog k\( n—lc)T (k2 (B2(rz) T (r2))

- (—1)*(k+2)p— . .
Z Ell(n -k )_ D(n+k _T_ 2. kIE(I)( 0 (p2) WD ()

_ Z (=D™(n+ 1D[(n—m+ 1)n)?

ml(m + D(n + 2), (B2 (r2) 0™+ (rz))  (5.23)

since it happens to be true for integers m with 0 < m < n that

Z (—1)*(k +2)n_s _ (—D)™(n+1)[(n —m+ 1),,]?
ke, I>0:k+l=m El(n —m){(n+k+ 2)n—k m!(m+ 1)!(n+2), :
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As we implement (5.2.3) into (5.2.2), we arrive at

7(7’2’?:_131)T " /‘ 1)mn[z(|nn::_n1-;- D)) (IE<I> =) () m+1)(rz))

x (1 — |2|2)2" T dA(z)

< . 2.
<log—3 (5.2.4)
If we only keep the first term with n = 0 on the left-hand side we are left with
2/ [E®(r2) W (rz)|*(1 — |22)dA(2) < log : ! . (5.2.5)
—r
D
We are free to switch the roles of ® and W, so that we also have
1
2] [EQ (r2)¥(r2)|*(1 — |2[?)dA(2) < log et (5.2.6)

Since
O, E®(rz)¥(rz) = rE®' (rz2)¥(rz) + rE®(r2)¥ (rz),

it follows from (5.2.5) and (5.2.6) that

[ |0, E®(r2) T (rz)|*(1 — |2[?)dA(2)
D

< 27‘2] (‘]E‘IJ(T"Z)\I"(a"z)\2 + |IE<I>'(1"z)III(7"z)|2)(1 — [2|*)dA(z) < 2r®log I _1 5

D
(5.2.7)

Lemma 5.2.1. Let f : D — C be holomorphic, and suppose that for a positive constant C
we have

f|f(rz)|2ds(z) —/|f(Tz)\2dA(z) < Cr?log 1 —11“2’ 0<r<l.
T D
If £(0) =0, it follows that with f.(z) = f(rz),

e
£ l132 = f |f(rz)|*ds(z) < Cr?log 1,2 0<r<l1.
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Proof. We expand F' in a Taylor series,

+oo . v
=Y ()~
=1

and observe that the assumed estimate amounts to having

+oco .
<
> +1 |f( )| Crlog — 3
j=1
We integrate with respect to r, to obtain
j $2i—1
f|frz|dA(z) Z T _2fzf (7)at

< QCftlog ——dt = C’((l —r%)log(1 —r?) + rz) < Cr?,

from which the claim follows. 0O

Proof of Theorem 1.5.3. A variant of the Littlewood-Paley identity states that for an
analytic function F' in the Hardy space H%(D),

f\F’ 2201 = [2[2)dA(2) = /|F (2)[2ds(2) /\F(z J[2dA(2),

so that with f(z) = E®(2)¥(z), (5.2.7) asserts that

]|f rz)[*ds(z f\f (rz)|*dA(z) < 272 log (5.2.8)

Since f(0) = 0, we may appeal to Lemma 5.2.1, which gives the claimed estimate. 0O

Remark 5.2.2. (a) We only use the first term in the expansion (5.2.4) because it is
not easy to squeeze anything out of the other terms. Indeed, the Chase’s construction
(Theorem 1.5.4) shows that the estimate based on the first term is not far from being
optimal.

(b) It would be desirable to control also the higher moments of the function f(z)
E®(z)¥(z). The approach we employ here renders such estimates, if we use a(z) =
(f(rz))N—1. We obtain, for N = 2,3,4,...,
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I W < 2N ¥t = < 272 (92 1o - )N
This estimate using the rightmost expression is probably far from optimal as N — +o0.
6. Mobius invariance and the mock-Bloch space
6.1. Mébius invariance of the Dirichlet symbol
For a Mébius automorphism ¢ of the unit disk D, let U, and V, be the unitary

transformations on L?(DD) given by (1.9.1). If ¢, are two such Mébius automorphisms,
we see that

UyUsf =Uy(¢'(f o)) =¢/ (¢ 0p)(fogoy) = (¢ot) (fodotp) =TUsoy(f),

which puts us in the context of representation theory. In particular, we find that U*% =
Uzl =U,.

Lemma 6.1.1. We have that

WULsy, = ¢(w) 8g(w) — #(0) 80> w e D.
Proof. This is a direct computation. O

Proof of Theorem 1.9.4. In view of the definition of the operator T, = UsTU?, we see
that

OW|[Ty)(2) = 22(U,TU}S,,s.)p = 2°(TU}s,, Ujs.)p,

and by Lemma 6.1.1, it follows that

Z(TUE., Ujsa)p = (2)(TSg(2), So(2))p — (0)(2)(T5¢(2), S(0) )0
— $(0)¢(2)(Ts4(0),59(2))D + ¢(0)*(Ts4(0),56(0) ) D>

which is the claimed invariance. 0O
6.2. The mock-Bloch space is bigger than the Bloch space
We show that the product of two Dirichlet space functions need not be in the Bloch

space. In view of Theorem 1.9.3, this entails that the mock-Bloch space is strictly bigger
than the Bloch space.
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Proof of Theorem 1.9.2. Let ry,75,73,... be a increasing sequence on ]0,1[ tending
rapidly to 1. We let f and g be the functions

“+oo +oo
z 1
f(z) = it =9 log .
(2) Z ( 7 l—rjz g flog 1-r;z

J=1
Then
i S N sty
ik = [irras= 1357055 e = 2GR < e

if the sequence {r;}; is sparse enough. In a similar manner,
+oo P |

J T
- furan- | STl
D D 1

+f(‘k) e
= J
gk=1 \/108 —g\/log—g

if the sequence is sparse enough. We could require for instance that simultaneously the

2

dA(z)

following conditions should hold:

and
1 1
< 93—kl
(1= rjx) 1—rH(1—r3)
By construction, we have
+oo 2 1
1—r; logi——
F@e) = Y (k)
PR N
so that
1—72 log—+ 1
(1=r))f (r)g(r) = r7) (5k)~ 2 T > 172, log ———
: szl (1 - 'f'j’rl)z log l—l'r‘i 1 - ’f'lQ

which with a sufficiently sparse sequence {r;}; can be made to tend to infinity. Since
both f and g have nonnegative Taylor coeflicients,
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(f9)'(z) = f(x)g(z) + f(2)g'(z) = f(x)g(z), O<z<1,

so it would follow that
|£9lls = sup(1 12*)|(f9)'(2)] = sup(l - i) f' (r1)g(rr) = +oo.
z€

On the other hand, there is a rank 1 operator T such that f(z)g(z) = @P[T](z), so fg
definitely belongs to the mock-Bloch space 82°¢(D). O

7. Characterization of Dirichlet symbols of Grunsky operators
7.1. Grunsky operators

Let ¢ : D — C be a univalent function. In other words, i is a conformal mapping onto
a simply connected domain. The associated Grunsky operator T, is given by (1.10.2),
and it is well-known that T, is a norm contraction on L?(ID), and that it maps into
the Bergman space A?(D)). This contractiveness is usually referred to as the Grunsky
inequalities, and in this form it was studied in, e.g., [4] (see also [8]). Without loss of
generality, we assume that ¢(0) = 0 and ¢’(0) = 1. We recall that the Dirichlet symbol
associated with T, is given by (1.10.2).

Proof of Theorem 1.10.1. We first show that any symbol Q(z,w) = Q[I',|(z,w) for a
normalized univalent function ¢ has the properties (a) and (b). Since Q[T,|(z,w) =
zwP[L,](z, w) it follows that (a) holds. We note that if ¢(z) := 1/p(1/2) and if £ := 1/z,
n = 1/w, then

ow) = ) = log 22 —(w)) &I (e€Th) — (1))
Qlerw) = QL1 w) = 108 G ) aoelw) ~ & @1 = ple Delr )
Y& —9m)

=lo
g §—n

In other words,

W(E) —p(n) = (€ —n)edE ),

so that

0 = 88, (B(E) — Y(1)) = Bedy { (€ —m) €€ 1 D}

= {EQﬁzQ(ﬁl,nl) —n 20,QE )+ (E—m)E Py P (0:0uQ(E i n )

+(3zQ(E17?71))(3262(5l,nl)))}eQ@l’”l). (7.1.1)
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Changing back to (z, w)-coordinates, we obtain that
0= 2%8,Q(z,w) — w8 Q(z,w) + (w — z)zw(azan(z, w) + (0:Q(2,w))(8:Q(2, 'w))),

which is the same as

w20, Q(z,w) — 220,Q(z,w)

(w — 2)zw

= 0.0,Q(z,w) + (9:Q(z,w))(8.Q(z,w)),

that is, property (b).

We turn to the reverse implication, to show that a holomorphic function Q in D? with
the properties (a) and (b) is necessarily of the form Q[I',,] for some normalized conformal
mapping @. In view of the above calculation (7.1.1), condition (b) asserts that

B0, { (€ — ) eQ(‘S*lm’l)} -0
which means that locally in D2
(6 —m)e¥E ) = G (&) + Ga(n),

where GG1, G2 are holomorphic but with possible logarithmic branching at infinity. Letting
n — &, we find that G1(£) + G2(§) = 0, so that Ga(n) = —G1(n). So the above identity
becomes

(€ —m) e ) = Gy (&) - Gi(n). (7.1.2)

We still need to know that G is a globally well-defined function in D, (without loga-
rithmic branching). We differentiate both sides with respect to &:

G1(€) = B ((6—m) Q€ 1)) = {167 2(6—m)B. Q€ p 1)} eREH ™) — Q€716

where in the last step we plugged in n = &, which is allowed since the expression is
independent, of 7. As |€] — 400, we have Q(¢71,¢71) = O(|¢]72), so that e@¢ & 1) =
1+ O(|¢]72), which rules out a £~! term, and hence there is no logarithmic branching.
In addition, we see that G| (00) = 1. If we put, for some constant ¢, ¥ := Gy + ¢, then
by (7.1.2),

QR Y(£) — @b(n)_
E—n

Since the left-hand side is holomorphic and does not vanish in D2, it follows that 1 is
univalent on .. But then there must exist a point in the complex plane C which is not
in the image (D, ), and by adjusting ¢ we can make sure that 0 ¢ ¥(D,). Then winding
things backwards we get ¢ from 9 in the above fashion, and Q(z,w) is seen to be of the
form (1.10.2), as claimed. O
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8. Zachary Chase’s construction of a permutation
8.1. Permutation of bases
We consider a permutation 7 : Z; — Z. We use the permutation to define that

Bj := Qu(j), which in turn defines the second Gaussian process ¥(z). In this case, the
formula (1.5.5) reduces to

+o0 2
f ES(rOUrOPds() = 3 7 ( 5 (jk)iaj,w(k)), (8.1.1)
=2 J.k:ij+k=l

where 4, denotes the Kronecker delta, which equals 1 if j = & and 0 otherwise. Since
the sum of Kronecker deltas is squared, it makes sense to try to concentrate the times
they equal 1 to certain values of .

Proof of Theorem 1.5.4. Let d > 3 be an integer. We define the permutation 7 = my
in terms of a disjoint partition into intervals Z, = I; Ul, UI3U..., where I, is an
interval on Z, which moves toward the right as m increases. On each interval I,, we
let m4 permute the interval in question. The first interval is I; := {1,...,d— 1}, and we
put m4(j) := d — j for j € I;. The second interval is Is := {d,...,d?> — d}, and we put
ma(j) :== d* — j for j € I,. The third interval is I3 := {d* —d+1,...,d* —d* +d—1} and
on it we put m4(j) := d® —j. The fourth interval is I; := {d® —d> +d L dr—d3+d?—d},
and on it we put m4(j) := d* — j. The general formula is 74(j) := dm — j on I, but
the endpoints of interval I,, depend on whether m is even or odd. If m is odd, then
m=2n —1 for some n=1,2,3,..., and

2yl @1
I, =1, 1:=
m 2n—1 { d+1 I ¥ d-l—l }

while if m is even, then m = 2n for some n =1,2,3,..., and

d2n d d2n+1 —d

Im=Ign2= * geany
d+1 d+1

The permutation 7y is now well-defined, and we see that for k € I,, 0; = (k) = 0j,dm —k =

0 unless j + k = d™. This means that only the parameter values [ that are powers of d

contribute to the sum (8.1.1). When [ = d™, we find that

: m .,1 1 j —2 j ~2
B e e =42 (2) (-
Ik tk=dm J€Im i€In

T

f t73(1—t)"2dt + O(d~™HY),
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by thinking of the sum as the Riemann sum of the integral with step length d=™. The
integral is the incomplete Beta function, since by symmetry

T

T
/ L ) I B S Sy PRV POt oo
_1 0

+

where the last equality relates it to the standard hypergeometric function. As it is well-
known that

2d™
lim Z B log d’

r—1- log1 )

it follows from the obtained asymptotics that

1 = m 1 2

lim ———— r2d ( (Jk) 28~ (k))
r—1- log 1= T2 mzﬂ j,k:j%:d’" ‘
_ 1 Ad 1)z, F (L 1.3, 1 2
_logd{ﬂ-_ (d+1)7%, 1(5’5’5’?)}'

Finally, choosing d = 29 gives us the value = 1.7208. This is the asymptotic variance of
the correlation function f(z) = E®(2)¥(z) with coefficients 8; = o ;). O

9. Notes and further remarks

We mention two topics for further investigation, one which concerns the Dy-GAF,
and the other deals with random unitary matrices for which the Dy-GAF appears in the
limit as the size of the matrix tends to infinity.

9.1. Topics of interest concerning the Do-GAF

In analogy with [23], it would be of interest to study the random zeros of the function
®(z), but since one of them is deterministic (the origin), we should not expect full Mobius
automorphism invariance. By the Edelman-Kostlan formula (see [26]) the density of zeros
is given by

Alogkyp, (z,2)dA(z) = Alog log ——dA(2), (9.1.1)

1

—z[?
which has a unit point mass at the origin due to the deterministic zero there. Here,
one might also be interested in the process for the critical points. We will not pursue
any of these directions here. A rather interesting object appears to be the random curve
(or tree) structure we obtain by following the gradient flow for the random harmonic
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function Re ®(z) which stops at critical points. At each critical point we would instead
choose among the possible directions, for instance by maximizing the second directional
derivative (perhaps after precomposing with a M6bius mapping to put the critical point
at the origin). Although quite promising, we will not pursue this matter further here.
A related setting of gradient flow for the plane defined in terms of the Bargmann-Fock
space was studied by Nazarov, Sodin, and Volberg [21].

9.2. Dy-Gaussian analytic functions and random unitary matrices

Let M,, be a random n X n unitary matrix with distribution given by Haar measure.
Let

X, (A) = det(Al, — M)

be the associated random characteristic polynomial, where I, is the n X n identity matrix.
Diaconis and Evans [7] found an interesting relationship connecting the characteristic
polynomial of M,, with the process given by (1.3.1). They showed that

XM, (%)

trlog(l,, — zM) = log det(I,, — zM,) = log
( ) ( ) or (0)

converges, as n — +o00, in distribution, to the Dy-Gaussian analytic function ®(z) given
by (1.3.1). The details are supplied in Example 5.6 of [7]. For the convenience of the
reader, we mention that the master relationship between their random function F,(z)
and ys, (2) has a typo, and should be replaced by

_n 22X, (?)
Fu(2) = 2r  mwxm, (2)

Remark 9.2.1. The matters considered here, i.e., the possible correlation structure of
two jointly Gaussian Do-GAFs, have their (finite-dimensional) counterpart for random
matrices. Let M, and M) be two copies of the random n x n unitary matrix ensem-
ble, with possibly complicated correlation structure between M, and M/. The entries
are only asymptotically (as n — +o00) Gaussian because of algebraic obstructions, but
nevertheless we may formulate a precise matrix analogue. A natural approach is to fix
a QR algorithm which produces a unitary matrix from a given generic matrix. We then
start with two copies of the Ginibre process (with independent complex Gaussians in all
the n x n entries) but with complicated correlation structure between the two Gaussian
matrix processes. Next, we perform the fixed QR algorithm on each copy to arrive at two
ensembles M,, and M}, of random unitary n X n matrices, as indicated by Mezzadri [20].
What could we then say about the structure of the C2?-valued process of the normalized
random characteristic polynomials
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(XMn(Z) XM,:(Z))?

X, (0)" xa, (0) )
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