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Abstract. We study the uncertainty principle associated with the Klein–Gordon equation. As in
the previous work [Ann. of Math. 173 (2011)], we consider vanishing along a lattice-cross. The
following variants appear naturally: (1) vanishing only along “half” of the lattice-cross, where the
“half” is defined as being on the boundary of a quarter-plane, and (2) that the function vanishes
on the whole lattice-cross, but we require the function to have Fourier transform supported by one
of the two branches of the hyperbola. In case (1) the critical phenomenon is whether the given
condition forces the function to vanish on the quarter-plane in question. Here it turns out to be
crucial whether the quarter-plane is space-like or time-like, and in short the answer is yes for space-
like and no for time-like. The analysis brings us quite far, involving the orbit of the Hilbert kernel
under the iterates of the transfer operator, and uses methods from the theory of totally positive
matrices as well as Hurwitz zeta functions, and is partially postponed to a separate publication. In
case (2), the critical phenomenon occurs at another density, and the dynamics then comes from the
standard Gauss transformation t 7→ 1/t mod Z on the interval [0, 1]. In the intermediate range of
the density of the lattice-cross, we obtain unique extendability of the Fourier transform from one
branch of the hyperbola to the other.
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1. Introduction

1.1. Heisenberg uniqueness pairs

Let µ be a finite complex-valued Borel measure in the plane R2, and associate with it the
Fourier transform

µ̂(ξ) :=

∫
R2

eiπ〈x,ξ〉 dµ(x),

where x = (x1, x2) and ξ = (ξ1, ξ2), with inner product

〈x, ξ〉 = x1ξ1 + x2ξ2.

H. Hedenmalm: Department of Mathematics, KTH Royal Institute of Technology,
SE-10044 Stockholm, Sweden; e-mail: haakanh@kth.se
A. Montes-Rodríguez: Department of Mathematical Analysis, University of Sevilla,
ES-41012 Sevilla, Spain; e-mail: amontes@us.es

Mathematics Subject Classification (2020): Primary 42B10, 42B20, 35L10, 42B37, 42A64; Sec-
ondary 37A45, 43A15



2 Haakan Hedenmalm, Alfonso Montes-Rodríguez

The Fourier transform µ̂ is a continuous and bounded function on R2. In [15], the concept
of a Heisenberg uniqueness pair (HUP) was introduced. It is similar to the notion of
weakly mutually annihilating pairs of Borel measurable sets having positive area measure,
which appears, e.g., in the book by Havin and Jöricke [14]. For 0 ⊂ R2 which is a finite
disjoint union of smooth curves in R2, let M(0) denote the Banach space of complex-
valued finite Borel measures in R2, supported on 0. Moreover, let AC(0) denote the
closed subspace of M(0) consisting of the measures that are absolutely continuous with
respect to arc length measure on 0.

Definition 1.1.1. Let 0 be a finite disjoint union of smooth curves in R2. For a set
3 ⊂ R2, we say that (0,3) is a Heisenberg uniqueness pair provided that

∀µ ∈ AC(0) : µ̂|3 = 0 =⇒ µ = 0.

Heisenberg uniqueness pairs in which 0 is a straight line or the union of two parallel
lines were described in [15]. Later, Blasi [3] solved particular cases of the union of three
parallel lines. The ellipse case was considered independently by Lev and Sjölin in [20]
and [26]; Sjölin [27] also considered the parabola. More recently, Jaming and Kellay
[18] developed new tools to study Heisenberg uniqueness pairs for a variety of curves 0,
while Giri and Srivastava [11] studied four parallel lines among other things. As for higher
dimensional analogues, Gröchenig and Jaming [13] connected the topic with the Cramér–
Wold theorem on quadratic surfaces, while Srivastava [28] studied pairs composed of
spheres and cones.

1.2. The Zariski closure

We turn to the notion of Zariski closure. Note that the Zariski topology (or hull-kernel
topology) is a standard concept in algebraic geometry, in the setting of spaces of polyno-
mials. We let AC(0,3) be the subspace of AC(0) consisting of those measures µ whose
Fourier transform vanishes on 3.

Definition 1.2.1. Let 0 be a finite disjoint union of smooth curves in R2, and let3 ⊂ R2.
With respect to AC(0), the Zariski closure of 3 is the set

zclos0(3) := {ξ ∈ R2
: [∀µ ∈ AC(0,3) : µ̂(ξ) = 0]}.

Less formally, the Zariski closure (or hull) is the set where the Fourier transform of a
measure µ ∈ AC(0)must vanish given that it already vanishes on3. Now, as the Fourier
image of AC(0) does not form an algebra with respect to pointwise multiplication of
functions, we cannot expect the Zariski closure to correspond to a topology. This means
in particular that the intersection of two Zariski closures need not be a closure itself. It is
easy to see that the closure operation is idempotent, however: zclos2

0 = zclos0 . In terms
of Zariski closure, we may express the uniqueness pair property conveniently: (0,3) is
a Heisenberg uniqueness pair if and only if

zclos0(3) = R2.
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1.3. The Klein–Gordon equation

In natural units, the Klein–Gordon equation in one spatial dimension reads

∂2
t u− ∂

2
xu+M

2u = 0.

In terms of the (preferred) coordinates

ξ1 := t + x, ξ2 := t − x,

the Klein–Gordon equation becomes

∂ξ1∂ξ2u+
M2

4
u = 0. (1.3.1)

Remark 1.3.1. Since t2 − x2
= ξ1ξ2, the time-like vectors (those vectors (t, x) ∈ R2

with t2 − x2 > 0) correspond to the union of the first quadrant ξ1, ξ2 > 0 and the third
quadrant ξ1, ξ2 < 0 in the (ξ, ξ2)-plane. Likewise, the space-like vectors correspond to
the union of the second quadrant ξ1 > 0, ξ2 < 0 and the fourth quadrant ξ1 < 0, ξ2 > 0.

1.4. Fourier-analytic treatment of the Klein–Gordon equation

We will not need to talk about the time and space coordinates (t, x) as such. So, e.g., we
are free to use the notation x = (x1, x2) for the Fourier dual coordinate to ξ = (ξ1, ξ2).

Let M(R2) denote the Banach space of all finite complex-valued Borel measures
in R2. We suppose that u is the Fourier transform of a µ ∈M(R2):

u(ξ) = µ̂(ξ) :=

∫
R2

eiπ〈x,ξ〉 dµ(x), ξ ∈ R2. (1.4.1)

The assumption that u solves the Klein–Gordon equation (1.3.1) would require that(
x1x2 −

M2

4π2

)
dµ(x) = 0

as a measure on R2, which we see is the same as a requirement on the support set of µ:

suppµ ⊂ 0M :=
{
x ∈ R2

: x1x2 =
M2

4π2

}
. (1.4.2)

The set 0M is a hyperbola. We may use the x1-axis to supply a global coordinate for 0M ,
and define a complex-valued finite Borel measure π1µ on R by setting

π1µ(E) =

∫
E

dπµ(x1) := µ(E × R) =
∫
E×R

dµ(x). (1.4.3)

We shall at times refer to π1µ as the compression of µ to the x1-axis. It is easy to see that
µ may be recovered from π1µ; indeed,

u(ξ) = µ̂(ξ) =

∫
R×

eiπ [ξ1t+M
2ξ2/(4π2t)] dπ1µ(t), ξ ∈ R2. (1.4.4)

Here, we use the standard notational convention R× := R \ {0}. We note that µ is abso-
lutely continuous with respect to arc length measure on 0M if and only if π1µ is abso-
lutely continuous with respect to Lebesgue length measure on R×.
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1.5. The lattice-cross as a uniqueness set for solutions to the Klein–Gordon equation

For positive reals α, β, let 3α,β denote the lattice-cross

3α,β := (αZ× {0}) ∪ ({0} × βZ), (1.5.1)

so that the spacing along the ξ1-axis is α, and along the ξ2-axis it is β. In [15], we found
the following.

Theorem 1.5.1 (Hedenmalm, Montes). Fix positive reals M,α, β. Then (0M ,3α,β) is
a Heisenberg uniqueness pair if and only if αβM2

≤ 4π2.

In terms of Zariski closure, the theorem says that

zclos0M (3α,β) = R2 if and only if αβM2
≤ 4π2.

By taking (1.4.4) into account, and by reducing the redundancy of the constants (i.e., we
may without loss of generality consider M = 2π and α = 1 only), Theorem 1.5.1 is
equivalent to the following statement: the linear span of the functions

eiπmt , e−iπβn/t , m, n ∈ Z,

is weak-star dense in L∞(R) if and only if β ≤ 1. Here, we supply new and unexpected
insight into the theory of Heisenberg uniqueness pairs, such as a new connection with the
standard Gauss map (motivated by Theorem 1.6.1), and more importantly we uncover, in
the framework of Fourier analysis, profound connections between the Hilbert transform
and the dynamics of transfer operators intimately related to Gauss-type maps leading up
to Theorem 1.8.2.

1.6. Dynamic unique continuation from a branch of the hyperbola

Just looking at Theorem 1.5.1, one is immediately led to ask what happens if we replace
the hyperbola 0M by one of its two branches, say

0+M := 0M ∩ (R+ × R+) =
{
x ∈ R2

: x1x2 =
M2

4π2 and x1 > 0
}
. (1.6.1)

First, we will provide a uniqueness theorem for the branch 0+M of the hyperbola 0M ,
which turns out to be closely related to the famous Gauss–Kuz’min–Wirsing operator
and the Gauss map x 7→ 1/x mod Z.

Theorem 1.6.1. Fix positive reals α, β,M . Then (0+M ,3α,β) is a Heisenberg uniqueness
pair if and only if αβM2 < 16π2. Moreover, in the critical case αβM2

= 16π2, the space
AC(0+M ,3α,β) is one-dimensional, spanned by the measure µ0 ∈ AC(0+M ,3α,β) whose
x1-compression is given by

dπ1µ0(t) :=

{
1[0,2/α](t)
2(2+ αt)

−
1[2/α,+∞[(t)
αt (2+ αt)

}
dt.



The Klein–Gordon equation, the Hilbert transform, and dynamics of Gauss-type maps 5

The proof of Theorem 1.6.1 is presented in Section 6. In the same section, it is also
shown that in the critical parameter regime αβ = 16π2, the couple (0+M ,3

?
α,β) is indeed

a Heisenberg uniqueness pair, where3?α,β := 3α,β ∪{ξ
?
}, and ξ ? ∈ ({0}×R)∪(R×{0})

is any point off the lattice-cross 3α,β (see Theorem 6.1.1). The analysis of the proof of
Theorem 6.1.1 involves a geometric object known as the Nielsen spiral.

Again, by taking (1.4.4) into account, and by reducing the redundancy of the constants
(i.e., we consider M = 2π and α = 1 only), it is easy to see that Theorem 1.6.1 entails
the following assertion: the restriction to R+ of the linear span of the functions eiπmt ,
e−iπβn/t , m, n ∈ Z, is weak-star dense in L∞(R+) if and only if β < 4. Moreover, if
β = 4 the weak-star closure of this linear span has codimension one in L∞(R+).

Theorem 1.6.1 has the following consequence in terms of unique continuation from
the branch 0+M , or the complementary branch 0−M := 0M \ 0

+

M , to the entire hyper-
bola 0M .

Corollary 1.6.2. Fix positive reals α, β,M . Then µ ∈ AC(0M ,3α,β) is uniquely deter-
mined by its restriction to the hyperbola branch 0−M if and only if αβM2 < 16π2. The
same holds with 0−M replaced by 0+M .

1.7. The Zariski closures of the axes and semi-axes

We first consider the Zariski closure of the two axes R× {0} and {0} × R with respect to
the space AC(0M) of absolutely continuous measures, with respect to arc length, on the
hyperbola 0M .

Proposition 1.7.1. Fix a positive real M . If µ ∈ AC(0M) is such that µ̂ vanishes on one
of the axes, R× {0} or {0} × R, then µ = 0 identically. In terms of Zariski closures, this
means that

zclos0M (R× {0}) = zclos0M ({0} × R) = R2.

The proof of Proposition 1.7.1 is supplied in Section 2.
The next proposition will show the difference between time-like and space-like quar-

ter-planes. First, we need some notation. Let R+ := {t ∈ R : t > 0} and R− := {t ∈ R :
t < 0} be the positive and negative half-lines, respectively. We write R̄+ := {t ∈ R :
t ≥ 0} and R̄− := {t ∈ R : t ≤ 0} for the corresponding closed half-lines.

Proposition 1.7.2. Fix a positive real M . Then the Zariski closures of each of the four
semi-axes R+ × {0}, R− × {0}, {0} × R+, and {0} × R−, are as follows:

zclos0M (R+ × {0}) = zclos0M ({0} × R−) = R̄+ × R̄−,
zclos0M (R− × {0}) = zclos0M ({0} × R+) = R̄− × R̄+.

The proof of Proposition 1.7.2 is also supplied in Section 2.

Remark 1.7.3. In each of the instances in Proposition 1.7.2, the Zariski closure of a
semi-axis equals the topological closure of the adjacent quadrant of space-like vectors.
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1.8. The Zariski closure of the lattice-cross restricted to a time-like or space-like
quadrant

Let us write

Z+ := {1, 2, 3, . . .}, Z− := {−1,−2,−3, . . .},
Z+,0 := {0, 1, 2, . . .}, Z−,0 := {0,−1,−2, . . .}.

We consider the following four portions of the lattice-cross 3α,β given by (1.5.1):

3++α,β := (αZ+,0 × {0}) ∪ ({0} × βZ+), 3+−α,β := (αZ+,0 × {0}) ∪ ({0} × βZ−),

3−+α,β := (αZ−,0 × {0}) ∪ ({0} × βZ+), 3−−α,β := (αZ−,0 × {0}) ∪ ({0} × βZ−).

We first calculate the Zariski closure of two of these (the first and the last), corresponding
to the first and third quadrants, which are time-like.

Theorem 1.8.1 (time-like). Fix positive reals α, β,M . Then for each ξ ? ∈ R2
\ 3++α,β ,

there exists a measure µ ∈ AC(0M) such that µ̂ = 0 on 3++α,β , while µ̂(ξ ?) 6= 0. More-
over, the same holds with3++α,β replaced by3−−α,β . In terms of Zariski closures, this means

zclos0M (3
++

α,β ) = 3
++

α,β , zclos0M (3
−−

α,β ) = 3
−−

α,β .

The proof of Theorem 1.8.1, which is presented in Section 5, requires a careful handling
of the H 1-BMO duality and the explicit calculation of the Fourier transform of the uni-
modular function t 7→ ei/t as a tempered distribution.

We turn to the Zariski closures of the remaining two portions of the lattice-cross.
We first write down the statement in terms of weak-star closure of the linear span of a
sequence of unimodular functions, and then explain what it means for the Zariski closure
in the form of a corollary. This is our second main result.

LetH∞+ (R) denote the weak-star closed subspace of L∞(R) consisting of those func-
tions whose Poisson extension to the upper half-plane is holomorphic.

Theorem 1.8.2. Fix positive reals α, β. Then the functions

eiπαmt , e−iπβn/t , m, n = 0, 1, 2, . . . ,

which are elements of H∞+ (R), span together a weak-star dense subspace of H∞+ (R) if
and only if αβ ≤ 1.

A standard Möbius mapping brings the upper half-plane to the unit disk D, and identifies
H∞+ (R) with H∞(D), the space of all bounded holomorphic functions on D. For this
reason, Theorem 1.8.2 is equivalent to the following assertion.

Corollary 1.8.3. Fix positive reals λ1, λ2. Then the linear span of the inner functions

φ1(z)
m
= exp

(
mλ1

z+ 1
z− 1

)
and φ2(z)

n
= exp

(
nλ2

z− 1
z+ 1

)
, m, n = 0, 1, 2, . . . ,

is weak-star dense set in H∞(D) if and only if λ1λ2 ≤ π
2.

We omit the trivial proof of the corollary.
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Remark 1.8.4. Clearly, Corollary 1.8.3 supplies a complete and affirmative answer to
Problems 1 and 2 in [22]. We recall a question from [22]: is the algebra generated by the
two inner functions

φ1(z) = exp
(
λ1
z+ 1
z− 1

)
and φ2(z) = exp

(
λ2
z− 1
z+ 1

)
for some 0 < λ1, λ2 < +∞ weak-star dense in H∞(D) if and only if λ1λ2 ≤ π

2? The
“only if” was understood already in [22]. As pointed out in [22], it is a consequence of
Corollary 1.8.3 that for λ1λ2 ≤ π

2, the lattice of closed subspaces invariant with respect
to multiplication by the two inner functions φ1, φ2 coincides with the usual shift invariant
subspaces in the Hardy space Hp(D), where 1 < p < +∞.

Remark 1.8.5. It is impossible to derive the assertion of Theorem 1.8.2 from Theorem
1.5.1: the former is a much finer statement. In Section 11, we explain how the result relies
on a hitherto unknown result, presented in [16], which extends the standard ergodic theory
for certain Gauss-type transformations on the interval I1 := ]−1, 1[, where the novelty
is that we may handle distributions where the standard theory has only measures. The
relevant space of distributions is obtained as the restriction to I1 of L1(R) plus HL1(R),
where H is the Hilbert transform (i.e., convolution with the principal value distribution
pv 1

πt
on the line). The issue has to do with the uniqueness of the absolutely continuous in-

variant measure in the larger space. Thinking physically, in the larger space, we have two
types of particles, localized and delocalized. The localized particles are represented by δξ ,
whereas delocalized particles are represented by Hδξ , for some real ξ . The state space al-
lows for scalar multiples of localized and delocalized particles, and linear combinations
of them. Finally, we are looking for such localized and delocalized particles smeared out
in an absolutely continuous way, and call it an invariant state if it is preserved under the
corresponding Gauss-type map. This generalizes the notion of absolutely continuous in-
variant measure which is standard in ergodic theory, and since uniqueness issues for the
invariant measure translate to ergodic properties, we are left with a far-reaching gener-
alization of ergodic theory. We have not been able to find any appropriate references for
similar considerations in the literature.

All the effort in [16] is devoted to the “if” part of Theorem 1.8.2. On the other hand,
the “only if” part is much simpler, as for instance the work in [4] shows that if αβ > 1,
the weak-star closure of the linear span in question has infinite codimension in H∞+ (R).

Theorem 1.8.2 can be restated in terms of uniqueness properties of solutions to the Klein–
Gordon equation. Note that in the statement below, the pair (3+−α,β , R̄+ × R̄−) can be
replaced by (3−+α,β , R̄− × R̄+) without affecting the validity of the result.

Corollary 1.8.6. Fix positive reals α, β,M with αβM2
≤ 4π2. Suppose that u = µ̂

solves the Klein–Gordon equation (1.3.1), where µ is a finite complex Borel measure
on R2, which is assumed to be absolutely continuous with respect to one-dimensional
Hausdorff measure. Then the values of u on the space-like quarter-plane R̄+ × R̄− are
determined by the values of u on the set 3+−α,β , which is the portion of the lattice-cross in
the given quarter-plane. This does not hold for αβM2 > 4π2.
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This formulation is actually a consequence of the Zariski closure result of Corollary 1.8.7
below, so we refer to the explanatory remarks that follow it.

Corollary 1.8.7 (space-like). Fix positive reals α, β,M . The following assertions are
equivalent:

(i) zclos0M (3
+−

α,β ) = R̄+ × R̄−,
(ii) zclos0M (3

−+

α,β ) = R̄− × R̄+,
(iii) αβM2

≤ 4π2.

Here, the main part of the equivalence (i)⇔(iii) is the implication (iii)⇒(i′), where

(i′) zclos0M (3
+−

α,β ) ⊃ R̄+ × R̄−.

The latter implication can be understood in the following terms. Under the density con-
dition (iii), any measure µ ∈ AC(0M) whose Fourier transform µ̂ vanishes on 3+−α,β
has the property that µ̂ actually vanishes on the entire space-like adjacent quarter-plane
R̄+ × R̄−. This assertion is seen to be equipotent with Theorem 1.8.2, after a scaling ar-
gument which permits us to assume thatM := 2π . Finally, to obtain the equality (i) from
the inclusion (i′) which results from Theorem 1.8.2, we may use e.g. Proposition 1.7.2.
The remaining equivalence (ii)⇔(iii) is, by a symmetry argument, the same as (i)⇔(iii).

Remark 1.8.8. Let us now explain how Theorem 1.5.1 is an immediate consequence of
the much deeper result of Corollary 1.8.7. First, an elementary argument (see [15], [4])
shows that zclos0M (3α,β) 6= R2 for αβM2 > 4π2, so that we just need to obtain the
implication

αβM2
≤ 4π2

=⇒ zclos0M (3α,β) = R2.

In view of Theorem 1.8.2,

αβM2
≤ 4π2

=⇒ zclos0M (3α,β) = zclos0M (3
+−

α,β ∪3
−+

α,β ) ⊃ (R̄+× R̄−)∪ (R̄−× R̄+) ⊃ R× {0},

and Theorem 1.5.1 becomes a consequence of Proposition 1.7.1 together with the idem-
potent property zclos2

0 = zclos0 .

2. The Zariski closures of the axes or semi-axes

2.1. The standard Hardy spaces Hp
+(R)

The Hardy space H∞+ (R) consists of all functions f ∈ L∞(R) whose Poisson extension
to the upper half-plane

C+ := {z ∈ C : Im z > 0}

is holomorphic. Here, the Poisson extension of f is given by the expression

f (z) :=
Im z

π

∫
R

f (t)

|z− t |2
dt, z ∈ C+.
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In a similar fashion, for 1 ≤ p < +∞, we say that f ∈ Hp
+(R) if f ∈ Lp(R) and its

Poisson extension is holomorphic in C+.

2.2. The Zariski closures of the axes and semi-axes

We now supply the proofs of Propositions 1.7.1 and 1.7.2. We should mention here that a
more general version of Proposition 1.7.1 can be found in [18].

Proof of Proposition 1.7.1. By symmetry, it is enough to show that zclos0M (R × {0})
= R2. More concretely, we need to show that if µ ∈ AC(0M) and

µ̂(ξ1, 0) = 0, ξ1 ∈ R,

then µ = 0 as a measure. In view of (1.4.4),

µ̂(ξ1, 0) =
∫
R×

eiπξ1t dπ1µ(t),

where π1µ is the compression of µ to the real line. The uniqueness theorem for the
Fourier transform gives π1µ = 0, and hence µ = 0, since µ and its compression π1µ

are in a one-to-one correspondence. ut

Proof of Proposition 1.7.2. By symmetry, it is enough to show that

zclos0M (R+ × {0}) = R̄+ × R̄−.

To this end, we consider a measure µ ∈ AC(0M) with (use (1.4.4))

µ̂(ξ1, 0) =
∫
R

eiπξ1t dπ1µ(t) = 0, ξ1 ∈ R+.

This condition is equivalent to asking that dπ1µ(t) = f (t) dt , where f ∈ H 1
+(R). It

follows from standard arguments that∫
R
g(t) dπ1µ(t) =

∫
R
f (t)g(t) dt = 0

for all g ∈ H∞+ (R). We observe that for ξ1 ≥ 0 and ξ2 ≤ 0, the function

g(t) := eiπ [ξ1t+M
2ξ2/(4π2t)]

is in H∞+ (R), and so

µ̂(ξ1, ξ2) =

∫
R×

eiπ [ξ1t+M
2ξ2/(4π2t)] dπ1µ(t) = 0, (ξ1, ξ2) ∈ R̄+ × R̄−.

In conclusion, this argument proves the inclusion

zclos0M (R+ × {0}) ⊃ R̄+ × R̄−.
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To obtain equality, we need to show that if (ξ1, ξ2) ∈ R2
\ (R̄+× R̄−), then there exists a

µ ∈ AC(0M) with dπ1µ(t) = f (t) dt , where f ∈ H 1
+(R), such that µ̂(ξ1, ξ2) 6= 0. But

as the bounded function

g(t) = eiπ [ξ1t+M
2ξ2/(4π2t)], t ∈ R,

is not an element of H∞+ (R), the standard Hardy space duality theory gives that

sup
{∣∣∣∣∫

R
f (t)g(t) dt

∣∣∣∣ : f ∈ ball(H 1
+(R))

}
= inf {‖g − h‖L∞(R) : h ∈ H∞+ (R)} > 0.

In particular, there must exist an f ∈ H 1
+(R) with

µ̂(ξ1, ξ2) =

∫
R
f (t)g(t) dt 6= 0. ut

3. Basic properties of the dynamics of Gauss-type maps on intervals

3.1. Notation for intervals

For a positive real γ , let Iγ := ]−γ, γ [ denote the corresponding symmetric open interval,
and let I+γ := ]0, γ [ be the positive side of the interval Iγ . At times, we will need the
half-open intervals Ĩγ := ]−γ, γ ] and Ĩ+γ := [0, γ [, as well as the closed intervals
Īγ := [−γ, γ ] and Ī+γ := [0, γ ].

3.2. Dual action notation

For a Lebesgue measurable subset E of the real line R, we write

〈f, g〉E :=

∫
E

f (t)g(t) dt

whenever fg ∈ L1(E). This will be of interest mainly when E is an open interval, and in
this case, we use the same notation to describe the dual action of a distribution on a test
function.

3.3. Gauss-type maps on intervals

For background material in ergodic theory, we refer to the book [5].
For x ∈ R, let {x}1 denote the fractional part of x, that is, the unique number in

Ĩ+1 = [0, 1[ with x − {x}1 ∈ Z. Likewise, we let {x}2 denote the even-fractional part
of x, by which we mean the unique number in Ĩ1 = ]−1, 1] with x − {x}2 ∈ 2Z. We will
be interested in the Gauss-type maps σγ : Ĩ+1 → Ĩ+1 and τβ : Ĩ1 → Ĩ1 given by

σγ (x) := {γ /x}1 and τβ(x) := {−β/x}2.

Here, β, γ are reals with 0 < β, γ ≤ 1. Then σ1 is the classical Gauss map of the unit
interval I+1 .
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3.4. Transfer, subtransfer, and compressed Koopman operators

Fix two reals β, γ with 0 < β, γ ≤ 1. Let Kγ : L
∞(I+1 ) → L∞(I+1 ) and Lβ :

L∞(I1) → L∞(I1) and consider the compressed Koopman operators (or sub-Koopman
operators)

Kγ f (x) := 1I+γ (x)f ◦ σγ (x), Lβf (x) := 1Iβ (x)f ◦ τβ(x). (3.4.1)

Here, as always, 1E stands for the characteristic function of the set E, which equals 1
on E and vanishes elsewhere. The subtransfer operators Sγ : L1(I+γ ) → L1(I+γ ) and
Tβ : L1(I1)→ L1(I1) are defined by

Sγ f (x) :=
+∞∑
j=1

γ

(j + x)2
f

(
γ

j + x

)
, Tβf (x) :=

∑
j∈Z×

β

(2j + x)2
f

(
−

β

2j + x

)
.

(3.4.2)
Here, we use the notation Z× := Z \ {0}. A standard argument shows that{

〈Sγ f, g〉I+1 = 〈f,Kγ g〉I+1
, f ∈ L1(I+1 ), g ∈ L

∞(I+1 ),

〈Tβf, g〉I1 = 〈f,Lβg〉I1 , f ∈ L1(I1), g ∈ L
∞(I1);

(3.4.3)

in other words, Sγ is the preadjoint of Kγ , and Tβ is the preadjoint of Lβ .
The cone of positive functions consists of all integrable functions f with f ≥ 0 a.e.

on the respective interval. Similarly, we say that f is positive if f ≥ 0 a.e. on the given
interval.

Proposition 3.4.1. Fix 0 < β, γ ≤ 1. The operators Tβ : L1(I1) → L1(I1) and Sγ :
L1(I+γ ) → L1(I+γ ) are both norm contractions which preserve the respective cones of
positive functions. For β = γ = 1, T1 and S1 act isometrically on the positive functions.
The associated adjoints Lβ : L∞(I1) → L∞(I1) and Kγ : L

∞(I+1 ) → L∞(I+1 ) are
norm contractions as well.

This is well-known for γ = β = 1 and very easy to obtain for 0 < β, γ < 1.

3.5. An elementary observation and an estimate of the Tβ -orbit of certain functions

We begin with the following elementary observation.

Observation. The subtransfer operators Tβ ,Sγ , initially defined on L1 functions, make
sense for wider classes of functions. Indeed, if f ≥ 0, then the formulae (3.4.2) make
sense pointwise, with values in the extended nonnegative reals [0,+∞]. More generally,
if f is complex-valued, we may use the triangle inequality to dominate the convergence
of Tβf by that of Tβ |f |. This entails that Tβf is well-defined a.e. if Tβ |f | < +∞ a.e.
The same holds for Sγ of course.

In view of the above observation, it is meaningful to try to control Tβf for f ≥ 0. The
following basic size estimate is useful.
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Proposition 3.5.1. Fix 0 < β ≤ 1. If f : I1 → R is even and its restriction to I+1 is
increasing, and if f ≥ 0, then

βC0f (0) ≤ Tβf (x)−
β

(2− |x|)2
f

(
β

2− |x|

)
≤ βC1f

( 1
2β
)
, x ∈ I1,

where C0 :=
π2

6 −
5
4 = 0.3949 . . . and C1 :=

π2

6 − 1 = 0.6449 . . . .

Proof. For convenience of notation, we write

sj (x) := −
β

2j + x
, (3.5.1)

which is an increasing function on I1 for j ∈ Z× = Z \ {0}. We first consider the right
half of the interval, i.e., x ∈ I+1 = ]0, 1[. As f is even, we see that

f (sj (x)) = f

(
−

β

2j + x

)
= f

(
β

2j + x

)
,

and since f is increasing on I+1 , we find that for integers j ≥ 1,

f (0) ≤ f
(

β

2j + 1

)
≤ f (sj (x)) = f

(
β

2j + x

)
≤ f

(
β

2j

)
≤ f

( 1
2β
)
, x ∈ I+1 ,

while for j ≤ −2 we have a similar estimate:

f (0) ≤ f
(
β

2|j |

)
≤ f (sj (x)) = f

(
β

2|j | − x

)
≤ f

(
β

2|j | − 1

)
≤ f

( 1
3β
)
≤ f

( 1
2β
)
, x ∈ I+1 .

Since

Tβf (x)−
β

(2− x)2
f

(
β

2− x

)
=

1
β

∑
j∈Z\{0,−1}

[sj (x)]
2 f (sj (x)),

the claimed estimate follows from

π2

6
−

5
4
≤

1
β2

∑
j∈Z\{0,−1}

[sj (x)]
2
≤
π2

6
−

5
4
, x ∈ I+1 .

The remaining case when x ∈ I−1 := ]−1, 0[ is analogous. ut

3.6. Symmetry preservation of the subtransfer operator Tβ

The fact that the action of Tβ commutes with reflection in the origin will be needed. The
precise formulation reads as follows. Let Ǐ be the antipodal operator Ǐf (x) := f (−x),
which is its own inverse: Ǐ2

= I.
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Proposition 3.6.1. Fix 0 < β ≤ 1. Suppose f : I1 → R is a function satisfying
Tβ |f |(x) < +∞ for some x ∈ I1. Then

Tβf (x) = ǏTβ Ǐf (x).

Proof. We keep the notation sj (x) = −β/(2j + x) from the proof of Proposition 3.5.1,
and note that

s−j (−x) = −sj (x),

which gives

ǏTβ Ǐf (x) =
1
β

∑
j∈Z×
[s−j (−x)]

2f (−s−j (−x)) =
1
β

∑
j∈Z×
[sj (x)]

2f (sj (x)) = Tβf (x).

The assumption Tβ |f |(x) < +∞ guarantees the absolute convergence of the above se-
ries. ut

3.7. Symmetry, monotonicity, convexity, and the operator Tβ

We may now derive the property that Tβ preserves the class of functions that are odd and
increasing.

Proposition 3.7.1. Fix 0 < β ≤ 1. If f : I1 → R is odd and [strictly] increasing, then
so is Tβf : I1 → R.

Proof. If f is odd and increasing, then |f | is even and its restriction to I+1 is increasing.
From Proposition 3.5.1, we get Tβ |f |(x) < +∞ for every x ∈ I1, so that by Proposition
3.6.1, Tβf (x) = −Tβf (−x), which means that Tβf is odd. Since

Tβf (x) =
1
β

∑
j∈Z×
[sj (x)]

2f (sj (x)) =
1
β

∑
j∈Z×

t2f (t)
∣∣
t :=sj (x)

,

where sj (x) = −β/(2j+x) is known to be increasing on I1 for each j ∈ Z×, it is enough
to check that t2f (t) is increasing in t ∈ I1, which in turn is an immediate consequence of
the assumption that f is odd and increasing. The “strict” case is analogous. ut

We can now derive the property that Tβ preserves the class of functions that are positive,
even, and convex.

Proposition 3.7.2. Fix 0 < β ≤ 1. If f : I1 → R is even and convex, and if f ≥ 0, then
so is Tβf .

Proof. From Proposition 3.5.1 we see that 0 ≤ Tβf (x) < +∞ for each x ∈ I1. We keep
the notation sj (x) = −β/(2j + x). Since f is even, we know from Proposition 3.6.1 that
Tβf is even as well. A direct calculation, based on s′j (x) = β

−1
[sj (x)]

2, shows that

d
dx
{[sj (x)]

2 f (sj (x))} =
1
β

(
2t3f (t)+ t4f ′(t)

)∣∣
t :=sj (x)
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where both sides are understood not in the pointwise sense but in the sense of distribution
theory. Convexity means that the derivative is increasing, so we need to check that the
left-hand side is increasing as a function of x. Now, since the function x 7→ sj (x) is
increasing on I1 for each j ∈ Z×, the above calculation shows that it is enough to check
that the function t 7→ 2t3f (t)+ t4f ′(t) is increasing on I1. By assumption, f ′(t) is odd
and increasing, and hence t4f ′(t) is odd and increasing too. Moreover, as f (t) is even
and convex, f is increasing on I1. Thus t 7→ t3f (t) is odd and increasing on I1. The
statement now follows from the fact that a sum of convex functions is convex as well. ut

3.8. Preservation of continuous functions under Tβ

For γ with 0 < γ < +∞, let C(Īγ ) denote the space of continuous functions on the com-
pact symmetric interval Īγ = [−γ, γ ]. The following is a rather immediate observation
(the proof is omitted).

Proposition 3.8.1. Fix 0 < β ≤ 1. If f ∈ C(Īβ), then Tβf ∈ C(Ī1).

Proposition 3.8.2. Fix 0 < β ≤ 1. If f ∈ C(Īβ) is odd, then Tβf (1) = βf (β).

Proof. By (3.4.2) and the assumption that f is odd, cancellation of all terms except for
the one corresponding to index j = −1 gives

Tβf (1) =
∑
j∈Z×

β

(2j + 1)2
f

(
−

β

2j + 1

)
= βf (β). ut

3.9. Subinvariance of certain key functions

It is well-known that the Gauss map σ1(x) = {1/x}1 has the absolutely continuous in-
variant measure

dt
(1+ t) log 2

, t ∈ I+1 ,

normalized to be a probability measure. This suggests that we should analyze the behavior
of the subtransfer operator Sγ on the function

λ1(x) :=
1

1+ x
, x ∈ I+1 .

Proposition 3.9.1. Fix 0 < γ ≤ 1. With λ1(x) = 1/(1+ x) on I1, for n = 1, 2, 3, . . . we
have

Snγ λ1(x) ≤

(
2γ

1+ γ

)n
λ1(x), x ∈ I+1 .

Proof. We first establish the assertion for n = 1. It is elementary to show that for j =
1, 2, . . . ,

γ

(j + x)(j + x + γ )
≤

2γ
1+ γ

1
(j + x)(j + x + 1)

, x ∈ I+1 ,
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and since

Sγ λ1(x) =

+∞∑
j=1

γ

(j + x)2
1

1+ γ
j+x

=

+∞∑
j=1

γ

(j + x)(j + x + γ )
,

the assertion for n = 1 now follows from the telescoping sum identity

+∞∑
j=1

1
(j + x)(j + x + 1)

=

+∞∑
j=1

{
1

j + x
−

1
j + x + 1

}
=

1
1+ x

, x ∈ I+1 .

Finally, the assertion for n > 1 follows by repeated application of the n = 1 case, using
the fact that Sγ is positive, i.e., preserves the positive cone. ut

Next, we consider the Tβ -iterates of the function (for 0 < α ≤ 1)

κα(x) :=
α

α2 − x2 , x ∈ I1. (3.9.1)

This function is not in L1(I1), although it is in L1,∞(I1), the weak L1-space; however,
by the observation made in Subsection 3.5, we may still calculate the expression Tβκα
pointwise wherever Tβ |κα|(x) < +∞. Note that κ1(x) dx is the invariant measure for
the transformation τ1(x) = {−1/x}2, which in terms of the transfer operator T1 means
that T1κ1 = κ1. It is of fundamental importance in most of our considerations that this
invariant measure has infinite mass, i.e., κ1 6∈ L

1(I1). The reason is that τ1 has indifferent
fixed points. The Gauss map σ1, on the other hand, has only repelling fixed points, and
an invariant measure λ1(x) dx with finite mass. This is the main reason why the transfer
operators S1 and T1 behave differently. We should add that control of the orbits is much
more difficult and not so well understood in the case of indifferent fixed points, in contrast
with the case of repelling fixed points where the theory is well developed.

Lemma 3.9.2. Fix 0 < β ≤ 1. For the function κβ(x) = β/(β2
− x2), we have

Tβκβ(x) = Tβ |κβ |(x) = κ1(x) =
1

1− x2 , a.e. x ∈ I1,

For κ1(x) = (1− x2)−1, we have

0 ≤ Tβκ1(x) ≤ β κ1(x) =
β

1− x2 , x ∈ I1.

Proof. In view of (3.4.2), we have

Tβκα(x) =
∑
j∈Z×

β

(x + 2j)2
α

α2 − [sj (x)]2

=

∑
j∈Z×

β

(x + 2j)2
α

α2 −
β2

(x+2j)2

=

∑
j∈Z×

αβ

α2(x + 2j)2 − β2 , (3.9.2)
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where the series converges absolutely unless a term is undefined (as the result of division
by 0). Since sj (x) ∈ Iβ for x ∈ I1, we see that each term is positive for α = β, and hence

Tβκβ(x) = Tβ |κβ |(x) =
∑
j∈Z×

1
(x + 2j)2 − 1

=
1
2

∑
j∈Z×

{
1

x + 2j − 1
−

1
x + 2j + 1

}
=

1
1− x2 ,

by telescoping sums, as claimed. Next, since for 0 < β ≤ 1 and j ∈ Z×,

0 ≤
β

(x + 2j)2 − β2 ≤
β

(x + 2j)2 − 1
, x ∈ I1,

it follows that, by the same calculation,

0 ≤ Tβκ1(x) ≤
∑
j∈Z×

β

(x + 2j)2 − 1
=

β

1− x2 , x ∈ I1. ut

Remark 3.9.3. In particular, for β = 1, we have equality: T1κ1 = κ1.

We also obtain a uniform estimate of Tnβκ1 for 0 < β < 1 and n = 1, 2, . . . .

Proposition 3.9.4. Fix 0 < β < 1. For n = 1, 2, . . . , we have

Tnβκ1(x) ≤
2βn

1− β
, x ∈ I1.

Proof. We first establish the estimate for n = 1. As the function κ1(x) = (1 − x2)−1 is
positive, even, and convex, Proposition 3.5.1 tells us that

Tβκ1(x) ≤ βC1κ1
( 1

2β
)
+

β

(2− |x|)2
κ1

(
β

2− |x|

)
≤ βC1κ1

( 1
2

)
+ βκ1(β) ≤

2β
1− β

.

(3.9.3)

Here, we have used the fact that κ1 is increasing on I+1 = ]0, 1[, and that C1κ1
( 1

2

)
=

4
3

(
π2

6 − 1
)
≤ 1.

Next, by iteration of Lemma 3.9.2, since Tβ is positive, we obtain Tn−1
β κ1 ≤ β

n−1κ1,
so that a single application of the estimate (3.9.3) gives

Tnβκ1(x) = TβTn−1
β κ1(x) ≤ β

n−1Tβκ1(x) ≤
2βn

1− β
, x ∈ I1. ut
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3.10. The associated transfer operators

For 0 < β ≤ 1 and a function f ∈ L1(I1), extended to vanish on R \ I1, we let TTTβf
denote the function defined by

TTTβf (x) :=


∑
j∈Z

β

(x + 2j)2
f

(
−

β

x + 2j

)
, x ∈ I1,

0, x ∈ R \ I1,

(3.10.1)

whenever the sum converges absolutely. Analogously, for 0 < γ ≤ 1 and a function
f ∈ L1(I+1 ), extended to vanish on R \ I+1 , we let SSSγ f denote the function defined by

SSSγ f (x) :=


+∞∑
j=0

γ

(x + j)2
f

(
γ

x + j

)
, x ∈ I+1 ,

0, x ∈ R \ I+1 ,
(3.10.2)

whenever the sum converges absolutely. If we compare the definition of TTTβf with that of
Tβf , and the definition ofSSSγ f with that of Sγ f , we note that the index j = 0 is included
in the summation this time. The operators TTTβ and SSSγ are transfer operators.

Proposition 3.10.1. Fix 0 < β ≤ 1. The operator TTTβ is norm contractive L1(I1) →

L1(I1). Indeed, ∫ 1

−1
|TTTβf (x)| dx ≤

∫ 1

−1
|f (x)| dx, f ∈ L1(I1),

with equality if f ≥ 0.

Proof. By definition, the function TTTβf vanishes off I1. Next, by the triangle inequality
and the change-of-variables formula, we have∫ 1

−1
|TTTβf (x)| dx ≤

∑
j∈Z

∫ 1

−1

∣∣∣∣f(− β

x + 2j

)∣∣∣∣ β dx
(x + 2j)2

=

∫
I1\Iβ

|f (t)| dt +
∑
j∈Z×

∫
−β/(2j+1)

−β/(2j−1)
|f (t)| dt =

∫ 1

−1
|f (t)| dt

for f ∈ L1(I1), understood to vanish off I1. For f ≥ 0, there is no loss in the triangle
inequality, and we obtain equality. ut

Proposition 3.10.2. Fix 0 < γ ≤ 1. The operator SSSγ is norm contractive L1(I+1 ) →

L1(I+1 ). Indeed, ∫ 1

0
|SSSγ f (x)| dx ≤

∫ 1

0
|f (x)| dx, f ∈ L1(I+1 ),

with equality if f ≥ 0.

The proof is analogous to that of Proposition 3.10.1 and therefore omitted.
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3.11. Aspects of dynamics of Gauss-type maps

We recall the interval notation from §3.1. For 0 < β, γ < 1, the transformations τβ(x) =
{−β/x}2 and σγ (x) = {γ /x}1 are rather degenerate on the sets I1 \ Īβ and I+1 \ Ī

+
γ .

Indeed, the set I1 \ Īβ is invariant for τβ , as τβ(I1 \ Īβ) = I1 \ Īβ , and the points in I1 \ Īβ
are 2-periodic:

τβ(τβ(x)) = x, x ∈ I1 \ Īβ .

In the same vein, the set I+1 \ Ī
+
γ is invariant for σγ , and all points are 2-periodic:

σγ (σγ (x)) = x, x ∈ I+1 \ Ī
+
γ .

Clearly, I1 \ Īβ acts as an attractor for τβ , and similarly I+1 \ Ī
+
γ acts as an attractor for σγ .

We would like to analyze the sets of points which remain outside the attractor in a given
number of steps. To this end, we put, for N = 2, 3, . . . ,

Eβ,N := {x ∈ Īβ : τnβ (x) ∈ Īβ for n = 1, . . . , N − 1},

Fγ,N := {x ∈ Ī+γ : σ nγ (x) ∈ Ī+γ for n = 1, . . . , N − 1}.
(3.11.1)

where τnβ := τβ ◦ · · · ◦ τβ and σ nγ := σγ ◦ · · · ◦ σγ (n-fold compositions). We also agree
that Eβ,1 := Īβ and that Fγ,1 := Ī+γ . The sets Eβ,N and Fγ,N get smaller as N increases,
and we form their intersections

Eβ,∞ :=
+∞⋂
N=1

Eβ,N , Fγ,∞ :=
+∞⋂
N=1

Fγ,N , (3.11.2)

which are known as wandering sets, and consist of points whose orbits stay away from
the attractor.

Proposition 3.11.1. (0 < β, γ < 1) For N = 1, 2, . . . , we have the estimates∫
Fγ,N

dt
1+ t

≤

(
2γ

1+ γ

)N
log 2 and

∫
Eβ,N

dt
1− t2

≤
4βN

1− β
.

As a consequence, the one-dimensional Lebesgue measures of the sets Eβ,∞ and Fγ,∞
both vanish.

Proof. By inspection of the definition of the Koopman operators (3.4.1), we see that a.e.
on the respective interval,

LNβ 1 = 1Eβ,N , KN
γ 1 = 1Fβ,N ,

where 1 stands for the corresponding constant function. In view of the duality (3.4.3),∫
Fβ,N

dt
1+ t

= 〈λ1,KN
γ 1〉I+1 = 〈S

N
γ λ1, 1〉I+1 ≤

(
2γ

1+ γ

)N
〈λ1, 1〉I+1 =

(
2γ

1+ γ

)N
log 2
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where λ1(x) = (1 + x)−1 and the estimate comes from Proposition 3.9.1. It remains to
obtain the corresponding estimate for the set Eβ,N . Letψ := 1Iηκ1 for some η, 0 < η < 1,
where κ1(x) = (1− x2)−1. Then ψ ∈ L1(I1), and from the duality (3.4.3) together with
Proposition 3.9.4 we obtain∫
Iη∩Eβ,N

dt
1− t2

= 〈ψ,LNβ 1〉I1 = 〈T
N
β ψ, 1〉I1 ≤ 〈T

N
β κ1, 1〉I1 ≤

2βN

1− β
〈1, 1〉I1 =

4βN

1− β
.

If we let η→ 1, the remaining assertion follows by e.g. monotone convergence.
As for the sets Eβ,∞ and Fγ,∞, we just need to observe that the right-hand sides

converge to 0 geometrically, since 2γ /(1+ γ ) < 1. ut

The 2-periodicity of the points in the attractor of τβ is reflected by the fact that the func-
tions supported on the attractor are 2-periodic for the transfer operator TTTβ . Naturally, the
same is true of σγ and SSSγ . We omit the easy proof.

Proposition 3.11.2. Fix 0 < β, γ ≤ 1. The operator TTTβ maps L1(I1 \ Iβ) contractively
into itself. Likewise, SSSγ maps L1(I+1 \ I

+
γ ) contractively into itself. Moreover, TTT 2

β f = f

for f ∈ L1(I1 \ Iβ), and analogously SSS2
γ f = f for f ∈ L1(I1 \ Iγ ).

We shall need the following result, which describes the interlacing of the iterates of TTTβ
with multiplication by characteristic functions.

Proposition 3.11.3. Fix 0 < β ≤ 1. For N = 1, 2, . . . and f ∈ L1(I1) we have, a.e.
on I1

1IβTTT
N−1
β f = TTT N−1

β (1Eβ,Nf ), TTT N
β (1Eβ,Nf ) = TNβ f.

Proof. To simplify the presentation, we replace the L1(I1) function by a Dirac point mass
f = δξ at an arbitrary point ξ ∈ I1. If we can show that the claimed equalities hold for
f = δξ , i.e.,

1IβTTT
N−1
β δξ = TTT N−1

β (1Eβ,N δξ ), TTT N
β (1Eβ,N δξ ) = TNβ δξ ,

for Lebesgue almost every ξ ∈ I1, then they hold for every f ∈ L1(I1) by “averaging”.
Indeed, a general f ∈ L1(I1) may be written as

f (x) =

∫
I1

δx(t)f (t) dt =
∫
I1

δt (x)f (t) dt, x ∈ I1, (3.11.3)

where the integral is to be understood in the sense of distribution theory, so that, e.g.,

TTTβf (x) =
∫
I1

TTTβδt (x)f (t) dt, x ∈ I1.

We first focus on the claimed identity

1IβTTT
N−1
β δξ = TTT N−1

β (1Eβ,N δξ ). (3.11.4)
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Here, we should remark that multiplication of a point mass and a characteristic function
need only make sense for almost every ξ ∈ I1. For N = 1, (3.11.4) holds trivially. In the
following, we consider integers N > 1. The canonical extension of the transfer operator
TTTβ to such point masses reads

TTTβδξ = δτβ (ξ) = δ{−β/ξ}2 . (3.11.5)

Note that by iteration of (3.11.5), we have

TTT N−1
β δξ = δτN−1

β (ξ)
for ξ ∈ I1. (3.11.6)

By definition, we know that τN−1
β (ξ) ∈ Īβ for ξ ∈ Eβ,N , while for a.e. ξ ∈ I1 \ Eβ,N ,

there exists an n = 1, . . . , N −1 such that τnβ (ξ) ∈ I1 \ Īβ . As Jβ = I1 \ Īβ is an attractor

for τβ , we conclude that for a.e. ξ ∈ I1 \ Eβ,N , we have τN−1
β (ξ) ∈ I1 \ Īβ . The asserted

identity (3.11.4) now follows from these observations.
We turn to the remaining assertion that

TTT N
β (1Eβ,Nf ) = TNβ f, N = 1, 2, . . . . (3.11.7)

By inspection of the definition (3.4.2) of the subtransfer operator, the action of Tβ lifts to
a point mass at ξ ∈ I1 for a.e. ξ in the following fashion:

Tβδξ =

{
δτβ (ξ) if ξ ∈ Īβ ,
0 if ξ ∈ I1 \ Īβ ,

so that by iteration, again for a.e. ξ ∈ I1,

TNβ δξ =

{
δτNβ (ξ)

if ξ ∈ Eβ,N ,
0 if ξ ∈ I1 \ Eβ,N .

A comparison with the corresponding formula (3.11.6) shows that the identity (3.11.7)
holds. ut

The corresponding relations for Sγ and SSSγ read as follows.

Proposition 3.11.4. Fix 0 < γ < 1. For N = 1, 2, . . . and f ∈ L1(I+1 ) we have, a.e.
on I+1 ,

1I+γ SSS
N−1
γ f = SSSN−1

β (1Fγ,Nf ), SSSNβ (1Fγ,Nf ) = SNγ f.

The proof is similar to that of Proposition 3.11.3 and therefore omitted.
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3.12. Exact endomorphisms

We need the concept of exactness. Here, we follow the abstract approach to this notion
(see e.g. [21]) and say that τ1 (and the transfer operator T1 as well) is exact if, in the a.e.
sense,

+∞⋂
n=1

Ln1L
∞(I1) = {constants}.

For 0 < β < 1, however, τβ has a nontrivial attractor, and the notion needs to be modified.
So, for 0 < β < 1, we say that τβ (and Tβ ) is subexact if, in the a.e. sense,

+∞⋂
n=1

LnβL
∞(I1) = {0}.

Mutatis mutandis, if we replace the triple Tβ ,Lβ , I1 by Sγ ,Kγ , I
+

1 , we also obtain the
definition of exactness and subexactness for Sγ (and σγ ).

Proposition 3.12.1. Fix 0 < β, γ < 1. The operators Tβ : L1(I1) → L1(I1) and
Sγ : L1(I+1 )→ L1(I+1 ) are subexact in the sense that

+∞⋂
n=1

LnβL
∞(I1) = {0},

+∞⋂
n=1

Kn
γL
∞(I+1 ) = {0}.

Proof. By inspection of the compressed Koopman operator Lnβ , an element of the inter-
section

+∞⋂
n=1

LnβL
∞(I1)

is a function in L∞(I1) which vanishes off the wandering set Eβ,∞, but by Proposition
3.11.1, this is a null set, so the function vanishes a.e. The analogous argument applies in
the case of Kγ . ut

Exactness in the case β = γ = 1 is known and can be derived from the work of Thaler
[32] (see also Aaronson’s book [2]):

Proposition 3.12.2. Fix β = γ = 1. The operators T1 : L
1(I1) → L1(I1) and S1 :

L1(I+1 )→ L1(I+1 ) are exact in the sense that

+∞⋂
n=1

Ln1L
∞(I1) = {constants},

+∞⋂
n=1

Kn
1L
∞(I+1 ) = {constants}.

Proof. The map τ1 meets the conditions (1)–(4) of Thaler’s paper [32, p. 69], so by [32,
Theorem 1, p. 73], T1 is exact (or, in more standard terminology, τ1 is exact). Let us
check the conditions one by one, mutatis mutandis, as Thaler uses the interval [0, 1] and
not Ī1 = [−1, 1] as we do.

Condition (1). The fundamental intervals are given by B(j) :=
] 1

2j+1 ,
1

2j−1

[
for j ∈ Z×

except when j = ±1, when we adjoin an end point: B(−1) = [−1,−1/3[ and B(1) =
]1/3, 1]. The transformation τ1 is of classC2 on each fundamental intervalB(j), with j ∈
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Z×, and has complete branches (it is “filling” in the terminology of [4]). Moreover, each
fundamental interval B(j) contains exactly one fixed point xj , and τ ′1(xj ) > 1, except
on two fundamental intervals, B(−1) and B(1), where the fixed points are the boundary
points 1 and −1. On each fundamental interval B(j) we replace τ1(x) = {−1/x}2 by the
appropriate branch τ1,j (x) = 2j − 1/x (this makes a difference only at the end points).
The derivative at the remaining fixed points is then τ ′1,−1(−1) = τ ′1,1(1) = 1.

Condition (2). This condition is satisfied since τ ′1(x) = x−2
≥ (1 − ε)−2 > 1 on the

interval I1−ε within each fundamental interval B(j).

Condition (3). The derivative τ ′1(x) = x−2 is decreasing on ]1/3, 1[ and increasing on
]−1,−1/3[. The remaining requirements are void.

Condition (4). In each fundamental interval B(j), the expression |τ ′′1 (x)|/τ
′

1(x)
2
= 2|x|

is uniformly bounded.

We conclude from the definition of exactness in [32] that up to null sets, {∅, I1} are the
only measurable subsets of I1 which for each n = 1, 2, 3, . . . may be written in the form
τ−n1 (En) for some measurable set En ⊂ I1. This is equivalent to

+∞⋂
n=1

Ln1L
∞(I1) = {constants}.

We turn to the Gauss map σ1(x) = {1/x}2, whose exactness is well-known. But we
may derive it from [32, Theorem 1] as well. However, the condition (2) is not fulfilled, as
σ ′1(x) = −x

−2
≤ −1 in the interior of the fundamental intervals. But the iterate σ1 ◦σ1 is

uniformly expanding with inf (σ1 ◦ σ1)
′ > 1, and the conditions (1)–(4) may be verified

for it. So the exactness of σ1 ◦ σ1 follows in the same fashion; this leads to

+∞⋂
n=1

K2n
1 L
∞(I+1 ) = {constants}. ut

Remark 3.12.3. Some aspects of the work of Thaler [32] have been further developed
by Melbourne and Terhesiu [23].

3.13. Asymptotical behavior of the orbits of Tβ and Sγ

We now apply the exactness obtained to show how the iterates of Tβ and Sγ behave.

Proposition 3.13.1. Fix 0 < β, γ < 1.

(a) For f ∈ L1(I+1 ), we have ‖Snγ f ‖L1(I+1 )
→ 0 as n→+∞.

(b) For f ∈ L1(I1), we have ‖Tnβf ‖L1(I1)
→ 0 as n→+∞.

Proof. This follows from Proposition 3.12.1 combined with [21, Theorem 4.3]. ut
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Proposition 3.13.2. Fix β = γ = 1.

(a) For f ∈ L1(I+1 ) with 〈f, 1〉I+1 = 0, we have ‖Sn1f ‖L1(I+1 )
→ 0 as n→+∞.

(b) For f ∈ L1(I1) with 〈f, 1〉I1 = 0, we have ‖Tn1f ‖L1(I1)
→ 0 as n→+∞.

Proof. This follows from Proposition 3.12.2 combined with [21, Theorem 4.3]. ut

There is a weak analogue of Proposition 3.13.1(b) which applies for β = 1. The proof is
based on the fact that the absolutely continuous invariant measure has infinite mass.

Proposition 3.13.3. Fix β = 1. For f ∈ L1(I1) and fixed η, 0 < η < 1, we have

lim
n→+∞

∫ η

−η

|Tn1f (x)| dx = 0.

Proof. Since |Tn1f | ≤ Tn1|f | pointwise, we may assume without loss of generality that
f ≥ 0. We recall the notation κ1(x) = (1− x2)−1, and pick a number ξ with 0 < ξ < 1.
Let g be the function

g(x) :=
〈f, 1〉I1
〈1Iξ κ1, 1〉I1

1Iξ (x)κ1(x), x ∈ I1.

Then g ∈ L1(I1) and
〈f − g, 1〉I1 = 0.

By Proposition 3.13.2(b), we conclude that ‖Tn1(f − g)‖L1(I1)
→ 0 as n→+∞. More-

over, by the triangle inequality,

‖Tn1f ‖L1(Iη)
≤ ‖Tn1(f − g)‖L1(I1)

+ ‖Tn1g‖L1(Iη)
.

Since the function g is positive and

g(x) ≤
〈f, 1〉I1
〈1Iξ κ1, 1〉I1

κ1(x),

we see that

‖Tn1g‖L1(Iη)
= 〈Tn1g, 1Iη 〉I1 ≤

〈f, 1〉I1
〈1Iξ κ1, 1〉I1

〈Tn1κ1, 1Iη 〉I1 =
〈f, 1〉I1
〈1Iξ κ1, 1〉I1

〈κ1, 1Iη 〉I1 ,

(3.13.1)
because T1κ1 = κ1 (see Lemma 3.9.2). Moreover, since

〈1Iξ κ1, 1〉I1 →+∞ as ξ → 1,

we may get the norm ‖Tn1g‖L1(Iη)
as small as we like for fixed η by letting ξ be appro-

priately close to 1. This means that the right-hand side of (3.13.1) may be as close to 0 as
we want, the first term by letting n be large, and the second by letting ξ be close to 1. ut
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4. Background material: the Hardy and BMO spaces on the line

4.1. The Hardy H 1-space: analytic and real

For a reference on the basics of Hardy spaces and BMO (bounded mean oscillation), we
refer to, e.g., the monographs of Duren and Garnett [6], [10], as well as those of Stein
[29], [30] and Stein and Weiss [31].

LetH 1
+(R) andH 1

−(R) be the subspaces of L1(R) consisting of those functions whose
Poisson extensions to the upper half-plane C+ := {z ∈ C : Im z > 0} are holomorphic
and conjugate-holomorphic, respectively. Here, we use the term conjugate-holomorphic
(or anti-holomorphic) to mean that the complex conjugate of the function in question is
holomorphic.

It is well-known that any function f ∈ H 1
+(R) has vanishing integral:

〈f, 1〉R =
∫
R
f (t) dt = 0, f ∈ H 1

+(R). (4.1.1)

In other words, H 1
+(C) ⊂ L1

0(R), where

L1
0(R) :=

{
f ∈ L1(R) : 〈f, 1〉R = 0

}
. (4.1.2)

In fact, there is a related Fourier-analytic characterization of H 1
+(R) and H 1

−(R): for f ∈
L1(R),

f ∈ H 1
+(R) ⇐⇒ ∀y ≥ 0 :

∫
R

eiytf (t) dt = 0, (4.1.3)

f ∈ H 1
−(R) ⇐⇒ ∀y ≤ 0 :

∫
R

eiytf (t) dt = 0. (4.1.4)

We will refer to the space

H 1
~(R) := H

1
+(R)⊕H

1
−(R)

as the realH 1-space of the line R. Here,⊕means direct sum, i.e. the elements f ∈H 1
~(R)

are functions f ∈ L1
0(R) which may be written in the form

f = f1 + f2, where f1 ∈ H
1
+(R), f2 ∈ H

1
−(R), (4.1.5)

plus the fact that H 1
+(R) ∩ H 1

−(R) = {0}, which is a Fourier-analytic consequence of
(4.1.3) and (4.1.4). Obviously, H 1

~(R) ⊂ L1
0(R); it is perhaps slightly less obvious that

H 1
~(R) is dense in L1

0(R) in the norm of L1(R). It is clear that the decomposition (4.1.5)
is unique. We let P+ and P− denote the projections P+f := f1 and P−f := f2 in the
decomposition (4.1.5). These Szegő projections P+,P− can of course be extended beyond
the H 1

~(R) setting; more about this in the following subsection.
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4.2. The BMO space and the modified Hilbert transform

With respect to the dual action

〈f, g〉R =

∫
R
f (t)g(t) dt,

we may identify the dual space of H 1
~(R) with BMO(R)/C. Here, BMO(R) is the space

of functions of bounded mean oscillation; this is the celebrated Fefferman duality theorem
[7], [8]. We write “·/C” to express that we mod out by the constant functions. One of the
main results in the theory is the theorem of Fefferman and Stein [8] which tells us that

BMO(R) = L∞(R)+ H̃L∞(R), (4.2.1)

or, in words, a function g is in BMO(R) if and only if it may be written in the form
g = g1 + H̃g2, where g1, g2 ∈ L

∞(R). Here, H̃ denotes the modified Hilbert transform,
defined for f ∈ L∞(R) by the formula

H̃f (x) :=
1
π

pv
∫
R
f (t)

{
1

x − t
+

t

1+ t2

}
dt

= lim
ε→0+

∫
R\[x−ε,x+ε]

f (t)

{
1

x − t
+

t

1+ t2

}
dt. (4.2.2)

The decomposition (4.2.1) is clearly not unique. The nonuniqueness of the decomposition
is measured by

H∞~ (R) := L
∞(R) ∩ H̃L∞(R), (4.2.3)

the real H∞-space.
We should compare the modified Hilbert transform H̃ with the standard Hilbert trans-

form H, which acts boundedly on Lp(R) for 1 < p < +∞, and maps L1(R) into
L1,∞(R) for p = 1. Here, L1,∞(R) denotes the weak L1-space (see Subsection 7.1
below). The Hilbert transform of a function f that is assumed to be integrable on R with
respect to the measure (1+ t2)−1/2 dt is defined as the principal value integral

Hf (x) :=
1
π

pv
∫
R
f (t)

dt
x − t

= lim
ε→0+

1
π

∫
R\[x−ε,x+ε]

f (t)
dt
x − t

. (4.2.4)

If f ∈ Lp(R), where 1 ≤ p < +∞, then both Hf and H̃f are well-defined a.e., and it
is easy to see that the difference H̃f −Hf is a constant. It is often useful to think of the
natural harmonic extensions of the Hilbert transforms Hf and H̃f to C+ given by

Hf (z) :=
1
π

∫
R

Re z− t
|z− t |2

f (t) dt, H̃f (z) :=
1
π

∫
R

{
Re z− t
|z− t |2

+
t

t2 + 1

}
f (t) dt.

(4.2.5)

So, as a matter of normalization, we have H̃f (i) = 0. This yields the value of the constant
mentioned above: H̃f −Hf = −Hf (i).
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Returning to the realH 1-space, we note the following characterization of the space in
terms of the Hilbert transform: for f ∈ L1(R),

f ∈ H 1
~(R) ⇐⇒ f ∈ L1

0(R) and Hf ∈ L1
0(R)

(see Proposition 7.1.1 later on).
The Szegő projections P+ and P− mentioned in Subsection 4.1 are more generally

defined in terms of the Hilbert transform:

P+f := 1
2 (f + iHf ), P−f := 1

2 (f − iHf ). (4.2.6)

In a similar manner, for f ∈ L∞(R), based on the modified Hilbert transform H̃ we
may define the corresponding modified Szegő projections (which are actually projections
modulo the constant functions)

P̃+f := 1
2 (f + iH̃f ), P̃−f := 1

2 (f − iH̃f ), (4.2.7)

so that, by definition, f = P̃+f + P̃−f . If we are given two functions f ∈ H 1
~(R)

and g ∈ L∞(R), the dual action 〈f, g〉R naturally splits into holomorphic and conjugate-
holomorphic parts:

〈f, g〉R = 〈P+f, P̃−g〉R + 〈P−f, P̃+g〉R. (4.2.8)

Modulo the constants, the space BMO(R) naturally splits into holomorphic and con-
jugate-holomorphic components:

BMO(R)/C = [BMOA+(R)/C] ⊕ [BMOA−(R)/C]. (4.2.9)

Here BMOA+(R) and BMOA−(R) are the subspaces of BMO(R) consisting of func-
tions with Poisson extensions to C+ that are holomorphic and conjugate-holomorphic,
respectively.

The operator H̃ also makes sense on functions from BMO(R). It is then natural to ask
what is H̃2:

Lemma 4.2.1. For f ∈ Lp(R), 1 < p < +∞, we have H2f = −f . Moreover, for
f ∈ L∞(R), we have H̃2f = −f + c(f ), where

c(f ) :=
1
π

∫
R

f (t)

t2 + 1
dt.

Proof. The assertion for 1 < p < +∞ is completely standard (see any textbook in
harmonic analysis). We turn to p = +∞. First, we observe that without loss of generality,
we may assume f is real-valued. Then 2P̃+f is the holomorphic function in the upper
half-plane whose real part is the Poisson extension of f , and the choice of the imaginary
part is fixed by the requirement 2 Im P̃+f (i) = H̃f (i) = 0. The function

−2iP̃+f = H̃f − if

extends to a holomorphic function in C+ with real part H̃f . So we may identify −f
with H̃2f up to an additive constant. The constant is determined by the requirement that
H̃2f (i) = 0, and so H̃2f (i) = −f + f (i) = −f + c(f ). Here, f (i) is understood in
terms of Poisson extension. ut
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4.3. BMO and the Fourier transform

The Fourier transform of a function f ∈ L1(R) is given by

f̂ (x) :=

∫
R

eiπxtf (t) dt, (4.3.1)

and it is well understood how to extend the Fourier transform to tempered distributions
(see, e.g., [17]). It is well-known how to characterize in terms of the Fourier transform the
spaces BMOA+(R) and BMOA−(R) as subspaces of BMO(R). We state these known
facts as a lemma (without proof). We recall the notation R̄+ = [0,+∞[ and R̄− =
]−∞, 0].

Lemma 4.3.1. Suppose f ∈ BMO(R). Then f ∈ BMOA+(R) if and only if f̂ is sup-
ported on R̄−. Likewise, f ∈ BMOA−(R) if and only if f̂ is supported on R̄+.

4.4. The BMO space of 2-periodic functions

We shall need the space

BMO(R/2Z) := {f ∈ BMO(R) : f (t + 2) ≡ f (t)},

that is, the BMO space of 2-periodic functions. Via the complex exponential mapping
t 7→ eiπt (R → T), we identify the unit circle T with R/2Z, and BMO(R/2Z) is then
just the standard BMO space on T. Let us write

BMOA+(R/2Z) := BMOA+(R) ∩ BMO(R/2Z)

and

BMOA−(R/2Z) := BMOA−(R) ∩ BMO(R/2Z)

for the subspaces of BMO(R/2Z) that consist of functions whose Poisson extensions to
the upper half-plane C+ are holomorphic and conjugate-holomorphic, respectively.

As L2-integrable functions on the “circle” R/2Z, the elements of BMO(R/2Z) have
(a.e. convergent) Fourier series expansions. This means that the Fourier transform f̂ of a
function f ∈ BMO(R/2Z), defined by (4.3.1) and interpreted in the sense of distribution
theory, is a sum of Dirac point masses along the integers Z. We formalize this observation
as a lemma.

Lemma 4.4.1. Suppose f ∈ BMO(R). Then f ∈ BMO(R/2Z) if and only if the distri-
bution f̂ is supported on Z, and at each point of Z, it is a Dirac point mass.

This result is well-known.
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5. The Zariski closures of two portions of the lattice-cross

5.1. An involution and the modified Hilbert transform on BMO

For a positive real parameter β, let J∗β be the involutive operator defined by

J∗βf (x) := f (−β/x), x ∈ R×. (5.1.1)

Recall the definition (4.2.2) of the modified Hilbert transform H̃.

Lemma 5.1.1. For f ∈ BMO(R) and a positive real β, we have

(J∗βH̃f )(x) = (H̃J∗βf )(x)+ cβ(f ),

where

cβ(f ) := H̃f (iβ) = (β2
− 1)

∫
R

tf (t) dt
(1+ t2)(β2 + t2)

.

Proof. Without loss of generality, we may assume that f is real-valued. The mapping
x 7→ −β/x extends to a conformal automorphism of C+ given by z 7→ −β/z, and
the function 2P̃+f is a holomorphic function in C+ with real part equal to the Poisson
extension of f . We realize that the functions J∗β P̃+f and J∗β P̃+f differ by an imaginary
constant. The result follows by taking imaginary parts and plugging in z = i. ut

5.2. The Zariski closure of the portions of the lattice-cross on the space-like cone
boundary

Recall that 1E stands for the characteristic function of the set E, which equals 1 on E and
0 off E. The Fourier transform of the function ei/t in the sense of Schwartz distributions
may be known, but we have no specific reference.

Proposition 5.2.1. In the sense of distribution theory on R we have

lim
ε→0+

∫
R

ei/t+itx−ε|t | dt
2π
= δ0(x)− 1R+(x)x

−1/2J1(2x1/2),

where δ0 is the unit Dirac point mass at 0, and J1 denotes the standard Bessel function,
so that

x−1/2J1(2x1/2) =

+∞∑
j=0

(−1)j

j !(j + 1)!
xj .

Proof. A direct calculation can be made on the basis of [12, formula 3.324]. A less
cumbersome approach is to compute the Fourier transform of the function H1(x) :=

1R+(x)x
−1/2J1(2x1/2):

Ĥ1(y) =

∫
R

eiπxyH1(x) dx =
∫
+∞

0
eiπxyx−1/2J1(2x1/2) dx = 2

∫
+∞

0
eiπyt2J1(2t) dt,
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where the integral is absolutely convergent for Im y > 0 and has a well-defined inter-
pretation on R, e.g., in terms of nontangential limits. From the standard Bessel function
asymptotics, we know that

|H1(x)| = O(x−3/4) as x →+∞,

so that, in particular, H1 ∈ L
2(R). By basic Hardy space theory, the nontangential limit

interpretation from the upper half-plane agrees with the standard L2 Fourier transform
on R. By an application of [12, formula 6.631] we see that, for Im y > 0,

Ĥ1(y) = 2
∫
+∞

0
eiπyt2J1(2t) dt = e−i/(2πy)M0,1/2

(
i
πy

)
,

where the function on the right-hand side is of Whittaker type. In view of the integral
representation of such Whittaker functions [12, formula 9.221] we find that

Ĥ1(y) = 1− e−i/(πy), Im y > 0,

and, in a second step, that the above identification of the Fourier transform holds in the
L2-sense a.e. on R. Since the Fourier transform of δ0 is the constant function 1, the asser-
tion now follows from the Fourier inversion formula. ut

Proof of Theorem 1.8.1. We obviously have the inclusions

3++α,β ⊂ zclos0M (3
++

α,β ), 3−−α,β ⊂ zclos0M (3
−−

α,β ),

and it remains to show that the Zariski closure contains no extraneous points. We will
focus on the set 3++α,β ; the treatment of 3−−α,β is analogous. In view of (1.4.4) (which
relates µ̂(ξ) to the compressed measure π1µ), given a point ξ ? = (ξ ?1 , ξ

?
2 ) ∈ R2

\3++α,β ,
we need to find a finite complex-valued absolutely continuous Borel measure ν on R×
such that ∫

R×
eiπ [ξ?1 t+M

2ξ?2 /(4π
2t)] dν(t) 6= 0,

while at the same time∫
R×

eiπαmt dν(t) =
∫
R×

eiM2βn/(4πt) dν(t) = 0, m, n ∈ Z+,0.

By a scaling argument, we may restrict our attention to the normalized case α := 1
and M := 2π . As ν is absolutely continuous, we may write dν(t) := g(t) dt , where
g ∈ L1(R). Given the above normalization, we need g to satisfy∫

R×
eiπ [ξ?1 t+ξ

?
2 /t]g(t) dt 6= 0, (5.2.1)

where
(ξ ?1 , ξ

?
2 ) ∈ R2

\ [(Z+,0 × {0}) ∪ ({0} × βZ+)],
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while at the same time∫
R×

eiπmtg(t) dt =
∫
R×

eiπβn/tg(t) dt = 0, m, n ∈ Z+,0. (5.2.2)

We will try to find such a function g in the slightly smaller space H 1
~(R). To analyze

the condition (5.2.2), we might as well study the weak-star closures in the dual space
BMO(R)/C of the linear spans of (i) the functions t 7→ eiπmt with m ∈ Z+,0, and
of (ii) the functions t 7→ eiπβn/t with n ∈ Z+,0. In the first case, we obtain the subspace
BMOA+(R/2Z)/C (see Subsection 4.4 for the notation). In the second case, we obtain
instead the subspace BMOA−

〈β〉(R)/C, where BMOA−
〈β〉(R) = J∗βBMOA−(R/2Z) and

the operator J∗β is as in (5.1.1). Now, for g ∈ H 1
~(R), (5.2.2) expresses the fact that g

annihilates the sum space BMOA+(R/2Z)+ BMOA−
〈β〉(R).

To simplify the notation, we let F0 ∈ L
∞(R) be the function F0(t) := eiπ [ξ?1 t+ξ

?
2 /t].

Then, in view of (4.2.8),

〈g, F0〉R = 〈P+g, P̃−F0〉R + 〈P−g, P̃+F0〉R.

It follows that if we can show that

P̃+F0 /∈ BMOA+(R/2Z) or P̃−F0 /∈ BMOA−
〈β〉(R), (5.2.3)

then we are done, because we are free to choose g ∈ H 1
~(R) as we like. Indeed, if

P̃+F0 /∈ BMOA+(R/2Z), then we just pick a g ∈ H 1
−(R) which does not annihilate

BMOA+(R/2Z), and if P̃−F0 /∈ BMOA−
〈β〉(R), then we pick a g ∈ H 1

+(R) which
does not annihilate BMOA−

〈β〉(R). In each case, we achieve (5.2.1). Using J∗β , we see
by Lemma 5.1.1 that (5.2.3) is equivalent to

P̃+F0 /∈ BMOA+(R/2Z) or P̃−J∗βF0 /∈ BMOA−(R/2Z). (5.2.4)

Moreover, the function F1 := J∗βF0 is of the same general type as F0: F1(t) =

e−iπ [η?1t+η
?
2/t], where η?1 := ξ ?2/β and η?2 := βξ ?1 . We can bring this one step further,

and consider F2(t) := eiπ [η?1t+η
?
2/t] (this is just the complex conjugate of F1(t)), and

express the requirement (5.2.4) in the form

P̃+F0 /∈ BMOA+(R/2Z) or P̃+F2 /∈ BMOA+(R/2Z). (5.2.5)

By combining Lemmas 4.3.1 and 4.4.1 with Proposition 5.2.1 in the appropriate manner,
using the fact that the Bessel function J1 is real-analytic (so that its zero set is a discrete
set of points), we find that

P̃+F0 ∈ BMOA+(R/2Z) ⇐⇒ ξ ? = (ξ ?1 , ξ
?
2 ) ∈ (R̄− × R̄+) ∪ (Z+ × {0}).

The analogous case with F2 in place of F0 reads

P̃+F2 ∈ BMOA+(R/2Z) ⇐⇒ ξ ? = (ξ ?1 , ξ
?
2 ) ∈ (R̄+ × R̄−) ∪ ({0} × βZ+).
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If we put these assertions together, it becomes clear that

P̃+F0, P̃+F2 ∈ BMOA+(R/2Z) ⇐⇒ (ξ ?1 , ξ
?
2 ) ∈ (Z+,0 × {0}) ∪ ({0} × βZ+).

The set of ξ ? in the right-hand side expression is precisely the excluded set of points on
the lattice-cross, and we conclude that (5.2.5) must hold. ut

6. Dynamic unique continuation from one branch of the hyperbola to the other

6.1. Dynamic unique continuation and the critical density case

We recall the definition of the hyperbola 0M and its branch 0+M from the introduction
(see (1.4.2) and (1.6.1)). Here, we will supply the proof of Theorem 1.6.1. As Theorem
1.6.1 is somewhat defective in the critical regime αβM2

= 16π2, we may ask whether
adding an additional point to the lattice-cross 3α,β might improve the situation. Indeed,
this turns out to be the case, provided that the point we add is on the cross (but not on the
lattice-cross itself, of course):

Theorem 6.1.1. Fix 0 < α, β,M < +∞. Suppose αβM2
= 16π2, and pick a point

ξ ? ∈ (R× {0})× ({0} × R) on the cross which is not in 3α,β . Set 3?α,β := 3α,β ∪ {ξ
?
}.

Then (0+M ,3
?
α,β) is a Heisenberg uniqueness pair.

Theorem 6.1.1 has a reformulation in terms of unique continuation from 0+M to 0M , which
we think of as an example of dynamic unique continuation.

Corollary 6.1.2. Fix 0 < α, β,M < +∞. Suppose αβM2
= 16π2, and pick a point

ξ ? ∈ (R× {0})× ({0} × R) on the cross which is not in 3α,β . Set 3?α,β := 3α,β ∪ {ξ
?
}.

Then any measure µ ∈ AC(0M ,3?α,β) is uniquely determined by its restriction to the
hyperbola branch 0+M .

We first supply the proof of Theorem 1.6.1, and then prove Theorem 6.1.1.

Proof of Theorem 1.6.1. We pick an arbitrary measure µ ∈ AC(0M ,3α,β) and form
its x1-compression ν := π1µ, which is a finite absolutely continuous complex measure
on R+. By a scaling argument, we may assume that

α = 2, M = 2π.

Since ν is absolutely continuous, we may write dν(t) = f (t) dt , where f ∈ L1(R+). We
observe that the vanishing condition µ̂ = 0 on 3α,β with α = 2 and M = 2π amounts to∫

R+
ei2πmtf (t) dt =

∫
R+

ei2πγn/tf (t) dt = 0, m, n ∈ Z, (6.1.1)

where γ := β/2. It was shown in [4] that for 2 < β < +∞, there is an infinite-
dimensional space of solutions f . So, in what follows, we will restrict the parameter
β to 0 < β ≤ 2, and hence γ to 0 < γ ≤ 1. To complete the proof of the theorem, we
need to show that
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(i) for 0 < γ < 1, the condition (6.1.1) entails that f = 0 a.e. on R+, whereas
(ii) for γ = 1, (6.1.1) implies that f = C0f0 a.e. on R+ for some constant C0, where f0

is the function

f0(t) :=
1[0,1](t)

1+ t
−

1[1,+∞[(t)
t (1+ t)

. (6.1.2)

As a first step, we rewrite (6.1.1) in the form∫
R+

ei2πmtf (t) dt =
∫
R+

ei2πntf

(
γ

t

)
dt
t2
= 0, m, n ∈ Z. (6.1.3)

Next, for g ∈ L1(R+) and m ∈ Z we have∫
R+

ei2πmtg(t) dt =
+∞∑
j=0

∫
[j,j+1]

ei2πmtg(t) dt

=

+∞∑
j=0

∫
[0,1]

ei2πmtg(t+j) dt =
∫
[0,1]

ei2πmt
+∞∑
j=0

g(t+j) dt. (6.1.4)

Together with the uniqueness theorem for Fourier series, (6.1.4) now shows that∫
R+

ei2πmtg(t) dt = 0 ∀m ∈ Z ⇐⇒
+∞∑
j=0

g(t + j) = 0 a.e. on R+. (6.1.5)

If we apply (6.1.5) to the two cases g(t) = f (t) and g(t) = t−2f (γ /t), the conditions of
(6.1.3) find an equivalent formulation:

+∞∑
j=0

f (t + j) =

+∞∑
j=0

1
(t + j)2

f

(
γ

t + j

)
= 0 a.e. on R+. (6.1.6)

We single out the first term in each sum, and rewrite (6.1.6) further:

f (t) = −

+∞∑
j=1

f (t + j),
1
t2
f

(
γ

t

)
= −

+∞∑
j=1

1
(t + j)2

f

(
γ

t + j

)
, (6.1.7)

in both cases a.e. on R+. After the change of variables t 7→ γ /t in the second condition,
(6.1.7) becomes

f (t) = −

+∞∑
j=1

f (t + j), f (t) = −

+∞∑
j=1

γ 2

(γ + j t)2
f

(
γ t

γ + j t

)
, (6.1.8)

again a.e. on R+. By combining the conditions of equality in (6.1.8), we find that

f (t) =

+∞∑
j,l=1

γ 2

[γ + l(j + t)]2
f

(
γ (t + j)

γ + l(t + j)

)
a.e. on R+. (6.1.9)
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Now, it is easy to check that after restriction to the interval I+1 = ]0, 1[, condition (6.1.9)
amounts to

f = S2
γ f a.e. on I+1 , (6.1.10)

where Sγ is the subtransfer operator given by (3.4.2). If 0 < γ < 1, Proposition 3.13.1(a)
tells us that S2n

γ f → 0 in L1(I+1 ) as n → +∞, so the only way the equality (6.1.10) is
possible is that f = 0 a.e. on I+1 . But then the second equality in (6.1.8) gives f = 0 a.e.
on R \ I+1 , and hence f = 0 a.e. on R+, as desired. This settles (i).

We turn to the remaining case γ = 1. It is well-known that the function λ1(t) =

(1 + t)−1 is an invariant density on I+1 for the Gauss map θ1(t) = {1/t}1 (see §3.9). In
terms of the transfer operator S1, this means that S1λ1 = λ1, so that S2

1λ1 = λ1 as well.
Next, we consider the function

h := f −
〈1, f 〉I+1

log 2
λ1 ∈ L

1(I+1 ),

which by construction has 〈h, 1〉I+1 = 0 and h = S2
1h. By iteration, the latter property

entails that h = S2n
1 h for n = 1, 2, 3, . . . , so that in view of Proposition 3.13.2(a),

h = S2n
1 h→ 0 as n→+∞,

where the convergence is in the norm of L1(I+1 ), which implies that h = 0 a.e. on I+1 . It
is now immediate that

f = C0λ1 a.e. on I+1 , where C0 :=
〈1, f 〉I+1

log 2
∈ C.

Next, the second identity in (6.1.8) with γ = 1 tells us what f equals on the remaining
set R+ \ I+1 :

f (t) = −C0

+∞∑
j=1

1
(1+ j t)2

λ1

(
t

1+ j t

)
= −C0

+∞∑
j=1

1
(1+ j t)2

1
1+ t

1+j t

= −C0

+∞∑
j=1

1
(1+ j t)(1+ (j + 1)t)

= −
C0

t

+∞∑
j=1

{
1

1+ j t
−

1
1+ (j + 1)t

}
= −

C0

t (1+ t)
.

The conclusion that f = C0f0 a.e. on R+ is now immediate, where f0 is given by (6.1.2)
and C0 ∈ C is a constant. Finally, it is an exercise to verify that the function f0 indeed
satisfies (6.1.6), so that f0 (and its constant complex multiples) meets the vanishing con-
dition for the Fourier transform, as expressed in (6.1.1). This settles (ii). ut

Proof of Theorem 6.1.1. As before, rescaling allows us to fix the parameter values:

α = β = 2, M = 2π,
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which corresponds to γ = β/2 = 1 in the preceding proof. We need to show that if µ ∈
AC(0M ,3?α,β), then µ = 0 as a measure. Since 3?α,β ⊃ 3α,β , and we are in the critical
parameter regime in terms of Theorem 1.6.1, necessarily dπ1µ(t) = C0f0(t), where f0
is given by (6.1.2) and C0 is a complex constant. We recall that 3?α,β = 3

?
α,β ∪ {ξ

?
} for

some ξ ? = (ξ ?1 , ξ
?
2 ) with either ξ ?1 = 0 or ξ ?2 = 0, which is not on the lattice-cross 3α,β .

By symmetry, both cases are equivalent, and we consider ξ ?2 = 0, so that ξ ? = (ξ ?1 , 0),
where ξ ?1 ∈ R \ αZ = R \ 2Z. The Fourier transform of µ restricted to R × {0} equals
(cf. (1.4.4))

µ̂(ξ1, 0) =
∫
R×

eiπξ1t dπ1µ(t) = C0

∫
R×

eiπξ1tf0(t) dt

= C0

{∫
[0,1]

eiπξ1t
dt

1+ t
−

∫
[1,+∞[

eiπξ1t
dt

t (1+ t)

}
= C0

{∫
[0,1]

eiπξ1t
dt

1+ t
−

∫
[1,+∞[

eiπξ1t

(
1
t
−

1
1+ t

)
dt
}

= C0

{∫
[0,+∞[

eiπξ1t
dt

1+ t
−

∫
[1,+∞[

eiπξ1t
dt
t

}
= C0(e−iπξ1 − 1)

∫
[1,+∞[

eiπξ1t
dt
t
. (6.1.11)

Here, in the rightmost expression, the integral should be understood as a generalized
Riemann integral. Since our additional vanishing condition is µ̂(ξ ?1 , 0) = 0, the above
calculation (6.1.11) tells us that this is the same as

C0(e−iπξ?1 − 1)
∫
[1,+∞[

eiπξ?1 t
dt
t
= 0.

Moreover, since ξ ?1 is real but not an even integer, we know that eiπξ?1 6= 1, and the above
equation simplifies to

C0

∫
[1,+∞[

eiπξ?1 t
dt
t
= 0. (6.1.12)

Splitting the above generalized Riemann integral into its real and imaginary parts, we see
that ∫

+∞

1
eiπξ?1 t

dt
t
=

∫
+∞

1
cos(πξ ?1 t)

dt
t
+ i

∫
+∞

1
sin(πξ ?1 t)

dt
t
.

The real and imaginary parts may be expressed in terms of the rather standard functions
“si” and “ci”:∫

+∞

1
cos(πξ ?1 t)

dt
t
=

∫
+∞

π |ξ?1 |

cos y
y

dy = − ci(π |ξ ?1 |),∫
+∞

1
sin(πξ ?1 t)

dt
t
= sgn(ξ ?1 )

∫
+∞

π |ξ?1 |

sin y
y

dy = − sgn(ξ ?1 ) si(π |ξ ?1 |),
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so that ∫
+∞

1
eiπξ?1 t

dt
t
= − ci(π |ξ ?1 |)− i sgn(ξ ?1 ) si(π |ξ ?1 |).

Here, we write sgn(x) = x/|x| for the standard sign function. We now observe that it is
rather well-known that the parametrization

ci(πx)+ i si(πx), 0 < x < +∞,

forms the Nielsen (or sici) spiral which converges to the origin as x → +∞, and whose
curvature is proportional to x (see e.g. [1]). We will only need the fact that the spiral never
intersects the origin: ∫

[1,+∞[
eiπξ?1 t

dt
t
6= 0. (6.1.13)

Given that (6.1.13) holds, (6.1.12) gives C0 = 0 and consequently µ = 0 as a measure,
and the assertion of the theorem follows.

It remains to derive (6.1.13). For positive x, we put

ρ(x) :=

∣∣∣∣∫ +∞
1

eixt dt
t

∣∣∣∣2 = ∣∣∣∣∫ +∞
x

eit dt
t

∣∣∣∣2 = (ci(x))2 + (si(x))2,

and we need only show that ρ(x) > 0, as the condition (6.1.13) is invariant under com-
plex conjugation. By the fundamental theorem of calculus and standard properties of the
cosine,

ρ′(x) = −
2
x

Re
∫
+∞

x

ei(t−x) dt
t
= −

2
x

Re
∫
+∞

0
eit dt
t+x

= −
2
x

∫
+∞

0
cos t

dt
t+x

= −
2
x

+∞∑
k=0

{∫ (2k+1)π

2kπ
cos t

dt
t+x
+

∫ (2k+2)π

(2k+1)π
cos t

dt
t+x

}

= −
2
x

+∞∑
k=0

∫ π

0

(
1

t+2kπ+x
−

1
t+(2k+1)π+x

)
cos t dt

= −
2
x

+∞∑
k=0

∫ π

0
ψk(t, x) cos t dt,

where the function

ψk(t, x) :=
π

(t + 2kπ + x)(t + (2k + 1)π + x)
is strictly decreasing in t . Again by standard properties of the cosine and the strict mono-
tonicity in t of ψk(t, x), we find that∫ π

0
ψk(t, x) cos t dt =

∫ π/2

0

(
ψk(t, x)− ψk(π − t, x)

)
cos t dt > 0

and hence ρ′(x) < 0, as the cosine factor is positive. It now follows from the mean value
theorem of calculus that the function ρ is strictly decreasing, and since clearly ρ(x) ≥ 0,
we must have ρ(x) > 0 for all x ≥ 0. In geometric terms, the modulus of the running
point of the spiral is strictly decreasing and reaches the origin only as x →+∞. ut
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7. The Hilbert transform on L1 and the predual of real H∞ on the line

7.1. The Hilbert transform on L1

For background material on the Hilbert transform and related topics, see, e.g. the mono-
graphs [6], [10] and [29]–[31].

Let L1,∞(R) denote the weak L1-space, i.e., the space of Lebesgue measurable func-
tions f : R→ C such that the set

Ef (λ) := {x ∈ R : |f (x)| > λ}, λ ∈ R̄+,

enjoys the estimate (the absolute value of a measurable subset of R stands for its Lebesgue
measure)

|Ef (λ)| ≤ Cf /λ, λ ∈ R+;

the optimal constant Cf is written ‖f ‖L1,∞(R); it is the L1,∞(R)-quasinorm of f . If
we identify functions that coincide almost everywhere, then L1,∞(R) becomes a quasi-
Banach space. It is well-known that the Hilbert transform as given by (4.2.4) maps
H : L1(R) → L1,∞(R). Note, however, that functions in L1,∞(R) are rather wild and,
e.g., it is not immediately clear how to associate a distribution to such a function. How-
ever, there is another interpretation of the Hilbert transform as a mapping from L1(R) into
a space of distributions on R, and it is good to know that these interpretations of Hf for
a given f ∈ L1(R) are in a one-to-one correspondence. The weak L1-space associated
with an interval I (or a set of positive Lebesgue measure), written L1,∞(I ), is defined
analogously.

If for the moment we use the symbol F to denote the Fourier transform, then the
Hilbert transform is H = −iF−1MsgnF, where Msgn stands for multiplication by the sign
function sgn. Thus, after taking the Fourier transform, the distributional interpretation of
the Hilbert transform is that of multiplication by the unimodular function which takes the
value −i on the positive half-line, and the value i on the negative half-line. The distribu-
tional interpretation can also be implemented more directly:

〈ϕ,Hf 〉R := −〈Hϕ, f 〉R, (7.1.1)

where ϕ is a test function with compact support, and f ∈ L1(R). Note that Hϕ, the
Hilbert transform of the test function, may be defined without recourse to principal value
integrals:

Hϕ(x) =
1

2π

∫
R

ϕ(x − t)− ϕ(x + t)

t
dt;

it is aC∞ function on R with decay Hϕ(x) = O(|x|−1) as |x| → +∞. As a consequence,
it is clear from (7.1.1) how to extend Hf to functions f with (|x| + 1)−1f (x) in L1(R).

Our next proposition characterizes the space H 1
~(R). For the proof, we need the no-

tation for the open unit disk:

D := {z ∈ C : |z| < 1}.
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Proposition 7.1.1. Suppose f ∈ L1(R). Then the following are equivalent:

(i) f ∈ H 1
~(R).

(ii) Hf ∈ L1(R), where Hf is understood as a distribution on R.
(iii) Hf ∈ L1(R), where Hf is understood as an almost everywhere defined function

in L1,∞(R).

Proof. The implications (i)⇔(ii)⇒(iii) are trivial, so we turn to (iii)⇒(i). This result,
however, is the real line analogue of the result for the circle in [19, p. 87]. The transfer to
the unit disk is handled by an appropriate Möbius map from D to C+. ut

A first application of Proposition 7.1.1 is the following result.

Corollary 7.1.2. Suppose f ∈ L1(R), and Hf = 0 pointwise almost everywhere on R.
Then f = 0 almost everywhere.

Proof. Without loss of generality, assume f is real-valued. In view of Proposition 7.1.1,
f ∈ H 1

~(R), and as a consequence, the function F := f + iHf is in H 1
+(R). However,

on the real line, F is real-valued, so that the Poisson extension of F to C+ is real-valued
as well. But this Poisson extension is holomorphic in C+, so F must be constant, and the
constant is seen to be 0. ut

Remark 7.1.3. We note that there are closely related theories of reflectionless measures
(see, e.g., [24]) and of real outer functions [9].

7.2. The real H∞-space

The real H∞-space is denoted by H∞~ (R), and it consists of all functions f ∈ L∞(R) of
the form

f = f1 + f2, f1 ∈ H
∞
+ (R), f2 ∈ H

∞
− (R). (7.2.1)

Here, H∞+ (R) consists of all functions in L∞(R) whose Poisson extension to the upper
half-plane is holomorphic, while H∞− (R) consists of all functions in L∞(R) whose Pois-
son extension to the upper half-plane is conjugate-holomorphic (alternatively, the Poisson
extension to the lower half-plane is holomorphic). The decomposition (7.2.1) is unique
up to additive constants. Equipped with the natural norm, H∞~ (R) is a Banach space.

The content of the next proposition is well-known. For the convenience of the reader,
we supply the simple proof.

Proposition 7.2.1. We have the equivalence

f ∈ H∞~ (R) ⇐⇒ f, H̃f ∈ L∞(R).

Proof. If f ∈ H∞~ (R), then f = f1 + f2, where f1 ∈ H
∞
+ (R) and f2 ∈ H

∞
− (R).

Since H̃f = i(f2 − f1) + c, where c is the constant that makes H̃f (i) = 0, we see that
H̃f ∈ L∞(R).

On the other hand, if f, H̃f ∈ L∞(R), then f + iH̃f ∈ H∞+ (R) and f − iH̃f ∈
H∞− (R), so that

2f = (f + iH̃f )+ (f − iH̃f ) ∈ H∞~ (R). ut
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7.3. The predual of real H∞

We shall be concerned with the following space of distributions on R:

L(R) := L1(R)+HL1
0(R),

which we supply with the appropriate norm

‖u‖L(R) := inf {‖f ‖L1(R)+‖g‖L1(R) : u = f+Hg, f ∈ L1(R), g ∈ L1
0(R)}, (7.3.1)

which makes L(R) a Banach space.
We recall that L1

0(R) is a codimension-one subspace of L1(R) which consists of the
functions whose integral over R vanishes. Given f ∈ L1(R) and g ∈ L1

0(R), the action
of u := f +Hg on a test function ϕ is (compare with (7.1.1))

〈ϕ, f +Hg〉R = 〈ϕ, f 〉R − 〈Hϕ, g〉R = 〈ϕ, f 〉R − 〈H̃ϕ, g〉R; (7.3.2)

we observe that the last identity uses 〈1, g〉R = 0 and the fact that the functions H̃ϕ and
Hϕ differ by a constant.

Observation. In view of Proposition 7.2.1, the right-hand side of (7.3.2) makes sense for
ϕ ∈ H∞~ (R). To be more precise, in accordance with (7.3.2), every ϕ ∈ H∞~ (R) defines
a continuous linear functional on L(R).

It remains to identify the dual space of L(R) with H∞~ (R).

Proposition 7.3.1. Each continuous linear functional L(R)→ C corresponds to a func-
tion ϕ ∈ H∞~ (R) in accordance with (7.3.2). In short, the dual space of L(R) equals
H∞~ (R).

Proof. A standard approximation argument involving test functions can be used to es-
tablish that L1(R) is a dense subspace of L(R). As the inclusion map L1(R) → L(R)
is continuous, it follows that every continuous linear functional L(R) → C restricts to
a continuous linear functional L1(R), which by standard functional analysis corresponds
to an element ϕ ∈ L∞(R). By density and continuity, ϕ determines the linear functional
completely. As ϕ ∈ L∞(R), we see that H̃ϕ ∈ BMO(R). By (7.3.2), H̃ϕ must give a
continuous linear functional L1

0(R) → C. It is easy to see that this is only possible if
H̃ϕ ∈ L∞(R), which completes the proof, by Proposition 7.2.1. ut

The space L(R) is a Banach space, and Proposition 7.3.1 asserts that its dual space is
H∞~ (R) (the real H∞ space). For this reason, we will refer to L(R) as the (canonical)
predual of real H∞.

Remark 7.3.2. Since an L1-function f gives rise to an absolutely continuous measure
f (t) dt , it is natural to think of L(R) as embedded into the space M(R) := M(R) +
HM0(R), where M(R) denotes the space of complex-valued finite Borel measures on R,
and M0(R) is the subspace of measures µ ∈ M(R) with µ(R) = 0. The Hilbert trans-
forms of singular measures noticeably differ from those of absolutely continuous mea-
sures (see [25]).
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7.4. The “valeur au point” function associated with an element of the predual of
real H∞

We recall that L(R) consists of distributions on the real line. However, the definition

L(R) = L1(R)+HL1
0(R)

would allow us to also think of this space as a subspace of L1,∞(R), the weak L1-space. It
is natural to wonder about the relationship between the distribution and theL1,∞ function.
We will stick to the distribution theory definition of L(R), and associate with a given
u ∈ L(R) the “valeur au point” function vap[u] at almost all points of the line. The
precise definition of vap[u] is as follows.

Definition 7.4.1. For a fixed x ∈ R, let χ = χx be a compactly supported C∞ function
on R with χ(t) = 1 for all t in an open neighborhood of x. Also, let

Px+iε(t) := π
−1 ε

ε2 + (x − t)2

be the Poisson kernel. The valeur au point function associated with the distribution u on R
is the function vap[u] = vap[uχ ] given by

vap[u](x) := lim
ε→0+

〈χPx+iε, u〉R, x ∈ R, (7.4.1)

wherever the limit exists.

In principle, vap[u](x) might depend on the choice of the cut-off function χ . The follow-
ing lemma guarantees that this is not the case in the relevant situation.

Lemma 7.4.2. For u = f + Hg ∈ L(R), where f ∈ L1(R) and g ∈ L1
0(R), the valeur

au point function vap[u](x) does not depend on the choice of the cut-off χ . Moreover,

vap[u](x) = f (x)+Hg(x), a.e. x ∈ R,

where on the right-hand side, the function Hg(x) is defined pointwise as a principal value.

Proof. For f ∈ L1(R), it is a standard exercise involving Poisson integrals to show that
vap[f ](x) = f (x) for almost all x ∈ R (for details, see, e.g., [10, Chapter 1]), and the
choice of χ does not affect the value of vap[f ](x) for a given x ∈ R.

We turn to the evaluation of vap[Hg](x). By translation invariance, we may as well
consider only x = 0. By definition, we have

vap[Hg](0) = lim
ε→0+

〈χPiε,Hg〉R = − lim
ε→0+

〈H[χPiε], g〉R

= lim
ε→0+

{〈H[χ̃Piε], g〉R − 〈H[Piε], g〉R}, (7.4.2)

where χ̃ := 1− χ and χ is a smooth cut-off function with χ(t) = 1 near t = 0. Here, as
above, Piε is the function

Piε(t) = π
−1 ε

ε2 + t2
,
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and its Hilbert transform is given by

H[Piε](t) = π
−1 t

ε2 + t2
.

A calculation reveals that

π−1 t

ε2 + t2
=

∫
+∞

0

1R\[−τ,τ ]
πt

2ε2τ

(ε2 + τ 2)2
dτ,

which can be used to show that

− lim
ε→0+

〈H[Piε](t), g〉R = − lim
τ→0+

∫
R\[−τ,τ ]

g(t)

πt
dt = Hg(0),

where the rightmost equality sign is a matter of the pointwise definition of the Hilbert
transform. The desired conclusion now follows from (7.4.2), once we have established
that for fixed χ̃ ,

‖H[χ̃Piε]‖L∞(R) = O(ε) as ε → 0+.

This is rather elementary and left to the interested reader; here, we only observe that the
function χ̃ is smooth and bounded, which equals 1 near infinity and vanishes near the
origin, so that χ̃Piε becomes a very small and quite smooth function. ut

Additional properties of the mapping vap are outlined below.

Proposition 7.4.3 (Kolmogorov). The mapping vap : L(R) → L1,∞(R), u 7→ vap[u],
is continuous.

Proof. This follows from the standard weak-type estimate for the Hilbert transform (see,
e.g., [10]). ut

The next result allows us to identify u with vap[u].

Proposition 7.4.4 (Kolmogorov). If u ∈ L(R) and vap[u] = 0 almost everywhere on R,
then u = 0 as a distribution.

Proof. We write u = f + Hg, where f ∈ L1(R) and g ∈ L1
0(R). Since g ∈ L1

0(R)
and, by assumption, vap[g] = −f ∈ L1(R), it follows from Proposition 7.1.1 that g ∈
H 1

~(R) and consequently Hg ∈ L1(R) as a distribution. Since the Hilbert transform H
leaves H 1

~(R) invariant, we also obtain f ∈ H 1
~(R), and then it is immediate from the

assumption that u = 0 as a distribution. ut

The local version of Proposition 7.4.4 is as follows.

Proposition 7.4.5. If u ∈ L(R) and vap[u] = 0 almost everywhere on an open interval
I ⊂ R, then the distribution u is supported on R \ I .
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Proof. We split u = f + Hg, where f ∈ L1(R) and g ∈ L1
0(R). Without loss of

generality, we may assume that f and g are real-valued. Again, without loss of gener-
ality, the open interval I is assumed to be bounded. By the classical theorem of Kol-
mogorov [6], the function G := g + iHg is in the Hp-space in the upper half-plane C+
(with respect to the Poissonian measure π−1(1+t2)−1 dt on the real line), for each p with
0 < p < 1. In Kolomogorov’s theorem, Hg initially has the pointwise interpretation, but
in a second step, it is valid with the distributional interpretation as well. By assumption,
vap[Hg] = −f on the bounded open interval I , so that the boundary function for G is in
L1 on I . Essentially, this means thatG is inH 1 near I in C+. This can be made precise in
the following manner. We choose a slightly smaller interval J ⊂ I , whose both endpoints
differ from those of I . Next, we choose a bounded simply connected Jordan domain �
in C+ whose boundary curve ∂� is C∞-smooth, with the property that ∂� ∩ R = J .
Then it is not difficult to see thatG, restricted to�, belongs to the H 1-space on�, which
is most conveniently defined in terms of a fixed conformal mapping from the unit disk D
onto �. The remaining part of the proof is an exercise in Schwarzian reflection across the
interval J . ut

7.5. Dual action on intervals

If I ⊂ R is an open interval, and f, g : I → C are Borel measurable functions with
fg ∈ L1(I ), then we may define the dual action on I :

〈f, g〉I :=

∫
I

f (t)g(t) dt;

this is a special case of dual action on a more general measurable set (see §3.2). For
instance, if f is a test function with compact support in I , and g is locally integrable
on I , then the dual action is well-defined. More generally, we will write 〈·, ·〉I to denote
the dual action of distributions on test functions on the given interval I . Naturally, this
agrees with the notation we have introduced so far for I = R.

7.6. The restriction of L(R) to an interval

If u is a distribution on an open interval J , then the restriction of u to an open subinter-
val I , denoted u|I , is the distribution defined by

〈ϕ, u|I 〉I := 〈ϕ, u〉J ,

where ϕ is a C∞ test function whose support is compact and contained in I .

Definition 7.6.1. Let I be an open interval of the real line. Then u ∈ L(I ) means by
definition that u is a distribution on I such that there exists a distribution v ∈ L(R) such
that u = v|I .

Remark 7.6.2. The following observation is pretty trivial, but quite useful. If I, J ⊂ R
are open intervals with I ⊂ J , then the restriction operation v 7→ v|I acts L(J )→ L(I ).

Proposition 7.4.5 has a localized version on a given interval J .
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Corollary 7.6.3. Suppose I, J ⊂ R are open intervals with I ⊂ J . If u ∈ L(J ) and
vap[u] = 0 almost everywhere on I , then the support of the distribution u has empty
intersection with I .

Proof. The assertion is immediate from Proposition 7.4.5. ut

The following result will prove quite useful.

Proposition 7.6.4. Let I be a nonempty bounded open interval of R. Then L1(I ) is a
norm dense subspace of L(I ).

Proof. By definition, we have

L(I ) = L(R)/Z(R; I ), where Z(R; I ) := {u ∈ L(R) : I ∩ supp u = ∅}.

By elementary functional analysis, the dual space L(I )∗ is given by the annihilator

L(I )∗ = Z(R; I )⊥ = {f ∈ H∞~ (R) : ∀u ∈ Z(R; I ) : 〈f, u〉R = 0}.

Observation. We have Z(R; I )⊥ ⊂ {f ∈ H∞~ (R) : f = 0 a.e. on R \ I }.

Proof of the observation. Indeed, if f ∈ H∞~ (R) and the restriction to R \ I is nonzero
on a set of positive Lebesgue measure, we readily construct a function u ∈ L1(R) which
vanishes on I such that 〈f, u〉R 6= 0. Since u ∈ Z(R; I ), this proves the asserted inclusion.

We proceed with the proof of the proposition. If f ∈ H∞~ (R) vanishes a.e. on R \ I ,
and as a functional on L(I ), f annihilates L1(I ), then we may conclude that f = 0 a.e.
on I as well. But now f = 0 a.e. on R, so f = 0 as an element of H∞~ (R). By the
Hahn–Banach theorem, we conclude that L1(I ) is norm dense in L(I ). ut

Remark 7.6.5. A more refined argument shows that in the context of the above observa-
tion, we actually have equality: Z(R; I )⊥ = {f ∈ H∞~ (R) : f = 0 a.e. on R \ I }.

We may also translate Proposition 7.4.3 to this local context.

Corollary 7.6.6. Let I be a nonempty open interval of R. Then vap : L(I )→ L1,∞(I )

is continuous.

8. Background material: the Hardy and BMO spaces on the circle

8.1. The Hardy H 1-space on the circle: analytic and real

Let L1(R/2Z) denote the space of 2-periodic Borel measurable functions f : R → C
subject to the integrability condition

‖f ‖L1(R/2Z) :=

∫
I1

|f (t)| dt < +∞,

where I1 = ]−1, 1[ as before. As usual, we identify functions that agree except possibly
on a null set. Via the exponential mapping t 7→ eiπt , which is 2-periodic and maps the
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real line R onto the unit circle T, we may identify L1(R/2Z) with the standard Lebesgue
space L1(T) of the unit circle. This will allow us to develop the elements of Hardy space
theory in the setting of 2-periodic functions. We shall need the subspace L1

0(R/2Z) con-
sisting of all f ∈ L1(R/2Z) with

〈f, 1〉I1 =
∫
I1

f (t) dt = 0;

it has codimension 1 inL1(R/2Z). The Hardy spaceH 1
+(R/2Z) is defined as the subspace

of L1(R/2Z) consisting of functions g ∈ L1(R/2Z) with∫ 1

−1
eiπntg(t) dt = 0, n = 0, 1, 2, . . . . (8.1.1)

The space H 1
+(R/2Z) is the periodic analogue of the Hardy space H 1

+(R), and it can be
understood in terms of the Hardy H 1-space of the disk. If H 1

+(T) denotes the standard
Hardy space on the unit disk (restricted to the boundary unit circle), then g ∈ H 1

+(R/2Z)
means that g(x) = f (eiπx) for some f ∈ H 1

+(T) with f (0) = 0. In particular, the
functions in H 1

+(R/2Z) have holomorphic extensions to the upper half-plane which are
2-periodic. By definition, H 1

−(R/2Z) consists of the functions g in L1(R/2Z) whose
complex conjugate ḡ is in H 1

+(R/2Z). Finally, we put

H 1
~(R/2Z) := H

1
+(R/2Z)⊕H

1
−(R/2Z),

where we think of the elements of the sum space as 2-periodic functions (as before the
symbol ⊕ means direct sum, since H 1

+(R/2Z) ∩ H 1
−(R/2Z) = {0}). We note that, for

instance, H 1
~(R/2Z) ⊂ L1

0(R/2Z). We will think of H 1
~(R/2Z) as the real H 1-space of

2-periodic functions.

8.2. The Hilbert transform on 2-periodic functions and distributions

For f ∈ L1(R/2Z), we let H2 be the convolution operator

H2f (x) :=
1
2

pv
∫
I1

f (t) cot
π(x − t)

2
dt, (8.2.1)

where again pv stands for principal value, which means we take the limit as ε → 0+ of
the integral over I1 = ]−1, 1[ with the set {x}+2Z+[−ε, ε] removed. It is obvious from
the periodicity of the cotangent function that H2f , if it exists as a limit, is 2-periodic. By
a standard trigonometric identity,

1
2

cot
πy

2
= lim
N→+∞

1
π

N∑
n=−N

1
y + 2n

,

where the convergence is uniform on compact subsets of R. By a change of variables,

H2f (x) =
1
2

lim
ε→0+

∫
I1\Iε

f (x − t) cot
πt

2
dt, (8.2.2)
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(here, as usual, Iε = ]−ε, ε[) from which we conclude, by uniform convergence and
periodicity, that

H2f (x) =
1
π

lim
N→+∞

lim
ε→0+

N∑
n=−N

∫
I1\Iε

f (x − t)
dt

t + 2n

=
1
π

lim
ε→0+

∫
I1\Iε

f (x − t)
dt
t
+

1
π

lim
N→+∞

∑
n:|n|≤N,n 6=0

∫
I1

f (x − t)
dt

t + 2n

=
1
π

lim
ε→0+

∫
I1\Iε

f (x − t)
dt
t
+

1
π

lim
N→+∞

∑
n:|n|≤N,n 6=0

∫
[2n−1,2n+1]

f (x − t)
dt
t

= lim
N→+∞

lim
ε→0+

1
π

∫
I2N+1\Iε

f (x − t)
dt
t
. (8.2.3)

In other words, the operator H2 is just the natural extension of the Hilbert transform to
the 2-periodic functions. We observe that H21 = 0, which contrasts with the nonperiodic
case (where no nontrivial function is mapped to the zero function). It is well-known that
the periodic Hilbert transform H2 maps L1(R/2Z) into the weak L1-space L1,∞(R/2Z).
However, we prefer to work within the framework of distribution theory, so we proceed
as follows.

Let C∞(R/2Z) denote the space of C∞ 2-periodic functions on R. It is easy to see
that

ϕ ∈ C∞(R/2Z) =⇒ H2ϕ ∈ C
∞(R/2Z).

To emphasize the importance of the circle T ∼= R/2Z, we write

〈f, g〉R/2Z :=

∫ 1

−1
f (t)g(t) dt (8.2.4)

for the dual action when f and g are 2-periodic.

Definition 8.2.1. For a test function ϕ ∈ C∞(R/2Z) and a distribution u on the circle
R/2Z, we put

〈ϕ,H2u〉R/2Z := −〈H2ϕ, u〉R/2Z.

This defines the Hilbert transform H2u for any distribution u on R/2Z.

The analogue of Proposition 7.1.1 for the circle reads as follows. Note that the formula
defining the “valeur au point” function makes sense also for u in the space of distributions
L1(R/2Z) + H2L

1(R/2Z). Moreover, the independence of the cut-off function is quite
analogous to the real line case (Lemma 7.4.2) and left to the interested reader.

Proposition 8.2.2. Suppose f ∈ L1
0(R/2Z). Then the following are equivalent:

(i) f ∈ H 1
~(R/2Z).

(ii) H2f ∈ L
1(R/2Z), where H2f is understood as a distribution on R.

(iii) vap[H2f ] ∈ L
1(R/2Z).

Proof. This is immediate from [19, p. 87]. ut
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8.3. The real H∞-space of the circle

The real H∞-space on the circle R/2Z is denoted by H∞~ (R/2Z), and consists of all the
functions in H∞~ (R) that are 2-periodic. The analogue of Proposition 7.2.1 reads:

Proposition 8.3.1. We have the equivalence

f ∈ H∞~ (R/2Z) ⇐⇒ f,H2f ∈ L
∞(R/2Z).

This result is well-known.

8.4. A predual of 2-periodic real H∞

We put
L(R/2Z) := L1(R/2Z)+H2L

1
0(R/2Z),

understood as a space of 2-periodic distributions on R. More precisely, if u = f +H2g,
where f ∈ L1(R/2Z) and g ∈ L1

0(R/2Z), then the action on a test function ϕ ∈
C∞(R/2Z) is given by

〈ϕ, u〉R/2Z := 〈ϕ, f 〉R/2Z − 〈H2ϕ, g〉R/2Z. (8.4.1)

But it should be possible to think of a 2-periodic distribution as a distribution on the line,
which means that we need to understand the action on standard test functions in C∞c (R).
If ψ ∈ C∞c (R), we simply put

〈ψ, u〉R/2Z := 〈52ψ, u〉R/2Z, (8.4.2)

where 52ψ ∈ C
∞(R/2Z) is given by

52ψ(x) :=
∑
j∈Z

ψ(x + 2j). (8.4.3)

We will refer to 52 as the periodization operator.
As in the case of the line, we may identify L(R/2Z) with the predual of the real

H∞-space.

Proposition 8.4.1. Each continuous linear functional L(R/2Z) → C corresponds to a
function ϕ ∈ H∞~ (R/2Z) in accordance with (8.4.1). In short, the dual space of L(R/2Z)
is isomorphic to H∞~ (R/2Z).

We omit the proof, which is analogous to that of Proposition 7.3.1.
The definition of vap[u] makes sense for u ∈ L(R/2Z) and as in the case of the

line, it does not depend on the choice of the cut-off function. We have the analogue of
Proposition 7.4.3; as the result is standard, we omit the proof.

Proposition 8.4.2 (Kolmogorov). The mapping vap : L(R/2Z) → L1,∞(R/2Z), u 7→
vap[u], is continuous.
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9. A sum of two preduals and its localization to intervals

9.1. The sum space L(R)⊕ L(R/2Z)

Suppose u is a distribution on R of the form

u = v + w, where v ∈ L(R), w ∈ L(R/2Z). (9.1.1)

A natural question is whether the distributions v,w on the right-hand side are unique.
This is indeed so.

Proposition 9.1.1. L(R) ∩ L(R/2Z) = {0}.

This statement is pretty obvious in terms of the Fourier transform, which sends 2-periodic
distributions to sums of point masses along the integers, while L(R) is mapped to a space
of bounded continuous functions.

In view of Proposition 9.1.1, it makes sense to write L(R) ⊕ L(R/2Z) for the space
of tempered distributions u of the form (9.1.1). We endow L(R) ⊕ L(R/2Z) with the
induced Banach space norm

‖u‖L(R)⊕L(R/2Z) := ‖v‖L(R) + ‖w‖L(R/2Z),

provided u, v,w are related via (9.1.1).

9.2. The localization of L(R)⊕ L(R/2Z) to a bounded open interval

In the sense of Subsection 7.6, we may restrict a given distribution u ∈ L(R)⊕L(R/2Z)
to a given open interval I . It is natural to wonder what the space of such restrictions looks
like.

Proposition 9.2.1. The restriction of L(R) ⊕ L(R/2Z) to a bounded open interval I
equals L(I ).
Proof. By definition, the restriction of L(R) to I equals L(I ). It remains to show that the
restriction to I of a distribution in L(R/2Z) is in L(I ) as well. Since

L(R/2Z) = L1(R/2Z)+H2L
1
0(R/2Z),

and the restriction of L1(R/2Z) to the bounded interval I is contained in L1(I ), the only
thing we need to check is that the restriction of H2L

1
0(R/2Z) to I is contained in L(I ). It

will be enough to show that for each f ∈ L1
0(R/2Z), there exist g ∈ L1(R), h ∈ L1

0(R),
and a distribution W ∈ D′(R) with support in R \ I , such that

H2f = g +Hh+W.

We need two bounded open intervals J1, J2 such that I b J1 b J2. We first let h equal f
on J1, and put it equal to 0 on R \ J2. In the difference set J2 \ J1, we let h be constant,
where the value of the constant is then determined by the requirement that h ∈ L1

0(R). As
the cotangent kernel 1

2 cot πt2 used to define H2 and the Hilbert transform kernel 1
πt

have
the same singularity, it is easy to see that H2f−Hh is smooth on J1, and we may declare g
to equal H2f − Hh on I , and put it equal to 0 on the rest R \ I . The distribution W is
uniquely determined by these choices, and has the required properties. ut
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10. An involution, its adjoint, and the periodization operator

10.1. An involutive operator

For each positive real number β, let Jβ denote the involution given by

Jβf (x) :=
β

x2 f (−β/x), x ∈ R×.

With respect to the dual action 〈·, ·〉R, this operator Jβ can be understood as the preadjoint
of the involution J∗β defined in (5.1.1).

We use the standard notation R× := R \ {0}. We now record some basic properties of
this involution. For instance, by the change-of-variables formula, Jβ : L1(R) → L1(R)
is an isometry.

Proposition 10.1.1. Fix 0 < β < +∞. The operator Jβ is an isometric isomorphism
L1(R) → L1(R). In addition, Jβ maps H 1

+(R) → H 1
+(R) and H 1

−(R) → H 1
−(R) and

consequently Jβ : H 1
~(R)→ H 1

~(R) as well.

Proof. The mapping z 7→ −β/z preserves the upper half-plane C+, and so functions
holomorphic in C+ are sent to functions holomorphic in C+ under composition with
z 7→ −β/z. The isometric part is already settled, so it remains to check that H 1

+(R) is
preserved under Jβ , since the case of H 1

−(R) is identical. This follows easily by checking
the property on a dense subspace (e.g. consisting of rational functions). ut

If f ∈ L1(R) and ϕ ∈ L∞(R), the change-of-variables formula yields

〈ϕ, Jβf 〉R =
∫
R
ϕ(t)f (−β/t)

β dt
t2
=

∫
R
ϕ(−β/t)f (t) dt = 〈J∗βϕ, f 〉R, (10.1.1)

where J∗β is the involution

J∗βϕ(t) := ϕ(−β/t), t ∈ R×.

We need to extend Jβ to an operator L(R)→ L(R). To this end, we need to understand
how to define JβHf as a distribution in L(R) when f ∈ L1

0(R). First, following (10.1.1),
we put

〈ϕ, JβHf 〉R := −〈HJ∗βϕ, f 〉R (10.1.2)

for f ∈ L1
0(R) and ϕ ∈ C∞c (R×), since such test functions vanish near the origin. Note

here that if ϕ ∈ C∞c (R×), then necessarily J∗βϕ ∈ C
∞
c (R×) as well, so the right-hand

side of (10.1.2) is well-defined.

Proposition 10.1.2. For ϕ ∈ C∞c (R×), we have the identity

HJ∗βϕ(x) = J∗βHϕ(x)−
〈
ϕ, t 7→ 1

πt

〉
R, x ∈ R×.
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Proof. By a change of variables in the corresponding integral, we have

J∗βHϕ(x) = −
1
π

pv
∫
R

x

β + tx
ϕ(t) dt, HJ∗βϕ(x) =

1
π

pv
∫
R

β

t(β + tx)
ϕ(t) dt,

so the asserted equality is a simple consequence of the algebraic identity

−
x

β + tx
=

β

t(β + tx)
−

1
t
. ut

As f ∈ L1
0(R), its action on constants vanishes, so by a combination of (10.1.1), (10.1.2),

and Proposition 10.1.2, we obtain

〈ϕ, JβHf 〉R = −〈HJ∗βϕ, f 〉R = −〈J
∗
βHϕ, f 〉R = −〈Hϕ, Jβf 〉R = 〈ϕ,HJβf 〉R

(10.1.3)

for ϕ ∈ C∞c (R×). As f ∈ L1
0(R), we also have Jβf ∈ L1

0(R), so HJβf ∈ HL1
0(R) ⊂

L(R). This means that as distributions on R× = R\{0}, JβHf and HJβf coincide. In par-
ticular, their “valeur au point” functions, which are well-defined almost everywhere, coin-
cide on R×. However, the distribution HJβf makes sense on test functions ϕ ∈ C∞c (R),
and actually, more generally for ϕ ∈ H∞~ (R). This allows us to extend the action of JβHf
from C∞c (R×) to H∞~ (R) (compare with (7.3.2)).

Definition 10.1.3. For u ∈ L(R) of the form u = f + Hg ∈ L(R), where f ∈ L1(R)
and g ∈ L1

0(R), we define Jβu to be the distribution on R given by the formula

〈ϕ, Jβu〉R = 〈ϕ, Jβ(f +Hg)〉R := 〈ϕ, Jβf 〉R+〈ϕ,HJβg〉R = 〈ϕ, Jβf 〉R−〈H̃ϕ, Jβg〉R

for test functions ϕ ∈ H∞~ (R).

As already noted, this is in complete agreement with the way we would previously under-
stand Jβu as a distribution on R×, using smooth test functions having compact support
on the punctured line R×; see (10.1.1) and (10.1.2).

Proposition 10.1.4. Fix 0 < β < +∞. The map Jβ acts continuously L(R) → L(R),
and J∗β acts continuously H∞~ (R) → H∞~ (R). Moreover, on the respective spaces, J2

β

and J∗2β both equal the identity operator.

Proof. Let u ∈ L(R) be of the form u = f + Hg, where f ∈ L1(R) and g ∈ L1
0(R).

Then, by definition, Jβu = Jβf +HJβg ∈ L(R), and it is clear that Jβ acts continuously.
Moreover, by iteration

J2
βu = J2

βf +HJ2
βg = f +Hg = u

since J2
βF = F for all F ∈ L1(R). The assertions concerning J∗β follow by duality. ut
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10.2. The periodization operator

We recall the definition of the periodization operator 52:

52f (x) :=
∑
j∈Z

f (x + 2j).

In (8.4.3), we defined52 on test functions. It is however clear that it remains well-defined
with much less smoothness required of f . The terminology comes from the property that
whenever it is well-defined, the function52f is 2-periodic automatically. A first result is
the following.

Proposition 10.2.1. The operator52 acts contractivelyL1(R)→ L1(R/2Z). Moreover,
52 maps H 1

+(R) onto H 1
+(R/2Z) and H 1

−(R) onto H 1
−(R/2Z).

Proof. By the triangle inequality and Fubini’s theorem, 52 is a contraction L1(R) →
L1(R/2Z):∫ 1

−1
|52f (x)| dx ≤

∑
j∈Z

∫ 1

−1
|f (x + 2j)| dx =

∑
j∈Z

∫ 2j+1

2j−1
|f (x)| dx =

∫
R
|f (x)| dx,

It remains to check the mapping properties, which are immediate from the characteriza-
tions (4.1.3), (4.1.4) for the line and (8.1.1) for the circle, combined with the calculation∫ 1

−1
eiπnt52f (t) dt =

∑
j∈Z

∫ 1

−1
eiπntf (t + 2j) dt =

∫
R

eiπntf (t) dt, n ∈ Z. (10.2.1)

ut

The identity (10.2.1) is a special case of a more general identity, for f ∈ L1(R) and
F ∈ L∞(R/2Z) (compare with (8.4.2)):

〈F,52f 〉R/2Z =

∫ 1

−1
F(t)52f (t) dt =

∑
j∈Z

∫ 1

−1
F(t)f (t + 2j) dt

=

∫
R
F(t)f (t) dt = 〈F, f 〉R, n ∈ Z. (10.2.2)

We need to extend 52 in a natural fashion to the space L(R). If ϕ ∈ C∞(R/2Z) is a test
function on the circle, we glance at (10.2.2), and for u ∈ L(R) with u = f +Hg, where
f ∈ L1(R) and g ∈ L1

0(R), we set

〈ϕ,52u〉R/2Z := 〈ϕ, u〉R = 〈ϕ, f 〉R − 〈H̃ϕ, g〉R. (10.2.3)

This defines 52u as a distribution on the circle (compare with (7.3.2)).

Proposition 10.2.2. For u ∈ L(R) of the form u = f + Hg, where f ∈ L1(R) and
g ∈ L1

0(R), we have 52u = 52f +H252g. In particular, 52 maps L(R)→ L(R/2Z)
continuously.
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Proof. For a 2-periodic test function ϕ ∈ C∞(R/2Z), we check that

〈ϕ,52f +H252g〉R/2Z = 〈ϕ,52f 〉R/2Z − 〈H2ϕ,52g〉R/2Z = 〈ϕ, f 〉R − 〈H2ϕ, g〉R,

where we applied the identity (10.2.2) twice. If we compare this with (10.2.3), we realize
we have the same expression, because H̃ϕ and H2ϕ differ by a constant. After all, they are
two harmonic conjugates of one and the same function, and g annihilates constants. ut

11. The spanning problem formulation of Theorem 1.8.2

11.1. A reformulation of Theorem 1.8.2

Let us consider the following problem.

Problem 11.1.1. For which values of the positive real parameter β is the linear span of
the functions

en(t) := eiπnt , e〈β〉m (t) := e−iπβm/t , m, n ∈ Z+,0,

weak-star dense in H∞+ (R)?

We first remark that the functions eiπnt and e−iπβm/t for m, n ∈ Z+,0 belong to H∞+ (R)
(they have bounded holomorphic extensions to C+), so that the problem makes sense.
A simple scaling argument allows us to take α := 1, so that Theorem 1.8.2 is equivalent
to Problem 11.1.1 having an affirmative answer if and only if β ≤ 1.

With respect to the dual action 〈·, ·〉R on the line, the understood predual ofH∞+ (R) is
the quotient space L1(R)/H 1

+(R). So, in terms of duality, the question raised in Problem
11.1.1 is: When, provided that f ∈ L1(R), do we have the implication

〈en, f 〉R = 〈e
〈β〉
m , f 〉R = 0 ∀m, n ∈ Z+,0 =⇒ f ∈ H 1

+(R)? (11.1.1)

The argument involving point separation in C+ from [15] applies here as well, which
makes β ≤ 1 a necessary condition for the implication (11.1.1) to hold. Actually, as men-
tioned in the introduction, the methods of [4] supply infinitely many linearly independent
counterexamples for β > 1.

Also, by testing with n = 0, we note that we might as well assume that f ∈ L1
0(R) in

(11.1.1). In view of (10.2.1),

〈en, f 〉R =

∫ 1

−1
eiπnt52f (t) dt = 〈en,52f 〉R/2Z, (11.1.2)

so that for f ∈ L1(R) we have the equivalence

{∀n ∈ Z+,0 : 〈en, f 〉R = 0} ⇐⇒ 52f ∈ H
1
+(R/2Z).

Since J∗βem = e
〈β〉
m , where J∗β is the involutive operator studied in §§5.1 and 10.1, we have

〈f, e〈β〉m 〉R = 〈f, J∗βem〉R = 〈Jβf, em〉R,
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which leads for f ∈ L1(R) to the equivalence

{∀m ∈ Z+,0 : 〈e〈β〉m , f 〉R = 0} ⇐⇒ 52Jβf ∈ H 1
+(R/2Z).

We can now rephrase the question (11.1.1) and hence Problem 11.1.1.

Problem 11.1.2. Fix 0 < β ≤ 1. Is it true that for f ∈ L1
0(R),

52f,52Jβf ∈ H 1
+(R/2Z) =⇒ f ∈ H 1

+(R)?

It is rather obvious that the reverse implication holds (use, e.g., Propositions 10.1.1 and
10.2.1). If we think of 52f and 52Jβf as 2-periodic “shadows” of f and Jβf , the
issue at hand is whether knowing that the two shadows are in the right space is enough
to conclude that the function comes from the space H 1

+(R). We note here that the main
result of [15] may be understood as the assertion that f is uniquely determined by the two
“shadows” 52f and 52Jβf if and only if β ≤ 1. This offers some rather weak support
for the plausibility of the implication of Problem 11.1.2.

11.2. An alternative reformulation in terms of the space L(R)

We begin with a function f ∈ L1
0(R), and form the conjugate-analytic Szegő projection

(cf. (4.2.6))

u := P−f = 1
2 (f − iHf ) ∈ L1

0(R)+HL1
0(R) ⊂ L(R).

Then, by Definition 10.1.3,

Jβu = JβP−f = 1
2 (Jβf − iJβHf ) = 1

2 (Jβf − iHJβf ) ∈ L1
0(R)+HL1

0(R) ⊂ L(R),

and we calculate that (use Lemma 10.2.2)

52u =
1
2 (52f − i52Hf ) = 1

2 (52f − iH252f ) =
1
2 (I−iH2)52f ∈ L(R/2Z),

(11.2.1)
and that (use Proposition 10.2.2 again)

52Jβu = 1
2 (52Jβf − i52HJβf ) = 1

2 (52Jβf − iH252Jβf )

=
1
2 (I−iH2)52Jβf ∈ L(R/2Z). (11.2.2)

Here, we write I for the identity operator. Modulo the constants, the operator P2,− :=
1
2 (I−iH2) projects to the 2-periodic conjugate-holomorphic functions in C+, and
H 1
+(R/2Z) is indeed mapped to {0}:

P2,−H
1
+(R/2Z) = {0}. (11.2.3)

Hence we conclude from (11.2.1) and (11.2.2) that

52f, 52Jβf ∈ H 1
+(R/2Z) =⇒ 52u = 52Jβu = 0.

We are led to consider the following problem. Let L0(R) be the one-codimensional sub-
space of L(R) given by

L0(R) := L1
0(R)+HL1

0(R) ⊂ L(R).
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Problem 11.2.1. Fix 0 < β ≤ 1. Is it true that for u ∈ L0(R),

52u = 52Jβu = 0 =⇒ u = 0?

Proposition 11.2.2. If the answer to Problem 11.2.1 is affirmative, then the answers to
Problems 11.1.1 and 11.1.2 are affirmative as well, and the assertion of Theorem 1.8.2 is
valid.

Proof. We already know that Problems 11.1.1 and 11.1.2 are equivalent. Let f ∈ L1(R)
be such that 52f ∈ H

1
+(R/2Z) and 52Jβf ∈ H 1

+(R/2Z). Then, as a first step, f ∈
L1

0(R) by the identity (10.2.1) with n = 0. We recall the notation P− := 1
2 (I−iH) for

the Szegő projection to the conjugate-holomorphic functions in C+. Next, we consider
the distribution u := P−f = 1

2 (f − iHf ) ∈ L0(R), and use the identities (11.2.1) and
(11.2.2) together with (11.2.3) to see that 52u = 52Jβu = 0. Now, given that Problem
11.2.1 has an affirmative answer, we find that P−f = u = 0, which is only possible for
f ∈ L1(R) if f ∈ H 1

+(R). We conclude that Problems 11.1.1 and 11.1.2 have affirmative
answers as well. Finally, given the discussion in §1.8, the correctness of the assertion of
Theorem 1.8.2 follows as well. ut

11.3. The connection with an extension of ergodic theory

In [16], the following result is obtained as an application of an extension of ergodic theory
in the setting of Gauss-type maps.

Theorem 11.3.1 (see [16]). For 0 < β ≤ 1 and u ∈ L0(R),

52u = 52Jβu = 0 =⇒ u = 0.

Modulo this result, we may now conclude the proof of Theorem 1.8.2.

Proof of Theorem 1.8.2. As observed right after the formulation of Theorem 1.8.2, a
scaling argument allows us to reduce the redundancy and fix α = 1, in which case the
condition 0 < αβ ≤ 1 reads 0 < β ≤ 1. Now, in view of §11.1 and Proposition 11.2.2,
the assertion is an immediate consequence of Theorem 11.3.1. ut

It remains to explain how Theorem 11.3.1 connects with an extension of ergodic theory.
The connection is strongest for β = 1, which is why we restrict our attention to this value
of β. For u ∈ L0(R), we need to show that if 52u = 0 and 52J1u = 0, then u = 0 is the
only possibility. We split 52 = I+62, so that

62u(t) =
∑
j∈Z×

u(t + 2j),

where the two sides are to be understood liberally (compare with (10.2.3)). Then52u = 0
is the same as u = −62u, while 52J1u = 0 means that J1u = −62J1u. Since J1 is an
involution, we could write the latter as u = −J162J1u. We may need to be careful with
the interpretation of the right-hand side, but let us not worry about that now. So, the two
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pieces of information we have about u ∈ L0(R) are u = −62u and u = −J162J1u. We
are free to combine them:

u = 62J162J1u and u = J162J162u. (11.3.1)

If we write T1 := 62J1 and V1 := J162, (11.3.1) maintains that u = T2
1u and u = V2

1u.
The operator T1 behaves like the transfer operator associated with the Gauss-type trans-
formation τ1(x) = {−1/x}2 (see, e.g., (3.4.2)), but to get a precise fit we need to re-
strict our space of distributions to the symmetric standard interval I1, and consider L(I1).
Of course T1 acts contractively on L1(I1) (see Proposition 3.4.1), but on the larger
space L(I1) it is no longer a norm contraction (but it does define a bounded operator,
see [16]). This is a serious complication, which is overcome only by a careful analysis
of the action of the iterates of the transfer operator on the Hilbert kernel. We remark that
on the interval I1, the equality u = T2

1u asks for u to be an “invariant observable” in
the space L(I1) of “extended observables” for the composition square of the Gauss-type
transformation. In the considerably simpler L1(I1) setting, this is the same as being a
scalar multiple of the invariant measure (this observation uses ergodicity). From a func-
tional analysis perspective, in the case of a finite mass invariant measure, ergodicity can
be understood as the property that the given invariant measure is an extreme point in the
convex body of all the invariant probability measures. In the case at hand, the absolutely
continuous invariant measure is (1 − t2)−1 dt , which is ergodic but has infinite mass,
so it does not fit in the standard functional analysis interpretation. Then we would still
know from ergodicity that the only possible solution to u = T2

1u with u ∈ L1(I1) is
the function u = 0 (see e.g. [15]). In this sense, the assertion that u = 0 is the only
possibility in the larger space L(I1) of extended observables is stronger than standard er-
godicity. The analogue for a transformation without an indifferent fixed point would be
the statement that the given invariant observable is unique up to scalar multiples within
the extended observables space L(I1). We may think of L(I1) as arising from a mix of
absolutely continuous signed densities of two types of particles, (i) point particles (repre-
sented by δξ ) and (ii) fuzzy particles (represented by Hδξ ). In the fuzzy case, we need to
include source points ξ located outside the basic interval I1; if we prefer to consider only
ξ ∈ I1, the Hilbert transform needs a slight modification to give the whole space L(I1) in
this manner.
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