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OUTER FUNCTIONS IN FUNCTION ALGEBRAS
ON THE BIDISC

HÂKAN HEDENMALM

ABSTRACT. Let / be a function in the bidisc algebra A(D2) whose zero set

Z(f) is contained in {1} x D. We show that the closure of the ideal generated

by / coincides with the ideal of functions vanishing on Z(f) if and only if

f(-,a) is an outer function for all a e D, and /(l, ■) either vanishes identically

or is an outer function. Similar results are obtained for a few other function

algebras on D2 as well.

0. Introduction. In 1926, Torsten Carleman [CAR; GRS, §45] proved the

following theorem: A function f in the disc algebra A(D), vanishing at the point 1

only, generates an ideal that is dense in the maximal ideal {g £ A(D): g(l) = 0} if

and only if

lim    (1-Í) log |/(0I=0.
R3t->1-

This condition, which Carleman refers to as / having no logarithmic residue, is

equivalent to / being an outer function in the sense that

log\f(0)\ = ± T log\f(e*e)\d6.
27ri-7T

Carleman's result was an early predecessor of the Beurling-Rudin Theorem [RUDI;

HOF, pp. 82-89], which completely describes the collection of all closed ideals in

A(D).

For a function / in the bidisc algebra A(D2), let Z(f) = {z £ D2 : f(z) = 0}

be its zero set, and denote by 1(f) the closure of the principal ideal in A(D2)

generated by /. For E C D , introduce the notation 1(E) = {/ G A(D2) : / = 0

on E}. The purpose of this paper is to try to obtain for A(D2) results similar to

Carleman's. More precisely, we consider the following problem.

PROBLEM. Characterize those functions / in A(D2) with Z(f) c d(D2) for

which /(/) = I(Z(f)).
According to the Beurling-Rudin theorem, the answer to the same problem for

the disc algebra A(D) is that / should be an outer function. One could say that

we seek those functions of the bidisc algebra that are outer in the sense of the

Beurling-Rudin theorem. (See [RUD2, pp. 70-83; RUS, ACD] for information

on related questions.)

We will consider this problem for small zero sets Z(f) only. For singleton Z(f),

the answer is surprisingly uncomplicated, as we shall see.  First observe that the
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point in Z(f) must lie in the Silov boundary T2 = (<9D)2, so after a rotation we may

assume Z(f) = {(1,1)}. This is so because if /(a) = 0 for some a — (ax,a2) G D

with \ax\ < 1, say, then, as z2 —> a2, the nonzero functions f(-,z2) would converge

to the function f(-,a2) that vanishes at the interior point ai only, which is clearly

impossible. The answer is as follows: 1(f) = I({(1,1)}) if and only if both /(l, •)

and /(-,1) are outer functions in A(D). This is a consequence of the following

more general result. For a function / G A(D2) with Z(f) C {1} x D to have

1(f) D I({1} x D), it is necessary and sufficient that /(•, z) is outer for all z £ D.

Equipped with this result, one can show, by invoking the Beurling-Rudin theorem,

that /(/) = I(Z(f)) if and only if f(-,z) is outer for all zeD, and /(l, •) either

vanishes identically or is an outer function.

The above-mentioned results are proved in §2. Our main tool is a modification

to a several complex variable setting of a well-known device in ideal theory for func-

tion algebras on planar domains, known as the Carleman transform (see [DOM,

KOR2]). In §3, we obtain a similar result for the nonseparable algebra Ü°°(D2).

The main difficulty here is the complicated structure of the maximal ideal space.

The methods developed in this paper can also be applied to function algebras

where the norm is not uniform. In §4, we study the algebra

H\,X(D2) ={f£ i72(D2):df/dzx,df/dz2,d2f/dzxdz2 £ #2(D2)},

endowed with the natural norm. We may also think of this algebra as consisting of

complex-valued sequences {afc„}fciiï€N satisfying

^(l + A:2)(l + n2)|afc„|2<oo,

k,n

where the multiplication is sequence convolution. The function corresponding to

a sequence {akn} is its Taylor series (zx,z2) i—► Ylk naknziz2 i zi,zi € D. Let us

introduce the same notation as for A(D2); for instance, let 1(f) denote the closure

(in H\ ,(D2)) of the principal ideal generated by / G ü2 X(D2). It turns out that

a function / G #2,i(D2) with Z(f) C {1} x D has 1(f) D I({1} x D) if and only

if /(•, z) is outer for all z £ D, just as for A(D2). At this point we invoke a result

by Korenblum [KOR1], describing the collection of closed ideals in the algebra

//2(D) = {/ G Ü2(D);/' G Ü2(DJ} to show that /(/) = I(Z(f)) happensjbr an
/ G ü2,i(D2) with Z(f) c {1} x D if and only if f(-,z) is outer for all z £ D, and

/(l, •) either vanishes identically or is an outer function.

The problems considered in this paper are intimately connected with an old open

problem in harmonic analysis, raised by B. Ya. Levin, which recently appeared in

[LEV]. He asks for a complete description of those functions / G L1(R2f ), extended

to vanish on R2\R+, where R+ = R+ x R+ and R+ = (0, oo), for which combined

right and upper translates

Txf(t) = f(t-x),        t,x£R2+,

span a dense subspace of L1(R2f.). The one-dimensional version of this problem

was solved by Berth Nyman [NYM]. In §5, we solve a corresponding question
_2

for a convolution algebra of Borel measures supported on R+ that are absolutely

continuous with respect to area measure on R2^.   It is also explained that if we
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disregard the difference between the ¿1(R+ ) norm and the supremum norm of the

Fourier transform, Levin's problem can be formulated as follows. Given a function

/ G A(D2) with Z(f) = ({1} x D) U (D x {1}), under what conditions on / is

1(f) = I(Z(f))7 Here, the shape and size of Z(f) is the source of the difficulty.

1. Preliminaries. If a function / G Ü°°(D) has no zeros on D, its Herglotz

representation takes the form

/(*)=Aexpj£ Ç±l(l0g\f(e^)\d6/27r-dp(ei(,))Y        z £ D,

where p is a nonnegative singular (Borel) measure on T = <9D, and A G C, |A| = 1.

It is easy to check that the limit

lim   (1-0 log |/(0I
Rr>í— 1-

exists and equals 2p({l}). The following lemma will prove useful.

LEMMA l. I. Let {fn}c¡° be a bounded sequence of functions in Ü°°(D) that are

zero-free on D, which converges uniformly on compact subsets of D to a function

f G Ü°°(D), also zero-free on D. If, for some sequence {tn}(f C [0,1), tn / 1,

lim (1 -í„)log|/n(ín)| = -a£ [-oo,0],
n—>oo

then

lim_(l-t)log\f(t)\<-a.

In particular, a cannot be infinite.

PROOF. Without loss of generality, we can assume that ||/n|| < 1. Look at the

positive harmonic functions hn = -log|/„|, which satisfy

HM*. =hn{0)<C

independently of n, because hn(0) —► — log |/(0)| as n —► oo. Denote by p„ the

nonnegative Borel measure on T for which

hn(z) = Pz[Pn] = f Pz(eie) dpn(eie),        z £ D,
J — It

where Pz(e%e) is the Poisson kernel (1 — |z|2)/(|eî61 — z|2). The space h1 can be

identified (by means of Poisson integrals) with M(T), the space of all finite Borel

measures on T [RUD3, p. 262], which in its turn is the dual space of C(T). Since

C(T) is separable, the closed unit ball in M(T) is compact and metrizable in

the weak* topology. Hence we may extract a subsequence {pnk} which converges,

weak*, to a p G M(T), p > 0, because ||pn|| = H/inlU1 < C. Without loss of

generality, we may replace the sequence {/„} by its subsequence {fnk}- Then

logl/\fn(z)\=Pz[pn\^Pz[p)

as n —> oo, and hence logl/|/(^)| = Pz[p\- The assertion of the lemma is that

p({l}) > a/2. Observe that for t, 0 < t < 1,

Pf(eiO) =    1-¿2    < _-_< _?_
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Fix an open arc i C T containing 1. Then

sup   /     Pt(el6)dpn(eie)<C(I)
0<t<lJT\I

for some constant C(I) independent of n, because ||p„|| = hn(0) < C and

||í,í||loc(t\/)<2Mí,T\/),

where d is the Euclidean metric in C, and so

(1 - tn)hn(tn) = (1 - tn) j Ptn(eie)dpn(eie)

= (l-tn) f    Ptn(eie)dnn(eie) + (l-tn) f Ptn(¿e)dpn(eie)
Jt\i Ji

<C(I)-(l-tn) + 2pn(I).

Letting n -+ oo and recalling that the left-hand side tends to a, we conclude that

liminf p„(i) > a/2.
n—»oo

Let Xi,e be a continuous, real valued function on T such that 0 < Xi,e{z) < 1 on

T, XiÁz) = 1 on I, and Xi,£(z) = 0 outside an e-neighborhood of I. Then

liminf(x/,£,p„) > a/2,
n—»oo

and since pn —+ p weak*, we conclude that (xi,e, p) > Q/2- Letting £ —> 0, it follows

that p(i) > q/2. Since the arc I was arbitrary, we must have p({l}) > a/2. This

completes the proof.

PROPOSITION 1.2.   Let f G A(D2) have Z(f) C {1} x D.   Then the following

two conditions are equivalent:

(a) limt-.j-il -01og|/(£,z)| =0/or all z £ D,

(b) lim^x- infi€5(l - 0 log \f(t,z)\ = 0.

PROOF.  The implication (b)=>(a) is trivial.   To attack the other one, assume

(b) does not hold, that is,

liminf inf_(l - i)log|/(i,2)| = -a
t-*l~   z€D

for some a G (0, oo]. Then there is a sequence {¿n}o°i ¿n / 1, such that

lim   inf (l-í„)log|/(f„,z)| =-a.

By the maximum modulus principle, there is a zn G T such that

|/(ín,a»)|= inLl/(i»,«)|.

Replacing {zn} by a subsequence, we may assume that zn converges to some wq G T

as n —> oo. If we apply Lemma 1.1 to the functions fn(z) — f(z,zn) and f(z) =

f(z,wo), we conclude that

lim(l-01og|/(i,wo)l<-«,

so (a) cannot hold either.
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For ç G D and / G H°°(D), introduce the notation

Tsf(z) = (f(z)-f(ç))/(z-ç),       zGD\{c}.

LEMMA  1.3.   Assume f G Ü°°(D),  ||/|| < 1, and that f has no zeros on D.

Then

log \\Tsf/f(ç)\\ < 2(1 + log 1/|/(0)|)(1 - Id)-1,        c G D.

PROOF. Since 11/11 < 1,

(1-1) log IIT./H < log r^7 < 3-^'        ?€D-

By the Herglotz representation, logl/|/(z)| = Pz[p] for some nonnegative Borel

measure p on T. In particular, p(T) = logl/|/(0)|. Now

Pc(e>») < 2/(1 - |ç-|),        ÇGD,

and hence

logl/|/(ç)| = f Ps(eie)drteie) < 2p(T)/(l - |c|)
J — ft

= 21ogl/|/(0)|-(l-|ç|)-1.

If we combine this estimate with (1.1), the assertion follows.

2. The bidisc algebra. The bidisc algebra A(D2) consists of all continuous

functions on D that are analytic on D2. Let / G A(D2) have Z(f) c {1} x D.

Our question for the moment is: For which / does it happen that the closure 1(f)

of the principal ideal generated by / contains 1({1} x D) = {g G A(D2) : g = 0

on {1} x D}? For fixed z G D, /(•, z) is a function in the disc algebra A(D) which

either vanishes at the point 1 only or not at all. Unless f(-,z) is an outer function

for all z G D, there is a zc, £ D such that f(-,zr,) £ kaH°°(T)) for some a > 0,

where

kQ(z) = exp(a(z + l)/(z-l)),        z G D.

Since ka is inner, kaH°°(T)) is a closed ideal in H°°(T>), and hence every function

g £ 1(f) must have g(-,zo) £ fcQü°°(D), too, which clearly prevents 1(f) from

containing I({1} x D). Hence a necessary condition is that the functions f(-,z)

should be outer for all z £ D. The surprising ingredient of the following theorem

is that this condition is also sufficient.

THEOREM 2.1. Letf£ A(D2) have Z(f) C {1}xD. Then 1(f) D I({1} xD)
if and only if the functions f(-,z) are outer for all z G D.

PROOF. The necessity is clear by the previous discussion. To prove the suf-

ficiency, assume f(-,z) is outer for all z G D. We wish to show that 1(f) D

I({1} x D). As has been mentioned earlier, our assumption that f(-,z) is outer is

equivalent to

thm(l -0log\f(t,z)\ = 0.

By Proposition 1.2,

Iim   inf_(l-01og|/(i,z)| = 0,
< — 1" 2GD
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that is,

(2.1) (hm(l-01og||/(r,-)-1||oo=0.

Let zx denote the first coordinate function zi(w) = wi, w = (wi,w2) G C2.

Inspired by [DOM], we define the Carleman transform for ej) £ A(D2)*, cj> _L 1(f),

to be the function

*(í) = «í- zi+/(/)r1,«A),    f€c\{i},

which is holomorphic on its domain of definition, because (c — zi + i(/))_1 has a

convergent power series expansion in a neighborhood of each point c G C\{1}. For

CGC\D, $(c) = ((c-z1)-1,0),so

l*(f)l<M/(kl-i)-
We want to estimate $ inside D, too. For fixed c G D, we may regard /(c, •) as a

function in A(D2) by identifying it with the function (zi,z2) i—> f(ç,z2), (21,22) G
_2
D . Introduce the notation

TJ(zi,z2) = (f(zi,z2) - f(c,z2))/(zi - c),        (zi,z2) G (D\{ç}) x D,

for C G D; this is then again a function in A(D2). It is easily checked that T(f/f(e, ■)

is an element of the coset (c — zi + i(/))_1 for ç G D, so that

||(?-2i + /(/))-i<||r^//(rv)||.

Now, by Lemma 1.3,

I|ïc///(Ç,-)II=     sup    \TJ(zi,z2)/f(ç,z2)\=  sup ||Tç/(-,22)//(Ç,22)||
2i,22£D z2£D

< sup exp{2(l+log 1/1/(0,22)|)-(l-|c|)-1}
z2£D

^expiMil-lçl)-1},        ÇGD,

for some suitably chosen constant M. So $ satisfies the estimates

l*(f)l<W/(kl-i).     f€C\ü,
|*(Ç)| < ll^ll • exp{A^(l - kl)"1}, ÇGD.

We are now in a situation where we can apply Yngve Domar's result on the existence

of a largest subharmonic minorant (see [TAW, Lemma 5.8] or [BEG, Theorem

3.1]), to conclude that there is a constant A so that

(2.2) |$(c)|<exp(A/|l-c|),        c £ C\{1}.

By (2.1),

||/(i, rl\\ = 0(exp(e/(l - 0)),        R 9 í -> I-,

for every £ > 0, and since |$(ç)| < ||0|| • ||Tf/|| • H/iç,-)-1!! and ||Tf/|| < 2||/|| •

(1 - Ici)-1 for ç G D, it follows that

(2.3) |$(0l = O(exp(e/(l-0)),        RBt^l~,

for all £ > 0. Let ^CU {00} —► C U {00} be the Möbius mapping i(w) =

(w + i)/(w — i), which takes the open lower half-plane n_ onto D, and 00 onto 1.
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Since $ is bounded at oo, the function Í» = $ o ^ is entire. Our estimates obtained

for $ translate into

(2.2') |*(w)| =0(exp(A|w|/2)),        |w| -» oo,

and

(2.3') \$(-iv)\ = 0(exp(£v)),        v-^+oo,

for every e > 0. The estimate |$(c)| < ||0||/(k| - 1) for |c| > 1 becomes

(2.4) |*(w)| <C-(l + |w|2)/Imw,        lmw>0,

where C is a constant. Introduce the function

A(w) = V(w)/(w-2i)2,        wGC\{2¿}.

By (2.4), A(u + i) is bounded for u £ R, and by (2.2')-(2.3') we may apply the

Phragmén-Lindelof principle to deduce that A is bounded throughout the region

n_ + i — {w £ C:Imw < 1}. Hence we have an estimate |*(w)| < C(l + |w|2)

on n_ + i, and since * has a similar bound outside n_ + i by (2.4), it must be a

polynomial of degree < 2. But ^(iv) = 0(v) as»-» +oo, again by (2.4), which

cannot be unless the degree of * is actually < 1. Then

\P(it>) = ß(w-i),        weC,

for some ß £ C, if we recall that ^(i) = 0, so that

*(i) = A/(f-l),        ?eC\{l},

where A = 2iß. This has the interpretation that ef> acts as A times the "point

evaluation at zx — 1" on all the functions (ç — zi)~l for c G C\D, and by continuity

on the closure of the linear span of such functions, which consists of those functions

that only depend on the first variable zi. In particular, zi — 1 is such a function,

so that (zi - l,cp) — 0. Since <j> J. 1(f) was arbitrary, it follows that zi — 1 £ 1(f).

The assertion follows, because the closure of the principal ideal generated by 21 — 1

equals I({1} x D).

COROLLARY 2.2. Let f £ A(D2) have Z(f) C {l}_x D. Then 1(f) = I(Z(f))

if and only if the functions f(-,z) are all outer for z £ D, and f(l, ■) either vanishes

identically or is an outer function.

PROOF. The relation /(/) = I(Z(f)) cannot hold unless /(/) D I({1} x D), so

by Theorem 2.1 it is necessary that /(•, z) is an outer function for all z £ D. It was

mentioned in the introduction that our assumption Z(f) C {1} x D forces /(l, •)

to either vanish identically or have no zeros on D. If, in the case /(l, •) ^ 0, /(l, •)

has a noninvertible inner factor, so will every g(l, ■) with g £ 1(f), which clearly

prevents /(/) from being equal to I(Z(f)).

Let us now turn to the sufficiency. Denote by R the restriction mapping g i-»

g(l, •), g G A(D2). By Theorem 2.1, 1(f) D I({1} x D), so that

I(f) = {g£A(D2):g(l,-)£Z(I(f))}-

If Z(f) = {1} x D, we are done. If /(l, •) is an outer function, the closed A(D)-

ideal R.(I(f)) is an intersection of maximal ideals by the Beurling-Rudin theorem

[RUDI, HOF], and hence /(/) = I(Z(f)).
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COROLLARY   2.3.   Let f  G   A(D2)  have Z(f)   =   {(1,1)}.     Then 1(f)   =
I({(1,1)}) if and only if f(l,-) and /(-, 1) are both outer functions.

PROOF. This is a special case of Corollary 2.2.

REMARKS 2.4. (a) The technique of this section can most likely be modified to

incorporate cases when Z(f) c E x D for closed sets E C T of linear measure 0.

(b)If/GA(D2), Z(/)c{l}xD, but

inf. lim (l-01og|/(t,z)| = -2a < 0,
z€D*-*l~

one can show (not without effort) that 1(f) contains the function

*i + l \ ,_    _ x-«2
(Zi,z2) ^ (1 -2i)exp [a-    _     J , (2i,22) GD2.

(c) Given that Z(f) c {1} x D, the condition on the function / in Theorem 2.1

is considerably stronger than requiring that / is outer in the sense that

log|/(0,0)| = (27r)-2 f   log\f(eie\el6>)\d6xdd2.

This latter condition is equivalent to /(-,0) being outer.

EXAMPLE 2.5. (a) Let q be the A(D) function

log(2/(l-2))

q[Z)      l + log(2/(l-z)Y        ZGU'

which peaks at 1, and put

p(zx,z2) = (zx+q(z2))/2, (2i,22)GD2,

which peaks at (1,1). Consider the bidisc algebra function

f(zi,z2) = (2-zi- z2)exp{l(p(zi,22) + l)/(p(2i,22) - 1)},        (zi,z2) £ D2,

which vanishes at the point (1,1) only. It is an element of the closed ideal

J = {g £ A(B2):g(-,l) £ kH°°(D)},

where k is the singular inner function

fc(2)=exp((2 + l)/(2-l)), 2GD,

because p(zi,l) = (1 + zx)/2. On the other hand, /(l,-) is an outer function,

and since f(z, ■) is trivially outer for z G D\{1}, Theorem 2.1 tells us that 1(f) D

I (5 x {1}). Hence 1(f) = J byjhe Beurling-Rudin theorem [RUDI, HOF]

applied to the algebra A(D2)/J(D x {1}) = A(D). In particular, J is singly

generated.

(b) Let L:D —♦ D2 be the analytic disc L(z) = (z,z), and let k be as in (a).

Then the closed ideal {/ G A(D2): / o L £ fcü°°(D)} cannot be singly generated,

in view of Corollary 2.3.
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3. The algebra H°°(B2). We denote by tf°°(D2) the Banach algebra of

bounded analytic functions on D2, supplied with the uniform norm. The max-

imal ideal space M(H°°(B2)) of Ü°°(D2) is pretty messy; it is not even known

whether D2, regarded as a subset of M(Ü°°(D2)) in the obvious way, is dense in

M(H°°(B2)). It is known, however, that for a G dD2\T2, the fiber

Ma(H°°(B2)) = {m£ M(i/°°(D2)): (m(zx),m(z2)) = a}

lies in the closure of D2, by the corona theorem for Z/°°(D) (see [ROS]). For a £ D,

let La:B —► D2 be the analytic disc mapping La(z) = (z,a), z £ D. It can be

shown (this is implicit in [JAN, pp. 31-32; ROS]) that one can find analytic disc

mappings Lm: D —» M(Ü°°(D2)), varying continuously with m £ M(Ü°°(D)) such

that Lm = La if m = a G D. Moreover, as ~D 3 a —* m, /oia -t/o Lm

uniformly on compact subsets of D (/ is the Gelfand transform of / G Ü°°(D2)),

and \J{Lm(B): m G M(H°°(B))} = {m G Ai(ü°°(D2)) : |m(zi)| < 1}. For a

function / G Ü°°(D2), let Cl(/, a) denote the cluster set of / at the point a G D ,

that is, the set of all numbers £ such that for some sequence D2 3 z„ —► a, f(zn) —»

Ç. Also, put Z(f) = {m £ M(H°°(B2)): m(f) = 0}, and let 1(f) denote the closure

of the principal ideal generated by /. By the Cluster Set Theorem (see [GAM,

p. 7]), Cl(/,a) = f(Ma(H°°(B2))). Denote by At{1}xü(ü°°(D2)) the union of

all fibers Ma(H°°(B2)) with a £ {1} x D, and by 7({1} x D) the closed ideal of

all functions g £ H°°(B2) such that g(z) -^0as2-»{l}xD. We then have the

following result.

THEOREM 3.1.   Let f G H°°(B2) be such that

0£Cl(/,a)    /oraGD2\({l}xD),

or in other words, assume Z(f) C M{1}xS(i/°°(D2)). Then 1(f) D I({1} x D) if

and only if

(3.1) lim   inf (1-0 log |/(t, z)|=0.
t—>1~ z€D

REMARK 3.2. Condition (3.1) is equivalent to / o Lm being outer for all m £

M(H°°(B)), as will become apparent from the proof of the theorem.

PROOF OF THE THEOREM. The equivalence of the conditions on the cluster

sets of / and Z(f) follows from the Cluster Set Theorem (see [GAM, p. 7]). Let us

first prove the sufficiency, that is, that (3.1) implies 1(f) D I({1} x B). Condition

(3.1) can be restated as

(3.2) tlim_(l-01og||/(i,-)-1||oo=0.

Just as in the proof of Theorem 2.1, we pick a continuous linear functional ef> G

H°°(B2)*, ef> _L 1(f), and consider its Carleman transform

*(?) = ((f- zi +I(f))-1,ct>),

which is well defined for c G C\{1} because of our condition

z(f) c -MoixD^00^2)),
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and it is holomorphic there, since (c — z + I(f))~l has a convergent power series

expansion near each point ç G C\{1}. Since the norms on A(D2) and //°°(D2)

are the same, we can get the same estimates of 4> as we did back in the proof of

Theorem 2.1, so we can use (3.2) to show that

$(ç) = A/(c - 1),        ÇGC\{1},

for some A G C, which in its turn forces zx — 1 to be in 1(f). But the closure of the

principal ideal generated by zx -1 equals J({1} xD), and hence J({l}xD) C 1(f)-

Let us turn to the necessity part. In order for 1(f) to contain I({1} x D), it

is necessary that the functions / o Lm are all outer for m G M(H°°(B)), simply

because otherwise 1(f) could not possibly contain the function zx — 1. We intend

to show that this condition implies (3.1); what is needed is a generalization to

H°°(B2) of Proposition 1.2. Assume that (3.1) does not hold, that is,

lim   inf (l-01og|/(t.z)| =-S
t^l- z€D^ '        u v       n

for some 6, 0 < 6 < +00. Then there are two sequences {ín}o° c [0,1) and

{zn}^ C D. with tn / 1 and zn —* w £ T as n —► 00, such that

lim (1 - tn) log |/(i„, zn)| = -S.
n—tco

Put fniz) = fiz-Zn)- By Lemma 1.1,

(3.3) lim_(l-t)log\g(t)\<-S

for every normal limit g of {/n}o°, because our assumption on the cluster sets of /

excludes the possibility that g could vanish anywhere on D. If m G M(H°°(B)) is

a cluster point for the sequence {2„}o°, / o Lm is a normal limit of the functions

f oLZn = fn, so by (3.3), f ° Lm cannot possibly be an outer function. Hence 1(f)

in its turn cannot contain i({l} x D), and the proof of the theorem is complete.

4.     A  weighted  Hubert  space.  Let /2,(Z2) be the Hubert space of all

complex-valued sequences {akn}k,n£Z that satisfy

J2 (fc2 + l)(n2 + l)|ßfcn|2 < oo,
fc.neZ

and let this expression be the square of the norm on l2,x(Z2). It is easy to see

that I2 t(Z2) C ^(Z2), so that we can associate to each {akn}k,nez in if X(Z2) its

Fourier series

f(z) = J2aknzkxz2l, z = (zx,z2)£T2,

k,n

which is a continuous function on T2. When equipped with sequence convolution,

If X(Z2) is a commutative Banach algebra (see [TCH, pp. 152-154], for a proof

in the continuous case; the same proof works in our situation also). Its maximal

ideal space is T2, and the Gelfand transform of a sequence is its Fourier series.

The image of I2 X(Z2) under the Gelfand transformation is the space Lfx(T2)

of functions / G L2(T2) for which df/dzx,df/dz2,d2f/dzxdz2 G L2(T2) (if
zx — el6', d/dzx is the operator —ie~l6'd/d6x). Consider the closed subalge-

bra I2 :(N2) of L2 X(Z2) consisting of those sequences that are supported on N2;
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here, and always, N = {0,1,2,... }. For sequences in /^(N2), the Fourier series is
_o

a Taylor series, and the maximal ideal space of lf,x(N2) is D . The Gelfand trans-

formation takes if !(N2) onto Ü2 ,(D2), the space of all functions / G Ü2(D2)

with df/dzx,df/dz2,d2f/dzxdz2 £ i/2(D2); observe that H2,X(B2) C A(D2).

We are interested in those closed subspaces of if i(N2) that are invariant under

right and upper translations, or which is the same, the closed ideals of HXX(B2).

For a function / G Ü2 ,(D2) and a set E C D , let 1(f) denote the closure of the

principal ideal generated by /, and put

J(£) = {9ër/121(D2):  g = 0onE}.

THEOREM 4.1. Let f £ Hfx(B2) have Z(f) C {1} x D. Then 1(f) D

I({1} x D) if and only if /(•, z) is an outer function for all z G D.

PROOF. The necessity of the condition is obvious in view of the discussion

preceding Theorem 2.1.

Our proof will mimic that of Theorem 2.1. All we need to do is to check some

crucial points. For a functional cp £ Hx ,(D2)* that annihilates 1(f), put

3'(ç) = {(c-21+i(/))-1,<A),      çgC\{i},

which is a holomorphic function on C\{1}. Outside the unit disc we have the

estimate

|*(?)| < 11011 • IK? - ¿i)"1 II < 2|M| • (|Ç| - I)-3/2,        ç G C\D.

If T(f is the function defined in the proof of Theorem 2.1 for ç G D, then Tcf £

H2 X(B2) since it is in both A(D2) and Lf X(T2). Hence T(f/f(ç,-) is an element

of the coset (ç - zx + 1(f))'1, so that

l*(f)l<W-lirf///(î,-)ll,     ?€D.
It is not hard to see that

||rs/||< 411/11(1 -|Ç|)-3/2, ÇGD;

just evaluate the Lf x (T2)-norm of Tçf. The final estimate we need is the following:

n/(?. -ri < c(\\f(ç, -nu + n/(c, r'wi),    ? e d.
However, this follows from the fact that

d/dz2(l/f(c,z2)) = -df/dz2(ç,z2)/(f(c,z2))2,

so that

n/(c, rl\\ < n/(c, r'y» + w/dztu, on** ■ n/(fl r'wl
<l|/(Ç,-)-1||oo + 2||/||.||/(c,-)-1||20-

The point now is that these estimates enable us to pull through the proof of Theorem

2.1 to the point where zx — 1 G 1(f)- The last step, to show that I(zx - 1) =

I({1} xD), is slightly more complicated here because the norm is no longer uniform.

First, observe that a polynomial that vanishes on {1} x D is divisible by zx — 1,

and hence lies in /(zi - 1). Now let g G J({1} x D) be arbitrary. Because the

polynomials are dense in Hx X(B2), there is a polynomial P such that ||g - P|| < e.

If we put Q(zx,z2) = P(zi,z2) - P(l,z2), then \\g - Q\\ < 3e and Q G I(zx - 1).
Hence g £ I(zi — 1), and the proof is finished.
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COROLLARY 4.2. Let f G ¿^(D2) have Z(f) c {1} x D. Then 1(f) =

l(Z(f)) if and only if the functions f(-,z) are all outer for z £ D, and f(l, ■)

either vanishes identically or is an outer function.

PROOF. Mimic the proof of Corollary 2.2, and replace the Beurling-Rudin The-

orem by Boris Korenblum's [KOR1] description of the closed ideals of the algebra

ü2(D) = {/GÜ2(D):/'Gi/2(D)}.

COROLLARY 4.3. Let f £ H2XX(B2) have Z(f) = {(1,1)}. Then 1(f) =

J({(1,1)}) if and only if f(l,-) and /(•, 1) are both outer functions.

PROOF. This is a special case of Corollary 4.2.

5. Translation invariance in L1(R%). The space/^(R2) is a Banach algebra

when equipped with convolution multiplication:

f*g(xx,x2) =        f(xi -ti,x2 -t2)g(ti,t2)dtidt2,        (xx,x2)£R2,
JR2

for f,g £ L1(R2). For x £ R2, let Tx be the translation operator

Txf(t) = f(t-x),        Í6R2.

A generalized version [GRS, §40] of Wiener's Tauberian Theorem states that in

order for the translates Txf, i 6 R2, of a given function / G L1(R2) to span a

dense subspace of L'(R2) it is necessary and sufficient that the Fourier transform

f(zi,z2)=  (   e-ü¡z>-lt^f(ti,t2)dtidt2,        (zi,z2)£R2,

of / does not vanish anywhere on R2. The corresponding question for the closed

subalgebra L1 (R+) of functions vanishing (almost everywhere) on R2\R2f, where

R+ = R+ x R+ and R+ = (0, oo), is still unsolved. More precisely, the problem

is: Give necessary and sufficient conditions on a function / G L1(R2i.) so that

its combined right and upper translates Txf, x G R+, span a dense subspace of

L1(R2 ). This problem was raised a long time ago by B. Ya. Levin, and appeared

recently in [LEV]. An obvious necessary condition is the nonvanishing of the Fourier

transform, which for / G L1(R2i_) is a holomorphic function on the region n2 =

n_ x n_, where n_ is the lower half-plane {z G C:Im z < 0}, which extends

continuously to the boundary and tends to 0 at infinity. However, this condition is

far from being sufficient. It is not even sufficient in the one-dimensional case, which

was completely solved by Berth Nyman [NYM]: the right translates Txf, x £ R+,

of a function / G L1(R+) span a dense subspace of L1(R+) if and only if

(a) f(z) Í 0 for all z G ÏT_, and
(b) there is no interval (0, a), a > 0, such that / vanishes almost everywhere on

(0, a), or in other words,

lim   i"1 log \f(-it)\ = 0.
t^+oo

Denote by Ao(n2 ) the Banach algebra of holomorphic functions on i\2_ that
_2

extend continuously to n_ U {oo} and have value 0 at oo. The Fourier transform

defines a monomorphism (injective homomorphism) L1(R2+ ) —> Aq(U2_) with dense



OUTER FUNCTIONS IN FUNCTION ALGEBRAS ON THE BIDISC 709

range. After a Mobius transformation, we may identify Ao(n2) with the closed

A(D2)-ideal

/„ = {/ G A(D2): / = 0 on ({1} x D) U (D x {1})}.

Since a closed translation invariant subspace of L1(R2f) is the same as a closed

ideal, a uniform norm version of Levin's problem would ask for a description of

those functions f £ Ir, which generate an ideal that is dense in /0. In this paper, we

are only able to deal with smaller zero sets like {1} x D. Therefore we will choose to

work with a bigger algebra than L^R^), namely L1(R2f,R+) = L1(R\)®L1(R+),

consisting of pairs (/, g) with / G L1(R2f) and g G L1(R+). The convolution

product of two elements (/, 0) and (0, g) is defined to be the L1(R2i.) function

/•OO

((f,0)*(0,g))(xi,x2)= /     f(xi-t,x2)g(t)dt.
Jo

On L1(R2{_) and L1(R+), regarded as subspaces of L1(R2i_,R+), the product is

usual convolution. We can think of L1(R+, R+) as the space of those finite Borel

measures on R+ x (R+ U {0}) that are absolutely continuous with respect to area

measure on R^, and absolutely continuous with respect to linear measure on R+ x

{0}. For / = (/i,/2) G L1(R2f,R+), its Fourier transform

/»OO     /*oo

/(*)=   /      /     fi{ti,t2)e-ltiZ¡-lt^ dtidt2

Jo    Jo

+ /     /3(ii)e-,*,*,<fti,        2 = (z1)z2)Gnl,
Jo

extends continuously to (n_ U {oo}) x (n_ U {oo}) in such a way that /(oo, 22) = 0

and
/•OO

f(zi,oo)=        f2{ti)e-itiZl dh,        ZiGÏT-.
Jo

Let
/■OO

?if{ti,z2)=\     fi(ti,t2)e-lt*Z2dt2 + f2(ti), tiGR+, z2Gn_,
Jo

be the partial Fourier transform of / with respect to the second coordinate, which

extends continuously to Z2 = 00:

$/(ii,oo) = /a(ii), ti£R+.

Moreover, let 1(f) denote the closure of the principal ideal generated by /.

THEOREM 5.1.   Let f = (fi,f2)£L1(R2+,R+), and assume

/■oo /   /-oo \ 2

(5.1) J    (l + í2)íy     |/i(íi,ía)|díij   dfi<oo.

Then 1(f) = L1(R2_,R+) if and only if

(a) f(z) ¿ 0 for all z £ ÏÏ_ x (ÏÏ_ U {00}), and

(b) for all z2 £ n_ U{oo}, the LX(R+) function ii i-» 72f(ti,z2) does not vanish

almost everywhere on any interval (0, a), a > 0.

OUTLINE OF PROOF. Clearly (a)-(b) are necessary. To obtain the sufficiency, let

L\(R\,R+) be the unitization of Ll(R\,R+); the unit can be identified with the
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Dirac measure 60 at the point (0,0). Put a = (0,a2), where a2(t) = e ', t G R+.

The Fourier transform of a is

â(zi,22) = 1/(1+ izx), (zi,z2)Gn_,

and since â extends to be zero on {oo} x (n_ U{oo}), the element (çôç> — a +1(f)) is

invertible in the quotient algebra Lg(R+ ,R+)/i(/) for all c G C\{0}, by (a). Let

</,= (4>x,ep2) £ L°°(R2+) ® L°°(R+) = (L1(R2f,R+))* annihilate/(/), and extend

cp to Lg(R2t.,R+) by defining (60,cj>) = 0. Consider the function

1>(c) = (Wo-a + I(f))-1,4>),        CGC\{0},

which is analytic where it is defined. After composing $ with a Möbius mapping

that sends the point 0 to infinity and some algebraic manipulations (see [DOM or

HED, pp. 134. 137]), we obtain an entire function $ for which

/■OO

*(z)= /     eltzep2(t)dt,        lmz>0.
Jo

The plot is to show that (b) implies that $ = 0, so that ep2 — 0. Hence every

LX(R+) function in Ll(R\,R+) is in 1(f), and since every function in L1(R2+)

can be approximated by convolution products of a function in L1(R+) and one in

Ll(R\). we conclude that 1(f) = Ll(R\,R+).

Let L\(R+) be the unitization of L1(R+), and identify the unit with the Dirac

measure at 0, which we denote by óo, too. Introduce the partial Fourier transform

/■OO /-OO

7if{zi,t2)=        fi(ti,t2)e~ü>Zldtx+60        f2(ti)e-ltlZl dti,        t2£R+,
Jo Jo

which is an element of L\(R+) for fixed zt G n_. As in the proofs of Theorems

2.1, 3.1, and 4.1, the key to showing * = 0 is to get an estimate of 1*1 which

is obtained by estimating the size of the norm ||( Ji/(zi, -))*_1 Hi1 (R+)- ^n view

of Proposition 1.2 and Lemma 1.3, we have good control of the sup-norm of the

Fourier transform of (7i/(zi, -))*_1, which is sup0 exx_ l/|/(zi,Z2)|. In fact, along

the ray zx = —iy, y > 0, the logarithm of this quantity is o(y) as y —► +00, because

on the Fourier transform side, (b) translates to say that (see [KOO, pp. 183-184])

lim   2/_1log|/(-¿2/,22)| =0
y^ + oc

for all 22 G n_ U {00}. The problem is how to convert this information into an

estimate of the L\(R+) norm. This is where condition (5.1) comes in: it implies

that
/■OO

SUp     /      (l + ¿^)|Ji/(z1,¿2)|2(Í¿2 <00.

Consider the space Lf(R+) of measurable functions g on R+ for which

(1 + x2)\g(x)\2 dx < 00;r
Jo

clearly L2(R-|_) C L^R^.). When equipped with convolution multiplication and

the natural Hubert space norm, L2(R+) is a Banach algebra (see [TCH]), and its

image under the (injective) Gelfand (or Fourier) transform is the space i/2(n_)
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SUP     ll   12.,   i  iogVI/fcl.^)

consisting of those g G ü2(n_) for which g' G ü2(n_). Denote by ü2(n_) © C

the unitization of ü2(n_). Assume g = p + X G HX(U-) © C is invertible, with

ip £ ü2(n_) and A G C, and

llffll/í?(n_)ec < 1)        P/sll//-(n_) < C.

What can then be said about the ü2(n_)©C-norm of 1/g? This is the question we

need to resolve to convert the estimate of the sup-norm of the Fourier transform of

(Jif(z, -))*_1 into an estimate of the actual Lg(R+)-norm (observe that the norm

on L2(R+) is stronger than that of L1(R+)). An estimate of ||l/ff||//2(n_)©c that

grows like a power of C will be perfectly acceptable, because then the fact that

|Imzi|

zleii- \zi\2 + 1

is uniformly bounded in zx G n_, which is a consequence of Lemma 1.3, or rather,

its proof, will entail that

-fesLiogiKÄM.or^iLii^,

is uniformly bounded, and when one of these quantities tends to 0 as zi —► oo, the

other one does, too.

Since (1/0)' = -g'/(g)2,

ll(l/ff)'llir»(n_) < WWhHii-) ■ P/<?llr/oo(rM < C2,

so what remains to be shown is that we can control \\l/g — l./A||#2(n_) + 1/|A|.

Clearly, Í/C < |A| < 1. Now

/ \l/g(x) - 1/A|2 dx = \X\-2 f \p(x)\2 ■ \g(x)\-2 dx < C4 [ \p(x)\2 dx < C\
Jr Jr Jr

which enables us to conclude that the i/2(n_) © C-norm of 1/g grows like the

square of C.

The final touches on the proof—to show * = 0—can be filled in by the reader

by studying carefully the proofs of Theorems 2.1 and 4.1 and possibly consulting

[NYM, GUR, or HED].

REMARK 5.2. (a) One is inclined to suspect that Theorem 5.1 is true also

without condition (5.1).

(b) Some functions in Ll(R\) are convolution products of a measure in

L1(R2f,R+) and a finite Borel measure on (R+ U {0}) x R+ that is absolutely

continuous with respect to area measure on R\, and with respect to linear mea-

sure on {0} x R+. Theorem 5.1 gives some insight about the solution to Levin's

problem for such functions.

6. Final remarks. A natural question is what happens in §2 if we consider

closures of finitely generated instead of principal ideals. Let fi,...,fn £ A(D2)

have f|j Z(fj) C {1} x D. When does the closure I(fx, ...,/„) of the A(D2)-ideal

generated by /i,..., /„ contain I({1} x D)? It is not hard to see that the condition

(6.1) inf limsupmax(l - 0 log 1/7(^22)! = 0
¿2GD   t_,_       7
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is necessary. On the other hand, it is not sufficient, because the ideal appearing in

Example 2.5(b) is generated (after closure) by the functions

fi{zi,z2) = zi - z2,        (zi,z2)£B2,

and

/2(2i,22) = (zi - l)exp((2, + l)/(zx - 1)),        (zi,z2) £ B2,

and yet these functions meet (6.1).

However, one can show that I(fi,... ,/„) D I({1} x D) holds if

(6.2) inf maxlog|/J(z1,z2)|>-C/(l-|z1|),        zx E D,
Z26D   ]

for some constant C, and

(6.3) lim    inf max(l - 01og|/,-(f,Z2)| = 0.
t->i- z2eD   j

To see how to obtain this result, fix ç £ B, and consider the "corona problem" of

finding gi,...,gn £ A(B) such that

(6.4)
3=1

Our assumptions (6.2)-(6.3) are in terms of control of the quantity

5(c) = inf max|/j(c,z)|.
zeD   ]

By Wolff's solution to the corona problem for i/°°(D) [GAR, p. 327], we can find

9i,- ■ ■ ,9n S H°°(B) satisfying (6.4) such that

<C-n2-6(c)-\(6.5) \9]\\oo 1. ,n,

for some constant C. To convert these corona solutions into disc algebra functions,

we can use the following trick, which was communicated to me by Donald Marshall.

Let r £ (0,1) and observe that

n

5Z/j(?1»-z)9j(rz) = l,        zGD.
i=i

If r is sufficiently close to 1,

¡C/j(í>*)í¿(«o-i
1=1

1

because fd G A(D2). Then

9j{z) = 9]{rz)/ [ 53/j(?, 2)ffM zGD,

is in A(D), solves (6.4), and satisfies (6.5), too, because ||ffj||oo < 2||gj||. Put

n

!c{zi,z2) = ^f3{zi,z2)9j{z2), (21,22) GD2,

3 = 1
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which is an element of i(/i,..., fn), and satisfies fc(ç, z2) = 1, z2 £ B, and

n

(6.6) ||/f || < C ■ n2 ■ 6(c)-3 £ \\fA\ = C(n)6(c)-3.

3=1

The function

TJ¿zi,z2) = (f¿zi,z2) - l)/(zi - Ç),        (z1,z2)GD2,

is an element of the coset (? - zi + i(/i, • • ■, fn))'1 for c G D, so by (6.6) our

assumptions (6.2)-(6.3) on /i,...,/n will enable us to pull through the proof of

Theorem 2.1. Unfortunately, neither (6.2) nor (6.3) is necessary, as the following

example shows.

EXAMPLE 6.1. For 1/2 < a < 1, let ¡Pa be the disc algebra function

V?Q(z) = (z - 1) exp(-((l + z)/(l - z))a),        z G D.

It is easy to check that <pa is an outer function. Put

f(zi,z2) = <pa(z2)    and    g(zx,z2) = I - z2 - (1 - zx)2,        (2i,z2)gD2.

By Theorem 2.1, 1(f) — I(B x {1}), and since 0(21,1) = (1 - zx)2 is outer and

vanishes at zx = 1 only, we conclude that I(f,g) = I{{{1,1)})- On the other hand,

lim    inf (1 - Ologmax{|/(i,z2)|,|0(t,22)|} = -00.
t—>1~ z2€D
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