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A b s t r a c t .  The classical estimate of Bieberbach that [a21 < 2 for a given 
univalent function ~ ( z )  = z + a 2 z  2 + �9 �9 �9 in the class S leads to the best possible 
pointwise estimates of the ratio ~ d ' ( z ) / c p  t ( z )  for ~o 6 S, first obtained by Kcebe and 
Bieberbach. For the corresponding class E of univalent functions in the exterior 
disk, Goluzin found in 1943 by variational methods the corresponding best possible 
pointwise estimates o f g , " ( z ) / r  for r 6 E. It was perhaps surprising that this 
time, the expressions involve elliptic integrals. Here, we obtain an area-type 
theorem which has Goluzin's pointwise estimate as a corollary. This shows that 
Goluzin's estimate, like the Kcebe-Bieberbach estimate, is firmly rooted in area- 
based methods. The appearance of elliptic integrals finds a natural explanation: 
they arise because a certain associated covering surface of the Riemann sphere is 
a toms. 

1 I n t r o d u c t i o n  

A r e a  m e t h o d s .  Area methods play an important role in the theory of confor- 

mal mappings. The original Gr6nwall area theorem states that if r belongs to the 

class E, with series expansion 

then 

(1.1) 

-~-oo 

r = z + ~ b~ z -~, 
n = 0  

-~-o~ 

1 L lO'(z) l[2dA(z) ~-~nlbnl ~ ~ 1, 
7r 

e n ~ O  

Here, dA(z) = dxdy is ordinary area measure in the plane. Recall that r C E 

means that r is a conformal mapping from the exterior disk 

pc = {z c c u { ~ } :  1 < Izl ~ + ~ }  
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to some domain on the Riemann sphere S = C ~ ,  normalized so that ~b(oz) = cr 

and ~'(oo) = 1. In particular, (1.1) implies that [bl[ _< 1. After an inversion of  

the plane plus a square root transformation, it follows that for ~v in the class S of  

conformal mappings of the unit disk ID into C with ~(0) -- 0 and ~'(0) -- 1, we 

have the estimate [~" (0)[ <_ 4. The M~ebius automorphisms of the unit disk allow 

us to move the point at the origin to an arbitrary point in I~; this results in the 

K0ebe-Bieberbach estimate 

qv"(z) 2~ 4 
(1.2) ~ 1_-[z12 ___ l_lz l~,  zcD. 

This estimate is best possible in the sense that if  we consider, for a given z0 E D, 

the set of  points 

~'(z0) : ~ E S , 

we obtain a closed circular disk of  radius 4/(1 - Iz012) centered at 220/(1 - Iz12). 

G o l u z i n ' s  i n e q u a l i t y .  For the class E, Goluzin [5], [6, p. 132] found in 1943 

the estimate analogous to (1.2) using variational methods. Given ~b E E, it reads: 

(1.3) ~b"(z) 41zl 2 -  2 4~ E(1/lzl) < 41zl (1 E(1/Iz l ) ' l  
~ - ~  + z(Izl = -  1) Izl ~ -  1 K ( 1 / l z l )  - I z 1 2 ~  g ( 1 / l z l ) / '  

for z E D~. Here, E and K are the elliptic integrals 

f o l ~  A2t2 E(A) = 1 - 1 - t 2 dt, A E I~, (1.4) 

and 

f01 dt 
(1.5) K(A) = v/( 1 _ A2t2)( 1 _ t2), A E II3. 

Like (1.2), the estimate (1.3) is best possible. However, the derivation of  (1.3) 

which Goluzin employs is quite different from the above-mentioned classical 

derivation of  (1.2) in terms of  area estimates. Here, we find the area-type estimate 

needed to derive (1.3). Basically, we introduce a square root slit in S between the 

point at infinity and a given point ~b(z0) for z0 E De, and apply Stokes' theorem to 

the resulting compact covering surface over the Riemann sphere. The application 

of Stokes' theorem involves the use of  the Green function for the part of  the 

covering surface which covers ~p(l~ e); in terms of  the coordinates of I~e, this Green 

function results from inserting a square root slit in I ~  between infinity and z0. This 

latter surface is conformally equivalent to an annulus. From the area-type method 

point of  view which is hinted at above and described in detail in the following 
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sections, the Green function for the annulus, which is expressible in terms of 

elliptic integrals, is the reason why elliptic integrals appear in (1.3). On the other 

hand, the reason why elliptic integrals appear in (1.3) in the context of Goluzin's 

proof is that the extremal function is admissible for a quadratic differential, and 

hence is given by the integral of a square root of a rational function. 

In Section 2 below, we explain how the general area method, due to Nehari 

[7, 8], applies for compact Riemann surfaces. In the actual implementation of 

the area method, however, Nehari weakens the estimate in order to get a result 

he can compute using reproducing properties. We do not need to weaken the 

estimate at the corresponding point, possibly because we are happy to work with 

area integrals in place of curve integrals. We explain this in greater detail toward 

the end of Section 2. 
As informative background material for the reader, we mention the paper of 

Bergman and Schiffer [2], where the Grunsky inequalities (a general version of the 

area method) are explained from the perspective of Bergman kernels. 

2 The area-type inequality 

A n  appl icat ion  o f  Stokes '  theorem.  Let S be a compact Riemann surface. 

Later we consider the special case when S is a (branched) covering surface of the 

Riemann sphere S = C a .  The Sobolev space WI'2(S) consists of those locally 

summable functions f : S --~ C for which the first-order differential wy = d f  is an 

element of the Hilbert space of 1-forms L 12 (S) (see [ 11, Ch. 7, pp. 181-182]). We 

recall the standard definition of the norm in L~(S): 

I1~11~,~ = ~s ~ A *~. 

Here, we use the standard Hodge notation 

w = u dz + v d2, *w = - i u  dz + iv d~, 

where z is any local complex parameter. The space W1,2(S) is supplied with the 

semi-norm 

Iifll~vl,~ = HdfH~ 2. 

We consider the space WI'e(S) as taken modulo the constant functions; that is, any 

constant function is to be thought of as the zero function. This is done with the 

intention of making the above semi-norm a norm on WL2(S). In terms of a local 

complex parameter z, the differential w f  = d f  may be written as 

w I = O z f d z  + Oz fdS .  
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This is the local form of the global decomposition 

Wf = Wf,1 + Wf,2, 

where in terms of local coordinates co f,1 = Ozf dz, w f,2 = 0~f ds (see [4, Ch. 1, 
pp. 62--63 and Ch. 2, p. 153]). 

The function f c WI'2(S) generates the second-order differentials 

Af,1 = wf,1 A wf,1, Af,2 = -u;f,2 A wf,2, 

which have the form 

(2.1) AI,1 = ICgzfl2dzm d2, Af,2 = IOzfl2dzm dS, 

in a local complex parameter z. Note that 

[[f[[21,2 = i f s  Af,1 + i f s  Af,2. 

The next result is a consequence of Stokes' theorem. 

P r o p o s i t i o n  2.1, For f C W1'2(S), both integrals fs Af,t and fs Af,2 are 
finite, and 

(2.2) fS Af'l = fs Ay,2. 

Proof.  Assume that f E C2(S), and consider the integral 

s d ( f  dS-), 

Simple calculations give us 

d( /df-)  = (lOzfl 2 - I & f l  2) dz A d~ 

in a local complex parameter z. This means that 

(2.3, f s d ( f d f ~ =  fsAf ,  l -  fsAy,2. 

By Theorem 6-4 [11, Ch. 6, p. 167], we have 

In view of (2.3), we obtain 

fs d(fdf-)  = O. 

fS Af'l = f s  A f,2. 

The general case f C W1'2(S) follows by an approximation argument. [] 
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Note that Proposit ion 2.1 claims that for the exact first-order differential form 

02 = O.)f, 

s W A O = 0 ;  

of  course, this is not true for an arbitrary 1-form. 

S o l u t i o n  o f  L a p l a e e ' s  e q u a t i o n  o n  a s u b d o m a i l L  We consider a nontrivial 

finitely connected subdomain f~ of  the compact  Riemann surface S (nontrivial 

means that f~ # O, S) and a meromorphic  function R on S, the poles of  which are 

all contained in f~. The poles of  R are denoted by p l , . . .  ,PN, and rnj is the order 

of  the pole p j ,  for  j = 1 , . . . ,  N. 

Proposition 2.2.  There exists a function Q : S --~ S with the following 

properties: 

(Q1) Q equals zero on S \ f~; 

(O2) Q is harmonic on 12 \ { p l , . . .  ,PN}; 
(Q3) the function P = R - Q is of  Hiilder class Lip �89 on S, and it belongs to the 

Sobolev space WI'2(S). 

P r o o f .  As a matter of  convenience, we assume in the first part of  this proof  

that the domain 12 has real-analytic boundary. For 12, considered as a Riemann 

surface, we introduce its conjugate surface 12" (see [11, Ch. 8, p. 217, Problem 

1]). Let  12" be another copy of  12 and �9 : 12 -~ 12" be the identity mapping, 

p* = ,(p). We also use the same notation �9 for  the inverse mapping, * = , - 1 ,  

so that p** = p. The complex structures of  ~ and t *  are different, however: if 

z = ~(p) is a local complex parameter about some point p0 ~ 12, with ~(P0) = 0, 

we pick ~ = ~(p) = ~* (p*) as a local complex parameter about p~, where the latter 

relation is used to define the function r  Out of  f l  and f F ,  we form the Schottky 

double 
~=nun*uan 

by identifying conjugate boundary points p E 012 and p* E Off*. As a local complex 

parameter near the identified boundary points p0 = p~ E 0 n ,  we pick 

z = ( r  p e a * ,  

where z = ~(p) is defined on some neighborhood V C S around p0 and maps V fq 12 

onto a region in the upper half-plane Im z > 0, with ~(P0) = 0 in such a way that 

the connected segment of  0f~ fq V containing p0 is mapped onto a segment of  the 

real axis (see [ l l ,  Ch. 8, p. 217, Problem 2]). Thus we endow ~ with the structure 
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of a compact Riemann surface. By Corollary 8-1 in [11, Ch. 8, p. 211], for every 

point pj, there exist functions gj and 93 such that 

�9 gj is harmonic in fi \ {p~}, and g] is harmonic in ~ \ {p~}; 
�9 gj has at the point pj the same singularity as R, while g] has at the point p~ 

the same singularity as - R  o ,. 

Now put 

Qi(p) = 21 {g3(p) + g;(p) _ gj(p.) _ g;(p.) } 

The function Qj has the following properties, for j = 1 , . . . ,  N: 

(1) it is harmonic in f~ \ {pj}; 
(2) the function R - Qj is regular at the point pj; 
(3) Qj is continuous in ~ \ {p/}, and Qj(p) = 0 forp  E 0[2. 

Next, define the function Q by 

f O(p) = ~j=l  QJ(P)' p e f l ,  

t o, p e s \ s 2 ,  

and introduce the associated function P, given by 

P(p) -- R(p) - Q(p). 

The properties of Q imply that P coincides with R on the compact set 

S \ 12 and that P extends harmonically across the set {pl , . . .  ,PN}. Moreover, 

in view of the real-analyticity of the boundary Oil, it follows that the function Q is 

Lipschitz-continuous near Oil, making P Lipschitz-continuous on all of S. Hence 
P E W1'2(S). 

All the above considerations are valid under the assumption that f~ has real- 

analytic boundary. In the general case, we may approximate [2 by an increasing 

sequence of  domains f~n with real-analytic boundaries. For each such domain f~ n, 

we construct the function Qn according to the above scheme. We then appeal to a 

well-known result of Beurling [3, p. 53], which implies the uniform boundedness 

of the local Lip �89 of Q~ (away from the poles {pl , . . .  ,PN} of R). Thus, 

the sequence {Qn} converges in a weak sense to some function Q, defined on 

[L We set P = R - Q with this limit function Q. The functions P and Q 

satisfy all required conditions, with one possible exception: we need to show that 

P E WI':(S). However, this is an obvious consequence of  the fact that the function 

P solves the Dirichlet problem on f~ with boundary values equal to R, and the 
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solution to the Dirichlet problem minimizes the Dirichlet integral over 12. The W 1,2 

(S)-(semi-)norm of P is the sum of its Dirichlet integral over 12 and the Dirichlet 

integral of R over S \ fl,  both of which are finite. It follows that P belongs to 

wl,2(S). [] 

T h e  a r e a - t h e o r e m  t y p e  i n e q u a l i t y .  We want to apply (2.2) to P = R - Q. 

For this function, we have, by (2.1), 

Ap, I = I 0 z ( R - Q ) I 2 d z A  d~, A p , 2 = 1 0 z ( R - Q ) 1 2 d z A d ~ ,  

where z is a local complex parameter. 

Note that the area element dA(z) is �89 dz AdZ, We have 

i i 
-~fsAp, l>-~/fAp,1 and f s  AP, e -- f n  AP, e. 

Combining these relations with (2.2) applied to the function P, we obtain 

/~a i A < i A ,',1 /• (2.4) __ ~ P,2~ 

where, in terms of  local coordinates, 

i I0zR 0 l i - 2 (2.5) } Ap,, = - ~Q[ da(z) ,  ~ Ap,2 = [OzO[ dA(z). 

Note that equality holds in (2.4) precisely when the complement S \ 12 has zero 

area. 
In the next section, we consider more concrete choice of S, ~ and P, to derive 

from (2.4) area theorem type estimates for univalent functions. 

C o m p a r i s o n  w i t h  N e h a r i ' s  r e su l t s .  As mentioned in the introduction, all 
1 the results of  this section are from Nehari 's papers [7, 8], except for the Lip 

estimate, which follows from the work of Beurling. Nevertheless, in some of  the 

stated theorems, Nehari chooses to make assertions that are weaker than necessary. 

For instance, in Theorem III [7], the stated inequality (23) is equivalent to 

0 < (s, S)s \~  + (p - s , p  - s ) ~ ,  

while our inequality (2.4)-(2.5) amounts to 

o <_ (S, S)s\a, 
which is a stronger assertion. The notation here is Nehari's; in our context, S is 

the real part of  R, while p is the real part of Q. The inner product is the standard 

Dirichlet form: for a subdomain D of S, and a function f on D, 

(f, f)D = f iVf(z)t2dA(z), 
J D  
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i f  D has a global coordinate chart. If  0D is smooth, then the Dirichlet form over 

the complement  S \ D is taken to mean the same as the Dirichlet form over  the 

interior of  S \ D. 

3 Applications 

T h e  t o r u s  s u b d o m a i n .  For a covering surface S of  the Riemann sphere S, 

we denote by ~r the projection mapping of  S onto S. 

Let  S be the image of  S under the mapping z ~ z 2. Thought  of  as a covering 

surface of  g, S is a two-sheeted covering, with associated projection 7r : S ~ S. 

The covering has two branch points in S, which we call 0 and oo. They project  to 

the points 0 and cc : 7r(0) = 0 and 7r(cx~) = c~. 

We now describe a concrete domain 12. Let  ~(w) be a univalent function, 

defined in the unit disk D, which maps into g, such that for  some real parameter  

z0, 0 < x0 < 1, we have 

r = O, r = c~, qJ(xo) = 1. 

We put f~ = ~(I~) and note that fl contains the points 0 and c~. We use the notation 

r for  the inverse function to ~ : 

r = ~ - 1  : ~ -"* ]I). 

Denote by f l  the lifting o f  ~2 to S, so that 1r(12) = f~. To get 12, we should first 

cut f~ f rom 0 to ~ ,  then take two copies of  such cut f~, and attach them crosswise 

along the cuts. 

The preimage of  the cut f rom 0 to c~ in f~ is a cut f rom x0 to - x 0  in the unit 

disk D. Attaching crosswise along these preimage cuts two replicas o f " c u t  D", we 

get a two-sheeted covering surface D, which is conformally equivalent to 12. The 

surface D has two branch points, which project to the points x0 and - x 0  of  the unit 

disk. We use the notation ~" also for the projection D ~ I~. 

We need to define an analytic self-mapping D --* D. It is the correspondence 

p H pl between the points p and pl belonging to the different sheets of  D. Namely, 

the point p with the projection 7r(p) = z, z E D \ {x0, -x0} ,  is mapped to another 

point p' C D with the same projection 7r(p') = z. F o r p  such that 7r(p) = +x0, we 

put p' = p. We call pl the mirror point to the point p. 

We now define the mapping qo : D ~ 12 to be the lifting of  ~ to D. By 

definition, it maps the point p C D to the point p E 12 with projection ~(~-(p)); to 

determine the lifting uniquely, we should specify that the top sheet of  D is to be 
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mapped onto the top sheet of  fl ,  and the same for the bottom sheets. We also need 

r  ---* D, 

which is the lifting of  r : f~ ~ •. 

Further, denote by p'  the point qo(p') for p = ~o(p) E ~. We get an analytic 

self-mapping g~ ---* 12, which takes any point p c f~ \ {0, c~} to the other point 

p'  E 12 \ {0, oo} with the same projection: ~-(p) = r each of  the points O, er 

is taken to itself. As in the case of  the points p, p' E D, we call p '  the mirror point 

to the point p. 
Next, we introduce a meromorphic function R(p), p C S, which has a simple 

pole at the branch point 0 and has no other poles. Note that any meromorphic 

function f on our surface S can be expressed in terms of  the global coordinates of 

[~ = C U {co} as 

f ( z )  = f l (z)  § x/-~Y2(z), 

where f l  and f2 are meromorphic functions on S, and x/~ means the algebraic 

square root of  z. We define the function R to be the above f with the choices 

f l ( z )  = O, f2(z)  = 1/z .  
Our next project is to construct the function Q, which satisfies the conditions 

(Q1)-(Q3) of  Proposition 2.2 for this given R. To this end, as a first step, we 

consider the Green function Gla(p,q)  of  the domain i-l. For fixed q �9 fl ,  the 

function p ~ Gn(p ,  q) is harmonic on f~ \ {q}, vanishes on the boundary Of~, and 

has the logarithmic singularity - log I z[ + O (1) in terms of  local coordinates around 

p = q. The function 4) maps f l  onto D conformaUy. It follows (see [10, Ch. 6, w 

pp. 201-202]) that 

G~(p ,q )  = GD(qS(p),qS(q)), p ,q  �9 D, p = r q = r 

For p, q �9 D, define 

C t(p, q) = CD(p,  q) - CD(p',  q), 

G~t(p ,q)  = G~)t(~(p),qb(q)), p = c~(p), q = q~(q). 

It follows from the above definitions that 

c t(p',q) = p, q �9 a ,  

(3.1) G~t(p ' ,q )  = -G~) t (p ,q) ,  p, q �9 D. 

The functions R and RD = R o ~o have the same property: 

R(p') = - R ( p ) ,  p, p' �9 S, 

RD(p') = --RD(p), p, p' �9 D. 
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For our further considerations, we need yet another covering surface of  S. To 

obtain it, we first supply S with two cuts. One of  the cuts is made in I~ from 

-x0  to x0 as we did earlier for the description of  D. The second cut goes from 

-1 /xo  to l /x0.  Also, this cut is to be obtained from the first one by reflection 

in the unit circle: z ~-~ 1/2. Attaching two copies of  such cut Riemann spheres 

crosswise along the corresponding (same) cuts, we obtain a compact surface, which 

we denote by II. It is a two-sheeted covering surface of  g with four branch points. 

In terms of  conformal equivalence, I I  is a toms. As the second cut from - 1 / x  0 to 

1~Co falls outside the unit disk ID, we may think of  the surface D as a subdomain 

of II.  

For a moment,  let us fix an arbitrary q E D. In addition to (3.1), G~)t(p, q) has 

the following properties. 

(1) G~ t (p, q) = 0, for p E 0D. 
(2) the function p ~ G~t(p, q) has the logarithmic singularity - log [z[ + O(1) 

in terms of  local coordinates around the point p -- q and the logarithmic 

singularity log lzl + O(1) in terms of local coordinates around the point 

p = q~, where q, q' are mirror points to each other (so that q r q' and 

7r(q) ---- 7r(q') E D). 

(3) Ggt(p, q) is harmonic on I)  \ {q}. 

Next, we describe a self-mapping II  ~ II,  reflection in 0D. Namely, this 

mapping takes the point p with the projection 7r(p) = z to the point p* with the 

projection ~'(p*) = 1/2. The choice of  p* from the two different points of  11 with 

the same projection 1/2 is defined by the following requirements: our mapping 

must be continuous on rl ,  and p* = p for all p E 0D. The function G~ t may be 

extended harmonically across the boundary 0D. Indeed, by the Schwarz reflection 

principle, for any fixed q E D, we define G~)t(p, q) on the complement of  D by 

G~)t(p,q) = -Ggt(p*,q), p c 11 \ D \ {q*, (ql).}. 

The extended function p ~-~ G~t(p, q) is harmonic on I I  \ {q, q', q*, (q')*}. It has 

the singularity - log Izl + O(1) in terms of  local coordinates around the points p = q 

and p = (q')*, and the singularity log I zl + O (1) in terms of  local coordinate s around 

the points p = q' and p = q*. 

R e m a r k  3.1. The reason why we consider the Green functions G a ,  GD and 

the functions G~ t, G~ t, is explained by the following observation. Let f~ be a 

subdomain of  S with analytic boundary such that f~ contains 0 and w E f~ 

- w  E f k  Let 

a~ t (w,  A) = a~(w,  A) - C ~ ( - w ,  A), 
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where Ga is the Green function of ~2. This function can be represented as 

A) = 1 1 Galt/za t , - ~ l o g l  w - A ]  2 +  logl w+A{ 2 + H ( w , A ) ,  

where H ( w ,  A) is an odd harmonic function of  the variable w. We observe that the 

function Q defined by 

1 
Q ( w )  = O),G~t(w, A)];~=0 = - + O),H(w, A)lx=0 

w 

is harmonic on fl \ {0}, with a simple pole at the point w = 0, and it vanishes 

on 0fL So, in the special case S = S, R ( z )  = l / z ,  we obtain the function Q of 

Proposition 2.2 from the function G~ t in the above manner. 

We seek the required func t ionQ : S ~ g f o r t h e  g i v e n R  : S ~ S i n  an 

analogous fashion. The theory of  elliptic functions (or integrals) is needed to 

obtain the explicit form of G~ t. 

Ell ipt ic  f u n c t i o n s  a n d  the  G r e e n  f u n c t i o n  for  the  t o r u s  s u b d o m a i n .  

We recall some definitions and facts from the elliptic functions theory (see [1, 

Ch. V, VI]). 

Let  k be a real parameter, 0 < k < 1. We introduce the following notation: 

k ' = x / 1 - k  2, l 1-k' l' v / 1 - l  2, M =  1 
(3.2) - l+k', = l+k,, 

K = K ( k ) ,  K '  = K ( k ' ) ,  r = K(1),  L '  = K ( l ' ) ,  

where the function K(A) is defined by (1.5). The values L, L ' ,  K ,  K '  are connected 

by Landen's  transformation (see [1, Ch. VI]), namely, 

(3.3) K = 2 M L ,  K I = M L ' .  

Let h = e - ~ K ' / K .  One of  Jacobi's theta-functions 00(u) is defined by 

Oo(u) = 1 - 2hcos27ru + 2h4 cos4~ru - 2hgcos6rru + --. , u E C. 

We also recall the definitions of  the following Jacobi elliptic functions: 

sn(z; k) = 

(3.4) Oo(z) = Oo 

ie-  4--~ (2*+iK') Oo(z - i K ' )  

v ~  Oo(z) ' 

0~(z) 
Z(z) - 0o(~)' 

dn(z;k) = , / V  O o ( z - K )  
Oo(z) 

_i _ ~ ( ~ §  ~ '  6o(z - K - iK' )  
on(z ;  k) 

V k  
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Let n = 2x0/(1 + x02) for some real x0, 0 < x0 < 1. The point x0 is the same 

one we used to define the surfaces D, It,  H. In our further considerations, we use 

the functions 00(z), Z(z) ,  which are detined with the parameter k = n. In addition, 

we require sn(z; n), cn(z; ~), dn(z; n), as well as sn(z; x02), cn(z; Xo2), dn(z; Xo2); the 
argument x02 appears because for k = ~, we have l = Xo ~. 

The function Oo(Z) is entire and has simple zeros at the points 

z.~,n = i K  ~ + 2 i n k  + 2 inK ~, for m, n E Z; 

likewise, Z(z )  is a meromorphic function with the simple poles at the points zm,n, 

for m, n C Z. In addition, the functions 00 and Z are "almost" double-periodic: 

0o(z + 2K) = Oo(z), 

Z ( z  + 2K) = Z(z ) ,  

We consider the rectangle 

7 9 = { z E C :  

and the analytic function 

Oo(z + 2iK') = --h-le-~riz/KOo(z), 

Z ( z  + 2iK') = Z( z )  - rd/K.  

- 2 L  < Rez  < 2L, - L  ~ < Irnz < L~}, 

or(z) = xo sn(z + L; Xo2). 

Let us introduce the following subrectangles of  79: 

79- = { z E C :  

7 9 + = { z c C :  

D I = { Z E C :  

Vo={zeC: 
v +={zeC: 
Vo+:{zeC: 

- 2 L  < Rez < 0, 

0 < Re z < 2L, 

- 2 L  < Rez < 0, 

- 2 L  < Rez < 0, 

0 < Re z < 2L, 

0 < Re z < 2L, 

The function cr maps each of  the rectangles 79- 

sphere 

- L '  < Imz  < L'}, 

- L '  < Imz  < L'}, 

- L '  < Imz  < 0} 

0 < Imz  < L'}, 

- L '  < I m z  < 0} 

0 < Imz  < L'}. 

and 79 + conformally onto the slit 

s\  ( ] -  oo;-xo] u [xo; u 
It is also known that w = o-(z) maps the closed rectangle Z3, with both pairs of  

opposite sides identified, conformally onto I I  (see [1, Ch. VIII] or [9, Ch. VI, 
pp. 280--285]). 

The inverse function of  the restriction of  w = ~r(z) to D -  is given by the elliptic 
integral 

~o ~/~~ dt 
z = v(w) = 4 (  1 _ t2)( 1 _ x0,t2) - L .  
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As a conformal  mapping, z = "r(w) sends the upper half-plane 

C + = { w E C :  Imw > 0} 

onto the rectangle 790 and the lower half-plane 

C _ = { w E C :  Imw < 0} 

onto the rectangle 79~- in such a way that 

r (xo)  = O, r ( - X o )  = - 2 L ,  -r(O) = - L ,  

lim r (w)  = iL', 
C+ ~w-~ l /xo 

lira r(w)  = - 2 L  + iL', 
C+~w --1/xo 

lira ~-(w) = - L  + iL', 
C+ ~w~c:~ 

lim r (w)  = - i L ' ,  
C_ ~w---*l/xo 

lim 7"(w) = - 2 L  - iL', 
C_ ~w---*- l /xo 

lim "r(w) = - L - i L ' .  
C_ gw---+cx~ 

The function z = -r(w) extends to an analytic function on 

C§ u C_ u ] - x0, z0[. 

Its restriction to the upper half  plane C+ has an analytic continuation across the 

remaining segments 

u \ [ - 1 / z o ,  1/xo], ] - ]xo, 1/xo[, 

and so does its restriction to the lower half  plane C_.  I f  we look carefully at 

these extensions, we find that the mapping z = -r(w) lifts to a conformal mapping 

I I  --* C / r ,  where r is the additive group generated by the elements 4L and 2iL ~. 

We let 79fund denote the set 79 with the left vertical and the lower horizontal sides 

of  this rectangle adjoined; then 79fund is a fundamental domain for c / r .  

We need to understand the operations p H p' and p ~ p* on I I  in terms o f  this 

identification o f  I I  with c / r .  It is easy to see that the mirror mapping p ~ p'  

corresponds to z ~ - z  on c / r .  Also, the mapping p ~ p* of  reflection in 0D 

corresponds to z ~ z*, where z* is the reflected point in the line �89 + ~ (modulo 

r ) .  This latter fact is perhaps not entirely obvious. To see that it is nevertheless 

so, pick a point z E 79fund- We have 

= + L; =  /zo. 

Using the relation (see [1, table XII]) 

sn(u + iL'; x~) -- 1/(Xo 2 sn(u; x2)), 
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we find that 

sn(2 + L + iff;  x~) = 1/(x0~sn(5 + L; x~)) = 1/(x0~), 

so that 

We realize that 

x0 sn((~ + iff)  + L; x~) = w*. 

z* = ~ + iL', 

which is the formula expressing reflection in the line �89 + IR. 

Finally, we obtain a description of  the image "r(D) : it is the rectangle 

D D = { z E C :  - 2 L _ < R e z < 2 L ,  I I m z l < L ' / 2 } .  

The image of  OD consists of  the two horizontal line segments 

"y+ = { - 2L < Rez  < 2L, Imz  = +L'/2}. 

For (z, () E C x C, we define the function G(z, ~) by 

1 Oo(Mz- M~ + iK')Oo(M~ + M~) ~ lrM [2M 1 
G(z,() = --~ log Oo(Mz--+ M~-- iK' )Oo(M2--M()  K ~-~--TIm~- 1. Imz,  

where the function 00 is given by (3.4); here, we think of  log as taking values in 
[ - ~ ;  +~] ,  

From the properties of  the function 00, and (3.3), we see easily that G(z, r has 

the following properties: 

1 ~ G(z, ~) = G((, z); 

2 ~ the function z ~ G(z, ~) is periodic with respect to the group F, making it a 

function on C/F; 

3 ~ for a fixed r E DD, the function z ~ G(z, ~) is harmonic in the variable z in 

the domain DD \ {s --(}, it has the logarithmic singularities log Iz - ~l + O(1) 

near z = i and - log I z + (I + O(1) near z = -~ ;  

4 ~ G(z,r = 0 f o r z  E 7+ UT-;  

5 ~ a(-z, r = - a ( z ,  r 

The property 2 ~ means that G(r(p), r(q)) is a function on I I  x II. From the above 

properties of  G, it also follows that G('r(p), r(q)) coincides with the previously 

considered function G~J t (p, q): 

(3.5) agt(~(z), ~(r - a(z, r (z, ~) e c / r  x c / r .  
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We denote by ~DD the subdomain of  the toms C/F  whose restriction to the 

fundamental domain Dfuna is the subrectangle DD and by Gz~D (z, ~) the Green 

function of this subdomain. Then, the relation (3.5) is equivalent to 

a(~ , ; )  = G ~ t  (z,r = c ~ , o ( z , ; )  - a ~ , D ( - z , ; ) ,  (z,r �9 z~i~ x Z~D. 

Let us consider the function 

, 7riM I 7riM 
(3.6) QD(Z) = OcG(z, ~)1r = MZ(Mz+iK )-MZ(M~)+--ff-~ m (Mz)4 2K ' 

where Z is Jacobi Z-function (see (3.4)). The above properties of G(z, ~) imply 

that QD (z) has the following properties: 

(1) it is a periodic function with respect to F, so that QD (z) is a function on C/F; 

(2) QD is harmonic on DD\{0}, and has the singularity 1/z + O(1) at the point 0; 

(3) QD(Z) = 0 for z �9 7+ U 7-;  

(4) QD(-Z) = --QD(z), for z �9 C. 

Put 

QI(p) = (QD o 7" o r  p �9 ~.  

This function satisfies the conditions (Q1) and (Q2) of Proposition 2.2. Also, it 

has the singularity 

1/7-(r + O(1) ,-~ b/z + O(1) 

at the point 0 �9 i2; here, 

(3.7) 

z 
b = l i m - - -  lira 

z-~o 7- (r  w-~xo 7-(w) 

= lira v/w - x 0  

In view of the above, it follows that 

- -  - lira 
W,--.~ X 0 

Q ( p ) =  Q I ( p ) =  ~(QD 

( Wv/-~-s-~)~ i 
- - �9 

o r o ~ ) ( p )  

is exactly the function we are looking for. 

T h e  a r e a - t h e o r e m  t y p e  i n e q u a l i t y  f o r  u n i v a l e n t  f u n c t i o n  o n  D.  W e  

now write down the inequality (2.4) for the function 

1 
P(z)  = ( n o  ~ o ~) (z )  - ~ QD(z) ,  z �9 •D. 
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Recalling the definition of the function R, we see that 

(R o ~ o ~r)(z) = 1 / ~ ,  

where v ~  means the algebraic square root of u. Then, for our choice of P, (2.4) 
assumes the form 

2 1 
(3.8) /vD _~'(a(z))cr'(z) +10~QD(Z) dA(z)<  ~f~DlO~oi~(z)l~dA(z); 

2[~(~(z))] ~/2 g 

here, as usual, dA(z) is the area element, and the constant b is as in (3.7). 

We intend to simplify the inequality (3.8). First, we evaluate the right-hand 

side of (3.8). Recall that 

QD(Z) = OfG(z, ,)[f = o =Of f (GOD(Z, ( ) -  GOD(--Z,()} f=0' 

SO that 

OzQD(z) = {~zc3fG~D(z,() + ~zOfG~D(--z,~)l r 

The kernel 

KZ~D(Z,()=--2 0~SfGDD(Z,(), Z # r  
7r 

has the following reproducing property: for any analytic function f E L 2 (:DD), 

f ( ()  = f f(z)K79D(Z,()dA(z), ( �9 :DD. 
d T)  D 

In particular, taking into account that the function z ~ Kz~o (z, () is analytic and 
bounded near the point z = (, we have 

fD IK'DD(z,f)12dA(z) = KT~D (~, (). 
D 

From the above, it follows that 

f~o I~QD(z)I 2 dA(z) 

(3.9) 

7r2 fv = ~ [R~'D(z,O)+Rvo(-z,O)12dA(z) 
D 

= ~2K~,D (0, O) = --2~ Oz~f C~,D (0, O) 

= --Tr (gz QD(0) = --Tr 0z (~D(0). 

The calculations of the right-hand side of (3.8) can be completed by using the 

following facts from the elliptic functions theory (see [1, Ch.V]): 

(3.10) Z'(u) = [dn (u; n)]2 _ E/K,  

dn (0; ~) = 1, 

(3.11) EK'  + E 'K  - K K '  = 7r/2, 
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where E = E(t~), E '  = E(t~'), K = K(t~), and K'  = K(~') (see equations (1.4), 

(1.5), and (3.2)). In view of (3.6), we have 

O~QD(Z) = M 2 - [dn(M~;~) ]  2 +  K 2I~K' ' (3.12) 

so that 
0zQD(0) = -M2E' /K ', 

which is a real number. We get, by (3.9), 

1 Iv IOzQD(z)12dA(z)= zrM2E' 
(3.13) [5[ 2 D Ibl 2K' = 

Finally, the inequality (3.8) becomes 

/ z ) [ _ _ _ _ ~ O z Q ,  D(Z) 2 zcM2E' (3.14) ~'(r 1 dA(z) < ~ - 

o 2 [ ~ ( ~ ( z ) ) ]  3/2 

A p o i n t w i s e  e s t i m a t e .  Put 

�9 (z )  = _ ~ ' ( , , ( z ) ) , , ' ( z )  

the inequality (3.14) now takes form 

fz~ 7r M2 E' 
(3.15) I~(z)l 2dA(z) < ib12K------7-. 

D 

By (3.13), (3.15), and the reproducing property of the function 

= 

we have by the Canchy-Schwarz inequality 

['I'(0)l 2 =  /vD~(z) [ - l  OzOD(z)l dA(z) 2 

~(1 + x~)E' 
2xo(1-x~)K" 

1 
b OzQD(Z), z E Z)D; 

1r(1 + x~)E' 
2x0(1 -x~)K" 

<- -~1 D [~(z)12dA(z) D [O~QD(Z)[2dA(z) - < ~ \ K']  ' 

whence 

M 2 E ~ 
(3.16) t~(0)1 <_ - -  

lbt K "  

Below, we demonstrate that this inequality is equivalent to the estimate (1.3) of 

Goluzin for the class E. 
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R e w r i t i n g  t h e  a r e a - t y p e  i n e q u a l i t y  i n  t h e  c o o r d i n a t e s  o f  t h e  u n i t  

d i s k .  We first rewrite the left-hand side o f  (3.14) as an integral over D rather than 

(3.17) 

1 2 
v v  - qd(er(z))er'(z) _ -~(9~QD(z) dA(z)  

~ ' (w)  1 2 
= f D  2 [~(w)] 3/2 -~O~QD(z)=~.(~)r'(w) dA(w);  

here, the area measure  dA is implici t ly  lifted f rom D to D.  F rom (3.10), (3.11) and 

the fo l lowing relations be tween  Jacobi  elliptic funct ions  ([ 1, table XII]),  

dn (u + iK' ;  ~) = - i  cn (u; ~) 
sn (u; ~)' 

[sn(u ;~)]2  + [cn(u;~)]2  = I, 

we obtain,  in v iew o f  (3.6), 

OzQD(z) = M2 [ 1 E'] 
[sn (Mz; ~)]2 + ~-7 �9 

No te  that the express ion 

[sn (Mz; ~)] 21 J Iz=r(w) 

can be  simplif ied b y  using Landen ' s  t ransformat ion o f  Jacobi  funct ions ([ 1, Ch.VI]) .  

This  t ransformat ion al lows us to express  [sn (Mz; ~)] 2 as a funct ion of  the expres-  

sion 
cn (z; Xo 2) 

r - dn (z; x 2) 

We  have 

cn (z; Xo 2) = 1 - (1 + ~') [sn (Mz; n)]2 1 - (1 - n ' ) [sn  (Mz; ~)]2 
dn (Mz; t~) dn (z; Xo 2) = ' dn (Mz; ~) 

F r o m  these  formulas,  we  find that 

[sn (Mz; t~)] 2 = 1 - ~(z)  
1 + t~' - (1 - td)~(z)" 

Further, taking into account  the relation 

sn (z + L; x 2) - cn (z; xo 2) 
dn (z; x~) '  
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we conclude that w = ~(z) is the inverse function to 

L w  dt 

w~-* v / ( l _ t 2 ) ( l _ x ~ t 2 )  

From the above, we obtain 

[~(Mz;,~)]~[:=,.(~) = 1 -- W / X  0 

1 + ~ '  - ( 1  - ~')w/xo 
(1 + x~)(w - Xo) 

2zo(Zow-1) 

Finally, we arrive at 

OzQD(z) ~-(~) - xo(12 + ~)  l~-_xo~ xo 
(1 + x~))2E ' 

- - +  , w E D .  
4K ~ 

Note that the above expression is a well-defined function on D. Substituting the 

last expression as well as 

1 
"#(w) = iv/(w2 _ x~)(1 - x~w 2) 

into the right-hand side integral of  (3.17), we get 

1 "r'(w) 2 dA(w) ~o'(w) -~azQD(z) ~=-(~) 

2[~o(w)] 3/2 

f co'(w) (1 + X ~ ) v ~  f i -  :CoW 1 1 

L [~(~)]~/~ 7/7(77704) v ~  xo~ ~ (~ -  =o)~/~ 2 

(1 + x2) z E '  1 1 2 dA(w). 

- 2v/2Xo( 1 _ x 4) K '  V/(w + xo)(1 - x~w 2) (w - xo) 1/2 

As we multiply by ~ x02 inside the absolute value signs of  the integral and 

divide by [w z - x02[ outside them, which permits us to integrate over ID instead of  

over the covering surface D, we realize that we have derived the following from 

(3.14). 

P r o p o s i t i o n  3.2. Let ~ : ~) -~ S be a univalent function with the property that 

for  some real xo, 0 < x0 < 1, we have ~(xo) = O, ~ ( - x o )  = oo, and ~'(Xo) = 1. 

Then 

(3.18) 

E '  (1 + Xo2) 2 1 2 dA(w) 7rE' 1 + Xo 2 

K' ~/~xo-77-7~) 4 1 - ~  IJ-xo~l -< g' xo(1-z~)' 
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where E '  = E((1 - Xo2)/(1 + x2)), K '  = K((1  - Xo2)/(1 + x~)) and the functions 

E(A), K(A) are defined by (1.4) and (1.5). Equality is attained in (3.18) i f  and only 

if ~ is a full mapping. 

T h e  c o r r e s p o n d i n g  e s t imates  the  class E. Let r  = z + bo + blz -1 + . . .  
be an element of  the class E. Fix a point ~ E / ~  \ {oc}. Then 

(3.19) z0 = 
1 - V/1 - I~1-2 

1 + V/1 -Iff1-2 

satisfies 0 < x0 < 1, and we have the inverse relation 

The mapping 

l+z~  
[4[ - 2x0 

Ir - x o ~ z  

o(z) -  ~z x01r 
maps/D~ onto D conformally and takes cc to -x0 ,  while ( is mapped to x0. The 
inverse mapping is 

l + x o w  
~- l (w) -  I~1 w + x o "  

Consider the related function 

(3.20) qo(w) - KI (1 + Xo2) 2 r  - r 

which is univalent on D with ~ ( - x 0 )  = c~, qo(x0) = 0, ~'(x0) = 1. 

Substituting (3.20) into (3.18) and making the change of  variable w = 9(z), we 

obtain, after some simplification, the corresponding inequality for r We write it 
down in the following form. 

T h e o r e m  3.3 (The area-type estimate). Fix a point ~ C D~ \ {~} .  Then, for  
any ~ E ~, 

(3.21) 
fDe [ (~Y(ff)(Z -- if) ~ 1/2 ~)/(Z) 1_~ (~Z)--I~ 1/2 1 

\~(Z) - @(ff)// ~(Z) - ~(ff) ( 1 -- 141-2 ) z - 4 

E I 1 2 dA(z) 27rE I 

+ K--7 [(1 -Ir (~z)- l)]lZ~z V; -~I  <- K - - r  - -  I~12 - 1' 

where E '  = E(V/1 -1~1-2), K'  : K ( ~ )  and the functions E(A), K(A) 

are defined by (1.4) and (1.5). Equality holds if  and only if  r is a full mapping. 
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The derivation o f  Goluzin's inequality from the area-type estimate. 

Put 

4r  
(3.23) r  

From (3.11), we have 

( ,//31 (4) (Z ~ ~.!.), ~ 1/2 

~(z ,4)  = \ r  - r  ) 

'/y(Z) (I__~_((~Z)_I, ~ 1/2 1 

~(z) -r162  \ 1 - 1 4 1 - 2 )  z - 4  
1 

E'  E 7r 
K--- i = 1 - - ~  + 2KK----- S ,  

which, together with (3.23), leads to 

,41412 " E__(1/141)5 4~"(4) 41412-2 41~.l 2 E(1/141) < K_~Z_i__I/1 
r + 1412-------i- 4 1 2 - - 1 K ( 1 / 1 4 1 )  - K(1/141)/ 

after some simplification; here, the functions E(A), K(A) are defined by (1.4) and 

(1.5). This is the classical inequality due to Goluzin (see [5], [6, Ch. IV, w 
p. 132]), and if we divide by 4 inside the absolute value signs, we arrive at (1.3). 

E / 
+ 

K' [{1 - 141-2}(1 (~z)-l)] 1/2 - -  Z 

As we recall how the inequality (3.15) containing the function �9 is transformed 

into (3.21) involving the analogous function ~, we find that 

3 / 2  
1~,(4,01 "~o V ~ - - ~ o  141 ~ I~,(0)1" 

v ~  14P- 1 

In view of (3.16), we then have 

M 2 E  ' 3/2 
I'I'(4,4)l < v~iblK, ZO ~ 1412 

- 141 ~ -  I '  

where x0 is given in terms of [41 by (3.19). Substituting the expressions for the 
constants M and b (see (3.2) and (3.7)) and simplifying further, we obtain the 

estimate 

E' 14l 
(3.22) 1~(4, 4)I < K' 1412 - 1 

On the other hand, a direct calculation yields 

E' 147 r  1 2 -1412 + K '  
~(4, 4) - 44'(4) 24 2 (1415 - 1) 4 (1412 - 1) 4 

The inequality (3.22) thus takes the form 

2(1412 - 2) 4E' 1412 E' 41412 
2 + 147 - 1 + K ~ (14#- 1) ~ K' 1412 - 1" 
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R e m a r k  3.4. To find the extremal ~b c E which gives equality in Goluzin's 
inequality (1.3) at a given point z E I~e, we should just check when we have equality 
in the Cauchy-Schwarz inequality leading up to (3.16). Of course, the result of  
this exercise of course agrees with Goluzin's findings. 

A c k n o w l e d g m e n t s .  We thank the referee for several important remarks. In 

particular, he clarified how our basic area estimate improves upon Theorem III of 

Nehari [7]. 
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