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INVARIANT SUBSPACES IN QUASI-BANACH
SPACES OF ANALYTIC FUNCTIONS

A. ABKAR AND H. HEDENMALM

ABSTRACT. Let X be a quasi-Banach space of analytic functions on a finitely con-
nected bounded domain €2 on the complex plane. We prove a theorem that reduces
the study of the hyperinvariant subspaces of X to that of the hyperinvariant sub-
spaces of X, where X is a quasi-Banach space of analytic functions on a domain 1
obtained from by adding some of the bounded connectivity components of C \ Q.
In particular, the lattice structure (incident to the hyperinvariant subspaces) of a
quasi-Banach space X of analytic functions on the annulus {z € C: p < |2| < 1},
0 < p < 1, is understood in terms of the lattice structure of the space Xy, the
counterpart of X for the unit disk.

§0. INTRODUCTION

A topological vector space over the complex field C is a vector space equipped with
a Hausdorff topology with respect to which the vector space operations, addition and
multiplication by scalars, are continuous. A subset E of a topological vector space X
is said to be bounded if for every neighborhood U of the origin in X there is a positive
number ¢ such that F C tU. A topological vector space X is said to be locally bounded
if the origin in X has a bounded neighborhood. In this case, the family {1U}32, forms
a countable basis of neighborhoods of the origin in X, which is equivalent to saying that
the topological vector space X is metrizable. We recall that a topological vector space
X is metrizable if there exists an invariant metric on X that induces the topology (see
[11, p. 163] or [15, pp. 17-18]). Note that in any topological vector space the notions of
a Cauchy sequence, convergence, and completeness can be defined without reference to
any metric (see [15, p. 20]). Now, suppose that X is a topological vector space whose
topology T is compatible with an invariant metric d (both 7 and d have the same open
sets). It is well known that a sequence {z,}52, in X is a Cauchy sequence with respect to
7 if and only if it is a Cauchy sequence with respect to d [15, p. 20]. By a complete locally
bounded space we mean a locally bounded space complete with respect to its original
vector topology, or equivalently, with respect to an invariant metric compatible with the
original topology.

A topological vector space X is called an F-space if its topology is induced by a
complete invariant metric. In particular, any complete locally bounded space is an F-
space. It is well known [11, p. 163] that the topology of an F-space is induced by an
F-norm; an F-norm is a nonnegative real-valued function || - || satisfying the following
conditions (z and y are arbitrary elements of X):

(F1) ||lz|| > 0 always, and ||z|| = 0 if and only if z = 0;

(F2) ||Az|| < ||z|| for every complex number X with |A] < 1;

¥3) llz +yll < llzll + llyll;
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(F4) Az || — 0 if [|lz,|| — 0, where X is a fixed complex number and {z,,}32, is a
sequence of elements of X;

(F5) |Anz|| — 0 if A, — 0, where {\,}52 is a sequence of complex numbers and z is
a fixed element of X.

An F-norm | - || in X is said to be p-homogeneous, 0 < p < 1, if |Az|| = |A|P|z]|
for every € X and every complex number A. Sometimes, a p-homogeneous F-norm is
called a p-norm. The following characterization of a locally bounded space is known as
the Aoki-Rolewicz theorem: a topological vector space X is locally bounded if and only
if its topology is induced by a p-norm for some p with 0 < p <1 (see [11, p. 161] or [14,
p. 95]).

Let X be a topological vector space. By definition, a subspace of X is a closed linear
subset of X. If Y is a subspace of X, we can form the quotient space X/Y. It is clear
that if ¥ is closed, then the space X/Y, endowed with the quotient topology, has the
structure of a topological vector space (see [15, p. 29]). We also note that if X is an F-
space or a locally bounded space, then so is the quotient space [15, Theorem 1.41]. In this
paper, we shall work with complete locally bounded spaces (of analytic functions). We
shall use the term quasi-Banach space to refer to a complete locally bounded space; this
terminology emphasizes the completeness and the relationship with the Banach spaces.

In this paper, we investigate the dependence of the lattice of multiplier invariant
subspaces on the connectivity of the underlying domain. Our main result shows that, in
order to characterize all multiplier invariant subspaces of index one of a Bergman space
LP(Q), 0 < p <1, on a finitely connected smoothly bordered domain €2, we only need to
characterize the multiplier invariant subspaces of the Bergman spaces L2(Q'), 0 < p < 1,
where 2 is a smoothly bordered domain with fewer holes. In particular, if Q is the
annulus A, ={z2e€C:p<|z] <1}, 0<p <1, then its associated domain ' becomes
the unit disk, which in turn simplifies the problem significantly.

A (planar) domain is an open and connected subset of the complex plane. In the sequel
we shall consider a finitely connected bounded domain Q. Let £ be a domain obtained
from (2 by adding some of the bounded connectivity components of C\ 2. More precisely,
if C\ 2 is the union of two nonempty closed sets K; and K3 such that K1 NKy = & , K
is unbounded, and K is compact, we set £2; = C\ K and {23 = C\ K5. Then

(a) Q@ = Q1 NQs, where Oy and Qg are two planar domains;

(b) € is bounded, €5 is unbounded, and Qy # C;

(c) QU =C.

Observe that such a decomposition of € is by no means unique. That is, given a finitely
connected bounded domain €2, we may have different choices of 5 and §)y. However, if
2 is a domain with only one hole—such as an annulus—there is precisely one choice of
such a decomposition of 2 into 2 and Q.

Let X denote a quasi-Banach space of analytic functions on § (see §1 for the defi-
nition), and let X; be the subspace of X consisting of the functions in X that extend
analytically to ;. In fact, X; = X N O(Q;), where O({};) denotes the Fréchet space
of all functions holomorphic in ;. The maximum principle shows that X, is a closed
subspace of X. Moreover, equipped with the norm of X, the space X is a quasi-Banach
space of analytic functions on £2; (see §4). We need the following basic concepts.

Let T be a bounded operator on X. A closed subspace J of X is said to be invariant
for the operator T if T'J C J. We say that J is invariant if zJ C J, i.e., J is invariant for
the operator M,: f — zf defined on X. By a multiplier in X we mean a holomorphic
function ¢ on 2 such that ¢f € X for every f € X. The collection of all multipliers in X
is denoted by M (X). It turns out that M {X) has the structure of a quasi-Banach algebra
(see §2 for the definition). A closed subspace J of X is said to be multiplier invariant if
wJ C J for every ¢ € M(X). An invariant subspace of X is said to be hyperinvariant for
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the operator M, if it is invariant for any operator commuting with A/,. The multiplier
invariant subspaces turn out to be precisely the hyperinvariant subspaces for the operator
M, (see §1).

We wish to compare the multiplier invariant subspaces of X with those of X;. As-
suming that I is a multiplier invariant subspace of X; subject to some conditions (to be
fixed later), we define

I-M(X)=span{ fo:fel, peM(X)},

where by the span of a set we mean the collection of all finite linear combinations of
the elements of the set. The closure A(J) of I - M(X) in X is a multiplier invariant
subspace of X; in fact A(I) is the smallest multiplier invariant subspace of X containing
I. Conversely, if we start with a given multiplier invariant subspace of X, say J, which
again satisfies some conditions, then J N X; is a multiplier invariant subspace of X
provided that M(X;) C M(X). To ascertain that the above operations result in a one-
to-one correspondence between the classes of multiplier invariant subspaces of X and of
X1, we need to check the following:

Under suitable conditions, it turns out that this is indeed the case, so that the mapping
I — A(I) is injective; the inverse is given by J — J N X7.

The results of this paper generalize those of the paper [1] where Banach spaces of
analytic functions were treated.

§1. QUASI-BANACH SPACES OF ANALYTIC FUNCTIONS
In this section we formally define a quasi-Banach space of analytic functions.

Definition 1.1. We say that X is a quasi-Banach space of analytic functions on £ if X
is a linear subspace of O(1) such that

(a) X is a quasi-Banach space;

(b) the injection mapping X < O(2) is continuous.

Tt should be noted that a quasi-Banach space of analytic functions is not merely a linear
space of analytic functions equipped with a p-homogeneous F-norm (or a p-norm) that
makes it a quasi-Banach space, as the name suggests. It must also have the substantial
continuity property (b). From the extended form of the Banach-Steinhaus theorem for
F-spaces (see [14, p. 39]) it follows that condition (b) is equivalent to the continuity of
all the point evaluation functionals X — C corresponding to the points of Q.

We use the notation C,, for the Riemann sphere C U {oo}. In this paper we shall
consider quasi-Banach spaces of analytic functions on ) that satisfy the following two
natural axioms (we assume that {2 is not dense in C):

(A1) If f € X, thenrf € X for any rational function v with poles in C \ Q, where
the closure is taken in C.
(A2) If f€ X, A€ Q, f(\) =0, then there ezists g € X such that f = (z — N)g.

From (A1) we conclude that any rational function r with poles off Q belongs to the
multiplier space M (X). For a bounded domain 2, consider the operator M,: X — X
that sends f € X to zf. The closed graph theorem for F-spaces and axiom (Al) imply
that the operator M, is continuous. The spectrum of this operator is defined as the
set of all A € C for which the operator A — M, is not invertible. The spectrum of M,
denoted by o = (M), is a compact subset of the plane. Suppose that X # {0}, and let
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A € Q; axiom (A2) implies that there is a function f € X such that f(\) # 0. Hence, the
operator M, — A cannot be surjective. Consequently, M, — ) is not invertible, whence
A € 0(M;). We see that Q C o(M,). If Q contains the point at infinity, M, is not a
bounded operator, but we may still talk of the spectrum of this operator, meaning the
set of all complex numbers \ for which (A — z)~! ¢ M(X). This set can be shown to
be closed, for X # {0}. Similarly, for a fixed ¢ € M(X) we introduce the operator
M,: X — X that sends any f € X to ¢f. This operator is also bounded, and we can
make M (X) a quasi-Banach algebra (see §2 for the definition) by defining ||¢| = || M,|.
This definition implies that

leflix < el - Iflx, ¢eMX), feX.

As was mentioned in the Introduction, the multiplier invariant subspaces of X coincide
with the hyperinvariant subspaces for M,. This is a well-known result in the case where
X is a Banach space of analytic functions satisfying axioms (A1) and (A2) (see [13,
Proposition 2.4]). More generally, the following statement is true.

Proposition 1.2. Let X # {0} be a quasi-Banach space of analytic functions on @ sat-
isfying azioms (Al) and (A2). Then an invariant subspace J of X is multiplier invariant
if and only if J is hyperinvariant for the operator M.

Proof. 1t suffices to check that for an operator T on X we have TM, = M, T if and only
if T'= M, with some ¢ € M(X). The “if” part of this assertion is clear; in order to prove
the “only if” part, we assume that T is an operator on X commuting with M. It follows
that for every A € 2 the operator T' commutes with the operator M, — \: f — (2 — \)f,
f € X. Fixing f € X and A € (2, we use axiom (A2) and the assumption X # {0} to
conclude that there is a function h € X satisfying h()\) # 0 and

f)

f= mh +(2—X)g for some g € X.
Consequently, o)
f(A
TS = Tt (= Ny,
whence
(1) THO) = LETHO) = )

Freeing up the variable A\, we can view (1.1) as an identity valid for all A € Q with
h(A) # 0. The function ¢(z) = Th(z)/h(z) is meromorphic in © and, by (1.1), is
independent of the choice of h. Taking different h € X, we see that ¢ is holomorphic on
the entire (2, because the functions in X have no common zeros in €. In other words,
v € O(Q). By (1.1), for every A € Q we have Tf()\) = f(A\)p()\), which means that
T = M, with ¢ € M(X). U
We note that if the constant function 1 belongs to X, then every multiplier is in X,
Le., M(X) C X; moreover, M(X) C H*() N X, where H>(Q) stands for the algebra
of all bounded analytic functions on €.
Examples. We turn to some examples of quasi-Banach spaces of analytic functions

satisfying axioms (Al) and (A2), namely, the Hardy spaces HP(Q2) for 0 < p < 1, and
the Bergman spaces LE(€2) for 0 < p < 1 (see [5, 9]). The remaining part of this section
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is devoted to the definitions of the Hardy and the Bergman spaces in a general domain
Q.

Let 0 < p < +c0o; a holomorphic function f on Q is in HP(Q) if the subharmonic
function |f(z)P has a harmonic majorant on €2, i.e., there exists a harmonic function
v(z) such that |f(z)]P < v(z) for every z € Q. It follows that every f € HP((2) has a
unique least harmonic majorant; this means that there is a unique harmonic function uy
such that |f(2)|P < uy(z), 2 € ©, and us(z) < v(z), z € {2, for any harmonic majorant v
of | f(2)[P (see [6, p. 51]. Fixing a point z € §2, we put

I fllze @) = (Uf(zo))l/p, 0<p< +co.

This defines a norm on HP(Q) if 1 < p < +4o00; moreover, the resulting topology does
not depend on the particular choice of zg € § (see [6, p. 52]). The space HP(§2) with
1 < p < 400 is a Banach space (see [6, p. 54]), and for 0 < p < 1 it is a quasi-Banach
space, equipped with the p-norm equal to the pth power of the above norm expression.

For 0 < p < 400, we define L?({2), the Bergman space on a domain 2, to be the space
of all holomorphic functions f on ) such that

e = (/Q If(Z)lpdA(Z))l/p < 00,

where dA(z) denotes the area measure on 2. More generally, let w: 2 — C be a continu-
ous and strictly positive function, and let 0 < p < +o0; the space L?(f2, w), the weighted
Bergman space on £, consists of all holomorphic functions f on Q such that

1/p
1z = ( / {f(Z)l"w(Z)dA(Z)> < too.

For 1 < p < 400, this is a norm making L?(Q,w) a Banach space. In contrast, for
0 < p < 1, the weighted Bergman spaces are quasi-Banach spaces; the pth power of the
above norm expression determines a p-norm.

§2. THE HOLOMORPHIC FUNCTIONAL CALCULUS

Classically, one considers a Banach space X and an operator T in the algebra £(X) of
bounded operators on X (the multiplication operation in £(X) is the usual composition
of operators). We denote by o(T) the spectrum of T', i.e., the set of all complex numbers
X for which A\ — T is not invertible. Consider a complex-valued function f analytic in
a neighborhood of ¢(T), say U. Let V be a domain with smooth boundary such that
o(T) CV CV C U. With f we associate the operator-valued integral

(2.1) AT = — /a FG =T

~ omi

where the boundary 8V of V is oriented in the positive direction. The mapping f — f (1),
known as the holomorphic functional calculus, has a number of interesting properties
(see [4, 15, 16]); for instance, it maps the constant function 1 to the identity operator
in £(X), and the coordinate function A +— A to T'. The holomorphic functional calculus
is multiplicative, i.e., if f and g are two functions holomorphic in a common neighbor-
hood of o(T), then (fg)(T) = f(T)g(T). Moreover, the holomorphic functional calculus
has the following continuity property: if {fn}n is a sequence of functions analytic in a
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fixed neighborhood of o(T") and if f, — f locally uniformly on this neighborhood, then
fo(T) — f(T) in the norm of £L(X).

We wish to apply the holomorphic functional calculus in a more general setting where
X is a quasi-Banach space, equipped with a p-norm, 0 < p < 1. Consider the space
L(X) of bounded linear operators X — X; a mapping T from an F-space X to another
F-space Y is said to be bounded if it maps bounded sets to bounded sets. It is well
known that for metrizable X, the boundedness of an operator T € L(X) is equivalent to
the continuity of T' (see [14, p. 37] or [15, p. 23]). We endow £(X) with the topology of
bounded convergence; this is the topology induced by the invariant metric

IT) = sup{ | T|| : ]2l <1}, T € L(X)

(it is easy to check that this is a p-norm with the same p, 0 < p < 1, as for X). With
this p-norm, £(X) is a quasi-Banach space. Moreover, for T and S in £(X) we have

TSI < ITHIS]-

In fact, the space £(X) is a quasi-Banach algebra in the sense that it satisfies all axioms
of a Banach algebra with the only exception that the norm is replaced by a p-norm,
0 < p < 1[16]. These algebras were studied extensively by W. Zelazko (see [16, 17]).

A topological vector space Y is said to be locally convezx provided that the origin in
Y has a basis of convex neighborhoods. Note that the locally convex spaces and the
locally bounded spaces are two natural generalizations of the normed spaces. By the
Kolmogorov theorem, a topological vector space Y is a normed space if and only if Y is
both locally bounded and locally convex (see [15, Theorem 1.39]).

Integration theory for functions defined on subsets of the complex plane and taking
values in an F-space Y works rather well for locally convex spaces; both the Bochner—
Lebesgue integral and the Riemann integral of such functions can be defined (see [15,
pp. 73, 85] and also the references cited in [15] on page 375). If we do not make any
convexity assumption about the topology of Y, the Bochner-Lebesgue integral of mea-
surable Y-valued functions, which is based on approximation of a function by piecewise
constant functions, cannot be defined in general. The problem is that in such a space
there is a sequence of piecewise constant functions converging uniformly to zero and such
that the sequence of integrals does not converge to zero (see [14, p. 123]). However, the
Riemann integration theory, based on the limit of “Riemann sums” in the norm of Y,
can be developed in the setting of F-spaces, as observed by B. Gramsch [7], and inde-
pendently by D. Przeworska-Rolewicz and S. Rolewicz [12]. However, if Y is not locally
convex, then, by a theorem of Mazur-Orlicz, there exists a continuous Y-valued function
f(#), 0 <t <1, that fails to be Riemann integrable (see [14, p. 121]). Tt is important
to note that the Y-valued analytic functions (to be defined below) are always Riemann
integrable.

Let u(z) be a function defined on some domain 2 and taking values in an F-space X.
We say that u is analytic in Q if for every zy € Q) there exists a neighborhood V(zg) of
2o such that in V(zg) the function u(z) can be represented as a convergent power series
u(z) = Y07 o(z — 20)"un, u, € X. It is known (see [3, 14]) that if X is a quasi-Banach
space and if the above series is convergent at some point z;, then it is convergent for all
z with |z — zp| < |21 — zo|. This is not so for general F-spaces [18].

By a theorem of Gramsch and Przeworska-Rolewicz, for any smooth curve I" contained
in  the Riemann integral [, u(z)dz of an analytic function u(z) exists, and moreover,
the Cauchy integral formula and the Liouville theorem are valid in this setting (for the
details, see [14, p. 124]).
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Let Y be a commutative Banach algebra with unit. It is well known that the spectrum
of every element of Y is a nonempty compact subset of the complex plane. Passing to
quasi-Banach algebras, such as the operator algebra £(X) for a quasi-Banach space X,
we need to make sure that the spectrum is well defined, nonempty, and compact.

In what follows we shall see that the quasi-Banach spaces share almost all features of
the Banach spaces. We proceed with some definitions.

Let X be a quasi-Banach space, and let T € £(X). In accordance with [14, p. 176],
on its domain of definition the function (A — T)~! is analytic in A (here, analyticity is
understood in the sense indicated above). By the spectrum o(T") of T we mean the set
of all complex numbers X for which A\ — T is not invertible. The set C\ o(T') is an open
subset of the complex plane; moreover, for every A with [A| > ||T'|| the operator A — T
is invertible (see [14, p. 175]). This implies that the spectrum of T is both bounded
and closed; hence, it is compact. Finally, we note that the spectrum of T" is nonempty
provided that the quasi-Banach space X is nontrivial, X # {0}. This follows from the
Liouville theorem (see [16, p. 75 and the comments on p. 110}).

Let X be a quasi-Banach space. For T' € L£(X) we can define an operator-valued
function f(T") by (2.1), since this formula makes sense. Observe that now “all is well”
by the said above. If f is an analytic function defined on a domain U containing the
spectrum o(T), and if OV is an oriented closed smooth curve containing o(T) inside
the domain surrounded by 8V, then the integral on the right-hand side of (2.1) exists;
furthermore, the spectral mapping theorem holds true, i.e., o(f(T)) = f(o(T)) (see [14,
p. 182]). Finally, we mention that the mapping f + f(I') has the same properties as
in the classical case (see either [2] for a detailed account, or [16, Theorem 16.4] and the
comments on page 110 of [16]).

Now we introduce the operator of multiplication by ¢ on the quotient space X/J,
where J is a multiplier invariant subspace of X and ¢ is some fixed element of M(X).
This is the operator M,[X/J]: X/J — X/J given by

f+Jd—of+J

This operator is continuous. In the special case where ¢ = z, the spectrum of M, [X/ Jl],
the set of all complex numbers A for which A — M, [X/J] is not invertible, is denoted
by o5 = o(M,[X/J]). We recall that for a closed subset £ in the complex plane the
notation O(E) is used to indicate the space of all functions analytic in a neighborhood
of E. Tt is rather easy to use the holomorphic functional calculus in order to deduce
that O(€)) € M(X) and that if J is an invariant subspace of X and g € O(Q), then
g(M.[X/J]) = M,[X/J], where the operator on the left is understood in the sense of the
holomorphic functional calculus.

§3. STABILITY OF THE INDEX

In the following lemma we establish a stability property for the codimension of (z—X)J
in J, where J is an invariant subspace of X. We note that for a Banach space X this
property follows from the perturbation theory of semi-Fredholm operators (see [10]).

Lemma 3.1. Let X be a quasi-Banach space of analytic functions on o domain £ satis-
fying azioms (A1) and (A2), and let J be an invariant subspace of X. Then the function
A = dim(J/(z — A)J) is constant on ).

Proof. We denote Jy = (z — A)J and make the following two observations.
Observation 1:

dim(J/Jy) = sup{ dim(L/(LNJy)) : L C J, dim L < +00 }
=sup{dimL: L C J, dim L < 400, LN Jy = {0} }.
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The second equality is clear. Recalling the algebraic relations L/(LNJy) = (L+J))/J\ C
J/Jx, and the fact that L = L/(L N Jy) if LN Jy = {0}, we conclude that dim(J/Jy)
cannot be less than either of the quantities involved in the suprema. As for equality,
first we consider the case where dim(J/J\) = n < +oco and choose a basis {h; + Jy}}_,
of J/Jy, where hy,... h, € J. Then we set L = span{hy,...,h,} C J, and note
that dim L = n. We show that L N Jy = {0}. To this end, let ¢ € LN Jy, so that
w = Z;:1 c;h;, where ¢; are some constants. Then 04 Jy = ¢+ J) = E;":l c;(hj+ Jy),
which implies that ¢; = 0 for all 1 < j < n. The conclusion LN Jy = {0} follows, whence
dim(L/(L N Jy)) = dimL = n. Thus, we have proved the above relations under the
assumption that dim(J/Jy) < 4o0. If dim(J/J\) = 400, then for any positive integer N
we can find N linearly independent vectors in J/Jy. Proceeding as above, we construct
an N-dimensional subspace L C J such that LNJy = {0}. The quotient space L/(LNJ))
has dimension N, and since N can be taken arbitrarily large, the above suprema are equal
to --o0.

Observation 2: Let L be a subspace of J of finite dimension, and let Ay be a point in
Q. If LN Jy, = {0}, then L N Jy = {0} for every A close to Ag.

Suppose this is not true. Then we can find a sequence {A;}, C 2 such that Ay — Xg
as k — 4oo and LN Jy, # {0}. We choose a sequence {fi} in L N Jy, such that
Ifell = 1. Since L is finite-dimensional, a subsequence of {f,} converges in norm to
some f € LN Jy, with ||f]] = 1. We keep the same notation {fi} for this subsequence.
For each fi, we have f, = (z — A\;)gr with some g, € J. Now we consider the operator
M, — A restricted to J; this operator is bounded from below. By the uniform boundedness
principle, the operators M, — A are uniformly bounded from below on each compact
subset of Q. It follows that there is a constant ¢ > 0, independent of k, such that
ellgull < Nz = Ae)gell = || fel] = 1. This implies that

ellgr — gill <Nz = Xe)(gr — gi)ll = 1 fe — (2 = A)gsll = 1 fx = Fi + e = Ay g5l
< = fill + e A = Al

where p is the exponent of homogeneity of the space X, 0 < p < 1. This shows that {g }x
is a Cauchy sequence in J, so that g, converges to some g € J. Finally, f = (z — A\g)g €
LN Jy,, which contradicts the assumption L N Jy, = {0}, because f has norm 1.

Now we turn to the proof of the lemma. Let Ag be a point in §2, and let dim(J/J,,) = n,
where 0 < n < +co. Let L be a finite-dimensional subspace of J with LN Jy, = {0}.
By the second observation, we have LN Jy = {0} for every A close to Ag. Now, we apply
the first observation to this L to obtain dim(J/J,) > dim L. But dim L can be n if n is
finite, and can be any large integer if n = +o00; therefore,

(3.1) dim(J/(z — A)J)=dim(J/J\) > n if n < +oo.

If n = +o0, then for any integer N there is a neighborhood Uy(Ag) of Ag such that
dim(J/Jy) > N for every A € Un (o).

We turn to the reverse inequality in the case where n is finite. Without loss of
generality, we may assume that 0 € { and that Ao = 0. By assumption, J/zJ is generated
by n linearly independent vectors {h; + zJ }?:1. This means that any coset f + zJ
can be written as a linear combination of these vectors; moreover, if Z?:l cih; € 2J
for some ¢i,...,c, € C, then ¢; = 0 for all 1 < j < n. Let {¢;}}_; be the basis
functionals corresponding to the n-dimensional quotient space J/zJ and dual to the
vectors {h; + zJ}}.;, so that each coset f + zJ € J/zJ has the representation

(3.2) f+zJ=Z(f+zJ,¢j>(hj+zJ).

j=1
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Then for any f € J we have f = Pif + Pof, where Pif € zJ and Pof € span{hq, ha,
...y hp}. More precisely, the projections P, and P, are defined by the formulas

Pif=f=Y (f+zl,)hj,  Poaf =) (f+2J,0;)h;.
j=1 j=1
For |A| sufficiently small, we define @: J — J by the relation

_Pf _f- S dih

z z

Qf

Then 2Qf = f — 337_,(f -+ 2J, ¢;)h;, whence

(z=NQf =f— Y ([ +2,8;)h; — Q.

j=1

Bince Qf — 5" (QF + 2], é;)h
_ o +2J, 03 h;
Q*f =QQf) = izl Al

z

we get
(2= N(Qf +AQf) = £ = 3 (f + 21,650k = XY _(QFf + 2J, ;)h; — N Q.
j=1 j=1

Proceeding inductively, for |A| small, in the limit we obtain
(z=N(@QF + Q[+ XN°Q*f +--+)

=f- <Z(f +2J, 650k + XD _(Qf + 27, ¢;)hy
(3.3) =1 7=1

n

A2 QA f + 2, )y + - )

j=1

We know that Q = M ' P, is a bounded operator. If |A| is smaller than ||Q[ ™!, then the
operator 1 — \Q is invertible, and its norm is at most (1 — [A]P||Q||) !, where 0 < p < 1.
Therefore, the left-hand side of (3.3) becomes (z — A\)@xf, where

D =QL-2AQ) ' =Q+AQ*+NQ*+ - .
From (3.3) it follows that
F=GE=Nf+ Y (1=2Q) 7 f+2J,6;)h;.
i=1

Thus, f — Z?:I c;hj € Jy, where c? ={(1 = AQ)"Lf + 2J,¢;). Consequently,

(3.4) FAIn=) s+ ).

Jj=1
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In other words, P f = f—3"_, c}h; is a projection J — Jy. Setting Py f = die1 GG hy,

we obtain f = P, f‘ I+ P2>‘ f. This argument shows that
(3.5) dim(J/Jy) < dim(J/Jy,) = n.

From (3.1) and (3.5) it follows that if n < +oco, then dim(J/Jy) = dim(J/Jy,) = n for
each A close to Ap. This means that for each integer n < +oo the set G,, = {Ae:
dim(J/Jy) = n} is open in Q. In other words, the function A +— dim(J/Jy) is locally
constant, a fortiori continuous, provided that A € G,, for some n < +oco. Also, the
statement after (3.1) implies that the function A — dim(J/J,) is continuous at every
A€ Gioo ={A€Q:dim(J/J\) = +o0 }. Since the continuous function \ +— dim(J/.Jy),
A € Q, takes its values in the discrete set {0,1,2, ..., 400}, this function must be constant
on the connected set (2. U

In accordance with the above lemma, it makes sense to define the index of an invariant
subspace J as the dimension of J/(z — A)J. In the case where X is a Banach space of
analytic functions, S. Richter gave a nice characterization of the invariant subspaces of
index one in [13, Lemma 3.1]. Fortunately, the result remains true in a more general
case, as the following lemma shows. Since the argument is the same, we omit the proof.
We introduce the notation

Z(J)y={xeQ: f(\)=0, feJ}

for the common zero set of an invariant subspace J in X.

Lemma 3.2 (Richter). Let X be a quasi-Banach space of analytic functions satisfying
azioms (A1) and (A2), let J be an invariant subspace of X, and let A\ € Q\ Z(J). The
following statements are equivalent:

(a) index(J) = 1;

(b) if f € J and f(X) =0, then there is a function h € J such that f = (z — \)h;

(c) if (z = ANh € J for some h € X, then h € J.

We have already defined the spectrum o of the operator M,[X/J]. Another notion
related to o; is the weak spectrum, by which we mean the collection of all complex
numbers A such that the operator A — M, [X/J] is not onto (see [8]). The weak spectrum
of M,[X/J] is denoted by o/;. It is clear that o/, C o; C 2. The following proposition
tells us more about the relationship between these two spectra and the index.

Proposition 3.3. Let X be a nontrivial quasi-Banach space of analytic functions on
satisfying axioms (A1) and (A2). Let J be an invariant subspace of X. Then:

() o'y N Q= Z(J);

(b) if index(J) =1, then o, NQ =0, N Q;

(¢) if index(J) > 1, then o5 = Q;

(d) if o5 CQ, then J = {pf: f € X}, wherep is a polynomial with zeros in §).

Proof. For the proof of statements (c) and (d) we may argue, with little modifications,
as in the proofs of Propositions 2.3 and 2.5 in [1]. In order to prove (a), we let A €
Z(J) and suppose that A — M,[X/J] is onto. Axiom (A2) guarantees the existence of
a function f € X with f(\) # 0. Therefore, there is a function h € X such that
(A = M.[X/J])(h + J) = f + J. This implies that (A — z)h — f € J. On the other
hand, since A € Z(J), we have f(A\) = 0. This contradiction shows that the operator
A — M.[X/J] is not onto, whence Z(J) C o/, N2 To verify the reverse inclusion, assume
that A € @\ Z(J). Then we can find a function h € J with h(\) = 1. Tet g € X
be arbitrary, and let f = (g — g(A\)h)/(\ — z); axiom (A2) shows that f € X. Thus,
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(A—2)f —g=—g(\h € J. This means that (A — M.[X/J])(f + J) = g+ J. Therefore,
the operator A — M,[X/J] is onto or A\ ¢ o/, which completes the proof of (a). As for
part (b), from the definition it follows that o/, NQ C oy N for any invariant subspace J.
Suppose that J has index one, and let A € Q\ ¢/}, so that the operator A — M, [X/J] is
onto; we claim that it is also one-to-one. To see this, we let (A— M, [X/J))(f+J) = 0+J,
which is equivalent to saying that (A — 2)f € J. By Lemma 3.2, we have f € J, which
proves our claim. Thus, the operator A — M,[X/J] is invertible, or A € @\ oy; this
completes the proof of (b). O

§4. A TRANSFER THEOREM

We recall that X is a quasi-Banach space of analytic functions on Q satisfying axioms
(A1) and (A2). Moreover, we assume that 1 € X. Let X; denote the subspace of X
consisting of the functions that extend analytically to 21, i.e., X1 = XNO(£1). The fact
that X is closed in X follows from the maximum principle. Indeed, let K be a compact
subset of £2;. The representation of {2 shows that there exists an open subset U of O
containing K and such that its boundary 9U lies in Q. For any f € Xy and z € K, we
have

sup |f(2)] < sup |f(2)] < Cllfllx,
zeK ze8U

where C' = C(9U) is a constant depending on the set 0U. It follows that the evaluation
functionals corresponding to the points of {J; are continuous, so that X; is closed in
X. This argument shows that X, is a quasi-Banach space of analytic functions on ;.
Similarly, we set Xy = XNO(s) and X§ = XNOy(£s), where Op(£2s) is the subspace of
O(Qy) consisting of the functions that tend to 0 as |z| — co. It is clear that X; X9 C X,
and that X and X satisfy axiom (A1) on the corresponding domains. We assume that
X can be written as X = X; @ X9, and that X; and X§ satisfy axiom (A2) as well.
Also, we make similar assumption about the multiplier space M (X); more precisely, we
assume that M(X) = M(X1) ® My(Xs), where Mo(X3) = M(X2) N Ou(Q2).

Definition 4.1. Let X be a quasi-Banach space of analytic functions, and let Y be a
quasi-Banach space. A bounded linear mapping L: X — Y is said to be a multiplier
module homomorphism if there is a continuous homomorphism Ly : M(X) — £{Y) such
that L(¢f) = La (@) L(f) for every ¢ € M(X) and every f € X.

This definition deserves some comments. Concerning the term multiplier module ho-
momorphism, it should be mentioned that any quasi-Banach space X has the structure
of an M (X )-module. This module structure is induced by the mapping (]\/[ (X), X ) — X
that sends each couple (i, f) to the element ¢ f € X. For this reason, any linear mapping
on X preserving this structure is named a multiplier module homomorphism. It is easy
to check that if a linear mapping L as above is onto, then the associated homomorphism
Lar is unique. It turns out that the kernel of any multiplier module homomorphism L is
a multiplier invariant subspace of X. If X is replaced by a quotient space X/J (here J
is a multiplier invariant subspace of X), then we require that

L{p(f+ 7)) = Lu(p)L(f +J), [feX, ¢ MX).

In this case L is called a quotient multiplier module homomorphism. A surjective and in-
jective (quotient) multiplier module homomorphism will be called a (quotient) multiplier
module isomorphism if its inverse is also a (quotient) multiplier module homomorphism.
Since, largely, in this paper we are concerned with quotient multiplier module isomor-
phisms, it is worth while to make this concept more transparent. Let Y be a quasi-Banach
space of analytic functions and [ a multiplier invariant subspace in Y. Assume that the
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quotient multiplier module homomorphism L: X/J — Y/I is both one-to-one and onto.
From the definition we know that there is a continuous homomorphism Ly : M(X) —
L(Y/I) satisfying the above condition. Let K = L™': Y/I — X/J; this operator is also
continuous. If we can find a continuous homomorphism Kp: M(Y) — £(X/J) such
that K (¢(f + 1)) = Ky (¥)K(f + I) for every & € M(Y) and every f € I, then L will
be a quotient multiplier module isomorphism.

Let I be a proper multiplier invariant subspace of Xi, and, similarly, let J be a mul-
tiplier invariant subspace of X. We recall that o; denotes the spectrum of the operator
M,[X1/1). Let O(o;) denote the algebra of all functions h analytic in some neighborhood
Uy, of the compact set o7, and let Dy, be a compact subset of Uj, such that its interior
contains 0. We define an operator H;: O(o;) — £{X1/I) by the rule

(4.1) B i/ h(A) (A — M, [X, /1)) " d).
27 Jap,

The boundary of D), is assumed to consist of finitely many piecewise smooth curves,
and integration is taken in the positive direction. The Cauchy theorem (see §2) shows
that the above integral does not depend on the particular choice of Uj,. The mapping
Hj, known as the holomorphic functional calculus, has a number of nice properties. It
maps the constant function 1 and the coordinate function z to the identity operator on
X1/I and to the operator M,[X; /], respectively. Also, H; is multiplicative in the sense
that H;(fg) = Hi(f)H(g) for any f and g in O(cy). Finally, H; has the following
continuity property: if U is a fixed neighborhood of o; and if f,, — f locally uniformly
in U, then Hy(f,) tends to H;(f) in the norm of £(X;/I). Therefore, H; is a continuous
homomorphism between two quasi-Banach algebras.

By our assumptions on X, we have 1 € X, so that the coset 1+ I belongs to X;/I.
Now, we define a mapping P;: £(X,/I) — X1 /I by the rule

S S(1+1).

Then the composition P;oH; acts from O(oy) into X /I and sends the constant function
1 and the coordinate function z to 1+ I and to z + I, respectively. We know that
or C . Assume that o; does not touch the boundary of Qs, ie., o C y; then
X9 C Op(2:) C O(og), allowing us to introduce the following important multiplier
module homomorphism: we define L;: X = X; & X§ — X;/I by the formula

f+1 if fe Xy,
(42) uih ={ Lhem

Pr(Hi(f)) if fe X3
In [1, Proposition 3.3] it was proved that, in the Banach space case, L; is indeed a
multiplier module homomorphism. Here we sketch a proof in the general setting of
quasi-Banach spaces.

Lemma 4.2. Let I be a multiplier invariant subspace of X1 such that o7 C Qq. Then
Lr: X — X1/I is a multiplier module homomorphism.

Sketch of the proof. First, we assume that Og(€1y) is dense in My(X3) and in X9; eventu-
ally we shall lift this restriction (see [1, Lemma 3.2]). With L; we associate the following
continuous homomorphism Ly p;. We write ¢ € M(X) as ¢1 + @2, where ¢, € M(X;)
and s € Mo(X2). Then we define Ly py: M(X) — L(X1/I) by the formula

(4.3) L) = My, [X1/1] + Hr(pa),
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where H; is the holomorphic functional calculus defined by (4.1). To prove that Ly as is
a homomorphism, first we verify that

1
Lra <5\i’f—z) = Ly p(01)Lrm <)\ — Z)a

where ¢; € M(X;) and A € C\ Q. Since for such A the finite linear combinations
of the functions z — (A — z)~! are dense in Og({22), we may replace (A — z)~! by any
w2 € Mo(X2). Consequently, Ly as is a homomorphism. Finally, it can be shown that

L[((Pf) :LI,AJ(W)LI(f)7 LZS ]\{[(X)v f € X7

which means that L; is a multiplier module homomorphism. O

In the sequel, we shall see that the kernel of L; is a multiplier invariant subspace of
X. It turns out that, in fact, this is the desired counterpart of the multiplier invariant
subspace I of X| with o; C Q3. Denoting ker Ly = J, we prove a statement which makes
the relationship between I and J transparent.

Proposition 4.3. Let I be a multiplier invariant subspace of X1 with o C §a. If
J =ker Ly, then

(a) J is a multiplier invariant subspace in X;

(b) clos(I - M(X)) C J;

ey JJnX;=1;

(d) oy =0y.

Proof. The proof is essentially the same as that of Proposition 3.4 in [1]. a0

Let V; and V, denote two finitely connected smoothly bordered domains satisfying
the following conditions:

(a) C\Qy C V] CC Qs

(b) C\ Q2 C Vo CVa C Qy;

) ViNVy=0
Definition 4.4. Let X be a quasi-Banach space of analytic functions on ) satisfying
axioms (Al) and (A2). We say that X satisfies the shrinking domain condition with
respect to the couple (V1, Va) if there exist two quasi-Banach spaces of analytic functions
XM and X @) satisfying axioms (A1) and (A2) on £y NV and Q3 N V4, respectively, and
such that

(a) XN O(Ql) = X1, and X@) N Oy(Q) = X3

(b) XM = X, ® X5, where X5} = X1 0 Op(Va);

(c) X® = X<2 @ X9, where X<2) X@now);

() M(X®) = M(X,) ® MO(Xg ), where Mp(X{?) = M(X{Y) N Oy(Va), and
M(X@) = M(X®)® My(Xs).

At first glance, it seems that too many conditions are involved here. However, it should
be realized that our typical example X = L2(1), 0 < p < 1, the Bergman space, indeed
satisfies the shrinking domain condition. In this case X; = L2(€4) and Xo = LE(£)
(here, we use area measure on the Riemann sphere rather than on the complex plane to
define the Bergman space). Now, we may regard L?(Q;NVz) and L2(Q2NV;) as our X
and X (@), respectively. These spaces split into direct sums, and the same is true for their
multiplier spaces, i.e., the spaces of bounded analytic functions on the corresponding
domains. Tt follows (see §2) that

X, C O(Ql) C 0(71) C O(Qg n Vl) C X(Z)
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whence X € X2 In a similar way we prove that X C X W,

Assuming that X satisfies the shrinking domain condition, we can prove a factorization
theorem for the functions in X, at the same time keeping some control on the zeros of
the factors.

Lemma 4.5. Suppose that X satisfies the shrinking domain condition with respect to
the couple (V1, V). If f € X is not identically zero, then for every Voc ECC\V,
there exist f1 € X1 and fo € X2 such that

(@) f=ri [

(b) Za,(f1) = Za(f)NE,

(€) Za,(f2) = Za(f) \ E.

Proof. The proof follows the same line of arguments as in [1, Lemma 3.7]. ]

The next lemma provides, in fact, the spectral decomposition of operators with disjoint
spectra, which was known for some time for Banach spaces. In what follows, we use this
classical argument in the case where X is a quasi-Banach space of analytic functions.

Lemma 4.6. Let J be a multiplier invariant subspace of X of index 1, and let E be as
in the preceding lemma. Then in X there exist two multiplier invariant subspaces J, and
Jo such that

(a) J = J1 n Jg,

(b) oj, =0sNE,

(¢)oj,=0s\E.

Proof. First, we assume that J is an invariant subspace of X. Let T' denote the operator
M,[X/J]. Since index(J) = 1, from Proposition 3.3(a,b) it follows that the spectrum
gy = o(T) is discrete in Q. Putting o7 = oy NE and 02 = 05\ E, we let e; be a
function in O(o ;) such that ey is equal to 1 near o, and to 0 near o,. We consider the
projection @1 = e1(T), where the operator on the right is defined via the holomorphic
functional calculus (see §2). Similarly, we can introduce the projection (2. It is easy to
check that Q1Q2 = Q2@ = 0 and that Q¢ + Q2 is equal to identity. This shows that
X/J = 1im @ ® im @, where im stands for the image of X/J under the corresponding
projection. It follows that for k = 1,2 the subspace im @)y is an invariant subspace of
X/ J with the property that the spectrum of T restricted to im Q) coincides with o, We
define an invariant subspace Jo C X by Jo ={fe X: f+J €im@1} D J. Observe
that, in fact, we have im@Q; = J/J. Now, we let f € J; 0 Jy; then f + J belongs to
im @ Nim Q2, whence f+J =0+ J or f € J, and (a) follows. To prove (b) , we denote
by T and 1% the operators of multiplication by z on X/J; and on J,/J, respectively.
Since, in fact, T5 is the restriction of T to the quotient space Jy/J = imQ;, we see
that o(7%) = oy. On the other hand, the mapping W: Jo/J — X/J; that sends f + J
to f + Ji is an isomorphism, so that o(71) = o(12) = ¢;1. Part (c) can be proved in
a similar way. So far, we have proved the lemma in the case where J is an invariant
subspace of X. Now we assume that J is a multiplier invariant subspace of X and that
w € M(X). We know that ¢ is analytic in §2, and since p(A)e1(A) = e1{(AN)@(A), we see
that M,[X/J]Q1 = Q1 M,[X/J). Let f € Jy; then f+ J €im Qs = ker Q; and

Qulpf +J) = QM [X/J(f + ) = M [X/JIQi(f + J) = 0,

meaning that ¢f € J;. Similarly, we can prove that Jy is also a multiplier invariant
subspace. 1l

We have prepared the ground for the following proposition about factorization of
functions in J in terms of functions in J; N X7 and in Jo N X5.
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Proposition 4.7. Suppose that X = X; & X§ satisfies the shrinking domain condition
with respect to (Vi,Va), and that J is a multiplier invariant subspace of X of index 1. If
O() and O(Q) are dense in X1 and Xo, respectively, then for every f € J we have
f=f1:fa, where f € /1N X1 and fo € o Xy

Proof. Let f; and f; be as in Lemma 4.5. First, we want to show that f; € J, and f3 € J5.
Let g, be a sequence in O(Qy) such that g — fo in X,. Since Xy = X N O(Qy), it
follows that gi. — f» in O()3), and consequently, in O(cy, ). Using the continuity of the
holomorphic functional calculus, we see that gi(M,[X/J1]) — f2(M.[X/J1]) as k — oo.
In accordance with the arguments of §2, we have

Mg, [X/N](f1 + J1) = f2(M.[X/]) (fr + 1) as k — oo
Suppose for the moment that g fi — f in the quasi-Banach space X, so that
fo(MX/ ) (fr + 1) = (kl_i})&gkfl) +Si=f+J1=0+J1.
Since, by Lemma 4.5, the function f3 has no zeros near oy, we have
fitJi =1/ f2) (Mo [X/ 1)) (0 + J1) = 0+ J,
whence f; € Jy. Likewise, fy € Jo. To complete the proof, we must show that grf1 — f

in X. To this end, we observe that, combined with the closed graph theorem for F-spaces,
Definition 4.4 implies that

If xo + 1 fllxe,

where = means equivalence of p-norms. From the definition of the norm in the space of
multipliers we get | fllx < | fallarcxany - IAllxw and [ fllxer < I Alarxey - [ fellxe.

Since
Ifilge = fo)llx =< | filgr — f2)

we see that for some constant C,

x=|f

xa + 1 filge — P)llxe,

19 — f2)

x < C(Hfl”xm gk — f2HM(X(1>) +llgr = follxe - Hf1||z\x[(x<2>))‘

From §2 we know that O(Qy) € M(X™M), and g — f2 in O(Qy), by assumption; then
gr tends to fo in M(XM). Since ||gr — fallx, — 0, it follows that g — fo tends to zero
in X® as k — co. Consequently, ||fi(gx — f2)|llx — 0 as k — oo, concluding the proof
of the proposition. O

Now we are ready to prove the main result of the paper. We recall that for a multiplier
invariant subspace I of X; we denote by A(I) the closure in X of I - M(X). Finally, let

G, = {I : T is a multiplier invariant subspace of X; with oy C s },

and let & be the class of all multiplier invariant subspaces J C X with o C (5.

Theorem 4.8. Let X = X| ® X9 be a quasi-Banach space of analytic functions on §)
satisfying the shrinking domain condition with respect to the couple (Vi,Va). If O(Qy)
and O(Qg) are dense in X| and Xo, respectively, then:

(a) The mapping I — A(I) is a bijection from &1 onto &. Furthermore, o; = ox(1)
and the inverse mapping is given by J — J N X;.
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(b) For every I € &, the mapping L;: X — X1/I is a surjective module homomor-
phism that is canonical on X and has kernel A(T).

(c) For every I € &, the quotient quasi-Banach spaces X1/I and X/A(I) are canoni-
cally quotient multiplier module isomorphic.

Proof. First we prove (b). By Lemma 4.2, I, is a surjective multiplier module homo-
morphism canonical on X;. It remains to show that ker L; = A(I). The inclusion
A(I) C ker L; was already proved in Proposition 4.3(b). Putting ker L; = J, we want
to verify that J C A(J). We have o; = o5 C Q3 by Proposition 4.3(d), so that Propo-
sition 3.3(c) implies that index(J) = 1. Applying Proposition 4.7 to each f € J, we
obtain f = f1 - fo with f1 € J1 N Xy, and fo € Jy N Xy, where J; and J; are as in
Proposition 4.7. We may assume that J; = J and J; = X5. Since o; C QU I8, we
see that in the situation of Lemma 4.6 o, consists of finitely many points in €; hence,
we may use Proposition 3.3(d) to deduce that Jo = pX for some polynomial p with
zeros in 0,. Therefore, fo = pg for some g € X. Since, by construction, p divides any
element of Jo, we have ¢ € Xo. Thus, f = (f1 -p) - g, where fi -p€ JiNJy = J and
g € Xo. But fi-p € Xy, sothat fi -p € JN X, = I by Proposition 4.3(c). Finally,
J = (JNXi) X, =1 -X,. Now, suppose that f € J can be written as f = f; - fa, where
fi € JNX; =TI and f; € X,. By owr assumption, there exists a sequence { fo.r }x of func-
tions in O(f)2) that approximate f, in X,. As in the proof of the preceding proposition,
we have

[£1(fe = f2)llx < fi(fe = fordllxar + 11 (fa = for)
If1(fe = fodlx < ClAillxo - Ifz = Farllaroxry + 12 = far

X(?))

x@ - Aallarxen),

where (' is some constant. Since fa; — f2 in O(£), we obtain |[fo — fa rll(xmy — 0,
because M(XM) D O(Qy) by §2. Also, || fa — forllx@ — 0 by assumption, whence

x —0 ask — oo.

x = 1ilfe — far)

If — fifoxl

Finally, observing that
fifor e (INX1) M(X)=1-M(X2) CI-M(X),

we obtain f € A(J), which completes the proof of part (b).

In order to prove part (c), we consider I € &; and the surjective multiplier module
homomorphism L; that induces L} defined by (4.4). Since L;(f) = f+ I for f € X,
it follows that (L})~!: X;/I — X/A(I) coincides with the canonical homomorphism
X1/I — X/A(I). Observe that for f € X1 we have Lj(f + A(I)) = L;(f) if and only if
(L)L) = f+ A, or (L3)"Y(f + 1) = f+A(I). Thus, for any ¢ € M(X;) and
any f € X7 we can write

(L) Mef+1) = of + A(I) = M [X/AD](f + AD)),

which shows that (L%)~! is a quotient multiplier module homomorphism. Finally, for
every f € X and every ¢ € M(X) we have

Lilpf + A1) = Li(pf) = Lra () Li(f) = Lr (@) Li(f + M),

where Ly s is as in (4.3). Thus, L} is a quotient multiplier module isomorphism (in
accordance with the comments following Definition 4.1).
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Now we prove (a). The coincidence of the two spectra in question is the content of
Proposition 4.3(d). Also, in part (b) above we proved that for every I € & we have
ker L; = A(I); hence, Proposition 4.3(c) yields A(J) N X; = I. This means that the
mapping / — A(I} is injective. It remains to prove surjectivity. Let J € 6. As in part
(b) above, we may assume that J = (J N X1) - Xo. Thus, any f € J can be written as
f=f1fo, where f; € JN1 X7 and fo € X5. As before, first we approximate fa € Xo by
functions in O(Q2) and then use the same technique to deduce that

J Ccos{(JNX1) M(Xs)} Cclos{(JNX1) M(X)}.
Since the reverse inclusion is clear, we obtain
J = clos{(JNX1) M(X)} = A(JNX1),

completing the proof of the theorem. a

Remark 4.9. Let Q be the annulus A, = { z € C: p < |2] < 1}, so that Q; is the unit disk
and )y is the exterior disk {z € C : |z] > p}. Let G5 denote the class of all multiplier
invariant subspaces I of X, satisfying the condition o; = o(M,[X2/I]) C ;. Using
a suitable Mébius transformation, we can interchange the roles of X; and Xy. Then
Theorem 4.8 supplies a one-to-one correspondence between G5 and 6‘5, where the latter
class consists of the multiplier invariant subspaces J € X with oy C ;. As was observed
in Lemma 4.6, any multiplier invariant subspace J C X of index 1 splits: J = Ji N Jy
with J; € & and Jy € G. By Theorem 4.8, J; corresponds to Iy = J; N X;, and J
corresponds to Iy = J N Xy. Consequently, to describe J we only need to understand I;
and I». Moreover, by Proposition 4.7, any f € J can be written as the product of f1 € I}
and fo € I. Therefore, I; and I, take care of the boundary behavior of the elements of
J near 0 and 005, respectively. In this way, the structure of any multiplier invariant
subspace J C X of index 1 can be described in terms of the structure of the multiplier
invariant subspaces of X; and X5.
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