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1. Introduction

1.1. Orthogonal polynomials. We consider polynomials in one complex variable of the
form

(1.1.1) P (z) = cnz
n + cn−1z

n−1 + . . .+ c0,

where c0, c1, . . . , cn are complex numbers. If cn 6= 0, we say that P has degree n, and call
cn is the leading coefficient. We denote the (n+ 1)-dimensional space of all polynomials of
the form (1.1.1) by Poln+1. Given a positive Borel measure µ with infinite support on the
complex plane C, with finite moments

(1.1.2)
∫
C
|z|2kdµ(z) <∞, 0 ≤ k ≤ N,

for some positive integer N , we define the system {Pn(z)}Nn=0 of normalized orthogonal
polynomials (ONPs) with respect to µ recursively by applying the Gram-Schmidt algorithm
to the sequence {zn}Nn=0 of monomials. Equivalently, the orthogonal polynomial Pn is the
unique element in Poln+1 of unit norm in L2(C, µ) with positive leading coefficient cn > 0,
such that for all lower degree polynomials q ∈ Poln we have∫

C
Pn(z)q(z)dµ(z) = 0.
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When the measure µ = µm depends on a parameter m, the orthogonal polynomials will be
denoted by Pm,n, where the first index is the parameter for the measure, and the second is
the degree of the polynomial.

For additional definitions and notation we refer the reader to §1.9.

1.2. Carleman-Szegő asymptotics. The 1920s witnessed a rapid development in the
understanding of orthogonal polynomials and related kernel functions. Among the pioneers
were Gabor Szegő, Stefan Bergman and Torsten Carleman. One of the early results is that
of Szegő [55] (see also [56]), who considered the orthogonal polynomials in L2(Γ, ds), where
Γ a real-analytically smooth Jordan curve in the complex plane C supplied with normalized
arc length measure ds = (2π)−1|dz|. Let C \ Γ = Ω ∪ Ωe be the decomposition of the
complement into disjoint connected components, where Ω is bounded and Ωe is unbounded,
and denote by φ the conformal mapping of the exterior domain Ωe onto the exterior disk
De := {z ∈ C : |z| > 1}, which fixes the point at infinity with positive derivative. Szegő’s
theorem asserts that

(1.2.1) Pn(z) =
√
φ′(z)[φ(z)]n (1 + O(ρn)) , z ∈ Ωe ,

where ρ is some number with 0 < ρ < 1. Due to the real-analytically smooth boundary,
the conformal mapping φ extends conformally past the boundary ∂Ω. With the extended
mapping still denoted by φ, the asymptotic formula (1.2.1) remains valid in a neighborhood
of Ωe ∪ Γ.

Slightly later, Carleman [13, 14] – inspired by the work of Szegő – considered instead the
orthogonal polynomials in L2(Ω, dA), where dA = (2πi)−1dz ∧ d z̄ denotes the normalized
area element and Ω is a simply connected domain with real-analytic boundary curve Γ. He
found an analogous asymptotic formula for the planar orthogonal polynomials, which holds
in a neighborhood Ω̃e of the closure of the exterior domain Ωe and is expressed in terms of
the conformal mapping φ:

Pn(z) = (n+ 1)
1
2 φ′(z)[φ(z)]n (1 + O(ρn)) , z ∈ Ω̃e ,

for some ρ with 0 < ρ < 1. In the 1960s, Suetin extended Carleman’s result to domains
whose boundary has a lower degree of smoothness, as well as to weighted cases (see the
monograph [54]). We should also mention the more recent work of Dragnev and Miña-Diaz
([18], [19], and [43]) which strengthens Carleman’s theorem on orthogonal polynomials,
and gives information on the asymptotic distribution of the zeros. In the work [35], which
expands on ideas developed here, we derive a complete asymptotic expansion for the or-
thogonal polynomials in a weighted Carleman setting. Earlier, only the first term of the
expansion was known.

In the above asymptotic formulæ a Jacobian factor appears, it is (φ′)
1
2 in the case of

Szegő’s theorem and φ′ in Carleman’s case. By inspection, the orthogonal polynomials
are asymptotically push-forwards of the monomials under the conformal mapping in the
relevant L2-space.

We wish to contrast the above-mentioned results with the more classical study of orthog-
onal polynomials on the real line R. Here, the earliest work is associated with Legendre,
Jacobi, Chebyshev, Hermite, Laguerre, and Gegenbauer, with further contributions by
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Markov, Stieltjes, Szegő, Bernstein, and Akhiezer. The structure of orthogonal polynomi-
als on the line is rather rigid with the appearance of a three-term recursion relation, which
comes from the fact that multiplication by the independent variable is self-adjoint on the
weighted L2-space. Analogous rigidity applies to the orthogonal polynomials on the unit
circle T as well. These facts are basic in many of the standard approaches to the asymp-
totics of orthogonal polynomials, see e.g. [51, 52]. Going beyond measures supported on
the line or the circle, the rigidity is lost (except in some special cases, including arc length
measure on ellipses [20]). For planar orthogonal polynomials, recursion formulæ are rare,
even if we allow any finite number of terms [44].

1.3. Exponentially varying weights. For a C2-smooth function Q : C → R ∪ {+∞}
called the potential, subject to the growth bound

(1.3.1) lim inf
z→∞

Q(z)

log |z|
> 1

and a real parameter m > 0, we consider the weighted area measures of the form

dµ2mQ(z) = e−2mQ(z)dA(z), z ∈ C

where we recall that dA denotes the normalized planar area element. The condition (1.3.1)
guarantees that the measure µ = µ2mQ has finite moments (1.1.2), with upper range given
by N = Nm := d(1 + ε1)me − 2 for some ε1 > 0. Here, d·e denotes the standard ceiling
function. This allows us to consider the sequence {Pm,n}0≤n≤Nm of normalized orthogonal
polynomials (ONPs) with respect to the measure dµ2mQ where n denotes the degree (cf.
§1.1). Under certain additional assumptions on the regularity of the weight Q, we will
obtain an asymptotic expansion of Pm,n valid as m and n tend to infinity with the ratio
τ = n

m confined to an open interval around τ = 1.
The motivation for studying this particular class of orthogonal polynomials comes from

the theory of Random Normal Matrix (RNM) ensembles, a particular instance of two-
dimensional Coulomb gas. If m is a positive integer, the connection is that the eigenvalue
process associated to an m×m matrix from the RNM-ensemble with potential Q is deter-
minantal with correlation kernel Km given by

Km(z, w) = Km(z, w) e−m(Q(z)+Q(w)) where Km(z, w) =

m−1∑
j=0

Pm,j(z)Pm,j(w),

see §5.1 below for details. Analogous families of exponentially varying weights confined to
the real line appear in connection with the study of random Hermitian matrices. In the
1980s, successive progress was made towards understanding the asymptotics of weighted
ONPs on the real line, with important contributions by Freud, Nevai, Lubinsky, Mhaskar,
Saff, and Totik, to mention a few (see e.g. the monographs [42], [53], and [59]). A deeper
understanding came through the efforts of Fokas, Its, Kitaev, and Deift and Zhou, whose
work brought novel methods into play. Their approach analyzes the ONPs with respect to
rather general potentials Q on the real line in terms of solutions to matrix Riemann-Hilbert
problems, see, e.g., [16, 17, 23, 24].

In the work [39] of Its and Takhtajan a natural soft Riemann-Hilbert problem, or matrix
∂̄-problem, is considered, whose solution would give us the orthogonal polynomial Pm,n for
the planar measure µ2mQ. However, unlike the one-dimensional situation, it is not clear
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Figure 1.1. (left) The Berezin density Km(z0, z0)−1|Km(z, z0)|2 with
Q(z) = 1

2 |z|
2 for the boundary point z0 = 1 and m = 30. (right) The

orthogonal polynomial density |Pm,n(z)|2e−2mQ(z) for n = 25,m = 20 and
Q(z) = 1

2 |z|
2 − Re(tz2), where t = 0.2.

how to constructively solve these soft Riemann-Hilbert problems. The main obstruction
appears to be the complex conjugation of the matrix, which results from the sesquilinearity
of the inner product. While our analysis of the asymptotics of the ONPs is different, we
try to connect with the Its-Takhtajan approach later on in §7.

1.4. The boundary universality conjecture. We return to the study of random normal
matrix ensembles with the associated correlation kernel Km. Macroscopically, the situation
is well understood. For instance, in the limit as m → +∞ the eigenvalues condensate
to a certain compact set S1, called the droplet, or alternatively spectral droplet (see §5.1
below). For simplicity, we assume below that Q is C2-smooth with positive Laplacian
∆Q > 0 in a neighborhood of S1. An interesting question is how the process behaves at the
microscopic level, which we express in rescaled coordinates as follows. For a point z0 ∈ C
with ∆Q(z0) > 0 and a direction n ∈ T, we let

(1.4.1) zm(ξ) = z0 + n
ξ√

2m∆Q(z0)

where ∆z = ∂z∂̄z denotes the (quarter) Laplacian, and consider

(1.4.2) ρm(ξ) =
1

2m∆Q(z0)
Km(zm(ξ), zm(ξ)).

We introduce the notation E◦ for the interior and E for the closure of a subset E ⊂ C, while
Ec = C \ E denotes the complement. Near any bulk point z0, i.e., a point in the interior
∈ S◦1 of the droplet, there exists a full asymptotic expansion of the kernel Km, see e.g.
[3, 4]. In this case limm ρm(ξ) = 1, uniformly on compact subsets. Away from the droplet,
i.e. for z0 ∈ Sc1 we instead have limm ρm(ξ) = 0. It remains to analyze the boundary points
z0 ∈ ∂S1. An illustration of this blow-up procedure for a boundary point in the context of
RNM-ensembles is supplied in Figure 1.2.

A natural simplifying assumption is that the boundary ∂S1 is smooth near z0, in which
case we let n be the outer normal to S1 at z0. It is not known what is the limit of the
density ρm, but the following universal behavior is expected.
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Conjecture 1.4.1 (boundary universality). Let z0 ∈ ∂S1 and assume that ∂S1 is smooth
in a neighborhood of z0. Then the density ρm converges as m→∞ to the limit

ρ(ξ) = erf(2 Re ξ).

Here, we write erf for the complex error function

erf(z) =
1√
2π

∫ ∞
z

e−t
2/2dt,

where the integral is taken along a suitable contour from z to the origin and then from
the origin to ∞ along the positive real line. This conjecture, which has circulated in the
community at least since 2008, may have appeared in print for the first time in Riser’s thesis
[46]. It has been verified in some specific cases, and partial results have appeared recently.
In connection with this we want to mention the work by Ameur, Kang, and Makarov [5]
who used a limiting form of the Ward identities to show that if ρ(ξ) is a priori known to
only depend on Re ξ, then it must necessarily be of the form predicted by Conjecture 1.4.1.
The full conjecture however remains open. In the setting of Kähler manifolds, a similar
problem appears in the context of partial Bergman kernels defined by vanishing to high
order along a divisor. Under the assumption of S1-invariance around the divisor, Ross and
Singer [47] obtain the error function asymptotics near the emergent interface around the
divisor (see also the work of Zelditch and Zhou [62]). In recent work, Zelditch and Zhou
[63] find that this is a universal edge phenomenon along interfaces in the context of partial
Bergman kernels defined by a quantized Hamiltonian.

Let us briefly motivate why the interface asymptotics for the RNM-ensembles should be
approached via the orthogonal polynomials. The standard methods to obtain the asymp-
totics of Bergman kernels are local in nature, both the peak section approach of Tian (see
[58]) as well as the microlocal approach of Boutet de Monvel and Sjöstrand, as explained
by Berman, Berndtsson, and Sjöstrand [9] (see also [28]). The same applies to older work
of Hörmander [37] and Fefferman [22]. One reason to expect the boundary universality
conjecture to be difficult is the apparent nonlocality of the correlation kernel. To illustrate
this, we consider the Berezin density of [2], associated with secondary quantization and
complementary to the Palm measure, cf. [12], given by

B〈z0〉m (z) = Km(z0, z0)−1|Km(z, z0)|2e−2mQ(z).

We find numerically that for boundary points z0 ∈ ∂S1, this probability density develops
a noticeable ridge with slow decay along the whole boundary of the spectral droplet (see
Figure 1.1 (left)). For this reason we focus our analysis on the orthogonal polynomials,
which have an even more pronounced nonlocal behavior (see Figure 1.1 (right)). Indeed,
for rather general potentials Q, the mean field approximation of the random normal matrix
model [3, 4] supplies information regarding the individual orthogonal polynomials, and gives
the weak-star convergence of measures

|Pm,n|2e−2mQ → $(·, Ĉ \ S1,∞),

as n,m → ∞ with n = m + O(1). Here, the left-hand side is the density of a probability
measure, and the right-hand side expression $(·, Ĉ \ S1,∞) stands for harmonic measure
of the domain Ĉ \ S1 evaluated at the point at infinity, which has the interpretation of
hitting probability of Brownian motion starting at ∞. We observe that harmonic measure
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Figure 1.2. The RNM process associated to a quadratic potential (The
Ginibre ensemble) with blow-up at a boundary point (courtesy of Nam-Gyu
Kang).

is concentrated to the boundary, so that the above convergence may be interpreted as
boundary concentration. Within the random normal matrix model, the addition of a new
particle has the net effect of adding a term |Pm,n|2e−2mQ of highest degree. This means
that the net effect of adding a particle is felt primarily along the droplet boundary. As
a consequence, we obtain a growing chain of spectral droplets Sτ , so that the probability
wave |Pm,n|2e−2mQ concentrates along ∂Sτ as m,n→∞ with n = mτ .

Finally, we mention that the orthogonal polynomial approach has proven to be successful
in several special cases. For instance, when Q(z) = 1

2 |z|
2 + aRe(z2) with a > 0, Lee and

Riser [41] obtain the orthogonal polynomials in explicit form, and verify Conjecture 1.4.1
in this case. Along the same lines, in [10], Balogh, Bertola, Lee and McLaughlin consider
potentials Q which are perturbations of the standard quadratic potential of the form

Q(z) =
1

2
|z|2 − c log|z − a|2,

for some a ∈ R, c > 0. For this Q, they obtain an asymptotic expansion of the orthogonal
polynomials. For parameters a and c such that the droplet Sτ does not divide the plane,
the expansion is expressed in terms of the properly normalized conformal mapping of the
complement Scτ onto the exterior disk De, denoted φτ . After some rewriting, their formula
reads

(1.4.3) Pm,n(z) =
(m

2π

)1/4√
φ′τ (z)[φτ (z)]nemQτ (z)

(
1 + O(m−1)

)
,

valid in a neighborhood of the closed exterior of the droplet for n
m = τ + O(m−1), where

Qτ is the bounded holomorphic function on Scτ , with real part equal to Q on the boundary
∂Sτ , extended analytically across the boundary. Using the asymptotics (1.4.3), they verify
Conjecture 1.4.1 for the given collection of potentials. The analysis in [10] is based on
Riemann-Hilbert problem methods, which are accessible due to a miraculous identity which
transforms the Hermitian orthogonality over the plane into bilinear orthogonality relations
along curves. The latter approach should be compared with the work of Bleher and Kuijlaars
[11] in the context of a cubic potential.

At the physical level, it is understood that the asymptotic formula (1.4.3) should hold
for the wider class of potentials of the form Q(z) = 1

2 |z|
2 +H(z), where H is harmonic in

a neighborhood of the droplet (the so-called Hele-Shaw potentials) [1, 57, 60]. To the best
of our knowledge, no higher order correction terms have been identified earlier.
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Figure 1.3. Laplacian growth of the compacts Sτ for the potentialQ(z) =
1
2 |z|

2 − 2−
1
2 log |z + i | (boundary curves indicated).

1.5. Summary of the results. Here, we study the orthogonal polynomials with respect
to a rather general exponentially varying weight e−2mQ in the complex plane. To be more
precise, we will work with potentials Q that are admissible in the sense of the definition
below. Under C2-smoothness and some growth assumption on Q, we consider for τ > 0 the
coincidence set

S?τ := {z ∈ C : Q̂τ (z) = Q(z)},
where Q̂τ solves the obstacle problem

Q̂τ (z) = sup {q(z) : q ∈ Subhτ (C), q ≤ Q on C} .

Here, Subhτ (C) denotes the convex body of subharmonic functions in the plane which grow
at most like τ log|z| at infinity. The function Q̂τ is C1,1-smooth and harmonic outside the
set S?τ . Moreover, if Q has sufficient growth, S?τ is compact. For a subset E ⊂ C we write
1E for the corresponding indicator function. The support of the probability measure µτ
given by

dµτ = 2τ−11S?τ∆QdA

is denoted by Sτ and called the droplet. Clearly, Sτ ⊂ S?τ , and S?τ \ Sτ is a null-set for the
measure |∆Q|dA. We note that µτ is the equilibrium measure for the weighted logarithmic
energy problem in the external field τ−1Q. More details are supplied in §2.1 below.

Definition 1.5.1. The potential Q : C → R is said to be τ -admissible at τ = τ0 (or, in
short, τ0-admissible) if Sτ0 = S∗τ0 and the following conditions are satisfied:

(i) Q is C2-smooth in the entire complex plane,
(ii) Q is real-analytic and strictly subharmonic (i.e. ∆Q > 0) in a neighborhood of Sτ0 ,
(iii) Q is grows sufficiently fast at infinity:

(1.5.1) lim inf
|z|→+∞

Q(z)

log |z|
> τ0.

(iv) The boundary ∂Sτ0 is a smooth Jordan curve.

Note that under these conditions, it follows that Q̂τ0(z) < Q(z) on Scτ0 . As a consequence,
we may exclude the immediate birth of additional components of Sτ as τ increases from τ0.

In the sequel, we consider τ0 = 1, and assume that Q is τ -admissible at τ = 1. As
observed in §1.3, the condition (1.5.1) with τ = 1 guarantees that all polynomials of degree
up to d(1+ε1)me−2 belong to the space L2(C, e−2mQdA), for some fixed small ε1 > 0. As Q
is assumed 1-admissible, the curve ∂S1 is smooth, simple and closed. By known properties
of Laplacian growth, this assumption implies that the same holds for the boundaries ∂Sτ
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for τ ∈ Iε0 := [1− ε0, 1 + ε0] for some ε0 > 0 (cf. [32, 29]). By considering a smaller ε0, we
can make sure this property holds on the larger interval I2ε0 as well, so that in particular
Q grows at least like (1 + 2ε0) log |z| + O(1) at infinity. Moreover, the assumption of 1-
admissibility entails that the smooth curves ∂Sτ are actually real-analytically smooth for
τ ∈ Iε0 . This follows from the work of Sakai [50] on boundaries with a one-sided Schwarz
function, as observed in [32].

We now proceed to present our main theorem. To set things up, we denote for τ ∈ Iε0
by φτ the conformal mapping φτ : Scτ → De, normalized by φτ (∞) = ∞ and φ′τ (∞) > 0.
As a consequence of 1-admissibility, φτ extends to a conformal mapping Kcτ,0 → De(0, ρ0,0),
where 0 < ρ0,0 < 1 and Kτ,0 ⊂ Sτ denotes an appropriate compact continuum. Here, we
use the notation De(0, r) := {z ∈ C : |z| > r} for the exterior disk of radius r centered at the
origin. We let Qτ denote the bounded holomorphic function on Scτ whose real part equals
the potential Q along the boundary ∂Sτ , and whose imaginary part vanishes at infinity. By
possibly adjusting ρ0,0, we may ensure that Qτ extends holomorphically to Kcτ,0.

For a subset E ⊂ C, we use the notation distC(z, E) = infw∈E |z − w| for the Euclidean
distance from z to the set E .

Theorem 1.5.2. Assume that Q is 1-admissible. Given a positive integer κ there exist
bounded holomorphic functions Bτ,j defined in a fixed neighborhood of Scτ such that for any
positive real A, the asymptotic formula

Pm,n(z) = m
1
4 [φ′τ (z)]

1
2 [φτ (z)]nemQτ (z)

( κ∑
j=0

m−jBτ,j(z) + O
(
m−κ−1

))
,

holds, where the error term is uniform over all z ∈ C with

distC(z,Scτ ) ≤ A(m−1 logm)
1
2

as n = τm→ +∞ along the integers with τ ∈ Iε0 .

In other words, the orthogonal polynomials Pm,n enjoy an asymptotic expansion

Pm,n(z) ∼ m 1
4 [φ′τ (z)]

1
2 [φτ (z)]nemQτ (z)

(
Bτ,0(z) + 1

mBτ,1(z) + . . .
)
,

valid provided that distC(z,Scτ ) ≤ A(m−1 logm)
1
2 as n = τm → +∞ and τ ∈ Iε0 , for any

given A > 0.

Remark 1.5.3. (a) We derive Theorem 1.5.2 from an L2-version of the asymptotic expan-
sion, given in Theorem 3.1.2 below. An advantage of the L2-version is that it holds in a
fixed ε-neighborhood of the exterior Scτ .
(b) It is curious to note that the expansion of Pm,n contains the factor (φ′τ )

1
2 , rather than

φ′τ as one might expect from Carleman’s theorem. The square root is more reminiscent of
Szegő’s theorem. We have no satisfactory explanation for this fact, other than appealing to
heuristics based on the steepest descent method. Naturally, the expansion could be written
with φ′τ as a factor, by adjusting the terms Bτ,j accordingly. However, the term Bτ,0 takes
on the simplest possible form with the former choice, as shown in Theorem 1.5.4.

In the context of Theorem 1.5.2, we would like to know the coefficient functions Bτ,j .
How to do find them is explained in the following theorem. For the formulation, we need
the Szegő projection PH2

−,0
of L2(T) onto the conjugate Hardy space H2

−,0 = L2(T) 	H2
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(cf. Subsection 2.5 below). In addition, we need the effective weight Rτ which takes into
account the growth behavior of polynomials and a conformal change-of-variables. It is
defined in a neighborhood of D̄e by

(1.5.2) Rτ = (Q− Q̆τ ) ◦ φ−1
τ ,

where we need to explain what is the function Q̆τ . The solution Q̂τ to the obstacle problem
is a C1,1-smooth function which equals Q on Sτ , while it is strictly smaller and harmonic in
the exterior Scτ . As a consequence of the smoothness of Q and the boundary curve ∂Sτ , the
restriction Q̂τ |Scτ to the exterior extends harmonically across the boundary for each τ ∈ Iε0 .
We denote the extended function by Q̆τ .

Theorem 1.5.4. In the asymptotic expansion of Theorem 1.5.2, we have that Bτ,0 =

π−
1
4 eHQ,τ , where HQ,τ is bounded and holomorphic in Scτ and satisfies ImHQ,τ (∞) = 0,

as well as
ReHQ,τ =

1

4
log∆Q, on ∂Sτ .

Moreover, if HRτ denotes the bounded holomorphic function on De with

ReHRτ =
1

4
log(4∆Rτ ) on T,

and ImHRτ (∞) = 0, then for j = 1, 2, 3, . . ., the coefficients Bτ,j have the form

Bτ,j = [φ′τ ]
1
2 Bτ,j ◦ φτ ,

where the functions Bτ,j are bounded and holomorphic in De, and given by

Bτ,j = cτ,j e
HRτ − eHRτ PH2

−,0
[eH̄Rτ Fτ,j ]

for some real-analytic functions Fτ,j on the circle T and constants cτ,j ∈ R. The functions
Fτ,j as well as the constants cτ,j may be computed algorithmically in terms of the potential
Rτ and the functions Bτ,0, . . . , Bτ,j−1, where Bτ,0 = (4π)−

1
4 eHRτ .

Remark 1.5.5. (a) In the above theorem, all the functions Bτ,j , Bτ,j as well as HQ,τ and
HRτ extend holomorphically across their respective boundaries.
(b) The functions HQ,τ and HRτ are related by

HRτ ◦ φτ =
1

2
log(2φ′τ ) +HQ,τ .

(c) We point out that Theorems 1.5.2 and 1.5.4 together imply that for large enough m,
and for τ = n

m ∈ Iε0 , all the zeros of the polynomial Pm,n(z) lie inside Sτ , and stay away
from the boundary curve ∂Sτ by a distance of at least A(m−1 logm)

1
2 .

While Theorem 1.5.4 gives the asymptotic structure of the orthogonal polynomials, it
remains to specify how to algorithmically obtain the real-analytic functions Fτ,j and the
constants cτ,j , for j = 1, 2, 3, . . .. For k = 0, 1, 2, . . ., let Lk be the differential operator
given by

(1.5.3) Lk[f ] =

3k∑
ν=k

(−1)ν−k2−ν

ν!(ν − k)![∂2
rRτ (reiθ)]ν

∂2ν
r

([
Rτ −

1

2
(r − 1)2∂2

rRτ (eiθ)
]ν−k

f(reiθ)
)
.

This is a differential operator of order 6k, acting on a smooth function f defined in a neigh-
borhood of the unit circle. We are specifically interested in the restriction Lk[f ](reiθ)

∣∣
r=1

,
which expression only involves derivatives of order at most 2k. The operator Lk results
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from the asymptotic analysis of definite integrals using Laplace’s method, as in Proposition
2.6.1 below. Later on, in Lemma 4.1.1, we show the existence of differential operators Mk

with the property that∫
T
eilθ
(
∂2
rRτ (reiθ)

)− 1
2 Lk[r1−lf(reiθ)]

∣∣∣∣
r=1

dθ =

∫
T
eilθMk[f ](eiθ)]dθ,

for l = 1, 2, 3, . . .. We use these operators to rid the left-hand side of any unwanted depen-
dence on the parameter l. In terms of the operators Lk and Mk, we may now express Fτ,j
and cτ,j as follows:

(1.5.4) Fτ,j(θ) =

j∑
k=1

Mk[Bτ,j−k](eiθ), j ≥ 1,

and the real constants cτ,j are given by cτ,0 = (4π)−1/4 while for j = 1, 2, 3, . . .,

(1.5.5) cτ,j = −1

2
(4π)

1
4

∑
(i,k,l)∈תj

∫
T

Mk

[
Bτ,iB̄τ,l

]
(eiθ)ds(eiθ)

where jת = {(i, k, l) ∈ N3 : i, l < j, k ≥ 0, i + k + l = j} and N := {0, 1, 2, . . .}. The
way this algorithm works is that we start with the known function Bτ,0, which in its turn
gives the function Fτ,1 and the constant cτ,1 via (1.5.4) and (1.5.5), respectively. This then
gives Bτ,1 from the expression in Theorem 1.5.4. In the next round, we obtain Fτ,2 and
cτ,2 followed by Bτ,2 in a similar fashion. An inductive procedure gives Fτ,j , cτ,j , and Bτ,j
for all j ≥ 2 as well. Knowing Bτ,j then gives the coefficient function Bτ,j as well, by
Theorem 1.5.4.

As a direct consequence of Theorems 1.5.2 and 1.5.4, we resolve the boundary universality
conjecture (Conjecture 1.4.1) for 1-admissible potentials. For the convenience of the reader,
we recall some notation. For z0 ∈ ∂S1 we denote by n the outward unit normal to ∂Sτ at
z0, and write zm(ξ) for the rescaled variable around z0 given by (1.4.1).

Corollary 1.5.6. Assume that Q is 1-admissible, and denote by km the rescaled kernel

km(ξ, η) =
1

2m∆Q(z0)
Km(zm(ξ), zm(η)).

Then, there exist unimodular continuous functions cm : C → T such that we have the
convergence

lim
m→∞

cm(ξ)c̄m(η)km(ξ, η) = k(ξ, η),

locally uniformly on C2, where the limiting kernel is the Faddeeva plasma kernel

k(ξ, η) = eξη̄−
1
2 (|ξ|2+|η|2) erf(ξ + η̄).

The terminology Faddeeva plasma kernel comes from the plasma dispersion function,
which was tabulated by Faddeeva and Terent’ev in [21].

Remark 1.5.7. The above kernel convergence has an interpretation in terms of determinantal
point processes in the plane. More precisely, the blow-up of the eigenvalue process for the
RNM-ensemble around z0 converges to the Faddeeva plasma point field, with correlation
kernel k(ξ, η). The unimodular continuous functions cm are irrelevant, as they do not affect
determinantal point processes.
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To complement the present exposition on planar orthogonal polynomials, we explain in
[34] how the ideas developed here also apply to give a full asymptotic expansion of the
Bergman kernel for exponentially varying weights when one of the variables is away from
the corresponding droplet. In that setting, the droplet arises typically from the repulsive
effect of patches where ∆Q < 0. This result gives error function transition behavior along
smooth loops of the droplet boundary.

In the follow-up work [36], we intend to explore further the implications of Theorem 3.1.2
and 1.5.4 for the theory of random normal matrices. In particular, we analyze the asymp-
totics of the free energy logZm,Q, where Zm,Q denotes the partition function of the RNM-
ensemble, and relate the analysis to the planar analogue of the classical Szegő limit theorem
on Toeplitz determinants.

1.6. Sketch of the main ideas. The first step towards obtaining Theorem 1.5.2 is the
construction of a family of approximately orthogonal quasipolynomials, defined outside a
compact subset Kτ of the interior of the droplet Sτ . This family of functions have the
property that they are approximately orthogonal to the collection of lower degree polyno-
mials, have the correct polynomial growth at infinity, but need not be well-defined globally
(i.e. on Kτ ). In a second step, these quasipolynomials may be corrected to true polyno-
mials using Hörmander’s ∂̄-estimates. The actual construction depends on our key lemma
(Lemma 3.4.1) which establishes the existence of what we call the orthogonal foliation flow.

We turn to the underlying ideas for the orthogonal foliation flow. Our approach will take
a slightly different point of view than what is used later on. It has the advantage of being
more intuitively direct. The approach begins with the following disintegration formula: let
{γm,n,t}t denote a smoothly varying family of closed simple curves, which foliate a region
Ωm,n when t runs through an interval Jm. If ν(z) denotes the scalar normal velocity of the
curve flow as it passes through the point z, then for a suitably integrable function F we
have

(1.6.1)
∫

Ωm,n

F (z) e−2mQ(z)dA(z) = 2

∫
Jm

∫
γm,n,t

F (z) e−2mQ(z)ν(z)ds(z)dt

We consider the weighted arc length measure e−2mQνds restricted to the curve γm,n,t, and
the associated orthogonal polynomial Pm,n,t of degree n. We would like to find a foliation
{γm,n,t}t of the region Ωm,n such that Pm,n,t = c(t)Pm,n,0, where Pm,n,0 is independent
of the flow parameter t and c(t) is an appropriate positive constant. As a consequence
of (1.6.1), the polynomial Pm,n,0 is then orthogonal to Poln with respect to the measure
1Ωm,ne

−2mQdA. Now, if the foliation covers a sufficiently large enough region Ωm,n, then the
resulting normalized orthogonal polynomial ought to be close to Pm,n itself. In other words,
the two-dimensional orthogonality relations foliate into lower-dimensional orthogonality
relations along a curve family {γm,n,t}t.

The stationarity condition Pm,n,t = c(t)Pm,n,0 is quite demanding, and in fact we do not
know that such a foliation exists, at least if we require it to foliate the entire plane. Instead,
we obtain the foliation in an approximate sense, up to any given precision, so that Ωm,n

covers a band around ∂Sτ of width � m−
1
2 logm. We remark that the stationarity condition

may be thought of as a Hele-Shaw flow condition (see [27], [32]) for the curves γm,n,t,
with respect to the weight |Pm,n,0|2e−2mQ. Hele-Shaw flows are notorious for singularity
formation, after which the foliation flow cannot be continued. The requirement not to
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develop such singularities puts a strong requirement on the weight |Pm,n,0|2e−2mQ. This is
used in an approximate fashion in §6 to devise an algorithm to construct Pm,n,0 together
with the foliation iteratively in a self-improving manner. For technical reasons, we work
with the flow curves Γm,n,t = φτ (γm,n,t) after applying the conformal mapping φτ , and
consider quasipolynomials rather than polynomials.

1.7. An outline of the presentation. In §2, we introduce some auxiliary material which
will be needed later on. In particular, we discuss some aspects of weighted logarithmic
potential theory and obstacle problems, and introduce the concept of weighted Laplacian
growth. Moreover, we collect some results on Hörmander-type L2-estimates for the ∂̄-
operator, and the asymptotic analysis of integrals based on Laplace’s method.

In §3, we introduce the notion of quasipolynomials, and state our key lemma on the
orthogonal foliation flow (Lemma 3.4.1). Using Hörmander-type ∂̄-techniques we obtain
the L2-analogue of the main theorem (Theorem 3.1.2) from the key lemma. The main
theorem (Theorem 1.5.2) then follows from Theorem 3.1.2 by a weighted Bernstein-Walsh
lemma.

In §4, we obtain Theorem 1.5.4, which identifies the coefficient functions in the asymp-
totic expansion. The proof is based on steepest descent analysis. The starting point is the
existence of the expansion of Theorem 1.5.2 which tells us that the probability distribution
|Pm,n|2e−2mQ is approximately a Gaussian ridge centered around ∂Sτ , so by composing
with the conformal mapping φτ we obtain a Gaussian ridge around the unit circle. By
writing the relevant integrals in polar coordinates and applying Laplace’s method in the
radial direction, this structure allows us to collapse the orthogonality conditions into in-
tegral equations on the unit circle. The collapsed orthogonality conditions then reduce
to inhomogeneous Toeplitz kernel equations. The algorithm arises when we solve those
equations.

In §5, we supply more details on determinantal point processes, and give the proof
of Corollary 1.5.6 on boundary universality in the random normal matrix model for 1-
admissible potentials.

In §6, we supply the proof of key lemma on the existence of the orthogonal foliation flow.
The proof is based on an algorithm, which determines both the flow and the asymptotic
expansion of the approximately orthogonal quasipolynomials in an iterative and intertwined
fashion. An outline of the algorithm is provided in Subsections 6.2 and 6.4.

Finally, in Section 7, we connect our orthogonal foliation flow with the Its and Takhtajan
approach involving soft Riemann-Hilbert problems (2× 2 matrix ∂̄-problems).

1.8. Acknowledgments. We wish to thank the anonymous referees for several helpful
and insightful comments, which have significantly improved the manuscript. In addition,
we would like to thank Gernot Akemann, Yacin Ameur, Alexander Aptekarev, Robert
Berman, Maurice Duits, Nam-Gyu Kang, Simon Larson, Nikolai Makarov, Julius Ross,
Seong-Mi Seo, and Ofer Zeitouni for stimulating discussions.

1.9. Notation and conventions. We denote by ∂z and ∂̄z the standard Wirtinger deriva-
tives, given by

∂z =
1

2

(
∂x − i∂y

)
and ∂̄z =

1

2

(
∂x + i∂y

)
, z = x+ iy.
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When the dependence on z is clear we will omit the subscript and simply write ∂ and ∂̄.
The Laplacian factorizes as ∆ = ∂∂̄ (notice that this is a quarter of the usual Laplacian).

The Riemann sphere is denoted by Ĉ, and we identify it with the extended complex
plane Ĉ = C ∪ {∞} via stereographic projection. If Γ is a bounded Jordan curve, and Ωe

denotes the unbounded component of C \ Γ, then the domain Ωe is simply connected if
regarded as a domain on the Riemann sphere Ĉ. As a consequence, the Riemann mapping
theorem guarantees that there exists a conformal mapping φ : Ωe → De onto the exterior
disk De. This mapping is uniquely determined if we require that

(1.9.1) φ(∞) =∞ and φ′(∞) > 0.

A conformal mapping of unbounded domains which is subject to the normalization (1.9.1) at
infinity is called orthostatic. Unless specified otherwise, a conformal mapping φ : Ω1 → Ω2

is tacitly assumed to be onto.
We use the standard Landau notation for control of asymptotic quantities. Namely, if

f(t) and g(t) denote two positive functions defined for t ∈ (0, 1], we say that f(t) = O(g(t))

as t→ 0 if there exists a constant C with 0 < C <∞ such that f(t) ≤ Cg(t) for all t > 0

sufficiently small. Moreover, we say that f(t) = o(g(t)) as t → 0 if limt→0 f(t)/g(t) = 0.
Moreover, we use the notation f(t) � g(t) to say that f(t) = O(g(t)) and g(t) = O(f(t)),
as t→ 0. Similar comparisons when f and g are functions defined on more general sets are
understood analogously.

For a positive Borel measure µ supported on the set Ω ⊂ C, we denote by L2(Ω, µ) the
standard L2-space of square integrable functions with respect to µ, with inner product

〈f, g〉µ =

∫
Ω

f(z)g(z) dµ(z).

For a domain Ω ⊂ C, we define the Bergman space A2(Ω, µ) as the subspace of L2(Ω, µ)

consisting of all f ∈ L2(Ω, µ) which are holomorphic on Ω. For an integer n and unbounded
Ω, we denote by L2

n(Ω, µ) and A2
n(Ω, µ) the subspaces of functions f with

|f(z)| = O(|z|n−1), z ∈ Ω, |z| → +∞.

If Ω = C is the entire complex plane, we drop it from the notation. Measures of the form
dµ = e−φdA play a major role in our analysis, and for such measures we use the shorthand
notation A2

φ(Ω), L2
φ(Ω), A2

φ,n(Ω), and L2
φ,n(Ω) for the spaces discussed above. The L2 norm

and inner products are denoted by ‖·‖µ and 〈·, ·〉µ, or simply by ‖·‖φ and 〈·, ·〉φ in the case
of measure of the form dµ = e−φdA.

Frequently used notation. For the convenience of the reader, we supply a list of frequently
used notation.

C, R, T Complex plane, real line, and unit circle, respectively.
D, De Open unit disk D = {z : |z| < 1} and exterior disk De = {z : |z| > 1}, also

for arguments (z0, r) denoting center and radius of the boundary circle.
Z, N, Z+ Integers, natural numbers N = {0, 1, 2, . . .} and positive integers

Z+ = {1, 2, 3, . . .}, respectively.
Ec, E◦, E Complement, interior, and closure of the set E . The complement is

understood as C \ E , unless specified otherwise.
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1E Indicator function for the set E .
∂z, ∂̄z Wirtinger derivatives, given by ∂z = 1

2 (∂x − i∂y), ∂̄z = 1
2 (∂x + i∂y),

where z = x+ iy.
∆ Laplacian, which factorizes as ∆ = ∂∂̄. N.B.: this equals one-quarter of

the usual Laplacian.
Poln Space of polynomials of degree at most n− 1.
Q, Q̂τ The potential and the solution to obstacle problem with growth τ log |z|

at infinity, respectively.
Q̆τ Harmonic extension of Q̂τ

∣∣
Scτ

across ∂Sτ .
Q~
τ Bounded harmonic extension of Q

∣∣
∂Sτ

to Scτ .
Qτ Holomorphic function on Scτ with ReQτ = Q~

τ and ImQτ (∞) = 0.
Sτ ,S?τ The droplet and the coincidence set for the obstacle problem, respectively.

These are equal under the τ0-admissibility assumption, for |τ − τ0| small.
K0,τ , Kτ Compact subsets of S◦τ related with the radii ρ0,0 and ρ0, respectively.
Iε0 Iε0 = [1− ε0, 1 + ε0] for a small parameter ε0 > 0.
φτ Conformal mapping φτ : Scτ → De with φτ (∞) =∞ and φ′τ (∞) > 0.
Rτ The modified potential, given by (Q− Q̆τ ) ◦ φ−1

τ .
χτ,0, χτ,1 Smooth cut-off functions related via χτ,0 = χτ,1 ◦ φτ .
$(E,Ω, z0) Harmonic measure of E relative to (Ω, z0).
H2, H2

−, H
2
−,0 Hardy spaces, cf. §2.5.

HΩ The Herglotz operator for a domain Ω containing the point at infinity.
PH2 ,PH2

−
Orthogonal projection onto Hardy spaces.

,ת ,ס ,ט Z Index sets, appearing with various subscripts and superscripts.
See pp. 36, 43 and 49.

Lk, Mk Differential operators arising in steepest descent calculations.
Bτ,j , Bτ,j Coefficient functions in asymptotic expansions of ONPs, related through

the conformal mapping φτ (see Theorem 1.5.4).
ψs,t, ψ̂j,l, bj Conformal mappings related to the orthogonal foliation flow, their Taylor

coefficients in (s, t), and bounded holomorphic coefficient functions.
Γm,n,t, Dm,n The curves of the orthogonal foliation and the foliated region, respectively.
Πs,t, Π̂j,l The logarithmic density in the master equation and its Taylor coefficients

in (s, t), see §6.4.
Λm,n Canonical positioning operator, cf. §3.3.
F
〈κ〉
m,n, f

〈κ〉
m,n Quasipolynomial and analogous bounded function, related through Λm,n.

δm The number δm = m−
1
2 logm.

Â(%, σ) The 2σ-fattened diagonal annulus, cf. §6.1.
≺L, ≺OL Lexicographic and order-lexicographic orderings.
POL(·) Polynomial complexity classes, cf. §6.7.
Gµ,ν , Hµ,ν Non-linear differential expressions for Faà di Bruno’s formula.

2. Preliminaries

2.1. An obstacle problem and logarithmic potential theory. In this section, we
follow the presentation of [29]. The standard reference for the potential theoretic aspects
of this material is the monograph [49] by Saff and Totik.
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For a positive real parameter τ , let Subhτ (C) denote the convex set of all subharmonic
functions q : C→ R ∪ {−∞} on the complex plane C which meet the growth bound

q(z) ≤ τ log |z|+ O(1)

as |z| → ∞. For lower semicontinuous potentials Q subject to the growth condition (1.5.1)
and for 0 < τ ≤ τ0, we let Q̂τ be the solution to the obstacle problem

Q̂τ (z) := sup
{
q(z) : q ∈ Subhτ (C) and q ≤ Q on C

}
,

and observe that trivially Q̂τ ≤ Q, and if we regularize Q̂τ on a set of logarithmic capacity
0 (and keep the same notation for the regularized function) then Q̂τ ∈ Subhτ (C) holds.
Suppose now that Q is C2-smooth. Standard regularity results then give that Q̂τ is C1,1-
smooth, so that the partial derivatives of order 2 of Q̂τ are locally bounded (in the sense
of distribution theory), see e.g. [8] for a simple argument to this effect. As a consequence
of the growth condition (1.5.1) on Q, the coincidence set defined by

S?τ := {z ∈ C : Q̂τ (z) = Q(z)}

is compact, and moreover, a Perron-type argument shows that Q̂τ is harmonic off S?τ . It
now follows from the C1,1-smoothness that ∆Q̂τ = 1S?τ∆Q holds in the sense of distribution
theory (see [40, p. 53]).

The above obstacle problem has a direct relation with weighted potential theory. The
weighted logarithmic energy, with respect to a continuous weight function V : C→ R, of a
compactly supported finite real Borel measure µ is defined as

IV [µ] =

∫
C×C

log
1

|z − w|
dµ(z)dµ(w) + 2

∫
C
V (z)dµ(w).

With V = τ−1Q, we set out to minimize the energy Iτ−1Q[µ] over all compactly supported
Borel probability measures µ. There is a unique such minimizer, called the equilibrium
measure, which we denote by µτ . The connection with the obstacle problem is via the
relation

(2.1.1) dµτ (z) = 2τ−1∆Q̂τdA = 2τ−11S?τ∆Q(z)dA.

As a consequence, we may recover the logarithmic potential for the equilibrium measure
from Q̂τ and a real constant FQ,τ :

Uµτ (z) :=

∫
C

log
1

|z − w|
dµτ (z) = −τ−1Q̂τ (z) + FQ,τ , z ∈ C.

Since µτ is a probability measure by definition, we see from (2.1.1) that ∆Q ≥ 0 a.e. on S?τ .
So, the coincidence set S?τ will avoid the open subset of the plane where ∆Q < 0, which may
be nonempty. We call the support (as a distribution) of the equilibrium measure µτ the
droplet, and denote it by Sτ . We alternatively call it the spectral droplet, due to the spectral
interpretation as the accumulation set for the eigenvalues of random matrices. In general
this is a subset of the coincidence (or contact) set S?τ . However, the difference set S?τ \Sτ is
small, in the sense that it is a null set with respect to the weighted area measure |∆Q|dA.
In this presentation, we will assume throughout that the potential Q is 1-admissible. Under
this assumption, we have the equality Sτ = S?τ for τ ∈ Iε0 := [1− ε0, 1+ ε0] with some small
but positive ε0.
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The function Q̂τ is C1,1-smooth, with Q̂τ = Q on the droplet Sτ , whereas in the com-
plement Scτ it is harmonic and determined by the boundary data that Q̂τ = Q on ∂Sτ and
the growth Q̂τ (z) = τ log |z| + O(1) as |z| → +∞. We proceed to introduce some further
functions related to the potential Q.

Definition 2.1.1. Assume that Q is 1-admissible, and let τ ∈ Iε0 . Then
(i) Q̆τ is defined as the harmonic extension of the restriction of Q̂τ to Scτ across ∂Sτ .
(ii) Q~

τ is the bounded harmonic harmonic function on Scτ which equals Q on ∂Sτ , ex-
tended harmonically across ∂Sτ .

(iii) Qτ is the bounded holomorphic function in Scτ such that ReQτ = Q~
τ on Scτ with

ImQτ (∞) = 0, extended analytically across ∂Sτ .

It is clear that the functions Q̆τ and Q~
τ are related via

(2.1.2) Q̆τ = τ log |φτ |+Q~
τ .

2.2. A weighted Bernstein-Walsh lemma. The significance of the set Sτ in relation to
orthogonal polynomials is made clear by Proposition 2.2.2 below. We begin with a useful
lemma taken from [2], see Lemma 3.2.

Lemma 2.2.1. Let u be holomorphic in a disk D(z,m−1/2δ). Then

|u(z)|2e−2mQ(z) ≤ meAδ
2

δ2

∫
D(z,m−1/2)

|u|2e−2mQdA,

where A denotes the essential supremum of ∆Q on D(z,m−1/2δ).

This lemma is used in [2] to obtain growth bounds for polynomials of degree at most
n. The approach works more generally, for functions of polynomial growth in the space
A2

2mQ(Kc) defined in §1.9, where K is a compact subset of the interior of the droplet Sτ .
The following result generalizes the classical Bernstein-Walsh lemma, see e.g. Chapter III.2
in [49].

Proposition 2.2.2. Let τ = n
m , and suppose K is a compact subset of the interior of Sτ .

Then there exists a positive constant C such that for any u ∈ A2
2mQ(Kc) with the polynomial

growth control |u(z)| = O (|z|n) as |z| → ∞, we have that

|u(z)| ≤ Cm 1
2 ‖u‖L2(Kc,e−2mQ)e

mQ̂τ (z), distC(z,K) ≥ δm−1/2.

Proof. Assume that z ∈ Sτ \K lies at a distance of at leastm−1/2δ from K. By Lemma 2.2.1,
we have the estimate

|u(z)|2 ≤ me2Aδ2

δ2
e2mQ(z)‖u‖2L2(Kc,e−2mQ),

which yields the claim for z ∈ Sτ \ K with the constant C = Cδ = δ−1eAδ
2

. Next, suppose
that u has norm equal to 1, and let q(z) be the subharmonic function

q(z) =
1

2m
log
|u(z)|2

mC2
δ

, z ∈ Kc.

It follows from the above estimate on |u(z)|2 that q(z) ≤ Q for z ∈ Sτ \ K, and the growth
bound on |u(z)| as |z| → ∞ entails that q(z) ≤ τ log|z|+O(1) as |z| → ∞. Now, we consider
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the difference q−Q̂τ and observe that it is harmonic in Scτ and that q−Q̂τ ≤ 0 holds on the
boundary ∂Sτ , since Q̂τ = Q there. Moreover, we see from the growth bound on q that the
difference q− Q̂τ is bounded from above in Scτ . It now follows from the maximum principle
for subharmonic functions that q(z) − Q̂τ (z) ≤ 0 throughout z ∈ Scτ , which completes the
proof. �

In particular, Proposition 2.2.2 tells us that |Pm,n(z)|2e−2mQ decays exponentially off
the droplet Sτ if τ = n

m . As alluded to in the introduction, it is possible to also locate the
mass of the probability density |Pm,n(z)|2e−2mQ(z). We recall the notation $(·, Ĉ \ St,∞)

for the harmonic measure of Ĉ \ St relative to the point at infinity. The following is from
[3].

Theorem 2.2.3. As m,n→∞ with τ = n
m = τ0 + O(m−1) for some τ0 with 0 < τ0 ≤ 1,

we have the convergence

|Pm,n|2e−2mQ → $(·, Ĉ \ Sτ0 ,∞),

in the sense of weak-star convergence of measures.

See Figure 1.1 (right) above for an illustration of this convergence.

2.3. Weighted Laplacian growth. Weighted Laplacian growth (or weighted Hele-Shaw
flow) describes the movement of the boundary of a viscous fluid droplet in a porous medium,
as fluid is injected into the droplet. The weight appears as a result of the variable permeabil-
ity of the medium, or, alternatively, as a result of curved geometry. For the mathematical
formulation, consider a simply connected domain Ω0 on the Riemann sphere Ĉ := C∪{∞}
containing the point at infinity. A smoothly increasing family {Ωt}t of domains is said to
be a Hele-Shaw flow with weight ω, relative to the injection point at infinity, if the infin-
itesimal change of the measure 1Ωτω(z)dA equals harmonic measure (the derivative is as
usual taken in the sense of distribution theory):

(2.3.1) ∂t(1ΩtωdA) = d$(·,Ωt,∞).

Alternatively, we can think in terms of the weak formulation, which amounts to the re-
quirement that ∫

Ωt\Ωs
hωdA = (t− s)h(∞), s < t,

holds for all bounded harmonic functions h on Ωt. At times, we prefer to think of the flow
of the boundary loops {∂Ωt}t rather than the flow of domains itself. A basic reference on
Hele-Shaw flow is the book [27] by Gustafsson, Teodorescu and Vasili’ev. The weighted
Hele-Shaw flow problem appears to have been treated first in the paper [32] by Hedenmalm
and Shimorin, where the weight was interpreted as a Riemannian metric, motivated by
considerations in the potential theory of clamped plates [33]. This line of work is continued
by [31], [30]. In this connection, we mention the work [48] by Ross and Witt-Nyström,
which deals with a less regular situation.

In the present work, weighted Laplacian growth appears for two distinct families of
weights that arise naturally. For instance, the complement Scτ evolves according to Lapla-
cian growth with the weight 2∆Q and injection point at infinity, with τ as backward time.
The second type of Laplacian growth occurs with the weight ω = |P |2e−2mQ, where P is
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an approximation of the orthogonal polynomial Pm,n, see the discussion in §1.6. The latter
flow of loops is what we call the orthogonal foliation flow.

We will need the following lemma, about the movement of the loops ∂Sτ as τ varies.

Lemma 2.3.1. Fix τ ∈ Iε0 = [1 − ε0, 1 + ε0]. Denote by nτ (ζ) the outer unit normal to
∂Sτ at a point ζ ∈ ∂Sτ , and let nτ (ζ)R denote the straight line which contains nτ (ζ) and
the origin. Then, if for real ε the point ζε is closest to ζ in the intersection

(ζ − nτ (ζ)R) ∩ ∂Sτ−ε,

we have as ε→ 0 that

ζε = ζ − εnτ (ζ)
|φ′τ (ζ)|
4∆Q(ζ)

+ O(ε2)

and the outer normal nτ−ε(ζε) satisfies

nτ−ε(ζε) = nτ (ζ) + O(ε).

Proof. We recall that the compact sets Sτ evolve according to weighted Laplacian growth
with respect to the weight 2∆Q, so that we have (2.3.1) with Ωτ = Scτ . For the details, we
refer to Theorem 5.22 and Proposition 6.10 in [29]. This means that

(2.3.2) ∂τ (1Sτ 2∆QdA) = d$(·,Scτ ,∞) = |φ′τ |ds,

where we recall that φτ is the (surjective) conformal mapping Scτ → De. Informally, the
boundary ∂Sτ moves at local speed (4∆Q)−1|φ′τ | in the exterior normal direction, where
the number 4 appears in place of 2 as a result of the different normalizations associated with
ds and dA. It is known by Theorem 6.2 in [32], which is based on the Nishida-Nirenberg
version of the Cauchy-Kovalevskaya theorem, that the loops ∂Sτ deform real-analytically
as τ varies. In view of this fact and the evolution equation (2.3.2), the claimed assertions
follow from Taylor’s formula. �

2.4. Polynomial ∂̄-methods. Let φ be a strictly subharmonic function on C. Hörman-
der’s classical result states that the inhomogeneous ∂̄-equation

∂̄u = f

can be solved for any datum f ∈ L2
loc(C) with the estimate∫

C
|u|2e−φdA ≤

∫
C
|f |2 e

−φ

∆φ
dA.

Taking this a starting point, in [2], Ameur, Hedenmalm, and Makarov investigate the case
when the solution u is constrained by an additional polynomial growth condition at infinity.
We now describe this result. Recall from §1.9 that L2

φ,n(C) denotes the subspace of L2
φ(C)

subject to the growth restraint

f(z) = O(|z|n−1)

near infinity. The polynomial growth Bergman space A2
φ,n(C) is analogously defined there.

We will consider these spaces with φ = 2mQ.
The following is a direct consequence of Theorem 4.1 in [2].
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Proposition 2.4.1. Let f ∈ L∞(C) be supported on Sτ . Then the L2
2mQ,n(C)-minimal

solution u0,n to the problem
∂̄u0,n = f

satisfies ∫
C
|u0,n|2e−2mQdA ≤ 1

2m

∫
Sτ
|f |2 e

−2mQ

∆Q
dA,

provided that the right-hand side is finite.

Proof. We apply Theorem 4.1 of [2] with T = Sτ , φ = 2mQ, % = 0, and

φ̂ = 2m
(

1− ε

τ

)
Q̂τ + εm log(1 + |z|2).

Then all conditions except (ii) are trivially satisfied with a, b = o(1) as ε → 0+. To see
why (ii) holds, it is enough to observe that

φ̂(z) = 2mτ
(
1− ε

τ

)
log|z|+ 2εm log|z|+ O(1) = log(|z|2n) + O(1)

as |z| → ∞. Hence the inclusion A2
φ̂
⊂ Poln follows. Letting ε → 0+ for fixed m and n

completes the proof. �

Remark 2.4.2. In Theorem 4.1 of [2] there is an additional freedom to modify the weight
with a function %, which we set to equal % = 0 in the above. The conditions on % are such
that there is flexibility in the interior direction inside the droplet, but none in the exterior
or along the boundary. As % is used to control the norm-minimal solution to the ∂̄-equation,
this flexibility tells us that decay of the datum f in the interior of the droplet translates to
a corresponding decay of the solution u0,n. On the other hand, decay of the datum near a
boundary point in the tangential direction will not necessarily have the same effect.

2.5. Holomorphic boundary value problems and Toeplitz operators. For the reader’s
convenience, we include some elementary facts from the theory of Herglotz kernels and
Hardy spaces. Let f be holomorphic in the unit disk D with continuous extension to the
boundary. The classical Herglotz integral formula [25, pp. 52] asserts that

f(z) =

∫
T

ζ + z

ζ − z
Re(f(ζ)) ds(ζ) + Im(f(0)), z ∈ D.

If F ∈ L1(T) is real-valued, this allows us to solve the boundary value problem

Re f
∣∣
T = F

where f is holomorphic in the disk by the integral formula

f(z) = HDF (z) :=

∫
T

ζ + z

ζ − z
F (ζ) ds(ζ), z ∈ D.

Moreover, the solution is unique up to an additive imaginary constant. For us, it is more
natural to work in the exterior disk. By reflection in the unit circle, we obtain the formula

f(z) = HDeF (z) :=

∫
T

z + ζ

z − ζ
F (ζ) ds(ζ), z ∈ De,

which we refer to as the Herglotz transform of F . If F is L2(T)-integrable, its Herglotz
transform is in the Hardy space H2. If we assume slightly more smoothness, e.g. that F is
C1-smooth, then its Herglotz transform is continuous and bounded in the closed exterior
disk D̄e. Analogously, if we have a lot of smoothness, e.g. F is Cω-smooth, then its Herglotz
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transform extends to a bounded analytic function on a slightly bigger exterior disk De(0, ρ)

with ρ < 1. We recall the definition of the Hardy space H2 = H2(D) mentioned above. A
function f is in H2 if it is holomorphic in D with

sup
0<r<1

∫
T
|f(rζ)|2ds(ζ) < +∞.

Alternatively, in terms of the boundary values, H2 is the closed subspace of L2(T) defined
by the property that the Fourier coefficients with negative index all vanish. The conjugate
Hardy space H2

− consists of all functions of the form f̄ , where f ∈ H2, which may also
be viewed as Hardy space on the exterior disk De. In a similar fashion, the standard Hp-
spaces can be defined as well. For instance, for p =∞ the spaceH∞ consists of the bounded
holomorphic functions in the unit disk D equipped with the supremum norm.

Associated with the Hardy and conjugate Hardy subspaces of L2(T) there are the or-
thogonal projections PH2 : L2(T) → H2 and PH2

−
: L2(T) → H2

−. These are associated
with the Szegő integral kernel:

PH2f(z) =

∫
T

f(ζ)

1− zζ̄
ds(ζ), z ∈ D,

and

PH2
−
f(z) =

∫
T

zf(ζ)

z − ζ
ds(ζ), z ∈ De.

We will also be interested in the subspace H2
−,0 of H2

− consisting of all functions that vanish
at infinity (or equivalently, have average 0 on the unit circle). The associated projection is

PH2
−,0
f(z) =

∫
T

ζf(ζ)

z − ζ
ds(ζ), z ∈ De.

It is clear from the above concrete formulæ that the Herglotz transform HDe
can be ex-

pressed in terms of projections: HDe
= PH2

−
+ PH2

−,0
. For an L∞(T)-function Θ, we define

the (exterior) Toeplitz operator TΘ : H2
− → H2

− by

TΘf = PH2
−

[Θf ], f ∈ H2
−.

The nullspace (kernel) of this operator consists of all solutions inH2
− to TΘf = 0. Assuming

that Θ is nonzero almost everywhere on the circle T, it follows that the condition that f
belongs to the nullspace is equivalent to f ∈ H2

−∩Θ−1H2
0 , whereH2

0 consists of the functions
in H2 with mean 0. If we implicitly define the function ϑ by Θ(z) = zϑ(z), we may rephrase
this condition as

f ∈ H2
− ∩ ϑ−1H2,

which we refer to as a homogeneous (exterior) Toeplitz kernel condition. For a function F
in the space L2(T), we also consider the related condition

f ∈ H2
− ∩ ϑ−1(−F +H2),

which we refer to as an inhomogeneous Toeplitz kernel condition. In terms of Toeplitz
operators, this condition may be written as Tzϑf+PH2

−
[zF ] = 0. The following proposition

provides the structure of solutions to the homogeneous and inhomogeneous Toeplitz kernel
conditions for sufficiently regular symbols ϑ.
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Proposition 2.5.1. Suppose that ϑ can be written in the form ϑ = eu+v̄, where u and v
are in H∞, and let F be a function in L2(T). Then f solves

f ∈ H2
− ∩ ϑ−1(−F +H2)

if and only if

f = Ce−v̄ − e−v̄PH2
−,0

[e−uF ],

for some constant C.

Proof. That f ∈ H2
− ∩ ϑ−1(−F +H2) is equivalent to having

(2.5.1) e v̄f ∈ e v̄H2
− ∩ (−e−uF + e−uH2) = H2

− ∩ (−e−uF +H2).

Since e v̄f ∈ H2
−, an application of the projection PH2

−,0
gives

PH2
−,0

[e v̄f ] = e v̄f − C

for some constant C. On the other hand, since e v̄f ∈ −e−uF + H2 holds by (2.5.1), it is
immediate that

PH2
−,0

[e v̄f ] = −PH2
−,0

[e−uF ],

since H2 projects to {0}. It follows that

e v̄f = C + PH2
−,0

[e v̄f ] = C −PH2
−,0

[e−uF ],

as claimed. �

Remark 2.5.2. The Toeplitz kernel equation (2.5.1) may be viewed as a scalar Riemann-
Hilbert problem with jump from the inside D to the outside De equal to e−uF . Later, we
will use the conformal mapping from the complement of the droplet Scτ to the exterior disk
De, and the interpretation of the Toeplitz kernel equation in that context is as a scalar
Riemann-Hilbert problem on the Schottky double of Scτ .

2.6. Steepest descent analysis. For our computational algorithm in §4, we will need the
following result ([38], p. 220, Theorem 7.7.5). The formulation requires some notation. For
an open subset Ω of R, we let Ck(Ω) denote the space of k times differentiable functions on
Ω, and for a compact subset K of R, we let Ck0 (K) denote the space k times differentiable,
compactly supported functions on R whose support is contained in K. The norm in the
space Ck(Ω) is defined as

‖u‖Ck(Ω) =

k∑
j=0

‖u(j)‖L∞(Ω),

and the norm in Ck0 (K) is analogously defined.

Proposition 2.6.1. Let K ⊂ R be a compact interval, Ω an open neighborhood of K, x0

an interior point of K, and k a positive integer. If u ∈ C2k
0 (K), V ∈ C3k+1(Ω) and V ≥ 0

in Ω, V ′(x0) = 0, V ′′(x0) > 0, and V ′ 6= 0 in K \ {x0}, then, for ω > 0, we have

∣∣∣∣eωV (x0)

∫
K

u(x)e−ωV (x)dx−
(

2π

ωV ′′(x0)

) 1
2
k−1∑
j=0

ω−jLju(x0)

∣∣∣∣ ≤ Cω−k‖u‖C2k(K).



22 HEDENMALM AND WENNMAN

Here, C is bounded when V stays in a bounded set in C3k+1(Ω), and |x − x0|/|V ′(x)| has
a uniform bound. With

Wx0
(x) := V (x)− V (x0)− 1

2
(x− x0)2V ′′(x0),

we have

Lju(x) :=
∑

(k,l):l−k=j, 2l≥3k

(−1)k2−l

k!l![V ′′(x0)]l
∂2l
x (W k

x0
u)(x).

In the definition of the above differential operator Lj , it is implicit that the summation
takes place over nonnegative integers k and l. The differential operator (1.5.3) mentioned
in connection with Theorem 1.5.4 is obtained from this formula.

The following proposition is tailored to our needs, based on Proposition 2.6.1.

Proposition 2.6.2. Let three reals ρ0, ρ1, ρ2 be given, with 0 < ρ0 < 1 < ρ1 < ρ2. Assume
that V : [ρ0,∞) → R is C3k+1-smooth, and that V has a unique minimum at 1, with
V (1) = V ′(1) = 0. Suppose furthermore that we have
(a) the convexity bound V ′′ ≥ α on (ρ0, ρ2) for some real α > 0,
(b) and that V has a bound from below of the form V (x) ≥ ϑ log x on the interval [ρ1,∞),
for some real constant ϑ > 0.
If the function u : (ρ0,∞)→ C is bounded and continuous throughout, and in addition u is
C2k-smooth on the interval [0, ρ2] and vanishes on [0, ρ0], then we have∫ ∞

ρ0

u(x)e−ωV (x)dx =

(
2π

ωV ′′(1)

) 1
2
k−1∑
j=0

ω−jLj [u](1) + E,

where the error term E = E(ω, k, u, ϑ, ρ0, ρ1, ρ2) enjoys the bound

|E| ≤ C1ω
−k‖u‖C2k([ρ0,ρ2]) + ‖u‖L∞([ρ1,∞))ρ

−ωϑ+1
1 ,

provided that ω > 2
ϑ , where C1 remains uniformly bounded when V stays in a bounded set

of C3k+1([ρ0, ρ2]).

Sketch of proof. Let χ be a smooth cut-off function with 0 ≤ χ ≤ 1 throughout, which
equals 1 on the interval [ρ0, ρ1], and vanishes on [ρ2,∞). We use the cut-off function to
split the integral∫ ∞

ρ0

u(x)e−ωV (x)dx =

∫ ρ2

ρ0

χ(x)u(x)e−ωV (x)dx+

∫ ∞
ρ1

(1− χ(x))u(x)e−ωV (x)dx.

The first integral gives the main contribution, which is estimated using Proposition 2.6.1.
The other two integrals are estimated using the given bounds from below on V . The details
are omitted. �

3. Existence of an asymptotic expansion

3.1. An L2-version of the main theorem. The proof of Theorem 1.5.2 goes via an
expansion valid in weighted L2-space, which is of independent interest. Modulo the key
lemma (Lemma 3.4.1) concerning the orthogonal foliation flow, we first obtain the weighted
L2-expansion, and then obtain Theorem 1.5.2 as a consequence. The proof of the key lemma
is deferred to §6.
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For two sets E ,F ⊂ C we define the distance between them as

distC(E ,F) = inf
z∈E, w∈F

|z − w|.

We shall need the following notion.

Definition 3.1.1. If K and S are compact sets in the plane with K ⊂ S and

distC(K,Sc) = ε,

we say that a compact set X is intermediate between K and S if K ⊂ X ⊂ S with

distC(K,X c) ≥ ε

1000
and distC(X ,Sc) ≥ ε

1000
.

We recall from the discussion following Definition 1.5.1 the notation Iε0 = [1− ε0, 1+ ε0],
where ε0 is fixed and positive, with the property that the curves ∂Sτ form a smooth flow
of simple loops for τ ∈ Iε0 .

Theorem 3.1.2. Assume that Q is 1-admissible, and fix the precision parameter κ ∈ N.
Then, for each τ ∈ Iε0 there exists a compact subset Kτ ⊂ Sτ with distC(Kτ , ∂Sτ ) ≥ ε for
some positive real number ε, such that the following holds. On the complement Kcτ , there
are bounded holomorphic functions Bτ,j such that the associated function

F 〈κ〉m,n = m
1
4

√
φ′τ [φτ ]nemQτ

κ∑
j=0

m−jBτ,j ,

approximates well the normalized orthogonal polynomials Pm,n in the sense that we have
the norm control ∥∥Pm,n − χτ,0F 〈κ〉m,n

∥∥
2mQ

= O(m−κ−1)

as n,m → ∞ while τ = n
m ∈ Iε0 . Here, χτ,0 denotes a smooth cut-off function with

0 ≤ χτ,0 ≤ 1 and uniformly bounded gradient. In addition the function χτ,0 vanishes on
Kτ , and equals 1 on the set X cτ where Xτ is an intermediate set between Kτ and Sτ . In the
above estimate, the implicit constant is uniform for τ ∈ Iε0 .

In the above theorem, the products χτ,0F
〈κ〉
m,n are understood to vanish on the set Kτ ,

where F 〈κ〉m,n may be undefined.

Remark 3.1.3. (a) By inserting a further family X ′τ of intermediate sets between Kτ and
Sτ such that Xτ is intermediate between X ′τ and Sτ , we can make sure that the cut-off
function χτ,0 vanishes on X ′τ (and not just on Kτ ). We mention that the compact sets Kτ ,
X ′τ and Xτ may be obtained, e.g., as the complements of the conformal images under φ−1

τ

of the exterior disks De(0, ρ) with ρ = ρ0, ρ0,1 and ρ0,2, where 0 < ρ0 < ρ0,1 < ρ0,2 < 1. As
for the intermediate property of Definition 3.1.1 regarding the sets Kτ , X ′τ , Xτ , and Sτ , this
is a little subtle, and depends on making a correct choice of the parameters ρ0, ρ0,1, and
ρ0,2. At our disposal, we have the Koebe distortion theorem and the fact that log(φ−1

τ )′

is a Lipschitz function in the hyperbolic metric with known Lipschitz constant (see, e.g.,
Corollary 1.4 and Proposition 1.2 in [45], respectively). We omit the necessary details.
(b) Without loss of generality, we may assume that the cut-off function χτ,0 is uniformly
smooth in the sense that for any fixed positive integer k the Ck(C)-norm of χτ,0 is uniformly
bounded for τ ∈ Iε0 .
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(c) Our method of proof involves Toeplitz kernel problems and the construction of an ap-
proximate orthogonal foliation flow of loops. The underlying idea is inspired by an approach
to the local expansion of Bergman kernels, which involves a flow of loops emanating from
the point of expansion [26].

3.2. Introduction of quasipolynomials. We turn to the approximate orthogonal quasipoly-
nomials Fm,n, by which we mean certain functions which behave like orthogonal polyno-
mials with respect to the measure e−2mQdA, in a sense specified below. Let Kτ be an
appropriately chosen compact subset of the droplet Sτ , which lies at a fixed positive dis-
tance from ∂Sτ . Moreover, we require that the conformal mapping φτ : Sτ → De extends
to a (surjective) conformal mapping

φτ : Kcτ → De(0, ρ0), τ ∈ Iε0 ,

for some ρ0 with 0 < ρ0,0 < ρ0 < 1, where we recall that ρ0,0 was defined in the discussion
preceding Theorem 1.5.2. In what follows, we will disregard the behavior on the compact
set Kτ . We will justify this a posteriori, using ∂̄-methods.

Definition 3.2.1. We say that a function F is a quasipolynomial on Kcτ of degree n if it
is defined and holomorphic on Kcτ , with polynomial growth near infinity: |F (z)| � |z|n as
|z| → ∞.

In the context of this definition, a quasipolynomial F of degree n has F (z) = azn +

O(|z|n−1) near infinity, for some complex number a 6= 0. We refer to the number a as the
leading coefficient of the quasipolynomial F .

We now fix a positive integer κ, which we think of as an precision parameter. Moreover,
we denote by χτ,0 a smooth cut-off function that vanishes on X ′τ and equals 1 on X cτ , where
X ′τ denotes an intermediate set between Kτ and Sτ , while Xτ is an intermediate set between
X ′τ and Sτ . In addition, we shall require that the C2(κ+1)-norm of χτ,0 remains uniformly
bounded for τ ∈ Iε0 .

Definition 3.2.2. We say that a sequence {Fm,n}m,n of quasipolynomials of degree n on
Kcτ is normalized and approximately orthogonal (of accuracy κ) if the following asymptotic
conditions (i)-(iii) are met as m→∞ while τ = n

m ∈ Iε0 :
(i) we have the approximate orthogonality

∀p ∈ Poln :

∫
C
χτ,0Fm,n(z)p(z) e−2mQ(z)dA(z) = O

(
m−κ−

1
3 ‖p‖2mQ

)
,

(ii) the quasipolynomials Fm,n have approximately unit norm,∫
C
χ2
τ,0(z)|Fm,n(z)|2e−2mQ(z)dA(z) = 1 + O(m−κ−

1
3 ),

(iii) and the quasipolynomial Fm,n has leading coefficient cm,n at infinity which is approx-
imately real and positive, in the sense that

Im cm,n
Re cm,n

= O(m−κ−
1
12 )

where all the implied constants are uniform.
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In terms of the above definition, Theorem 3.1.2 implies in particular that F 〈κ〉m,n is a
sequence of approximately orthogonal quasipolynomials with accuracy κ. The fraction 1

3

which appears in the definition is convenient in our calculations. The concept would be
meaningful even if this number were replaced by e.g. 1

5 .

3.3. The renormalizing ansatz. Since Q is assumed 1-admissible, the curves Γ := ∂Sτ
remain real-analytically smooth and simple for τ ∈ Iε0 = [1 − ε0, 1 + ε0]. In view of the
requirement thatKτ,0 ⊂ Kτ , the functionsQ~

τ and Q̆τ are harmonic whileQτ is holomorphic
in the domain Kcτ (see Definition 2.1.1). We define the operator Λm,n by

(3.3.1) Λm,nf(z) := φ′τ (z) [φτ (z)]nemQτ (z) (f ◦ φτ )(z), τ =
n

m
.

If f, g are well-defined in De(0, ρ0), then Λm,nf and Λm,ng are well-defined in Kcτ . We
observe that by a change-of-variables,

(3.3.2)
∫
Kcτ

Λm,nf Λm,ng e
−2mQdA =

∫
Kcτ

(f ◦ φτ )(g ◦ φτ ) e−2m(Q−τ log|φτ |−ReQτ )|φ′τ |2dA

=

∫
De(0,ρ0)

f g e−2mRτ dA,

where we write
Rτ := (Q− Q̆τ ) ◦ φ−1

τ ,

and the first equality holds by (2.1.2).
The function Rτ given by (1.5.2) is a central object in our analysis, and we turn to some

of its basic properties.

Proposition 3.3.1. The function Rτ is defined on De(0, ρ0), and is real-analytic in a
neighborhood of T. Moreover, near the unit circle Rτ satisfies

Rτ (reiθ) = 2∆Rτ (eiθ)(1− r)2 + O((1− r)3), r → 1,

where the implied constant is uniform for eiθ ∈ T and τ ∈ Iε0 . Furthermore, Rτ has the
growth bound from below

Rτ (z) ≥ ϑ log|z|, z ∈ De(0, ρ1),

for some real parameters ϑ > 0 and ρ1 > 1, which do not depend on τ ∈ Iε0 .

Remark 3.3.2. In particular, Rτ (z) � (1 − |z|)2 near the unit circle. Indeed, since Q̆τ is
harmonic on Kcτ , we find that

∆Rτ = ∆(Q− Q̆τ ) ◦ φ−1
τ = |(φ−1

τ )′|2 (∆Q) ◦ φ−1
τ ,

which shows that near the circle T, we have uniform bound of ∆Rτ from below by a positive
constant. As a consequence, the same holds for ∂2

rRτ (reiθ) for r close to 1, which will be
useful in the context of Proposition 2.6.2.

Sketch of proof. The assertion on the local behavior near the circle T results from an appli-
cation of Taylor’s formula, using that along the boundary ∂Sτ we have Q = Q̆τ , ∇Q = ∇Q̆τ
while

∂2
n(Q− Q̆τ ) = (∂2

n + ∂2
t )(Q− Q̆τ ) = 4∆Q.
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Here, ∂n and ∂t denote the normal and tangential derivatives, respectively. We turn to the
global estimate from below on Rτ . By the assumption (1.5.1) with τ = 1 on the growth of
Q near infinity, and the growth control

Q̆τ (z) = Q̂τ (z) = τ log|z|+ O(1), as |z| → ∞,

it follows from the choice of the interval Iε0 that

lim inf
|z|→∞

(Q− Q̆τ )(z)

log|z|
≥ 1 + 2ε0 − τ > 0

for τ ∈ Iε0 . Since |φ−1
τ (z)| � |z| near infinity, we see that

lim
|z|→∞

Rτ (z)

log|z|
≥ 1 + 2ε0 − τ > 0.

There is no point in De where Rτ vanishes, since the coincidence set (where Q̂τ and Q

coincide) equals Sτ (see Definition 1.5.1). We may conclude that the ratio Rτ (z)
log|z| is bounded

below by a positive constant ϑ on the exterior disk De(0, ρ1), independently of τ in Iε0 . �

Informally, Proposition 3.3.1 tells us that near the unit circle, the function e−2mRτ may
be thought of as a Gaussian wave around the unit circle T.

We return to the operator Λm,n, defined in (3.3.1). It renormalizes the weight, and
transports holomorphic functions in the exterior disk De(0, ρ0) to holomorphic functions in
the region Kcτ . In the sequel, we will refer to Λm,n as the canonical positioning operator.
Its basic properties are summarized in the following proposition, which involves the spaces
L2
φ(X c) and A2

φ(X ), as well as the restricted growth subspaces L2
φ,k(X c) and A2

φ,k(X c), all
defined in §1.9. Below, these appear for various choices of the weight φ, the parameter k,
and the compact set X .

Proposition 3.3.3. The canonical positioning operator Λm,n is an isometric isomorphism
L2

2mRτ
(De(0, ρ0))→ L2

2mQ(Kcτ ), and the inverse operator is given by

Λ−1
m,ng(z) = z−n[φ−1

τ ]′(z) e−m(Qτ◦φ−1
τ )(z)(g ◦ φ−1

τ )(z), g ∈ L2
2mQ(Kcτ ).

Moreover, the operator Λm,n preserves holomorphicity, and in addition, it maps the sub-
space A2

2mRτ ,0
(De(0, ρ0)) onto A2

2mQ,n(Kcτ ).

Proof. As direct consequence of the (3.3.2), we see that L2
2mRτ

(De(0, ρ0)) is mapped iso-
metrically into L2

2mQ(Kcτ ), and moreover if Λ−1
m,n is given by the above formula, we see

that it is actually the inverse to Λm,n. By definition, Λm,nf is holomorphic in Kcτ , if
f is holomorphic in De(0, ρ0). It follows that Λm,n is actually an isometric isomorphism
A2

2mRτ
(De(0, ρ0))→ A2

2mQ(Kcτ ). It remains to note that Λm,n maps bijectively

A2
2mRτ ,0(De(0, ρ0))→ A2

2mQ,n(Kcτ ),

which is a direct consequence of the fact that |φτ (z)| � |z| as |z| → ∞. �

3.4. The orthogonal foliation flow. We will obtain our main result, Theorem 3.1.2, as
a consequence of the existence of what we call the approximate orthogonal foliation flow of
simple loops Γm,n,t, parameterized by the parameter t. For a brief sketch of the intuition
that lies behind the construction of this flow of curves, we refer to the discussion in §1.6
above.
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We recall from §1.9 that a conformal mapping ψ of the exterior disk De onto a domain
containing the point at infinity is said to be orthostatic if it maps∞ to∞, and has ψ′(∞) >

0. Given a smooth family ψt of orthostatic conformal mappings on the exterior disk, indexed
by a real parameter t close to 0, such that the image domains Ωt := ψt(De) increase with t,
we put Γt = ψt(T) and denote by D =

⋃
t Γt the region covered by the flow. We may form

the foliation mapping Ψ by the formula

Ψ(z) = ψ1−|z|

( z
|z|

)
,

for z in some annulus A containing the unit circle. The foliation mapping Ψ maps A onto the
domain D covered by the boundaries. Moreover, the Jacobian JΨ of the foliation mapping
is given by

JΨ(rζ) = −1

r
Re
(
ζ̄∂tψt

(
ζ
)
ψ′t
(
ζ
))∣∣

t=1−r, ζ ∈ T,

for r near 1. We may integrate over a flow encoded by a foliation mapping Ψ as follows: If
we denote by Aε the annulus Aε = D(0, 1 + ε) \ D̄(0, 1− ε), we have for integrable f ,∫

Ψ(Aε)
fdA =

∫
Aε
f ◦Ψ JΨdA(3.4.1)

= 2

∫ ε

−ε

∫
T
f ◦ ψt(ζ)(1− t)JΨ

(
(1− t)ζ

)
ds(ζ)dt.

The existence of the foliation flow may be phrased as follows. We call the relation (3.4.2)
below the master equation for the orthogonal foliation flow. For convenience of notation,
let δm be the number

δm := m−1/2 logm.

Lemma 3.4.1. Fix the precision parameter κ to be a positive integer. For τ = n
m ∈ Iε0 ,

there exist 0 < ρ0 < 1 and bounded holomorphic functions Bτ,j on De(0, ρ0) for j = 0, . . . , κ,
such that the the following properties hold. The function Bτ,0 is bounded away from zero
with Bτ,0(∞) > 0, while for j = 1, . . . , κ we have ImBτ,j(∞) = 0. Moreover, there exists a
smooth family of orthostatic conformal mappings {ψm,n,t}m,n,t on D̄e , such that if we write
f
〈κ〉
m,n =

∑κ
j=0m

−jBτ,j, we have that

(3.4.2) m
1
2

∣∣f 〈κ〉m,n ◦ ψm,n,t(ζ)
∣∣2e−2m(Rτ◦ψm,n,t)(ζ) (1− t)JΨm,n((1− t)ζ)

=
m

1
2

(4π)
1
2

e−mt
2(

1 + O
(
m−κ−

1
3

))
, ζ ∈ T,

provided that |t| ≤ δm. Here, the implicit constant is uniform in τ ∈ Iε0 . Moreover, if Dm,n
denotes the union Dm,n =

⋃
|t|≤δm ψm,n,t(T), then distC(Dcm,n,T) ≥ c0δm for some positive

constant c0.

Remark 3.4.2. The equation (3.4.2) may be understood as an approximate weighted Polu-
barinova-Galin equation with weight |f 〈κ〉m,n|2e−2mRτ , and variable speed of expansion. In-
deed, we should compare with equation (6.11) in [32], which states in a similar context that
along concentric circles,

JΨ = ω−1 ◦Ψ,

where Ψ is a foliation mapping, and ω denotes a weight. In comparison, our factor
(4π)−

1
2 e−mt

2

appears as consequence of the variable speed.
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In what follows, we take this key lemma for granted. The proof is supplied in §6.

3.5. The L2-expansion for quasipolynomials. We first find a sequence of approxi-
mately orthogonal quasipolynomials with an asymptotic expansion.

Lemma 3.5.1. Let κ ∈ N be given and let f 〈κ〉m,n =
∑κ
j=0m

−jBτ,j(z) be the functions
defined in Lemma 3.4.1. Then the functions

(3.5.1) F 〈κ〉m,n(z) = m
1
4 Λm,n[f 〈κ〉m,n] = m

1
4φ′τ (z)[φτ (z)]nemQτ (z)(f 〈κ〉m,n ◦ φτ )(z)

constitute a family of approximately orthogonal quasipolynomials to accuracy κ in the sense
of Definition 3.2.2.

Proof. We denote by χτ,1 a radial smooth cut-off function which vanishes on D(0, ρ0,1) and
equals 1 on De(0, ρ0,2), where the parameters 0 < ρ0 < ρ0,1 < ρ0,2 < 1 are chosen in
accordance with Remark 3.1.3. The cut-off function χτ,0 is then given by χτ,0 = χτ,1 ◦ φτ .
The intermediate sets X ′τ and Xτ are given as the complements of the conformal images of
De(0, ρ0,1) and De(0, ρ0,2) under φτ , respectively.

By Lemma 3.4.1, the functions f 〈κ〉m,n are bounded and holomorphic on the exterior disk
De(0, ρ0), with f 〈κ〉m,n(∞) > 0. As the leading term Bτ,0 is bounded away from 0 on De(0, ρ0),
it follows that for large enough m, the same can be said for f 〈κ〉m,n. In view of this, the
functions F 〈κ〉m,n given by (3.5.1) are quasipolynomials of order n on Kcτ := φ−1

τ (De(0, ρ0)) in
the sense of Definition 3.2.1.

It remains to verify the properties (i), (ii), and (iii) of Definition 3.2.2. To this end,
we recall the definition of the domain Dm,n from Lemma 3.4.1, which is a certain closed
neighborhood of the unit circle which arises from our orthogonal foliation flow. We recall
that

distC(Dcm,n,T)) ≥ c0δm
holds for some fixed constant c0 > 0, where δm = m−

1
2 logm. We first check property (ii)

of Definition 3.2.2. As a step in this direction, we claim that most of the weighted L2-mass
of the function χτ,1f

〈κ〉
m,n lies in the domain Dm,n. Indeed, a computation based on the

change-of-variables formula (3.4.1) reveals that

(3.5.2) m
1
2

∫
Dm,n

|f 〈κ〉m,n|2e−2mRτ dA

= 2m
1
2

∫ δm

−δm

∫
T

∣∣f 〈κ〉m,n ◦ ψm,n,t(ζ)
∣∣2e−2mRτ◦ψm,n,t(ζ) Re

(
− ζ̄∂tψm,n,tψ′m,n,t

)
ds(ζ)dt

= 2m
1
2

∫ δm

−δm

(
(4π)−

1
2 + O(δ2κ+1

m )
)
e−mt

2

dt = 1 + O(δ2κ+1
m ) = 1 + O(m−κ−

1
3 ),

where we move the integration to the flow coordinates (t, ζ) ∈ [−δm, δm]× T.
We know that the functions f 〈κ〉m,n are bounded uniformly in De(0, ρ0) independently of

m and n while τ ∈ Iε0 , so that

(3.5.3) χτ,1|f 〈κ〉m,n| ≤ C0

holds in the whole plane C, for some constant C0. Let D~ denote a fixed bounded domain
which contains D ∪ Dm,n, such that the bound from below Rτ (z) ≥ θ0 log|z| holds outside
D~, for some θ0 > 0 and all τ ∈ Iε0 . That such a domain exists for sufficiently large m
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is shown in Proposition 3.3.1. On the other hand, in view of Remark 3.3.2 we have the
estimate

e−2mRτ ≤ e−α0(logm)2 , on D~ ∩ De(0, ρ0) \ Dm,n

for some constant α0 > 0 (if necessary we adjust ρ0 and D~). As a consequence, we have

(3.5.4) m
1
2

∫
C\Dm,n

χ2
τ,1|f 〈κ〉m,n|2e−2mRτ dA ≤ C2

0m
1
2

∫
C\D~

e−2mθ0 log|z|dA

+ C2
0m

1
2

∫
D~∩D(0,ρ0)\Dm,n

e−α0(logm)2dA = O(m
1
2 e−α0(logm)2) = O(m−α0 logm+ 1

2 ).

It now follows from (3.5.2) and (3.5.4) that

m
1
2

∫
C
χ2
τ,1|f 〈κ〉m,n|2e−2mRτ dA = m

1
2

∫
Dm,n

|f 〈κ〉m,n|2e−2mRτ dA

+m
1
2

∫
C\Dm,n

χ2
τ,1|f 〈κ〉m,n|2e−2mRτ dA = 1 + O(m−κ−

1
3 ),

where we use that χτ,1 = 1 holds on the setDm,n together with our foliation flow Lemma 3.4.1
and the estimate (3.5.4). Hence, by the isometric property of Λm,n from Proposition 3.3.3,
it follows that ∫

C
χ2
τ,0|F 〈κ〉m,n|2e−2mQdA = 1 + O(m−κ−

1
3 ),

as required by property (ii) of Definition 3.2.2.
We turn to property (i) of Definition 3.2.2, the approximate orthogonality property.

For a polynomial p ∈ Poln of degree at most n − 1, we put g = Λ−1
m,n[p] and note that

g(∞) = 0. For all large enough n and m with τ = n
m ∈ Iε0 , the function f

〈κ〉
m,n is zero-free in

a neighborhood of the extended exterior disk D̄e ∪{∞}, which we may assume to be a fixed
exterior disk De(0, ρ0)∪ {∞} for some fixed ρ0 < 1. By the isometric property of Λm,n, we
find that

(3.5.5)
∫
C
χτ,0 pF

〈κ〉
m,ne

−2mQdA = m
1
4

∫
C
χτ,1 g f

〈κ〉
m,ne

−2mRτ dA(z)

= m
1
4

∫
Dm,n

g

f
〈κ〉
m,n

|f 〈κ〉m,n|2e−2mRτ dA + O(m−
α0
2 logm+ 3

4 ‖p‖2mQ),

where we are required to justify the indicated error term estimate. To do this, we need
Proposition 2.2.2, or more accurately, Lemma 3.5 in [2], which gives the estimate for p ∈
Poln

(3.5.6) |p| ≤ C1m
1
2 ‖p‖2mQemQ̂τ

in the whole plane C for some constant C1, independent of τ = n
m ∈ Iε0 . The missing term

on the right-hand side of (3.5.5) equals

m
1
4

∫
C\Dm,n

χτ,1 g f
〈κ〉
m,ne

−2mRτ dA =

∫
C\φ−1

τ (Dm,n)

χτ,0 pF
〈κ〉
m,ne

−2mQdA,
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and if we apply the pointwise estimate (3.5.6), we obtain∫
C\φ−1

τ (Dm,n)

χτ,0|pF 〈κ〉m,n| e−2mQdA

≤ C1m
1
2 ‖p‖2mQ

∫
C\φ−1

τ (Dm,n)

χτ,0|F 〈κ〉m,n| e−2mQ+mQ̂τ dA

= C1m
3
4 ‖p‖2mQ

∫
C\Dm,n

χτ,1|f 〈κ〉m,n| em(Q̂τ−Q)◦φ−1
τ −mRτ dA

≤ C0C1m
3
4 ‖p‖2mQ

∫
De(0,ρ0)\Dm,n

e−mRτ dA,

where in the last step, we applied the estimate (3.5.3) and the fact that Q̂τ ≤ Q. The rest
of the argument that gives (3.5.5) involves splitting the domain of integration using the set
Dτ , and proceeds as in (3.5.4). This establishes (3.5.5), although we still need to control
the main term on the right-hand side. To this end, we denote by h the ratio h = g/f

〈κ〉
m,n.

In view of the stated properties of f 〈κ〉m,n and g, the function h is holomorphic in the exterior
disk De(0, ρ0) and vanishes at infinity. Using the foliation flow as coordinates on Dm,n in
terms of (t, ζ) ∈ [−δm, δm]× T, we find from Lemma 3.4.1 that

(3.5.7) m
1
4

∫
Dm,n

h(z)|f 〈κ〉m,n(z)|2e−2mRτ (z)dA(z)

= 2m
1
4

∫ δm

−δm

∫
T
h ◦ ψm,n,t(ζ)

∣∣f 〈κ〉m,n ◦ ψm,n,t(ζ)
∣∣2e−2mRτ◦ψm,n,t(ζ)

× Re
(
− ζ̄∂tψm,n,t(ζ)ψ′m,n,t(ζ)

)
ds(ζ)dt

= 2m
1
4

∫ δm

−δm

∫
T
h ◦ ψm,n,t(ζ)

(
(4π)−

1
2 e−mt

2

+ O
(
m−κ−

1
3 e−mt

2))
ds(ζ)dt

= O

(
m−κ−

1
12

∫ δm

−δm

∫
T
|h ◦ ψm,n,t(ζ)|ds(ζ) e−mt

2

dt

)
.

Here, the crucial reduction in the last step of (3.5.7) is based on the fact that the function
h ◦ψm,n,t is holomorphic in D̄e and vanishes at infinity, so that by the mean value property∫

T
h ◦ ψm,n,t ds = 0.

Now that (3.5.7) is established, we need to simplify the error term further. We will use the
observation that all the steps before the last in (3.5.7) apply to a fairly general sufficiently
integrable function in place of h, for instance |h| will work. It then follows from (3.5.7) with
|h| instead that large enough m, we have

∫ δm

−δm

∫
T
|h ◦ ψm,n,t(ζ)| e−mt

2

ds(ζ)dt ≤ 2

∫
Dm,n

|h(z)| |f 〈κ〉m,n(z)|2e−2mRτ (z)dA(z)

= 2

∫
Dm,n

|g(z) f 〈κ〉m,n(z)|e−2mRτ (z)dA(z) ≤ 2C0

∫
Dm,n

|g(z)| e−2mRτ (z)dA(z),

where in the last step we applied the bound (3.5.3). Finally, we apply the Cauchy-Schwarz
inequality, and recall that recall that g = Λ−1

m,n[p] where Λm,n has the isometry property
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of Proposition 3.3.3:

(3.5.8)
∫ δm

−δm

∫
T
|h ◦ ψm,n,t(ζ)| e−mt

2

ds(ζ)dt ≤ 2C0

∫
Dm,n

|g(z)| e−2mRτ (z)dA(z)

≤ 2C0‖g‖L2(Dm,n,e−2mRτ )

(∫
Dm,n

e−2mRτ dA

)1/2

= O
(
m−

1
4 ‖p‖2mQ

)
.

Here, we used a simple decay estimate of the integral of the Gaussian ridge e−2mRτ . Next,
we write g/f 〈κ〉m,n in place of h, and combine the estimates (3.5.7) and (3.5.8), and arrive at

(3.5.9) m
1
4

∫
Dm,n

g f
〈κ〉
m,ne

−2mRτ (z)dA(z) = m
1
4

∫
Dm,n

h(z)|f 〈κ〉m,n(z)|2e−2mRτ (z)dA(z)

= O
(
m−κ−

1
3 ‖p‖2mQ

)
.

In view of (3.5.5) and (3.5.9), we find that for all polynomials p ∈ Poln,

(3.5.10)
∫
C
χτ,0 pF

〈κ〉
m,ne

−2mQdA = O
(
m−κ−

1
3 ‖p‖2mQ

)
,

as required. Since in addition, f 〈κ〉m,n(∞) > 0, while Qτ (∞) ∈ R and φ′τ (∞) > 0 hold, the
leading coefficient of the quasipolynomial F 〈κ〉m,n is now positive, which settles property (iii)
of Definition 3.2.2 as well. This completes the proof. �

3.6. Polynomialization of quasipolynomials and proof of Theorem 3.1.2. We have
applied Lemma 3.4.1 to obtain the existence of quasipolynomials F 〈κ〉m,n, of degree n and ac-
curacy κ with an asymptotic expansion, and shown that they are approximately orthogonal
and normalized. To obtain the full L2-expansion, it remains to show that they are indeed
good approximations of the true normalized orthogonal polynomials Pm,n.

Proof of Theorem 3.1.2. We retain the above notation, and consider the ∂̄-problem

∂̄zu(z) = F 〈κ〉m,n(z)∂̄zχτ,0(z).

In view of Proposition 2.4.1, the L2
2mQ,n-norm minimal solution u0, which then has the

growth u0(z) = O(|z|n−1) near infinity, enjoys the norm bound

(3.6.1)
∫
C
|u0|2e−2mQdA ≤ 1

α1m

∫
Sτ
|F 〈κ〉m,n|2|∂̄χτ,0|2e−2mQdA,

where α1 > 0 stands for the minimum of ∆Q on the biggest droplet Sτ with τ ∈ Iε0 (which
is attained for the rightmost endpoint τ = 1 + ε0). Next, given that the quasipolynomials
of degree n are of the form F

〈κ〉
m,n = m

1
4 Λm,n[f

〈κ〉
m,n], where the functions f 〈κ〉m,n are uniformly

bounded in De(0, ρ0) for some radius ρ0 < 1, we find that

(3.6.2)
∫
Sτ
|F 〈κ〉m,n|2|∂̄χτ,0|2e−2mQdA = m

1
2

∫
D
|f 〈κ〉m,n|2|∂̄χτ,1|2|φ′τ ◦ φ−1

τ |2e−2mRτ dA

= O(m
1
2 e−α2m)

for some α2 > 0 such that 2Rτ ≥ α2 on the support of ∂̄χτ,1. This exponential decay
estimate is possible since the support of ∂̄χτ,1 is located inside D away from the boundary.
Note that in the context of the estimate (3.6.2) it is important as well that the expression
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|φ′τ ◦ φ−1
τ |2 is uniformly bounded on the support of ∂̄χτ,1 as well. If we combine the above

estimates (3.6.1) and (3.6.2), we find that

(3.6.3)
∫
C
|u0|2e−2mQdA = O(m−

1
2 e−α2m),

as m→∞ while τ = n
m ∈ Iε0 , with a uniform implicit constant. Next, we put

P ?m,n := F 〈κ〉m,nχτ,0 − u0

which is then automatically a polynomial of degree n, since the function is entire and has
growth |P ?m,n(z)| � |z|n near infinity. Moreover, in view of (3.6.3), this polynomial is very
close to the function F 〈κ〉m,nχτ,0 in the norm of L2(C, e−2mQ):

(3.6.4)
∫
C
|P ?m,n − F 〈κ〉m,nχτ,0|2e−2mQdA =

∫
C
|u0|2e−2mQdA = O(m−

1
2 e−α2m).

It now follows from (3.5.10) and (3.6.4) that for all polynomials p ∈ Poln of degree at most
n− 1, we have that

(3.6.5)
∫
C
p P̄ ?m,n e

−2mQdA = O(m−κ−
1
3 ‖p‖2mQ),

while

(3.6.6)
∫
C
|P ?m,n|2e−2mQdA = 1 + O(m−κ−

1
3 ).

We observe that by duality, (3.6.5) asserts that

(3.6.7) ‖Pm,nP
?
m,n‖2mQ = O(m−κ−

1
3 ),

where Pm,n denotes the orthogonal projection in L2(C, e−2mQ) onto the subspace Poln of
polynomials of degree at most n − 1. If we use this to correct the polynomial P ?m,n, and
put P̃m,n := P⊥m,nP

?
m,n = P ?m,n −Pm,nP

?
m,n, then automatically P̃m,n has degree n and it

is also orthogonal to all the lower degree polynomials. As a consequence, P̃m,n must be a
scalar multiple of Pm,n, the orthogonal polynomial we are looking for, which we write as
P̃m,n = cPm,n for a constant c. Putting things together so far, we have obtained that

(3.6.8)
∥∥P̃m,n − F 〈κ〉m,nχτ,0

∥∥
2mQ

= O(m−κ−
1
3 )

with a uniform implied constant. Moreover, by (3.6.6) and (3.6.7), the norm of P̃m,n equals

(3.6.9) |c| = ‖cPm,n‖2mQ =
∥∥P̃m,n∥∥2mQ

= 1 + O(m−κ−
1
3 ),

Next, by our version of the Bernstein-Walsh lemma (Proposition 2.2.2), it follows from
(3.6.8) that ∣∣cPm,n − F 〈κ〉m,n

∣∣ =
∣∣P̃m,n − F 〈κ〉m,n

∣∣ = O(m−κ+ 1
6 emQ̂τ )

holds in Scτ , which after division by F 〈κ〉m,n gives that

(3.6.10)
∣∣∣∣cPm,n
F
〈κ〉
m,n

− 1

∣∣∣∣ = O(m−κ−
1
12 ),

since f 〈κ〉m,n is uniformly bounded away from zero. Next, we let |z| → +∞ and observe
that both the functions F 〈κ〉m,n and Pm,n have positive leading coefficients, whose quotient is
denoted by γm,n. Since γm,n > 0 we obtain from (3.6.10) that

| Im c|
|c|

≤
∣∣cγm,n − 1

∣∣ = O(m−κ−
1
12 ),
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where the left-hand side inequality is elementary. Moreover, we can also realize from the
above that Re(c) > 0. But then it follows from (3.6.9) that

c = 1 + O(m−κ−
1
12 ).

It now follows from this observation combined with (3.6.8) that

‖Pm,n − χτ,0F 〈κ〉m,n‖2mQ = O(m−κ−
1
12 ).

This falls slightly short of allowing us to obtain Theorem 3.1.2 right away. The problem
is that our error term is larger than what is claimed. However, since the precision κ is
arbitrary, we might as well replace κ by κ+ 1 and see what we get. This would give that

(3.6.11) ‖Pm,n − χτ,0F 〈κ+1〉
m,n ‖2mQ = O(m−κ−1− 1

12 ).

By analyzing the last term in the asymptotic expansion, it is easy to verify that

‖χτ,0F 〈κ+1〉
m,n − χτ,0F 〈κ〉m,n‖2mQ = O(m−κ−1),

and hence the assertion of the theorem immediate from this estimate and (3.6.11). �

3.7. Proof of the main theorem. We are now ready to obtain the pointwise asymp-
totic expansion of the orthogonal polynomials. We still work under the assumption that
Lemma 3.4.1 holds.

Proof of Theorem 1.5.2. The quasipolynomials F 〈κ〉m,n obtained in Theorem 3.1.2 may be
written in the form

F 〈κ〉m,n = m
1
4

√
φ′τ [φτ ]nemQτ

κ∑
j=0

m−jBτ,j ,

where Bτ,j = [φ′τ ]
1
2 Bτ,j◦φτ are uniformly bounded, and holomorphic in the exterior domain

Kcτ . To obtain the theorem, we need to show that F 〈κ〉m,n is close to Pm,n pointwise in the
complement of the set

(3.7.1) Kτ,A,m =
{
z ∈ C : distC(z,Scτ ) ≥ A(m−1 logm)

1
2

}
.

On the complement Kcτ,A,m we have the estimate

0 ≤ m(Q̂τ − Q̆τ )(z) ≤ D logm,

and hence

em(Q̂τ−Q̆τ ) ≤ eD logm = mD

where D is some positive constant, which is uniformly bounded while τ ∈ Iε0 . To see
this, a simple Taylor expansion of the difference Q̂τ − Q̆τ in the interior direction suffices.
In view of Theorem 3.1.2, and the pointwise estimate of Proposition 2.2.2 applied to the
intermediate set Xτ between Kτ and Scτ where the cut-off function χτ,0 assumes the value
1, we find that

|Pm,n(z)− F 〈κ〉m,n(z)| = O
(
m−κ−

1
2 emQ̂τ (z)

)
= O

(
m−κ−

1
2 +DemQ̆τ (z)

)
, z ∈ Kcτ,A,m,
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where the implicit constant again is uniform in the relevant parameter range. We may
rephrase this as saying that

Pm,n(z) = F 〈κ〉m,n(z) + O
(
m−κ−

1
2 +DemQ̆τ (z)

)
= m

1
4

√
φ′τ [φτ ]nemQτ

( κ∑
j=0

Bτ,j + O
(
m−κ−

3
4 +D

))
,

for z ∈ Kcτ,A,m. This essentially proves the theorem, except that the error term is now
worse than claimed. However, we may fix this by replacing κ by κ′ := κ + dDe + 1 in the
above argument, to obtain on Kcτ,A,m that

Pm,n(z) = m
1
4

√
φ′τ [φτ ]nemQτ

( κ′∑
j=0

m−jBτ,j + O(m−κ−
7
4 )
)

= m
1
4

√
φ′τ [φτ ]nemQτ

( κ∑
j=0

m−jBτ,j + O(m−κ−1)
)
,

where the last step follows since the functions m−jBτ,j are all O(m−κ−1) for j in the range
κ+ 1 ≤ j ≤ κ′. The proof is complete. �

4. Algorithmic determination of the coefficient functions

4.1. Implementation of the radial Laplace method. We turn to the algorithm of
Theorem 1.5.4. To proceed, we need two families of differential operators. We recall
the differential operators Lk defined in (1.5.3) appearing in the application of Laplace’s
method in Proposition 2.6.1. We need to apply these operators to functions defined in a
neighborhood of the unit circle, and we apply them in the radial direction. So, for functions
f(reiθ), we put

Lk[f ](reiθ) =

3k∑
ν=k

(−1)ν−k2−ν

ν!(ν − k)![∂2
rRτ (reiθ)]ν

∂2ν
r

([
Wτ (reiθ)

]ν−k
f(reiθ)

)
,

where
Wτ (reiθ) = Rτ (reiθ)− 1

2
(r − 1)2∂2

xRτ (xeiθ)
∣∣∣
x=1

.

The second family of operators is defined implicitly in the following lemma, which turns
explicit appearances of the parameter l into differential operators.

Lemma 4.1.1. Let k be a nonnegative integer. Then there exist partial differential opera-
tors Mk of order 2k with real-analytic coefficients, such that for any integer l ≥ 0 and any
function smooth function f defined in a neighborhood of T, we have that∫

T
eilθ
(
∂2
rRτ (reiθ)

)− 1
2 Lk[r1−lf(reiθ)]

∣∣∣∣
r=1

dθ =

∫
T
eilθMk[f ](eiθ)dθ.

Proof. We first observe that by integration by parts, multiplication by l corresponds to
applying the differential operator i∂θ inside the integral:

l

∫
T
f(θ)eilθdθ =

∫
T
i∂θf(θ)eilθdθ.

From this it is immediate that the formula

(4.1.1) p(l)

∫
T
f(θ)eilθdθ =

∫
T
p(i∂θ)f(θ)eilθdθ
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holds for polynomials p. Structurally, Lk[r1−lf(reiθ)] can be written as

(4.1.2) Lk[r1−lf(reiθ)] =

3k∑
ν=k

bν(reiθ)∂2ν
r

[
[Wτ (reiθ)]ν−kr1−lf(reiθ)

]
,

where bν is the real-analytic function given by

bν(reiθ) =
(−1)ν−k2−ν

ν!(ν − k)![∂2
rRτ (reiθ)]ν

.

We observe that by the Leibniz rule

(4.1.3) ∂jr(r
1−lf(reiθ))

∣∣∣
r=1

=

j∑
i=0

(
j

i

)
(−1)j−i(l − 1)j−ir

1−l−j+i∂irf(reiθ)
∣∣∣
r=1

=

j∑
i=0

(
j

i

)
(−1)j−i(l − 1)j−i∂

i
rf(reiθ)

∣∣∣
r=1

,

where (x)i = x(x+ 1) · · · (x+ i− 1) denotes the standard Pochhammer symbol. We return
to the formula (4.1.2) for Lk. Again by the Leibniz formula we have that

∂2ν
r [W ν−k

τ (eiθ)r1−lf(reiθ)]
∣∣∣
r=1

=

2ν∑
j=0

(
2ν

j

)
∂2ν−j
r

(
[Wτ (reiθ)]ν−k

)
∂jr

(
r1−lf(reiθ)

)∣∣∣∣
r=1

=

3k−ν∑
j=0

(
2ν

j

)
∂2ν−j
r

(
[Wτ (reiθ)]ν−k

)
∂jr

(
r1−lf(reiθ)

)∣∣∣∣
r=1

=

3k−ν∑
j=0

j∑
i=0

(−1)j−i
(

2ν

j

)(
j

i

)
(l − 1)j−i∂

2ν−j
r

(
[Wτ (reiθ)]ν−k

)
∂irf(reiθ)

∣∣∣
r=1

,

where the truncation of the sum follows from an application of the flatness of Wτ near
the unit circle T, and the last equality is due to (4.1.3). We write the expression for
Lk[r1−lf(reiθ)] as

Lk[r1−lf(reiθ)]
∣∣∣
r=1

=

3k∑
ν=k

3k−ν∑
j=0

j∑
i=0

(l − 1)j−1ci,j,ν(eiθ)∂irf(reiθ)
∣∣∣
r=1

,

where

ci,j,ν(eiθ) = (−1)j−i
(

2ν

j

)(
j

i

)
(l − 1)j−ibν(eiθ)∂2ν−j

r

(
[Wτ (reiθ)]ν−k

)∣∣∣
r=1

.

Changing the order of summation, we arrive at(
∂2
rRτ (reiθ)

)− 1
2

Lk[r1−lf(reiθ)]
∣∣∣
r=1

=

2k∑
i=0

2k∑
j=i

(−1)j−i
(
j

i

)
(l − 1)i−j

(
∂2
rRτ (reiθ)

)− 1
2

dj(e
iθ)∂irf(reiθ)

∣∣∣
r=1

,

where

dj(e
iθ) =

3k−j∑
ν=k

(
2ν

j

)
bν(eiθ)∂2ν−j

r

(
[Wτ (reiθ)]ν−k

)∣∣∣
r=1

.



36 HEDENMALM AND WENNMAN

It follows from (4.1.1) that the asserted identity holds with Mk given by

Mk[f ](eiθ) =

2k∑
i=0

2k∑
j=i

(−1)j−i
(
j

i

)
(i∂θ − 1)i−j

[
(∂2
rRτ (reiθ))−

1
2 dj(e

iθ)∂irf(reiθ)
]∣∣∣∣
r=1

.

The proof of the lemma is complete. �

4.2. Algorithmic computation of the coefficients in the asymptotic expansion. In
this section we supply the proof of Theorem 1.5.4, and explain the underlying computational
algorithm. The main point is that we show how to iteratively obtain the coefficients, given
that an asymptotic expansion exists, as formulated in Theorem 3.1.2.

Proof of Theorem 1.5.4. Fix the precision κ to be a positive integer. Let F 〈κ〉m,n be the
approximate orthogonal quasipolynomials from Theorem 3.1.2 with the expansion

F 〈κ〉m,n(z) = m
1
4

√
φ′τ (z)[φτ (z)]nemQτ (z)

κ∑
j=0

m−jBτ,j(z),

where the functions Bτ,j are bounded and holomorphic on Kcτ for some compact subset Kτ
of S◦τ , which we may assume to be the conformal image of the exterior disk De(0, ρ0) under
the mapping φ−1

τ . If we make the ansatz

Bτ,j(z) =
√
φ′τ (z)(Bτ,j ◦ φτ )(z),

we may express Fm,n using the canonical positioning operator F 〈κ〉m,n = m
1
4 Λm,n[f

〈κ〉
m,n], where

(4.2.1) f 〈κ〉m,n(z) =

κ∑
j=0

m−jBτ,j(z), z ∈ De(0, ρ0).

According to Theorem 3.1.2, the functions F 〈κ〉m,n have the approximate orthogonality prop-
erty

(4.2.2)
∫
C
χτ,0F

〈κ〉
m,np̄ e

−2mQdA = O(m−κ−1‖p‖2mQ), p ∈ Poln.

The function χτ,0 is a cut-off function with 0 ≤ χ ≤ 1 throughout C, such that χτ,0 vanishes
on Kτ and equals 1 on X cτ , where Kτ lies at a fixed positive distance from ∂Sτ , and Xτ is
an intermediate set between them (cf. Definition 3.1.1). We consider the associated cut-off
function χτ,1 = χτ,0 ◦ φ−1

τ , tacitly extended to vanish where it is undefined. Without loss
of generality, we may assume that χτ,1 is radial. By Remark 3.1.3, we may assume that
χτ,1 vanishes on D(0, ρ′0) for some number ρ′0 with ρ0 < ρ′0 < 1. In order to compute the
functions Bτ,j , we would like to apply equation (4.2.2) to

q(z) = Λm,n[z−l] = φ′τ (z)[φτ (z)]n−lemQτ (z)

for a positive integer l, but this function is unfortunately not a polynomial. To fix this, we
consider the L2

2mQ,n-minimal solution v to the ∂̄-problem

∂̄v = ∂̄(χτ,0q) = q ∂̄χτ,0.

If v is the solution, then the difference χτ,0q−v will be an entire function with the polynomial
growth bound O(|z|n−1) at infinity, and hence a polynomial of degree less than or equal to
n− 1. By the estimate of Proposition 2.4.1, we have the norm control∫

C
|v|2e−2mQdA ≤ 1

2m

∫
C
|q|2|∂̄χτ,0|2

e−2mQ

∆Q
dA ≤ A2

2mα1

∫
Xτ\Kτ

|q|2e−2mQdA,
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where we have used that there exists a positive real α1 such that ∆Q ≥ α1 holds on Sτ ,
which contains the support of ∂̄χτ,0, and that we have the bound |∂̄χτ,0| ≤ A. Since
the support of ∂̄χτ,0 lies in Kcτ , we may use the structure of q as q = Λm,n[z−l] and
Proposition 3.3.3 ∫

Xτ\Kτ
|q|2e−2mQdA =

∫
ρ0≤|z|≤ρ′′0

|z|−2le−2mRτ (z)dA(z),

where ρ′′0 is associated with a natural choice of the intermediate set Xτ as the image of an
exterior disk under φ−1

τ , and satisfies ρ0 < ρ′0 < ρ′′0 < 1. Due to Proposition 3.3.1, this
immediately gives that for any fixed positive integer l∫

C
|v|2e−2mQdA = O(e−ε1m)

as m,n tend to infinity while τ = n
m ∈ Iε0 , for some positive real ε1. This means that for a

fixed positive integer l, we have for q = Λ[z−l] the approximate orthogonality

(4.2.3)
∫
C
χ2
τ,0F

〈κ〉
m,nq̄ e

−2mQdA = O(m−κ−1),

where we have used that χτ,0q − v is a polynomial of degree at most n− 1, and the above
smallness of v. If we use the canonical positioning operator as in Proposition 3.3.3 in
polarized form, (4.2.3) reads in polar coordinates

(4.2.4) m
1
4

∫
T
eilθ

∫ ∞
ρ0

r1−lχ2
τ,1(r)f 〈κ〉m,n(reiθ)e−2mRτ (reiθ)drds(eiθ) = O

(
m−κ−1

)
,

for fixed l. We now apply Proposition 2.6.2 to the radial integral, with V (r) = 2Rτ (reiθ).
Note that ∂2

rRτ (reiθ)|r=1 = 4∆Rτ (eiθ). As a consequence, the inner integral in (4.2.4) has
an expansion∫ ∞

ρ0

r1−lχ2
τ,1(r)f 〈κ〉m,n(reiθ)e−2mRτ (reiθ)dr

=

(
π

4m∆Rτ (eiθ)

) 1
2

κ∑
j=0

m−jLj [r
1−lf 〈κ〉m,n(reiθ)]

∣∣∣
r=1

+ O

(
m−κ−1

∥∥r1−lχ2
τ,1f

〈κ〉
m,n,θ

∥∥
C2(κ+1)([ρ0,ρ2])

+
∥∥r1−lχ2

τ,1f
〈κ〉
m,n,θ

∥∥
L∞([ρ1,∞))

ρ−mϑ+1
1

)
,

where we to simplify the notation we use the subscript θ to denote the radial restriction
fθ(r) = f(reiθ). Here, ϑ, α and ρ1 are some real numbers with ϑ > 0, α > 0 and 1 < ρ1 <

ρ2, which are independent of τ ∈ Iε0 . By applying the standard Cauchy estimates to the
functions f 〈κ〉m,n, and by Remark 3.1.3 (both part (a) and (b) are needed) we have uniform
control on the norms∥∥r1−lχ2

τ,1f
〈κ〉
m,n,θ

∥∥
C2(κ+1)([ρ0,ρ2])

and
∥∥r1−lχ2

τ,1f
〈κ〉
m,n,θ

∥∥
L∞([ρ1,∞))

provided that l is fixed, and that f 〈κ〉m,n are uniformly bounded. For fixed l, it follows that

(4.2.5)
∫ ∞
ρ0

r1−lχ2
τ,1(r)f 〈κ〉m,n(reiθ)e−2mRτ (reiθ)dr

=

(
π

4m∆Rτ (eiθ)

) 1
2

κ∑
j=0

m−jLj [r
1−lf 〈κ〉m,n(reiθ)]

∣∣∣
r=1

+ O
(
m−κ−1

)
,
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where the implied constant is uniformly bounded as long as f 〈κ〉m,n is uniformly bounded on
De(0, ρ0). By expanding the expression (4.2.1) for f 〈κ〉m,n, it follows from (4.2.5) that

(4.2.6)
∫ ∞
ρ0

r1−lχ2
τ,1(r)f 〈κ〉m,n(reiθ)e−2mRτ (reiθ)dr

=

(
π

4m∆Rτ (eiθ)

) 1
2

κ∑
k=0

m−kLk[r1−lf 〈κ〉m,n(reiθ)]

∣∣∣∣
r=1

+ O(m−κ−1)

=

(
π

4m∆Rτ (eiθ)

) 1
2

κ∑
j=0

m−j
j∑

k=0

Lk[r1−lBτ,j−k(reiθ)]

∣∣∣∣
r=1

+ O(m−κ−1),

as m → ∞. We multiply the expression (4.2.6) by eilθ and integrate with respect to θ to
get

m
1
4

∫
T
eilθ

∫ ∞
ρ0

r1−lχ2
τ,1(r)f 〈κ〉m,n(reiθ)e−2mRτ (reiθ)drds(eiθ)

=

κ∑
j=0

m−j−
1
4

∫
T
eilθ
(

π

4∆Rτ (eiθ)

) 1
2

j∑
k=0

Lk[r1−lBτ,j−k(reiθ)]

∣∣∣∣
r=1

ds(eiθ) + O(m−κ−
3
4 ),

as m → ∞. This is an asymptotic series, and so is (4.2.4), only that all the coefficients
vanish in the latter, and only the error term remains. Since two asymptotic series coincide
only if they coincide term by term, we find that for integers j = 0, . . . , κ,∫

T
eilθ
(
4∆Rτ (eiθ)

)− 1
2

j∑
k=0

Lk[r1−lBτ,j−k(reiθ)]

∣∣∣∣
r=1

ds(eiθ) = 0, l = 1, 2, 3, . . . .

This condition looks like the standard condition membership in the Hardy space H2. The
problem with this is that the functions unfortunately depend on the parameter l, so the
criterion does not apply. To remedy this, we apply Lemma 4.1.1, which gives

(4.2.7)
∫
T
eilθ

j∑
k=0

Mk[Bτ,j−k](eiθ)ds(eiθ) = 0, l = 1, 2, 3, . . . ,

which is now of the desired form. So, by the standard Fourier analytic characterization of
the Hardy space, the equation (4.2.7) is equivalent to having

(4.2.8)
j∑

k=0

Mk[Bτ,j−k]
∣∣∣
T
∈ H2, j = 0, . . . , κ.

We look at the case j = 0 first. Then (4.2.8) says that M0[Bτ,0]
∣∣
T ∈ H

2. The operator
M0, with the defining property given by Lemma 4.1.1, has the form

(4.2.9) M0[f ](eiθ) = (4∆Rτ (eiθ))−
1
2 f(eiθ).

We recall that it is given that Bτ,0 is bounded and holomorphic in a neighborhood of the
closed exterior disk D̄e , so that in particular Bτ,0

∣∣
T ∈ H2

−. If we combine this with the
observation that M0[Bτ,0]

∣∣
T ∈ H

2 together with the explicit expression (4.2.9) for M0, we
arrive at

(4.2.10) Bτ,0
∣∣
T ∈ (4∆Rτ )

1
2H2 ∩H2

−.
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Let HRτ be the bounded holomorphic function in De such that

(4.2.11) ReHRτ =
1

2
log(4∆Rτ )

1
2 =

1

4
log(4∆Rτ ), on T

with ImHRτ (∞) = 0. It follows from the given regularity of Rτ that HRτ is a bounded
holomorphic function in the exterior disk, which extends holomorphically to a neighborhood
of D̄e. We may rewrite (4.2.10) in the form

Bτ,0

∣∣∣
T
∈ e2 ReHRτH2 ∩H2

−.

By Proposition 2.5.1 applied with u = v = −H̄Rτ and F = 0, it follows that Bτ,0 is of the
form

(4.2.12) Bτ,0 = cτ,0e
HRτ

for some constant cτ,0, which must be positive by our normalization.
We proceed to consider more generally j = 1, 2, 3, . . .. If we separate out the term

corresponding to k = 0 from equation (4.2.8), we find that

(4.2.13)
Bτ,j

(4∆Rτ )
1
2

+

j∑
k=1

Mk[Bτ,j−k]

∣∣∣∣
T
∈ H2, j = 1, . . . , κ.

This equation allows us to compute Bτ,j , given that we have already obtained the functions
Bτ,0, . . . , Bτ,j−1. Indeed, if we put

Fτ,j =

j∑
k=1

Mk[Bτ,j−k],

which involves only the functions Bτ,0, . . . , Bτ,j−1, we may write (4.2.13) in the form

Bτ,j
∣∣
T ∈ H

2
− ∩ (4∆Rτ )

1
2 (−Fτ,j +H2) = H2

− ∩ e2 ReHRτ (−Fτ,j +H2),

which by Proposition 2.5.1 has the solution

(4.2.14) Bτ,j = cτ,je
HRτ − eHRτ PH2

−,0
[eH̄Rτ Fτ,j ],

for some constant cτ,j , which have to be real in view of our normalization f
〈κ〉
m,n(∞) > 0.

Since Bτ,0 is known up to a constant multiple, this allows us to iteratively derive Bτ,j for
j = 1, . . . , κ. The only remaining freedom is the choice of the constants cτ,j for j = 0, . . . , κ.
We proceed to determine them. Since the orthogonal polynomials Pm,n are normalized, it
follows from Theorem 3.1.2 together with the triangle inequality that∥∥χτ,0F 〈κ〉m,n

∥∥
2mQ

= 1 + O(m−κ−1)

as m → ∞. Since χτ,0F
〈κ〉
m,n = m

1
4 Λm,n[χτ,1f

〈κ〉
m,n], it follows from the isometric property

described in Proposition 3.3.3 that

(4.2.15) m
1
2

∫
C
χ2
τ,1|f 〈κ〉m,n|2e−2mRτ dA =

∫
C
χ2
τ,0|F 〈κ〉m,n|2e−2mQdA = 1 + O(m−κ−1).

Here, the integrals are over the whole plane, although the isometry is only over the the
complements of certain compact subsets. However, since we interpret the products with
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the cut-off functions as vanishing where the cut-off function vanishes itself, this is of no
concern to us. We now expand f 〈κ〉m,n according to (4.2.1), so that by equation (4.2.15),

(4.2.16) 2m
1
2

κ∑
j,k=0

m−(j+k)

∫
T

∫ ∞
ρ0

χ2
τ,1(r)Bτ,j(re

iθ)B̄τ,k(reiθ)e−2mRτ (reiθ)rdrds(eiθ)

= 1 + O(m−κ−1),

where the factor 2 appears as a result of our normalizations. This equation is what will
give us the values of the constants cτ,j . We turn first to the case j = 0. By a trivial version
of Proposition 2.6.2, for any integers j, k with 0 ≤ j, k ≤ κ we have the rough estimate∫ ∞

ρ0

χ2
τ,1(r)Bτ,j(re

iθ)B̄τ,k(reiθ)e−2mRτ (reiθ)rdrds(reiθ) = O(m−
1
2 ),

where the implicit constant is uniform for τ ∈ Iε0 . If we disregard all the contributions
in (4.2.16) which are of order O(m−

1
2 ), we see that only j = k = 0 gives a nontrivial

contribution. The term corresponding to j = k = 0 in (4.2.16) can be expanded using the
Laplace method of Proposition 2.6.2 (recall the formula (4.2.12) for Bτ,0), to give

2m
1
2

∫
T

∫ ∞
ρ0

χ2
τ,1(r)|Bτ,0(reiθ)|2e−2mRτ (reiθ)rdrds(eiθ)

= 2m
1
2 |cτ,0|2

∫
T

( π

4m∆Rτ (eiθ)

) 1
2

L0[re2 ReHRτ (reiθ)]
∣∣∣
r=1

ds + O(m−
1
2 ).

Since in general, for a smooth function f we have that L0[f(r)]
∣∣
r=1

= f(1), the leading
contribution simplifies to (recall the definition (4.2.11) of HRτ ),

2m
1
2 |cτ,0|2

∫
T

( π

4m∆Rτ (eiθ)

) 1
2

L0[re2 ReHRτ (reiθ)]
∣∣∣
r=1

ds

= 2π
1
2 |cτ,0|2

∫
T

(
4∆Rτ (eiθ)

)− 1
2 e2 ReHRτ (eiθ)ds(eiθ)

= 2π
1
2 |cτ,0|2

∫
T
ds(eiθ) = 2π

1
2 |cτ,0|2.

As this is the leading contribution to (4.2.16), we must have 2π
1
2 |cτ,0|2 = 1. This determines

the constant cτ,0 up to a unimodular factor, and by positivity we find that cτ,0 = (4π)−
1
4 .

We turn to the remaining coefficients cτ,j , for j = 1, . . . , κ. By applying the Laplace
method of Proposition 2.6.1 to the radial integral in the formula (4.2.16), we arrive at

2π
1
2

κ∑
j=0

m−j
∑

(i,k,l)∈ת?j

∫
T
(4∆Rτ (eiθ))−

1
2 Lk[rBτ,i(re

iθ)B̄τ,l(re
iθ)]
∣∣∣
r=1

ds(eiθ)

= 1 + O(m−κ−
1
2 ),

where the index set is j?ת :=
{

(i, k, l) ∈ N3 : i + k + l = j
}
. Here, N = {0, 1, 2, . . .} as

usual. As this represents an equality of asymptotic series, we may identify term by term.
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The term with j = 0 was already analyzed, and it follows that for j = 1, . . . , κ we have

(4.2.17)
∑

(i,k,l)∈ת?j

∫
T
(4∆Rτ (eiθ))−

1
2 Lk[rBτ,i(re

iθ)B̄τ,l(re
iθ)]
∣∣∣
r=1

ds(eiθ)

= 2 Re

∫
T
(4∆Rτ (eiθ))−

1
2 L0[rBτ,j(re

iθ)B̄τ,0(reiθ)]
∣∣∣
r=1

ds(eiθ)

+
∑

(i,k,l)∈תj

∫
T
(4∆Rτ (eiθ))−

1
2 Lk[rBτ,i(re

iθ)B̄τ,l(re
iθ)]
∣∣∣
r=1

ds(eiθ) = 0,

where jת denotes the restricted index set jת :=
{

(i, k, l) ∈ j?ת : i, l < j
}
, and where we

separate out the terms involving the leading term Bτ,j . We successfully resolve the first
term on the right-hand side of (4.2.17), while the second term is much more complicated.
However, we may observe that it only depends on the functions Bτ,ν with ν = 0, . . . , j − 1,
and hence only on the constants cτ,ν with ν = 0, . . . , j−1. This allows us to algorithmically
determine these constants, albeit with increasing degree of complexity. As for the first term
on the right-hand side, we observe that the operator L0

∣∣
r=1

only evaluates at r = 1. Using
the structure of Bτ,j as given by (4.2.14), we find that∫

T
(4∆Rτ (eiθ))−

1
2 L0[rBτ,j(re

iθ)B̄τ,0(reiθ)]
∣∣∣
r=1

ds(eiθ)

=

∫
T

(
4∆Rτ (eiθ)

)− 1
2Bτ,j(e

iθ)B̄τ,0(eiθ)ds(eiθ)

= cτ,0

∫
T

(
4∆Rτ (eiθ)

)− 1
2 e2 ReHRτ (reiθ)

(
cτ,j −PH2

−,0
[eH̄Rτ Fτ,j ](e

iθ)
)
ds(eiθ)

= cτ,0

∫
T

(
cτ,j −PH2

−,0
[eH̄Rτ Fτ,j ](e

iθ)
)
ds(eiθ) = cτ,0cτ,j .

Here we use the definition (4.2.11) of HRτ and the fact that the projection PH2
−,0

maps
into a subspace of functions with mean 0. Assume now that j is given, and that we have
determined cτ,k for k = 0, . . . , j − 1. The above equality together with (4.2.17) then gives
that

2 Re cτ,jcτ,0 = −
∑

(i,k,l)∈תj

∫
T

(
4∆Rτ (eiθ)

)− 1
2 Lk[rBτ,i(re

iθ)B̄τ,l(re
iθ)]
∣∣∣
r=1

ds(eiθ).

Since cτ,0 = (4π)−
1
4 and moreover since the constants cτ,j must be real by our normalization,

we obtain that

cτ,j = −1

2
(4π)

1
4

∑
(i,k,l)∈תj

∫
T

(
4∆Rτ (eiθ)

)− 1
2 Lk[rBτ,i(re

iθ)B̄τ,l(re
iθ)]
∣∣∣
r=1

ds(eiθ),

where the integral may be expressed in terms of the operator Mk by∫
T

(
4∆Rτ (eiθ)

)− 1
2 Lk[rBτ,i(re

iθ)B̄τ,l(re
iθ)]
∣∣∣
r=1

ds(eiθ)

=

∫
T

Mk

[
Bτ,i(re

iθ)B̄τ,l(re
iθ)
]
ds(eiθ).

This completes the proof. �
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5. Applications to random matrix theory

5.1. The random normal matrix model. For extensive treatments of the random nor-
mal matrix ensembles, see e.g. [29, 3, 4, 5, 6, 61]. Here we only briefly discuss the topic, in
order to fix the notation and recall some basic concepts.

LetM be a matrix, picked with respect to the probability measure (“tr” stands for trace)

dµm(M) =
1

Zm,Q
e−2m tr(Q(M))dM,

where dM denotes the measure induced by the flat Euclidean metric of Cm2

on the sub-
manifold of normal m×m matrices, where Zm,Q is a normalizing constant. Such a matrix
M has a set of m random eigenvalues, which we denote by Φm = {z1,m, . . . , zm,m}. It is
known that the eigenvalues follow the law

(5.1.1) dPm(z1, . . . , zm) =
1

Zm,Q

[∏
j<k

|zj − zk|2
]
e−2m

∑m
j=1Q(zj)dA⊗n(z1, . . . , zm),

where Zm,Q is a related normalizing constant, known as the partition function of the en-
semble. Here, dA⊗n stands for Euclidean volume measure in Cn normalized by the factor
π−n. We recognize this as the law for the Coulomb gas with m particles at the inverse
temperature β = 2 in the external field Q. Courtesy of the fact that the product expression
in (5.1.1) may be written as the square modulus of a Vandermondian determinant, these
ensembles are determinantal. That is, if the k-point intensities Rk,m(z1, . . . zk) are defined
as the intensities associated to finding points simultaneously at the locations z1, . . . , zk,
then we may compute Rk,m by

(5.1.2) Rk,m(z1, . . . , zk) = det (Km(zj , zl))1≤j,l≤k .

Here Km is the correlation kernel

Km(z, w) = Km(z, w) e−m(Q(z)+Q(w)), z, w ∈ C

where Km is the reproducing kernel for the space Polm, supplied with the inner product of
the space L2

2mQ(C). We remark that the correlation kernel Km is not uniquely determined
by the above-mentioned intensities, since any kernel modified by a cocycle

Kc
m(z, w) = c(z)c̄(w)Km(z, w),

will generate the same point process by the determinantal formula (5.1.2). Here, the cocycle
is associated with a continuous unimodular function c : C → T. This means that in terms
of convergence of point processes, we need only correlation kernel convergence modulo
cocycles. It is known (see [29, 61]) that the process Φm condensates to the droplet S1 as
m→ +∞. Indeed, if νm denotes the empirical measure

νm =
1

m

∑
z∈Φm

δz,

then almost surely, νm converges weakly to the equilibrium measure µτ with τ = 1, the
support of which equals S1. We rescale the point process near a boundary point z0, in
the outer normal direction n, in order to understand the microscopic behavior of Φm. To
rescale we use the linear transformation

zm(ζ) := z0 + n
ζ√

2m∆Q(z0)
.
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Writing Φm = {zj,m}j , we introduce the rescaled local process by Ψm = {ζj,m}j , where

zj,m = zm(ζj,m), j = 1, . . . ,m.

Similarly, we denote by km the rescaled correlation kernel

km(ξ, η) =
1

2m∆Q(z0)
Km(zm(ξ), zm(η)).

We recall the familiar notion that a function F (ξ, η) is Hermitian entire if it is an entire
function of the two variables (ξ, η̄) with the symmetry property F (ξ, η) = F̄ (η, ξ). The
following is from [5].

Theorem 5.1.1. There exists a sequence of continuous unimodular functions cm : C→ T,
such that for any given infinite sequence of positive integers N , there exist an infinite
subsequence N ∗ ⊂ N and an Hermitian entire function F (ξ, η) such that

lim
N∗3m→∞

cm(ξ)c̄m(η) km(zm(ξ), zm(η)) = eξη̄−
1
2 (|ξ|2+|η|2)F (ξ, η).

5.2. Uniform asymptotics near τ = 1. We take as our starting point the first term of
the asymptotic expansion of Theorem 1.5.2. Recall the definition of the compact set Kτ,A,m
in (3.7.1).

Corollary 5.2.1. Let HQ,τ be the bounded holomorphic function in the set Kcτ with real
part ReHQ,τ = 1

4 log(2∆Q) on the boundary ∂Sτ , which is real-valued at infinity. Then, in
the limit as m,n→∞ while τ = n

m ∈ Iε0 , we have the asymptotics

|Pm,n(z)|2e−2mQ(z) = m
1
2 |φ′τ (z)| e−2m(Q−Q̆τ )(z)

(
π−

1
2 e2 ReHQ,τ (z) + O

(
m−1

))
,

where the implied constant is uniform for z ∈ Kcτ,A,m.

Proof. We recall that

Q̆τ = ReQτ + τ log|φτ | = ReQτ + n
m log|φτ |,

and in view of Theorems 1.5.2 and 1.5.4, we may write

|Pm,n|2 = m
1
2 |φ′τ (z)||φτ |2ne2mReQτ

∣∣Bτ,0 + O(m−1)
∣∣2

= m
1
2 |φ′τ (z)| e2mQ̆τ

(
π−

1
2 e2 ReHQ,τ (z) + O(m−1)

)
,

and the assertion follows. �

5.3. Error function asymptotics. In view of Corollary 5.2.1, we observe that the prob-
ability density |Pm,n|2e−2mQ resembles a Gaussian wave which crests around the boundary
∂Sτ of the droplet, where τ = n

m . As a consequence, we expect the density to be obtained
as the sum of such Gaussians. Near the droplet boundary, this effect is the strongest, and
adding a large but finite number of such Gaussian waves crested along boundary curves
∂Sτ which move with the degree parameter n results in error function asymptotics.

Proposition 5.3.1. If Q is 1-admissible and z0 ∈ ∂S1 is a boundary point, then if ρm is
the blow-up density given by (1.4.1) and (1.4.2), we have the convergence

lim
m→∞

ρm(ζ) = erf(2ζ),

locally uniformly on C.
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Proof. We recall the rescaled variable from the introduction

zm(ξ) = z0 + n
ξ√

2m∆Q(z0)
,

where z0 ∈ ∂Sτ and n is the outward unit normal to Sτ at z0, and the rescaled density ρm(ξ)

given by (1.4.2). In terms of orthogonal polynomials, the object of study is the function

ρm(ξ) =
1

2m∆Q(z0)

m−1∑
n=0

|Pm,n(zm(ξ))|2e−2mQ(zm(ξ)).

We begin by noting that zm(ξ) is in the set Kcτ,A,m (see Theorem 1.5.2), provided that ξ is
confined to the disk D(0, rm), where rm = A

√
∆Q(z0) logm, and that m is large enough.

We shall assume throughout that ξ ∈ D(0, rm).
Next, we write

ρm1,m(ξ) =
1

2m∆Q(z0)

m1−1∑
n=0

|Pm,n(zm(ξ))|2e−2mQ(zm(ξ))

and split accordingly for m1 < m

(5.3.1) ρm(ξ) =
1

2m∆Q(z0)

m−1∑
n=m1

|Pm,n(zm(ξ))|2e−2mQ(zm(ξ)) + ρm1,m(ξ).

We choose m1 to be the integer part of m−m 1
2 logm.

By Proposition 2.2.2 it follows that for n ≤ m1,

(5.3.2) |Pm,n(z)|2e−2mQ(z) ≤ Cm e−2m(Q−Q̂τ1 )(z),

where τ1 = m1

m ∈ Iε0 for m large enough. By Taylor’s formula applied to the relative
potential Q− Q̌τ1 = Rτ1 ◦ φτ1 in Scτ1 (Proposition 3.3.1), it follows that

(5.3.3) (Q− Q̂τ1)(z) ≥ β0distC(z, ∂Sτ1)2

for some constant β0 > 0, provided that z ∈ Scτ1 is close enough to ∂Sτ1 . For instance, this
estimate holds for z ∈ S1 \ Sτ1 . Moreover, as τ1 = m1

m eventually is in Iε0 , the function
Q − Q̂τ1 does not vanish on Scτ1 , and tends to infinity at infinity. The latter observation
shows that further away from the boundary ∂Sτ1 , the right-hand side of (5.3.2) decays
exponentially.

If n ≤ m1 and τ = n
m , then 1− τ ≥ m− 1

2 logm = δm. As a consequence of Lemma 2.3.1
we obtain that the boundary ∂Sτ moves at a positive speed in τ . In particular, for τ = n

m

where n ≤ m1 we have that the distance distC(∂Sτ , ∂S1) is at least 2α0δm, for some fixed
positive α0. Since distC(∂Sτ1 , ∂S1) is at least 2α0δm, we have that

(5.3.4) distC(z, ∂Sτ1) ≥ α0δm, z ∈ D(z0, α0δm).

Next, we note that if ζ ∈ D(0, rm), then for large enough m we have zm(ζ) ∈ D(z0, α0δm).
This follows from the obvious fact that (logm)

1
2 = o(logm). By a combination of (5.3.3)

and (5.3.4) it follows that
(Q− Q̂τ1)(zm(ζ)) ≥ β0α

2
0δ

2
m.

Now, it follows from the above estimates (5.3.2) and (5.3.3) that for n ≤ m1

|Pm,n(zm(ξ))|2e−2mQ(zm(ξ)) = O(m e−2β0α
2
0(logm)2),
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where the implicit constant is uniform in ξ ∈ D(0, rm). It follows that

ρm1,m(ξ) = O
(
m2e−β0α

2
0(logm)2

)
, ξ ∈ D(0, rm)

which shows in particular ρm1,m(ξ) = O(m−M ) for arbitrarily large M .
As a result of the above considerations, it follows that we may focus on the remaining

sum in (5.3.1) over the degrees n with m1 ≤ n ≤ m − 1, that is, τ = n
m with τ1 ≤ τ ≤ 1.

In particular, the asymptotics of Corollary 5.2.1 applies in the whole range. Set τ(j) =

τm(j) = 1 − j
m , where j ranges from 1 to m −m1, which is approximately m

1
2 logm. We

obtain

ρm(ξ) =
(πm)−

1
2

2∆Q(z0)

m−m1∑
j=1

∣∣φ′τ(j)(zm(ξ))
∣∣ e−2m(Q−Q̆τ(j))(zm(ξ))+2 ReHQ,τ(j)(zm(ξ))

+ O(m−M ).

By Taylor’s formula, it follows that

|φ′τ(j)(zm(ξ))| = |φ′1(z0)|+ O((m−1 logm)
1
2 ),

and by the same token that

2 ReHQ,τ(j)(zm(ξ)) =
1

2
log∆Q(z0) + O((m−1 logm)

1
2 )

as m→∞ for all j ≤ m−m1. The next thing to consider is the movement of ∂Sτ , where
τ = τ(j) and j increases. As n denotes the outward pointing unit normal to ∂S1 at the
point z0, Lemma 2.3.1 tells us that the line z0 + nR intersects ∂Sτ(j) at the nearest point

zj = z0 − n
j

m

|φ′1(z0)|
4∆Q(z0)

+ O
(( j

m

)2)
,

and the outer unit normal nj to ∂Sτ(j) at the point zj will satisfy

nj = n + O
( j
m

)
= n + O(m−

1
2 logm).

We may hence write

(Q− Q̆τ(j))(zm(ξ)) = (Q− Q̆τ(j))

(
zj + nj

ξ + j
2
|φ′1(z0)|√
2m∆Q(z0)

+ O
(
m−

1
2 (logm)2

)
√

2m∆Q(z0)

)
.

A simple Taylor series expansion in normal and tangential coordinates at the point zj gives
that

(Q− Q̆τj )(zj + njλ) = 2∆Q(zj) (Reλ)2 + O(|λ|3) = 2∆Q(z0)(Re λ)2 + O
(
|λ|2 j

m
+ |λ|3

)
,

for λ close to 0. From this we deduce that for η with |η| = O(logm) we have

2m(Q− Q̆τ(j))
(
zj + nj

η√
2m∆Q(z0)

)
=

1

2
(2 Re η)2 + O(m−1/2(logm)3), m→∞.

We apply this with η given by

η = ξ +
j

2

|φ′1(z0)|√
2m∆Q(z0)

+ O
(
m−

1
2 (logm)2

)
,

which then gives that

(2 Re η)2 =
(

2 Re ξ + j
|φ′1(z0)|√
2m∆Q(z0)

)2

+ O
(
m−

1
2 (logm)3

)
.
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Putting these asymptotic relations together, we find that

(5.3.5) ρm(ξ) =
1√
2π

(
1 + O

(
m−

1
2 (logm)3

))
×
m−m1∑
j=1

|φ′1(z0)|√
2m∆Q(z0)

exp

(
− 1

2

(
2 Re ξ + j

|φ′(z0)|√
2m∆Q(z0)

)2
)

+ O(m−M ).

We recognize immediately (5.3.5) as an approximate Riemann sum for

erf(2 Re ξ) =
1√
2π

∫ ∞
0

e−
1
2 (2 Re ξ+t)2dt

with respect to a partition of the interval [0, γ0 logm], with step length m−
1
2 γ0, where

γ0 =
|φ′(z0)|√
2∆Q(z0)

.

Since such Riemann sums converge to the corresponding integral with small error, this
implies that

lim
m→∞

ρm(ξ) = erf
(
2 Re ξ

)
,

which completes the proof. �

5.4. Convergence of correlation kernels to the Faddeeva plasma kernel. Finally,
we turn to the convergence of the rescaled kernels km(zm(ξ), zm(η)) asm→∞. In principle,
this should follow from our expansion of the orthogonal polynomials, but to do this directly
seems a bit tricky. However, given the work of Ameur, Kang, and Makarov [5], it turns out
to be enough to obtain the more straightforward diagonal convergence of the correlation
kernel.

Proof of Corollary 1.5.6. We denote by G(ξ, η) the Ginibre-∞ kernel

G(ξ, η) = eξη̄−
1
2 (|ξ|2+|η|2),

which is the correlation kernel of a translation invariant planar point process. We now
present some material from [5]. An important concept is that of cocycles. By Theorem 5.1.1,
there exists a sequence of continuous functions cm : C→ T such that, for any subsequence
N of the natural numbers N, there exists a Hermitian entire function F (ξ, η) and a further
subsequence N ? ⊂ N such that

(5.4.1) cm(ξ)c̄m(η) km(zm(ξ), zm(η))→ G(ξ, η)F (ξ, η), m ∈ N ?,m→∞,

where the convergence is uniform on compact subsets of C2. For Hermitian entire functions,
the diagonal restriction F (ξ, ξ) determines the function uniquely. Indeed, the polarization
of the diagonal restriction gives back our function F (ξ, η). We denote by ρ(ξ) the limiting
density

ρ(ξ) = lim
m→∞,m∈N?

km(zm(ξ), zm(ξ)) = G(ξ, ξ)F (ξ, ξ),

and since G(ξ, ξ) ≡ 1, it follows that F (ξ, ξ) = ρ(ξ). By Proposition 5.3.1 we have that

ρ(ξ) = erf(2 Re ξ).

Moreover, by the uniqueness property of diagonal restriction, the only possibility for the
Hermitian entire function is

F (ξ, η) = erf(ξ + η̄).
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This shows that the limit along some subsequence of any given sequence of positive integers
is always the same. We claim that this means that the whole sequence converges. Indeed,
in case the convergence (5.4.1) were to fail along the positive integers, by a normal families
argument, we could distill a sequence N0 such that the left-hand side of (5.4.1) would
converge to something else along the subsequence N0. This would contradict what we have
already established, which is that the we have diagonal convergence to the error function.
The assertion of the corollary follows. �

6. The existence of the orthogonal foliation flow

6.1. Smoothness classes and polarization of functions. In order to proceed with less
obscuring notation, we consider a smooth family of bounded holomorphic functions fs(z),
and a smooth family of orthostatic conformal mappings ψs,t. Here, fs corresponds to f

〈κ〉
m,n

where s = m−1, and ψs,t corresponds to the mappings ψm,n,t appearing in Lemma 3.4.1.
We suppress τ and κ in the notation, because κ is thought of as fixed, and we work with
uniformity in the parameter τ . Moreover, we denote by R a weight whose properties are
analogous to those of Rτ , as captured in Definition 6.1.1 below.

We denote by A(%1, %2) the annulus

A(%1, %2) := D(0, %2) \ D̄(0, %1),

for positive real numbers %1 and %2 with %1 < %2 (notice that we distinguish between
the symbols ρ and %). In addition, for parameters %0 and σ0, we denote by Â(%0, σ0) the
2σ0-fattened diagonal annulus in C2:

Â(%0, σ0) :=
{

(z, w) ∈ A(%0, %
−1
0 )× A(%0, %

−1
0 ) : |z − w| ≤ 2σ0

}
,

For a real-analytic function R there exists a polarization R(z, w), which is holomorphic
in (z, w̄) and has R(z, z) = R(z). This is easy to see using convergent local Taylor series
expansions of R(z) in the coordinates which are the real and imaginary parts, Re z and
Im z. By replacing Re z by 1

2 (z + w̄) and Im z by 1
2i (z − w̄) in this expansion, we obtain

the polarization R(z, w). We observe that if R(z, w) is such a polarization of a function
R(z) which is real-analytically smooth near the circle T and in addition is quadratically
flat there, then R(z) = (1 − |z|2)2R](z), where R](z) is real-analytic near the circle T. In
polarized form, R(z, w) factors as

(6.1.1) R(z, w) = (1− zw̄)2R](z, w),

where R](z, w) is holomorphic in (z, w̄) in a neighborhood of the part of the diagonal where
both variables are near T.

Definition 6.1.1. For positive real numbers %0, σ0 where %0 < 1, we denote by W(%0, σ0)

the class of C2-smooth non-negative functions R on De(0, %0) such that the following holds:

(i) The functions R and ∇R both vanish on T, while ∆R > 0 holds on T.
(ii) R is real-analytic on A(%0, (%0)−1) and both R(z, w) and R](z, w) given by (6.1.1) po-

larizes to bounded holomorphic functions in (z, w̄) on the diagonal annulus Â(%0, σ0),
such that R](z, w) remains bounded away from 0 there.

(iii) In addition,
R](z, z) ≥ α(R) > 0, z ∈ A(%0, %

−1
0 ),
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and further away,

inf
z∈De(0,%−1

0 )

R(z)

log|z|
= θ(R) > 0.

We say that a subset S ⊂ W(%0, σ0) is a uniform family, provided that for each R ∈ S, the
corresponding R](z, w) is uniformly bounded and bounded away from 0 on Â(%0, σ0) while
the controlling constants such as α(R) and θ(R) are uniformly bounded away from 0.

If a function f(z, w) is holomorphic in (z, w̄), we may consider the associated function

(6.1.2) fT(z) = f
(
z,

1

z̄

)
which is then holomorphic in z, wherever it is well-defined. We note that fT(z) = f(z, z)

on the circle T. We recall the notation of Definition 6.1.1.

Proposition 6.1.2. Suppose that f(z, w) is holomorphic in (z, w̄) on the domain Â(%, σ),
where 0 < % < 1 and σ > 0. Then the function fT(z), which extends the restriction of the
diagonal function f(z, z) to T, has a holomorphic extension to the annulus

%′ < |z| < 1

%′

where
%′ = max

{
%, (
√

1 + σ2 + σ)−1
}
.

Proof. The function fT(z) = f(z, z̄−1) is automatically holomorphic and bounded in the
variable z in the domain ∣∣∣z − 1

z̄

∣∣∣ < 2σ,

provided that z ∈ A(%, %−1). The displayed condition is equivalent to the requirement that

−2σ|z| < |z|2 − 1 < 2σ|z|,

from which the claim follows by solving two quadratic equations. �

Remark 6.1.3. We note that if % is close enough to 1 to guarantee that % ≥ (
√

1 + σ2 +σ)−1,
then %′ = %.

Remark 6.1.4. Suppose a real-analytic function F (z) admits a polarization F (z, w) which
is holomorphic in (z, w̄) for (z, w) ∈ Â(%, σ), and let f be given in terms of the Herglotz
kernel by f = HDe

[F |T] (cf. §2.5). We note that by the properties of the Herglotz kernel, f
may be obtained by the formula f = 2PH2

−
[F |T]−〈F 〉T, where 〈F 〉T denotes the average of

F on the unit circle. Let FT be as in (6.1.2), and express it in terms of its Laurent series,
which by Proposition 6.1.2 converges in the annulus A(%′, (%′)−1):

FT(z) =
∑
n∈Z

anz
n.

In terms of the Laurent series, PH2
−

[F |T] equals
∑
n≤0 anz

n and 〈F 〉T = a0. As a conse-
quence, PH2

−
[F |T] defines a holomorphic function on the exterior disk De(0, %′) and hence,

f is holomorphic on De(0, %′) as well.

The setting which will prove useful to us is when we may control certain related quantities
and their polarizations, which is possible on thinner C2-complexified annuli. The polariza-
tion of log∆R appears later in the induction algorithm, while log(z∂R̂) is important for
the control associated with the implicit function theorem.
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Proposition 6.1.5. If R belongs to a uniform family S ⊂ W(%0, σ0) for some positive
reals %0, σ0 with %0 < 1, and if R̂ =

√
R is chosen so that R̂(z) is positive for |z| > 1

and negative for |z| < 1, then there exist positive %1, σ1 with %0 ≤ %1 < 1, σ1 ≤ σ0 and
%1 ≥ (

√
1 + σ2

1 + σ1)−1, such that the polarizations of the functions log∆R, R̂, log(z∂R̂)

are all holomorphic in (z, w̄) and uniformly bounded on the 2σ1-fattened diagonal annulus
Â(%1, σ1).

Proof sketch. This follows from the assumptions on the uniform family, if we use the stan-
dard Cauchy estimates plus the fact that log∆R = log(2(R])2) and log(z∂R̂) = 1

2 logR]

hold on the unit circle T. The condition %1 ≥ (
√

1 + σ2
1 + σ1)−1 is achieved by choosing %1

large enough, but still in the range %0 ≤ %1 < 1. �

6.2. The master equation for the orthogonal foliation flow. For an integer n, we
denote by Zn the triangular index set

(6.2.1) Zn =
{

(j, l) ∈ N2 : 2j + l ≤ n
}
,

and supply it with the inherited lexicographic ordering ≺L:

(i, k) ≺L (j, l) if i < j or i = j and k < l.

We recall the notation of the pair (%1, σ1) from Proposition 6.1.5.
The following is an analogue of Lemma 3.4.1. We introduce a parameter s, which is

supposed to be close to 0, and plays the role of the Planck constant ~. Later on, we will
put s = 1/m.

Proposition 6.2.1. Let κ be a given positive integer and let R ∈ W(%0, σ0), for some
%0, σ0 with 0 < %0 < 1 and σ0 > 0. Then there exist a radius %2 with %1 < %2 < 1, bounded
holomorphic functions bj on the exterior disk De(0, %1) for j = 0, . . . , κ, and orthostatic
conformal mappings

ψs,t = ψ0,t +
∑

(j,l)∈Z2κ+1

j≥1

sjtlψ̂j,l

defined on De(0, %2) with ψs,t(De(0, %2)) ⊂ De(0, %1) for s and t close to 0, such that the
following holds. For fixed s, the domains ψs,t(De) increase with t: ψs,t(De) ⊂ ψs,t′(De) for
t < t′, and if we put hs =

∑κ
j=0 s

jbj and fs = exp(hs), the functions fs and ψs,t have the
property that for ζ ∈ T

(6.2.2) |fs ◦ ψs,t(ζ)|2e−2s−1R◦ψs,t(ζ) Re
(
− ζ̄∂tψs,t(ζ)ψ′s,t(ζ)

)
= e−t

2/s
(

(4π)−
1
2 + O

(
|s|κ+ 1

2 + |t|2κ+1
))
.

Here, the implicit constant remains uniformly bounded as long as R is confined to a uniform
family in W(%0, σ0), for fixed %0, σ0.

Remark 6.2.2. (a) Strictly speaking, the functions ψs,t and hs we write down depend on
the precision parameter κ, while the coefficient functions bj and ψ̂j,l do not. We observe
that the orthostaticity of ψs,t gives that ψ̂′0,0(∞) > 0, and moreover that Im ψ̂′j,l(∞) = 0

for all j, l ≥ 0.
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(b) The function fs will also admit an asymptotic expansion of the form

fs(ζ) =

κ∑
j=0

sjBj(ζ) + O(sκ+1), ζ ∈ De(0, %1)),

where the coefficient functions Bj may be obtained algorithmically as multivariate polyno-
mials in the functions b0, . . . , bj .

The first step towards finding the conformal mappings ψs,t is to note the following: we
find by taking logarithms that

2 Rehs ◦ ψs,t(ζ)− 2s−1(R ◦ ψs,t)(ζ) + log Re
(
− ζ̄∂tψs,tψ′s,t(ζ)

)
= −s−1t2 + O(1),

as s, t→ 0. Next, we multiply both sides by s, to obtain

(6.2.3) 2sRehs ◦ ψs,t(ζ)− 2R ◦ ψs,t(ζ) + s log Re
(
− ζ̄∂tψs,tψ′s,t(ζ)

)
= −t2 + O(s).

Finally, we take the limit as s→ 0 in (6.2.3), expecting that Rehs◦ψs,t and log Re(−ζ̄∂tψs,tψ̄′s,t)
remain bounded, and arrive at the equation

R ◦ ψ0,t(ζ) =
t2

2
.

As a consequence, ψ0,t should be a conformal mapping of De onto the exterior of the
appropriate level curve of the weight R.

Proposition 6.2.3. Let R be as in Proposition 6.2.1. There exists a positive number
t0, and a real-analytically smooth family {ψ0,t}t∈(−t0,t0) of orthostatic conformal mappings
De → Ωt, where Ωt is the unbounded component of C\Γt, and where Γt are real-analytically
smooth, simple closed level curves of R:

R|Γt =
t2

2
.

Moreover, Ω0 = De and Ωt increases with t.

Proof. The assumed strict subharmonicity of R gives that there exists a neighborhood U of
T such that ∇R

∣∣
U\T 6= 0. This shows that the level sets must be simple and closed curves,

for |t| sufficiently small. Indeed, if a curve would possess a loop, then R would have to
have a local extremal point inside the loop, which is impossible. Since ∇R vanishes on T,
we cannot apply the implicit function theorem directly to R to obtain the result. However,
the function

R̃(reiθ) :=
R(reiθ)

(r − 1)2

is, in view of Proposition 3.3.1, strictly positive and real-analytic in a neighborhood of the
unit circle T. We form the square root R̂ =

√
R by

R̂(reiθ) = (r − 1)

√
R̃(reiθ),

where the square root on the right-hand side is the standard square root of a positive
number. We may now apply the implicit function theorem to the function R̂. The result
follows immediately by applying the Riemann mapping theorem to the exterior of the
resulting analytic level curves of R̂. �
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Remark 6.2.4. Proposition 6.2.3 tells us that the conformal mappings ψ0,t extend to some
domain containing D̄e , but supplies little information on how much bigger such a domain
is allowed to be. We will discuss this issue in §6.3 below. Along the way, we also obtain
an alternative proof of Proposition 6.2.3, which may be viewed as a quantitative version of
the implicit function theorem in the given context.

The Taylor coefficients ψ̂0,l (in the flow variable t) of the conformal mappings ψ0,t may
be explicitly computed in terms of the weight R, using a higher order version of Nehari’s
formula for conformal mappings to nearly circular domains. We will return to this in
§6.8. Before we carry on, we formulate the following lemma, which allows us to draw the
conclusion that the mappings ψs,t of Proposition 6.2.1 are actually conformal.

Lemma 6.2.5. Assume that ψ is a holomorphic function on De(0, %) of the form

ψ(z) = z + F (z),

such that |F ′| ≤ 1
2 and

2|zF ′′(z)| ≤ %2

|z|2 − %2
, z ∈ De(0, %).

Then ψ is univalent on De(0, %).

Proof. This is immediate from the Becker-Pommerenke univalence criterion [7]. �

It is clear that the mappings ψs,t meet this criterion for some % < 1, for small enough s
and t for a fixed precision parameter κ.

6.3. The smoothness of level curves and the implicit function theorem. In this
subsection, we analyze the extension properties of conformal mappings from De onto the
exterior of the level curves of R near the unit circle. In a sense, this may be viewed as a
quantitative version of the implicit function theorem.

The function R is assumed to belong to the class W(%0, σ0) of Definition 6.1.1, which
is a quantitative way to say that R is real-analytic near the unit circle T, and vanishes
along with its normal derivative on T, while ∆R is positive on T. We recall the definition
of the choice of square root R̂ of R from the proof of Proposition 6.2.3. This function is
also real-analytic near the circle, vanishes on T but its gradient is nonzero and points in
the direction of the outward normal. To make this more quantitative, we let %1 and σ1 be
the parameters of Proposition 6.1.5. Then, in the 2σ1-fattened diagonal annulus Â(%1, σ1),
we have the control

(6.3.1) sup
(z,w)∈Â(%1,σ1)

|log(z∂zR̂(z, w))| < +∞.

We recall that the mappings ψ0,t are defined by the requirement of orthostaticity and

(6.3.2) R̂ ◦ ψ0,t(ζ) = − t√
2
, ζ ∈ T.

By differentiating the relation (6.3.2) with respect to t, we obtain from the chain rule

[(∂rR̂) ◦ ψ0,t] ∂t|ψ0,t|+ [(∂θR̂) ◦ ψ0,t] ∂t argψ0,t = − 1√
2
,
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which we may rewrite as

[(r∂rR̂) ◦ ψ0,t] ∂ log|ψ0,t|+ [(∂θR̂) ◦ ψ0,t] ∂t argψ0,t

= Re
([(

r∂rR̂− i∂θR̂
)
◦ ψ0,t

]
∂t log

ψ0,t

ζ

)
= − 1√

2
.

Here, we divided by the coordinate function ζ in order to avoid issues with branch cuts of
the logarithm. The differential operator acting on R̂ may be written as r∂r − i∂θ = 2z∂z,
so the above expression simplifies further to

(6.3.3) Re
([(

2z∂zR̂
)
◦ ψ0,t] ∂t log

ψ0,t

ζ

)
= − 1√

2
on T.

It is on the basis of the relation (6.3.3) that we will try to recover information on the
mappings ψ0,t. We introduce the notation

(6.3.4) µ(ζ) := log
(
2z∂zR̂

)
, µt = µ ◦ ψ0,t, Ft(ζ) = ∂t log

ψ0,t(ζ)

ζ
,

and observe that (6.3.3) may be written in the form

(6.3.5) eµtFt + e µ̄t F̄t = −
√

2 on T.

We note that along the unit circle T, the function eµ = 2z∂zR̂ equals the positive function√
2∆R, so there are no problems with taking the logarithm in the definition of µ in a

neighborhood of T. In particular, if ψ0,t is a perturbation of the identity, the function
µt is well-defined and smooth. Next, we decompose µt = µ+

t + µ−t , where µ
+
t ∈ H2 and

µ−t ∈ H2
−,0 are both smooth, and write Gt = eµ

−
t Ft. Given that Ft ∈ H2

−, it is clear that
Gt ∈ H2

−. If we multiply the above equation (6.3.5) by e−2 Reµ+
t , we arrive at

e−µ̄t
+

Gt + e−µ
+
t Ḡt = 2 Re

(
e−µ̄

+
t Gt

)
= −
√

2 e−2 Reµ+
t ,

where we point out that e−µ̄
+
t Gt ∈ H2

− while e−µ
+
t Ḡt ∈ H2. This is equation is solved by

applying the Herglotz kernel, and yields the solution

Gt = − 1√
2
e µ̄

+
t HDe

[
e−2 Reµ+

t
]
,

where we use the fact that Ft and µ+
t are real-valued at infinity (cf. Remark 6.2.2 (a)).

That is,

(6.3.6) Ft = − 1√
2
e µ̄

+
t −µ

−
t HDe [e

−2 Reµ+
t
]
.

Let us write

gt(ζ) = log
ψ0,t(ζ)

ζ
,

so that ∂tgt = Gt and g0 = 0. Here, the logarithm is understood as the principal branch. In
terms of these functions, the equation (6.3.6) becomes the following nonlinear differential
equation in t:

(6.3.7) ∂tgt = − 1√
2

exp
(
PH2 [µ ◦ ψ0,t]−PH2

−,0
[µ◦ψ0,t]

)
HDe

[
exp

(
−2 Re PH2 [µ◦ψ0,t]

)]
.
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It is not difficult to see that the equation (6.3.7) may be solved by an iterative procedure,
if we rewrite it in integral form
(6.3.8)

gt = − 1√
2

∫ t

0

exp
(
PH2 [µ ◦ ψ0,θ]−PH2

−,0
[µ ◦ ψ0,θ]

)
HDe

[
exp

(
− 2 Re PH2 [µ ◦ ψ0,θ]

)]
dθ.

As a first order approximation, we start with ψ
[0]
0,t(ζ) = ζ, and use the formula (6.3.8) to

define g[j+1]
t in terms of ψ[j]

0,t, for j = 0, 1, 2, . . . by integration. The process is interlaced
with computing ψ[j+1]

0,t := ζ exp(g
[j+1]
t ), and results in convergent sequences g[j]

t and ψ[j]
0,t.

We are interested in analyzing where the function ψ0,t extends as a holomorphic mapping.
To this end, we recall that the function µ given by (6.3.4) has a well-defined polarization
to Â(%1, σ1). It is clear that if for some %̂t < 1, ψ0,t maps the annulus A(%̂t, (%̂t)

−1) into
A(%1, %

−1
1 ), we obtain the estimate

‖∂tgt‖H∞(A(%̂t,(%̂t)−1)) ≤
√

2

1− %̂2
t

exp

(
5
‖µ‖H∞(A(%1,%

−1
1 ))

1− %̂2
t

)
,

where we use the estimate

‖PH2 [f ]‖H∞(D(0,(%̂t)−1)) ≤
‖f‖H∞(A(%̂t,(%̂t)−1))

1− %̂2
t

,

and the analogous estimate for PH2
−,0

[f ]. Assume for the moment that %̂t < 1 is monoton-
ically increasing in |t|, and recall that ψ0,t(ζ) = ζ exp(gt). In light of the above estimate of
∂tgt, we obtain

‖gt‖H∞(A(%̂t,(%̂t)−1)) ≤
√

2|t|
1− %2

t

exp

(
5
‖µ‖H∞(A(%1,%

−1
1 ))

1− %̂2
t

)
=: Ct|t|,

where Ct is defined implicitly by the last relation. This leads to the control

e−Ct|t|%̂t ≤ |ψ0,t(ζ)| ≤ eCt|t|(%̂t)
−1, ζ ∈ A(%̂t, (%̂t)

−1),

which means that ψ0,t maps the annulus A(%̂t, (%̂t)
−1) into A(%1, %

−1
1 ), provided that

e−Ct|t|%̂t ≥ %1.

Let us make the ansatz %̂t = %1e
M |t|, for some positive constantM . The above requirement

is then satisfied provided that M ≥ Ct. If we restrict t to the interval

(6.3.9) |t| ≤
log 1

%1

2M
,

it is immediate that
1

1− %̂2
t

≤ 1

1− %1
.

This then gives the estimate for Ct

Ct ≤
√

2

1− %1
exp

(
5
‖µ‖H∞(A(%1,%

−1
1 )

1− %1

)
,

where the right-hand side does not depend on t. We may finally choose M to be this
constant,

(6.3.10) M =

√
2

1− %1
exp

(
5
‖µ‖H∞(A(%1,%

−1
1 )

1− %1

)
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and obtain that ψ0,t is holomorphic in the exterior disk De(0, %̂t), where

%̂t = %1e
M |t|,

provided that t satisfies (6.3.9). For t close to 0, %̂t is then close to %1 in a quantifiable
fashion. We gather these observations in a proposition.

Proposition 6.3.1. Suppose R is in the class W(ρ0, σ0) and that (6.3.1) holds. Then
the conformal maps ψ0,t, initially defined on D̄e, extend to holomorphic functions on the
exterior disk De(0, ρ̂t), where ρ̂t = ρ1e

M |t| ≤ √ρ1 and M is given by (6.3.10), provided that
t is in the interval (6.3.9).

6.4. An outline of the orthogonal foliation flow algorithm. We now proceed to
describe an outline of the algorithm. With the notation

(6.4.1) Πs,t(ζ) = 2 Rehs◦ψs,t(ζ)− 2
s

(
(R◦ψs,t)(ζ)− 1

2 t
2
)
+log

(
Re
{
− ζ̄∂tψs,t(ζ)ψ′s,t(ζ)

})
,

we may rewrite the master equation (6.2.2) for the orthogonal foliation flow as

Π̂j,l(ζ) =
∂js∂

l
kΠs,t(ζ)

j!l!

∣∣
s=t=0

(6.4.2)

=

− 1
2 log(4π) for ζ ∈ T and (j, l) = (0, 0),

0 for ζ ∈ T and (j, l) ∈ Z2κ \ {(0, 0)}.

provided that the functions hs and ψs,t obtained by solving these equations do not degen-
erate, as long as R remains in a bounded set of W(%0, σ0) for some %0 with 0 < %0 < 1 and
some σ0 > 0. We recall that hs is defined by the finite expansion

hs =

κ∑
j=0

sjbj .

As it turns out later on in Proposition 6.11.1, we have for j, l ≥ 1,

(6.4.3) Π̂j−1,l(ζ) = −2(4∆R(ζ))
1
2 Re(ζ̄ψ̂j,l−1(ζ)) + Tj−1,l(ζ), ζ ∈ T,

where Tj−1,l is real-valued and real-analytic, and depends only on b0, . . . , bj−1 and ψ̂p,q

where (p, q) ≺L (j, l − 1), where we recall that ≺L denotes the standard lexicographic
ordering. Moreover, when l = 0 we get

(6.4.4) Π̂j,0(ζ) = 2 Re bj(ζ) + Tj,0(ζ), ζ ∈ T,

where Tj,0 depends only on b0, . . . , bj−1 and ψ̂p,q for (p, q) ≺L (j+ 1, 0). Such dependencies
will be encoded in terms of complexity classes introduced in §6.7.

Step 1. We let ψ0,t be the orthostatic conformal mappings to the exterior of level curves
of R, as given by Proposition 6.2.3. In particular, this determines uniquely the coefficient
functions ψ̂0,l, for l = 0, . . . , 2κ + 1 (for the details, see Proposition 6.8.1 below). For in-
stance, we find that ψ̂0,0(ζ) = ζ, while ψ̂0,1(ζ) = −ζHDe

[(4∆R)−
1
2 ].

Step 2. By evaluating Π̂0,0(ζ) = Πs,t(ζ)
∣∣
s=t=0

, we obtain from (6.4.2) that

2 Re b0(ζ) + log Re(−ζ̄ψ̂0,1(ζ)) = −1

2
log(4π), ζ ∈ T.
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As ψ̂0,1 is already known and the above real part is strictly positive on T (see Proposi-
tion 6.8.1 below), this gives the value of 2 Re b0 on the unit circle T, which gives that

b0 = −1

4
log(4π) +

1

4
HDe

[
log(4∆R)

]
.

We proceed from Step 2 to Step 3 with j = 1.

Step 3. We have determined b0, . . . , bj0−1 and ψ̂j,l for all (j, l) ≺L (j0, 0), and in this
step we intend to determine all the coefficient functions ψ̂j,l for (j, l) ≺L (j0 + 1, 0). In view
of Proposition 6.11.1 below, we may obtain explicitly Tj0−1,1 in terms of this known data
set, which by the equations (6.4.2) and (6.4.3) gives an equation for ψ̂j0,0. More generally,
the equation which gives ψ̂j0,l0 takes the form

Re(ζ̄ψ̂j0,l0) = 1
2 (4∆R)−

1
2Tj0−1,l0+1 on T,

and we solve it with the formula

ψ̂j0,l0(ζ) = 1
2ζHDe

[
(4∆R)−

1
2Tj0−1,l0+1

]
(ζ).

If we apply this solution formula with l = 0, the background data gets extended to all ψ̂j,l
with (j, l) ≺L (j0, 1). Continuing in the same fashion, Proposition 6.11.1 shows that Tj0−1,2

may be expressed in terms of this extended data set. Consequently, the above solution for-
mula also determines ψ̂j0,1. More generally, as we proceed iteratively in the same manner,
we obtain all the coefficient functions ψ̂j,l with j = j0 and (j, l) ≺L (j0 + 1, 0).

Step 4. At this stage, using Step 3, we have at our disposal the functions b0, . . . , bj0−1,
and ψ̂j,l for all (j, l) ≺L (j0 + 1, 0). Proposition 6.11.1 now allows us to compute Tj0,0 in
terms of this data, and from (6.4.2) and (6.4.4), we derive an equation for bj0 :

2 Re bj0 = −Tj0,0, on T.

We solve this equation explicitly by

bj0(ζ) = −1

2
HDe

[
Tj0,0

]
(ζ), ζ ∈ De.

After completing this step in the algorithm, we have extended the data set to contain
b0, . . . , bj0 and all coefficient functions ψ̂j,l with (j, l) ≺L (j0 + 1, 0).

Step 5. Finally, we iterate Steps 3 and 4 with j0 replaced by j0 + 1, until all coefficient
functions bk and ψ̂j,l have been determined, for 0 ≤ k ≤ κ and (j, l) ∈ Z2κ+1. This also
means that the flow equation (6.4.2) is met with the given choices of coefficient functions.

Remark 6.4.1. If we apply the above algorithm to the function R = Rτ , the coefficient
functions Bj in the expansion of fs = exp(hs) obtained here are the same as those appearing
in Theorem 1.5.4. There, the algorithm was based on Laplace’s method and inhomogeneous
Toeplitz kernel equations. The algorithm presented here is in principle an alternative route
towards finding the coefficient functions. However, a drawback is that the algorithm requires
us to compute the additional functions ψ̂j,l, which adds further complexity.
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6.5. The general multivariate Faà di Bruno formula. We recall the Faà di Bruno
formula in several variables, and study some of its properties. To prepare for the formu-
lation, we introduce the well-ordering used in [15], which we call the order-lexicographical
ordering (OL for short). Given two multi-indices

α = (α1, . . . , αd) and β = (β1, . . . , βd),

we write that α ≺OL β if:
(i) |α| < |β|, or if
(ii) |α| = |β| and α ≺L β (lexicographically).
Here, we recall that in the lexicographical ordering α ≺L β holds if either α1 < β1 or α1 =

β1, . . . , αk−1 = βk−1 while αk+1 < βk+1 holds for some 1 ≤ k ≤ d. As a matter of notation,
α � β means that either α ≺ β or α = β; this applies to both the lexicographical and
order-lexicographical orderings. We use some elements of standard multi-index notation.
For instance, if α = (α1, . . . , αd) is a d-dimensional multi-index, that is, a d-vector of
integers in N := {0, 1, 2, . . .}, we write

|α| =
∑
j

αj ,

α! =
∏
j

(αj !),

ξα =
∏
j

ξ
αj
j , ξ = (ξ1, . . . , ξd) ∈ Cd,

∂αf(x) =∂α1
x1
· · · ∂αdxd f(x), x = (x1, . . . , xd) ∈ Rd.

We will need the index set

(6.5.1) OLט
k;d′,d =

{
(α1, . . . ,αk;β1, . . . ,βk) ∈ (Nd

′
)k × (Nd)k :

0 ≺OL α1 ≺OL · · · ≺OL αk and ∀j = 1, . . . , k : |βj | > 0
}
.

We now formulate the multivariate Faà di Bruno’s formula as it appears in [15].

Proposition 6.5.1. Let Ω ⊂ Rd and Ω′ ⊂ Rd′ be domains in the respective Euclidean
space. Let g = (g1, . . . , gd) : Ω′ → Ω and f : Ω→ R be Cn-smooth, so that the composition
f ◦ g : Ω′ → R is Cn-smooth as well. Then, for any d′-dimensional multi-index ν with
|ν| = n, we have on Ω′

∂ν(f ◦ g) =
∑

1≤|µ|≤n

[(∂µf) ◦ g] Gµ,ν(g),

where µ runs over the d′-dimensional multi-indices, and the function Gµ,ν(g) is given by

Gµ,ν(g) = ν!

n∑
k=1

∑
(α;β)∈סOL

k (µ,ν)

k∏
j=1

[∂αjg]βj

βj ![αj !]|βj |
.

Here, the indicated index set is given by

OLס
k (µ,ν) :=

{
(α;β) = (α1, . . . ,αk;β1, . . . ,βk) ∈ OLט

k;d′,d :
∑
j

βj = µ,
∑
j

|βj |αj = ν
}
.
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Note that since g is assumed vector-valued, the multi-index partial derivative ∂αjg is
vector-valued as well, and the multi-index power [∂αjg]βj produces a real-valued function.

Remark 6.5.2. Both the order-lexicographical and the lexicographical ordering are well-
orderings of the multi-indices. If in (6.5.1) we replace ≺OL by the lexicographic ordering
≺L to obtain the analogous index set Lט

k;d′,d, this amounts to a reshuffling of the multi-
indices α1, . . . ,αk to get them ordered with respect to ≺L instead. This allows us to define
the index set Lס

k (µ,ν) as well, based on Lט
k;d′,d instead. It is important to note that the

assertion of Proposition 6.5.1 holds with the index set OLס
k (µ,ν) replaced by Lס

k (µ,ν). The
reason why this is so is that if we reshuffle both the αj and the βj , then nothing really
happened and the involved sum remains the same.

6.6. The multivariate Faà di Bruno formula adapted to our setting. We specialize
Proposition 6.5.1 to the situation that we need to analyze. We will consider only the case
of d = d′ = 2. We work in terms of polar coordinates (r, θ), and put �(r, θ) = R(reiθ).
Although still not specified completely, we assume the function ψs,t is sufficiently smooth
in both (s, t), and introduce the function Ψs,t,

(6.6.1) Ψs,t = (|ψs,t|, argψs,t),

which maps to polar coordinates, so that

R ◦ ψs,t = � ◦Ψs,t.

Accordingly, we denote by Dµr,θ the differential operator

Dµr,θ = ∂µ1
r ∂µ2

θ , µ = (µ1, µ2),

and obtain by applying Proposition 6.5.1 to � ◦Ψs,t with ν = (j, l) that along the circle T,

(6.6.2) ∂js∂
l
t(R ◦ ψs,t)

∣∣
s=t=0

= ∂js∂
l
t(� ◦Ψs,t)

∣∣
s=t=0

=
∑

2≤|µ|≤j+l

[(Dµr,θ�) ◦Ψs,t]Gµ,(j,l)(Ψs,t)
∣∣∣
s=t=0

=
∑

2≤|µ|≤j+l

[(Dµr,θR)(ψs,t)]Gµ,(j,l)(Ψs,t)
∣∣∣
s=t=0

=
∑

2≤|µ|≤j+l

(Dµr,θR)Gµ,(j,l)(Ψs,t)
∣∣∣
s=t=0

,

where the terms corresponding to indices µ with |µ| ≤ 1 vanish and hence get dropped.
The reason for this is that ψ0,0(ζ) = ζ preserves T and that the function R together with
its gradient vanish along the unit circle T. More generally, we find that

(6.6.3) Dµr,θR|T = ∂µ1
r ∂µ2

θ R|T = 0, µ = (µ1, µ2) ∈ {0, 1} × N.

In the context of (6.6.2), it is important to point out that the multi-index derivatives
that appear in the expression Gµ,(j,l)(Ψs,t) (as defined in Proposition 6.5.1) are taken with
respect to the variables (s, t). Moreover, in the equality (6.6.2) we have suppressed the
variable ζ ∈ T, and consider it to be fixed.

We will be interested in identifying the maximal index (p, q) with respect to the lexi-
cographical ordering, such that the partial derivative ∂ps∂

q
tΨs,t appears nontrivially in the

right-hand side expression of (6.6.2).
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Proposition 6.6.1. Let ν,µ ∈ N2 be double-indices with 2 ≤ |µ| ≤ |ν| and µ /∈ {(1, 1), (0, 2)},
and let (α;β) ∈ Lס

k (µ,ν). Then

(i) If ν = (j, l), where j, l ≥ 1, then for all i = 1, . . . , k, we have that αi �L (j, l − 1).
Moreover, the equality αi = (j, l − 1) holds if and only if i = k = 2, µ = (2, 0), and

(α;β) = ((0, 1), (j, l − 1); (1, 0), (1, 0)).

(ii) If ν = (j, 0) with j ≥ 3, then each αi is of the form (a, 0) with a ≤ j − 1. Moreover,
the equality a = j − 1 holds if and only if i = k = 2, µ = (2, 0), and

(α;β) = ((1, 0), (j − 1, 0); (1, 0), (1, 0)).

(iii) If ν = (0, l) with l ≥ 3, then αi is of the form (0, b) with b ≤ l − 1. Moreover, the
equality b = l − 1 holds if and only if µ = (2, 0) and

(α;β) = ((0, 1), (0, l − 1); (1, 0), (1, 0)).

(iv) If ν = (2, 0), then necessarily µ = (2, 0) and the only nontrivial index (α;β) is

(α;β) = ((1, 0); (2, 0)).

(v) If ν = (0, 2), then necessarily µ = (2, 0) and the only nontrivial index (α;β) is

(α;β) = ((0, 1); (2, 0)).

Note that since |ν| ≥ 2, the above list covers all the possibilities. We will denote by
(α~;β~) the indicated extremal index (α;β) in each of the cases (i)–(v).

Proof of Proposition 6.6.1. We show how to obtain (i), (ii) and (iv). The remaining cases
(iii) and (v) are analogous and omitted. We recall the compatibility conditions on the index
set Lס

k (µ,ν). After all, the assertion (α;β) ∈ Lס
k (µ,ν) means that (α;β) ∈ Lט

k;2,2 plus the

(6.6.4)
k∑
i=1

|βi|αi = ν,

k∑
i=1

βi = µ,

where each βi has |βi| ≥ 1, and the multi-indices αi are strictly increasing with i in the
lexicographical ordering. From these assumptions it is immediate that each αi satisfies
αi �L ν.

As for assertion (i), we see that equality αi = (j, l) could hold only if k = 1, with
α1 = (j, l) and |β1| = 1. But then |µ| = 1, which would contradict our assumption that
|µ| ≥ 2. Hence, given the structure of the lexicographic ordering, for any index i, we
have αi �L (j, l − 1). However, if equality holds here, that is, if for some i0 we have
αi0 = (j, l − 1), we find from (6.6.4) that |βi0 | = 1, whereas the sum on the left-hand
side, taken over all other indices i 6= i0, must equal (0, 1). As a consequence, only k = 2

is possible, and then α = ((0, 1), (j, l − 1)). In addition, we get that |β1| = |β2| = 1, so
that by the second relation in (6.6.4), |µ| = 2 holds. Given the assumptions on µ, the only
remaining possibility is µ = (2, 0), and then β1 = β2 = (1, 0).

We turn our attention to the assertion (ii). In a similar manner as above, since the
weighted sum of the multi-indices αi equals (j, 0), we see that for each index i = 1, . . . , k,
αi = (ai, 0) for some ai ∈ N with 0 < ai ≤ j. It is clear that ai0 = j could occur for
some i0 only if i0 = k = 1, |β1| = 1 and |µ| = 1, which again would contradict our
assumption |µ| ≥ 2. It follows that ai ≤ j− 1 for each i. Next, the only way we could have
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αi0 = (j− 1, 0) for some i0 is if i0 = k = 2 and correspondingly α = ((1, 0), (j− 1, 0)). The
remaining properties are immediate.

Finally, to see why (iv) holds, we analogously find that each αi is of the form αi = (ai, 0),
where 0 < ai ≤ 2. In view of (6.6.4),

a1|β1|+ · · ·+ ak|βk| = 2,

with |βi| ≥ 1 for each i. This is possible only if 1 ≤ k ≤ 2. If k = 2, we get that a1 = a2 = 1

and |β1| = |β2| = 1, which leads to α1 = α2 = (1, 0). This gets excluded on the basis of the
monotonicity requirement α1 ≺L α2, so k = 1 is the only possibility. So the requirement
(6.6.4) now reads a1|β1| = 2 and β1 = µ. If a1 = 2, then |β1| = 1, and consequently
|µ| = 1, which is contrary to our assumption that |µ| ≥ 2. The only remaining alternative
is that α1 = (1, 0) and |β1| = 2. Since β1 = µ, and the only admissible µ of length 2 is
µ = (2, 0), it follows that β1 = (2, 0), and the claim follows. �

We observe that in each of the cases (i)-(v), the lexicographically maximal αi occurs as
the index i = k, where k ∈ {1, 2} and (α;β) ∈ Lס

k (µ,ν) and µ = µ0 := (2, 0) while |ν| ≥ 2.
If we put

A(ν) = max
k

max
(α;β)∈סL

k(µ0,ν)
αk

where the maximum is taken lexicographically over the entire range k = 1, . . . , |ν|, then
the maximum occurs for k = 2 unless if ν = (2, 0) or ν = (0, 2). Moreover, if ν = (2, 0)

or ν = (0, 2), the maximum occurs for k = 1. Let kν ∈ {1, 2} be the parameter value for
which the maximum is attained, depending on ν, as just explained. In any of the instances
(i)-(v), there exists a unique extremal pair (α~;β~) ∈ Lס

k (µ0,ν) provided that k = kν .
Next, let Lס

k,~(µ0,ν) denote the depleted index set

Lס
k,~(µ0,ν) =

סL
k (µ0,ν), if k 6= kν ,

Lס
k (µ0,ν) \ {(α~;β~)}, if k = kν ,

and consider the associated expression in the context of the multivariate Faà di Bruno
formula:

(6.6.5) G~µ0,ν(Ψs,t) := ν!

|ν|∑
k=1

∑
(α;β)∈סL

k,~(µ0,ν)

k∏
j=1

[∂αjΨs,t]
βj

βj ![αj !]|βj |
.

Then Gµ0,ν(Ψs,t) splits as follows (where (α~;β~) = (α~
1 , . . . ,α

~
kν

;β~
1 , . . . ,β

~
kν

)):

(6.6.6) Gµ0,ν(Ψs,t) = G~µ0,ν(Ψs,t) +Hµ0,ν(Ψs,t), Hµ0,ν(Ψs,t) := ν!

kν∏
j=1

[∂α
~
j Ψs,t]

β~
j

β~
j ![α~

j !]|β
~
j |
.

If ν = (2, 0), the depleted index set Lס
k,~(µ0,ν) is empty for k ∈ {1, 2}, which gives that

G~µ0,ν(Ψs,t) = 0 if ν = (2, 0).

6.7. Polynomial complexity classes. In order to make sure that the algorithm outlined
above in §6.4 does not break down, we need to carefully keep track of the dependency
structure of the coefficient functions involved. In particular, when solving for the coefficient
function ψ̂j,l in terms of a Herglotz operator applied to a function gj,l, we need to know
that gj,l may be computed in terms of functions already determined in previous steps of
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the algorithm. To help with this, we introduce for a nonnegative integer j and a subset
Σ ⊂ N2 the polynomial complexity class POL(j,Σ), defined as the following function class
on the unit circle T:

POL(j,Σ)

= R
[

Re ζ, Im ζ,Dαr,θR(ζ),Re b(k)
ν , Im b(k)

ν ,Re ψ̂p,q, Im ψ̂p,q,Re ψ̂′p,q, Im ψ̂′p,q

such that k ∈ N, 0 ≤ ν ≤ j, (p, q) ∈ Σ, α ∈ N2
]
.

Here, R[X : Y ] denotes the class of multivariate polynomials with real coefficients in the
variables X, restricted by the condition Y . In other words, POL(j,Σ) is the collection of
multivariate polynomials in the expressions

Re ζ, Im ζ,Dαr,θR(ζ),Re b(k)
ν , Im b(k)

ν ,Re ψ̂p,q, Im ψ̂p,q,Re ψ̂′p,q, and Im ψ̂′p,q,

under the conditions k ∈ N, 0 ≤ ν ≤ j, (p, q) ∈ Σ, and α ∈ N2. If there is no dependence
on any of the functions bj , we simplify the notation and write POL(Σ) for the polynomial
complexity class. In connection with these classes, we will find it useful to introduce for
nonnegative integers p and q the rectangular index sets

Σp,q = {(a, b) ∈ N2 : a ≤ p and b ≤ q}.

6.8. The semiclassical case of the orthogonal foliation flow. We first explore Step 1
of the algorithmic procedure outlined in §6.4. We recall the notation Ψ0,t = (|ψ0,t|, argψ0,t)

from (6.6.1). Moreover, we recall that %1 is as in Proposition 6.1.5 (see also Proposi-
tion 6.1.2). We have already established the regularity of ψ0,t in the implicit function
theorem of §6.3. We proceed to compute the Taylor coefficients in t, and highlight the
algorithmic aspects. We use the notation introduced in §6.5 and §6.6 freely.

Proposition 6.8.1. The Taylor coefficients ψ̂0,l in the variable t near t = 0 of the confor-
mal mapping ψ0,t with

ψ0,t(ζ) =

2κ+1∑
l=0

tlψ̂0,l(ζ) + O(t2κ+2),

are uniquely determined by the level-curve requirement

R ◦ ψ0,t(ζ) =
t2

2
, ζ ∈ T,

together with the monotonicity condition that the images ψ0,t(De) grow with t and the nor-
malization ψ′0,t(∞) > 0. Moreover, as such, they are given by

ψ̂0,0(ζ) = ζ,

ψ̂0,1(ζ) = −ζHDe

[
(4∆R)−

1
2

]
(ζ),

and, more generally, by

ψ̂0,l(ζ) = ζHDe

[
(4∆R)−

1
2Gl

]
(ζ), l = 2, . . . , 2κ+ 3,
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where Gl(ζ) ∈ POL(Σ0,l−1) is given by the formula (µ0 = (2, 0))

Gl(ζ) :=
1

(l + 1)!

(
4(∆R)G~µ0,(0,l+1)(Ψ0,t)

∣∣
t=0

+
∑

3≤|µ|≤l+1

(∂µ1
r ∂µ2

θ R)Gµ,(0,l+1)(Ψ0,t)
∣∣∣
t=0
− 2(l + 1)(∆R)

1
2 gl

)
,

where

gl := ∂lt|ψ0,t|
∣∣
t=0
− l! Re(ζ̄ψ̂0,l).

The coefficient functions ψ̂0,l all extend holomorphically to the domain De(0, %1).

Proof. By Proposition 6.2.3, the conformal mappings ψ0,t are uniquely defined by the given
requirements, and ψ0,0(ζ) = ζ holds. Moreover, since t 7→ ψ0,t is smooth, the validity of
the indicated expansion follows from Taylor’s formula, and the first coefficient then equals
ψ̂0,0(ζ) = ψ0,0(ζ) = ζ. In view of Taylor’s formula applied to the function t 7→ R ◦ ψ0,t, we
have that

(R ◦ ψ0,t)(ζ) =

2κ+1∑
l=0

tl

l!
∂lt(R ◦ ψ0,t(ζ))

∣∣
t=0

+ O(|t|2κ+2).

Since by assumption R ◦ ψ0,t(ζ) = t2

2 holds on T, we find that for ζ ∈ T,

(6.8.1) ∂lt(R ◦ ψ0,t)(ζ)
∣∣
t=0

=

1, for l = 2,

0, for l 6= 2.

It is automatic that (6.8.1) holds for 0 ≤ l ≤ 1, since R is quadratically flat on T. We
now consider l = 2. By the multivariate Faà di Bruno formula (6.6.2) with s = 0 treated
as constant, together with the quadratic flatness of R near the unit circle T a calculation
shows that

∂2
t (R ◦ ψ0,t)

∣∣
t=0

= (∂2
rR)(∂t|ψ0,t|)2

∣∣
t=0

= 4∆R [Re(ζ̄ψ̂0,1)]2 on T.

Since the left-hand side equals 1 by (6.8.1), we may solve for Re(ζ̄ψ̂0,1) using either the
positive or the negative root. We choose the negative square root, which gives that

(6.8.2) ∂t|ψ0,t|
∣∣
t=0

= Re(ζ̄ψ̂0,1) = −(4∆R)−
1
2 on T.

This choice is the one which is compatible with the growth of the domains ψ0,t(De) as t
increases (so that the loops ψ0,t(T) move inward). Finally, we solve this equation by means
of the formula

ψ̂0,1(ζ) = −ζHDe

[
(4∆R)−

1
2

]
(ζ),

as in Step 3 of the algorithmic procedure in §6.4. Here, the uniqueness of the solution
follows from Remark 6.2.2 (a). Since (4∆R)−

1
2 has a polarization which is holomorphic

in (z, w̄) for (z, w) ∈ Â(%1, σ1), the function ψ̂0,1 extends holomorphically to De(0, %1), by
Proposition 6.1.2 and Remark 6.1.4.

As for the higher order Taylor coefficients, we again apply the multivariate Faà di Bruno
formula (6.6.2). As a result, on the circle ζ ∈ T we have for l ≥ 3 that (apply (6.8.2) in the
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last step)

(6.8.3) ∂lt(R ◦ ψ0,t)
∣∣
t=0

=
∑

2≤|µ|≤l

(∂µ1
r ∂µ2

θ R)Gµ,(0,l+1)(Ψ0,t)
∣∣∣
t=0

= 4l (∆R)(∂l−1
t |ψ0,t|) (∂t|ψ0,t|) + G~µ0,l

(Ψ0,t)
∣∣∣
t=0

+
∑

3≤|µ|≤l

(∂µ1
r ∂µ2

θ R)Gµ,(0,l)(Ψ0,t)
∣∣∣
t=0

= −l!(4∆R)
1
2 Re(ζ̄ψ̂0,l−1)− l(4∆R)

1
2 gl−1 + G~µ0,(0,l)

(Ψ0,t)
∣∣∣
t=0

+
∑

3≤|µ|≤l

(∂µ1
r ∂µ2

θ R)Gµ,(0,l)(Ψ0,t)
∣∣∣
t=0

,

where µ0 = (2, 0) and we recall that

gl−1 = ∂l−1
t |ψ0,t|

∣∣
t=0
− (l − 1)! Re(ζ̄ψ̂0,l−1).

An elementary computation shows that the highest order derivatives cancel out, and it
follows that gl−1 ∈ POL(Σ0,l−2).

We recall that the expression G~µ0,(0,l+1)(Ψ0,t) appearing in the above formula is as in
(6.6.5). We write

Gl−1 =
1

l!

(
− l(4∆R)

1
2 gl−1 + G~µ0,(0,l)

(Ψ0,t)
∣∣
t=0

+
∑

3≤|µ|≤l

(∂µ1
r ∂µ2

θ R)Gµ,(0,l)(Ψt)
∣∣∣
t=0

)
,

and claim that Gl−1 ∈ POL(Σ0,l−2). We already saw that gl has this property, and hence
(∆R)

1
2 gl−1 = (∆R) Re(−ζ̄ψ̂0,1) does as well. That the same holds for the remaining two

terms of the above formula can be seen from Proposition 6.6.1, and hence it follows that
Gl−1 ∈ POL(Σ0,l−2). It is a consequence of (6.8.3) that the condition (6.8.1) for l ≥ 3 may
be expressed as

−(4∆R)
1
2 Re(ζ̄ψ̂0,l−1) + Gl−1 = 0, l = 3, 4, 5, . . . .

This is an equation of a kind we have met before, and we know that a solution ψ̂0,l is
supplied by the formula (change l by l + 1 in the previous relation)

(6.8.4) ψ̂0,l(ζ) = ζHDe

[
Gl

(4∆R)
1
2

]
(ζ), l = 2, 3, 4, . . . .

Let us assume for the moment that the lower order terms ψ̂0,b with 0 ≤ b ≤ l − 1 all
extend holomorphically to an exterior disk De(0, %1). Then the entire expression inside
brackets in (6.8.4) polarizes to extend to a 2σ1-fattened diagonal annulus Â(%1, σ1) given
that various partial derivatives of R do, as well as (∆R)−

1
2 , which follows from Proposition

6.1.5. Moreover, since %1 is big enough to guarantee that %1 ≥ (
√

1 + σ2
1 + σ1)−1, then in

view of Proposition 6.1.2, the expression on the right-hand side of (6.8.4) will be holomorphic
in the same exterior disk De(0, %1) as well, by Remark 6.1.3. But then we have enough to
keep the iteration going, and obtain that all the terms ψ̂0,l extend holomorphically to a
single exterior disk De(0, %1). �
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6.9. Taylor expansion of the weight term in the master equation. We continue
with the Taylor expansion of the composition R ◦ ψs,t in terms of powers of s and t, where
the starting point is the application of the Faà di Bruno formula in (6.6.2). We recall the
definition (6.2.1) of the triangular index set Zn. We work under the assumption that ψs,t
depends sufficiently smoothly on both (s, t) near (0, 0). This assumption gets justified in the
stepwise proof which we outlined in Subsection 6.8, which retrieves the Taylor coefficients
of ψs,t in (s, t) iteratively. We use the notion of polynomial complexity classes POL(j,Σ)

and the index sets Σp,q from §6.7.

Proposition 6.9.1. On the unit circle T, the function R ◦ ψs,t enjoys the expansion

2R ◦ ψs,t = 2R ◦ ψ0,t +
∑

(j,l)∈Z2κ

sj+1tlRj,l + O
(
|s|
(
|s|κ+ 1

2 + |t|2κ+1
))
,

where R0,0 = 0, while for the remaining indices (j, l) 6= (0, 0), we have

Rj,l =
2

(j + 1)!l!

(
(4∆R) [Hµ0,(j+1,l)(Ψs,t)]

∣∣∣
s=t=0

+ rj,l

)
,

where µ0 = (2, 0). Here, the main term is given in terms of Hµ0,(j+1,l)(Ψs,t), defined by

Hµ0,(j+1,l)(Ψs,t) =


l (∂t|ψs,t|)(∂j+1

s ∂l−1
t |ψs,t|), if j ≥ 0, l ≥ 1,

(j + 1)(∂s|ψs,t|)(∂js |ψs,t|), if j ≥ 2, l = 0,

(∂s|ψs,t|)2, if j = 1, l = 0,

while the term rj,l, considered as a remainder, is given by

rj,l = (4∆R)G~µ0,(j+1,l)(Ψs,t) +
∑

3≤|µ|≤j+l+1

(Dµr,θR)Gµ,(j+1,l)(Ψs,t)
∣∣∣
s=t=0

,

where we recall that G~µ0,(j+1,l)(Ψs,t) is given by (6.6.5). For j ≥ 0 and l ≥ 1, we have

rj,l ∈ POL(Σ), with Σ = {(p, q) ∈ Σj+1,l : (p, q) ≺L (j + 1, l − 1)}).

In a similar fashion, for j ≥ 1, we have that the Taylor coefficient Rj,0 ∈ POL(Σj,0).
Moreover, the implied constant in the above expansion of R ◦ ψs,t remains bounded if the
weight R is confined to a uniform family inW(%0, σ0) for some fixed 0 < %0 < 1 and σ0 > 0,
while the functions ψs,t are smooth with bounded norms in C2κ+4 with respect to (s, t) in a
neighborhood of (0, 0), uniformly on the circle T.

Proof. The fact that R◦ψs,t enjoys an expansion of the indicated form for some coefficients
Rj,l with the given error term is an immediate consequence of the multivariate Taylor’s
formula. The coefficients Rj,l are then obtained from the successive partial derivatives
(6.6.2). It just remains to calculate them:

Rj,l =
2

(j + 1)!l!
∂j+1
s ∂lt

(
R ◦ ψs,t −R ◦ ψ0,t

)∣∣∣
s=t=0

=
2

(j + 1)!l!
∂j+1
s ∂lt

(
R ◦ ψs,t

)∣∣∣
s=t=0

=
2

(j + 1)!l!

∑
2≤|µ|≤j+l+1

(Dµr,θR)Gµ,(j+1,l)(Ψs,t)
∣∣∣
s=t=0

.

In particular, R0,0 = 0, as the sum is over the empty set. In the right-hand side, the sum
over |µ| = 2 is special as the only nontrivial contribution comes from the index µ = µ0 =
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(2, 0), by (6.6.3):

∑
|µ|=2

(Dµr,θR)Gµ,(j+1,l)(Ψs,t)
∣∣∣
s=t=0

= (4∆R)Gµ0,(j+1,l)(Ψs,t)
∣∣∣
s=t=0

on T.

Here, we use the fact that ∂2
rR = 4∆R on T. It follows that for (j, l) 6= (0, 0), we have on

T that

Rj,l =
2

(j + 1)!l!

(
(4∆R)Gµ0,(j+1,l)(Ψs,t) +

∑
3≤|µ|≤j+l+1

(Dµr,θR)Gµ,(j+1,l)(Ψs,t)
)∣∣∣
s=t=0

.

We write ν := (j + 1, l), and split the expression Gµ0,ν(Ψs,t) further according to formula
(6.6.6):

Gµ0,ν(Ψs,t) = G~µ0,ν(Ψs,t) +Hµ0,ν(Ψs,t).

We turn to the task of expressing

Hµ0,ν(Ψs,t) = ν!

kν∏
j=1

[∂α
~
j Ψs,t]

β~
j

β~
j ![α~

j !]|β
~
j |
.

in explicit form in the various cases as outlined in Proposition 6.6.1. First, if j ≥ 0 and
l ≥ 1, then kν = 2 and

Hµ0,ν(Ψs,t) = l(∂t|ψs,t|)(∂j+1
s ∂l−1

t |ψs,t|).

It remains to consider j ≥ 1 and l = 0. If j = 1 and l = 0, then

Hµ0,ν(Ψs,t) = (∂s|ψs,t|)2,

while if instead j ≥ 2 and l = 0, then

Hµ0,ν(Ψs,t) = (j + 1)(∂s|ψs,t|)(∂js |ψs,t|).

It remains to discuss the algebraic properties of rj,l for j ≥ 0, l ≥ 1 and those of Rj,0 for
j ≥ 1. In view of Proposition 6.6.1, for j ≥ 0, l ≥ 1 all the indices αi have

0 ≺L α0 ≺L · · · ≺L αk ≺L (j + 1, l − 1),

provided that (α;β) ∈ Lס
k (µ,ν) holds for a k = 1, . . . , |ν|, given that |µ| ≥ 3. In addition,

the same conclusion remains valid if µ = µ0 = (2, 0) provided that it is assumed that
(α;β) ∈ Lס

k,~(µ0,ν), which excludes the extremal multi-index. After some additional
simplifications, this shows that rj,l has the claimed form. For j ≥ 1 and l = 0, the assertion
about the algebraic properties of Rj,0 follows from the observation that if (α;β) ∈ Lס

k (µ,ν)

with ν = (j + 1, 0), then for i = 1, . . . , k, we have αi = (ai, 0) with 0 < ai ≤ j, by
Proposition 6.6.1. The computational aspects are analogous to the case already discussed.
This completes the proof. �

6.10. Taylor expansion of the remaining terms in the master equation. We recall
that hs and ψs,t stand for the functions

hs(ζ) =

κ∑
j=0

sjbj(ζ) and ψs,t(ζ) = ψ0,t(ζ) +
∑

(j,l)∈Z2κ+1

j≥1

sjtlψ̂j,l(ζ),

where κ is a (big) positive integer. Moreover, the bj are bounded holomorphic functions in
the exterior disk De(0, %1), and ψ0,t is a conformal mapping of the exterior disk onto the
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exterior of the level curves Γt of R as above, and where ψ̂j,l are holomorphic functions on
De(0, %1) with bounded derivative. Let us denote by Hj,l, Rj,l and Jj,l the corresponding
coefficient functions in the following three expansions (for ζ ∈ T):

2 Re(hs ◦ ψs,t)(ζ) =
∑

(j,l)∈Z2κ

sjtlHj,l(ζ) + O
(
|s|κ+ 1

2 + |t|2κ+1
)
,(6.10.1)

2s−1
(
R ◦ ψs,t(ζ)− 1

2 t
2
)

=
∑

(j,l)∈Z2κ

sjtlRj,l(ζ) + O
(
|s|κ+ 1

2 + |t|2κ+1
)
,(6.10.2)

log Re
(
− ζ̄∂tψs,t(ζ)ψ′s,t(ζ)

)
=

∑
(j,l)∈Z2κ

sjtlJj,l(ζ) + O
(
|s|κ+ 1

2 + |t|2κ+1
)
.(6.10.3)

where (6.10.2) holds since R ◦ ψ0,t(ζ) = t2

2 on T as a matter of definition. Moreover, we
recall that by Proposition 6.8.1 we have that

exp(J0,0) = Re(−ζ̄∂tψs,t(ζ)ψ′s,t(ζ))
∣∣
s=t=0

= (4∆R(ζ))−
1
2 on T.

We have already analyzed the coefficient functions Rj,l for (j, l) ∈ Z2κ back in Proposi-
tion 6.9.1. Here, we refine the analysis and obtain a more convenient splitting of Rj,l into
a main term plus a remainder, and express the coefficients Hj,l and Jj,l in terms of the
successive partial derivatives of the functions bj and ψs,t.

Proposition 6.10.1. In the above context, the Taylor coefficients Hj,l in (s, t) of the func-
tion 2 Rehs ◦ψs,t in (s, t) according to (6.10.1) have the following properties. For j ≥ 0 we
have

Hj,0 = 2 Re bj + hj,0

where hj,0 ∈ POL(j − 1,Σj,0). On the other hand, for (j, l) ∈ Z2κ with l ≥ 1, we see that
Hj,l ∈ POL(j,Σj,l).

As for the Taylor coefficients Rj,l associated with R ◦ψs,t according to (6.10.2), we have
for (j, l) ∈ Z2κ with j ≥ 0 and l ≥ 1 that

Rj,l = 2(4∆R)
1
2 Re(ζ̄ψ̂j+1,l−1) + sj,l

where
sj,l ∈ POL

({
(p, q) ∈ Σj+1,l : (p, q) ≺L (j + 1, l − 1)

})
.

As for the coefficients Jj,l appearing in (6.10.3), J0,0 is given by

J0,0 = log Re(−ζ̄ψ̂0,1) = −1

2
log(4∆R),

while for (j, l) ∈ Z2κ \ {(0, 0)} we see that Jj,l ∈ POL(Σj,l+1).

Proof. This follows from an application of the multivariate Taylor’s formula, together with
the multivariate Faà di Bruno formula (Proposition 6.5.1), and the equation (6.10.2) above.
Let us indicate the necessary computations, starting with the coefficients Hj,l. For (j, l) ∈
Z2κ \ {(r, 0) : r ≥ 0} we have

(6.10.4) Hj,l = 2 Re

j∑
i=0

∑
1≤µ≤j+l−i

∂µbi(ζ)

j+l−i∑
k=1

∑
(α,β)∈סL

k(µ,(j−i,l))

k∏
r=1

[∂αrs,t ψs,t(ζ)]βr

(αr!)βrβr!
,

and consequently Hj,l ∈ POL(j,Σj,l), while for indices (j, 0) with j ≥ 0 we have

Hj,0 = 2 Re bj + hj,0
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where hj,0 ∈ POL(j − 1,Σj,0) is given by

(6.10.5) hj,0 = 2 Re

j−1∑
i=0

∑
1≤µ≤j−i

∂µbi(ζ)

j−i∑
k=1

∑
(α,β)∈סL

k(µ,(j−i,0))

k∏
r=1

[∂αrs,tψs,t]
βr

(αr!)βrβr!
.

Turning to the claim about the coefficient Rj,l, we note that

(6.10.6) sj,l =
2

(j + 1)!l!
rj,l + 2(4∆R)

1
2

(
∂j+1
s ∂l−1

t |ψs,t|
(j + 1)!(l − 1)!

− Re(ζ̄ψ̂j+1,l−1)

)∣∣∣∣
s=t=0

.

The claim in the proposition follows from Proposition 6.9.1 together with the observation
that

∂j+1
s ∂l−1

t |ψs,t(ζ)|
(j + 1)!(l − 1)!

∣∣∣
s=t=0

− Re(ζ̄ψ̂j+1,l−1(ζ))

∈ POL
(
{(p, q) ∈ Σj+1,l : (p, q) ≺L (j + 1, l − 1)}

)
.

In order to see why this claim holds, we simply observe that the first term on the left-hand
side is the Taylor coefficient in (s, t) corresponding to the multi-index (j + 1, l − 1) of the
function |ψs,t|. The Taylor expansion of this function may be found as follows. We notice
that ψ0,0 = ζ, so that if we apply the generalized binomial theorem with exponent 1

2 , we
obtain

(6.10.7)

|ψs,t(ζ)| =
∣∣∣∣(1 +

∑
(p,q)6=(0,0)

sptq ζ̄ψ̂p,q

) 1
2

∣∣∣∣2 =

∣∣∣∣1 +
∑
k≥1

( 1
2

k

)( ∑
(p,q)6=(0,0)

sptq ζ̄ψ̂p,q

)k∣∣∣∣2

= 1 +
∑
k,k′≥1

( 1
2

k

)( 1
2

k′

)( ∑
(p,q) 6=(0,0)

sptq ζ̄ψ̂p,q

)k( ∑
(p,q) 6=(0,0)

sptqζψ̂p,q

)k′

+ 2 Re
∑
k≥1

( 1
2

k

)( ∑
(p,q) 6=(0,0)

sptq ζ̄ψ̂p,q

)k
, ζ ∈ T.

Apart from the contribution from the conformal mapping ψ0,t, the series involve a trunca-
tion given by the index set Z2κ+1, and hence we have no convergence issues. The maximal
index (p, q) in the lexicographical ordering for which ψ̂p,q appears in the Taylor coefficient
for sj+1tl−1 of the above expression (6.10.7), is easily seen to be (j + 1, l − 1). The con-
tribution corresponding to the maximal index comes from the last term on the right-hand
side of (6.10.7), and equals

2 Re

( 1
2

1

)
ζ̄ψ̂j+1,l−1 = Re(ζ̄ψ̂j+1,l−1).

As for all the other indices, the contribution in the above sum to the Taylor coefficient lies
in the complexity class

POL
({

(p, q) ∈ Σj+1,l−1 : (p, q) ≺L (j + 1, l − 1)
})
,

and the claim follows.
Finally, we turn to the coefficient Jj,l. We know that J0,0 = log Re(−ζ̄ψ̂0,1), while for

indices (j, l) ∈ Z2κ \ {(0, 0)} we apply the Faà di Bruno’s formula to the logarithm of the
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Jacobian expression to obtain

(6.10.8) Jj,l =
∑

1≤µ≤j+l

(−1)µ(µ− 1)!(4∆R)
µ
2

×
j+l∑
k=1

∑
(α,β)∈סL

k(µ;(j,l))

k∏
r=1

[∂αrs,t Re(−ζ̄∂tψs,tψ′s,t)]βr

(αr!)βrβr!
.

As we may eliminate the half-powers of ∆R by writing

(4∆R)
µ
2 = (4∆R)µ(4∆R)−

µ
2 = (4∆R)µ Re(−ζ̄ψ̂0,1(ζ))µ, ζ ∈ T,

it follows that Jj,l ∈ POL(Σj,l+1). �

6.11. Taylor expansion of the density in the master equation. We recall from §6.4
the function

Πs,t(ζ) = 2 Rehs ◦ ψs,t(ζ)− 2
s

(
(R ◦ ψs,t)(ζ)− 1

2 t
2
)

+ log
(

Re
(
− ζ̄∂tψs,t(ζ)ψ′s,t(ζ)

))
.

We compute the Taylor coefficients Π̂j,l for (j, l) ∈ Z2κ given implicitly by

Πs,t(ζ) =
∑

(j,l)∈Z2κ

sjtlΠ̂j,l(ζ) + O
(
|s|κ+ 1

2 + |t|2κ+1
)
.

This will determine what the master equation for the Taylor coefficients (6.4.2) entails for
the coefficient functions bk and ψ̂p,q for k ≤ κ and (j, l) ∈ Z2κ+1.

We recall that the Taylor coefficients Hj,l, hj,0, Jj,0, Rj,0, and sj,l have appeared above
in Propositions 6.9.1 and 6.10.1. See in addition the explicit formulæ (6.10.4), (6.10.5),
(6.10.6), and (6.10.8).

Proposition 6.11.1. The coefficients Π̂j,l(ζ) in the above expansion are given explicitly as
follows. For j = l = 0, we have

Π̂0,0(ζ) = 2 Re b0(ζ) + log Re(−ζ̄ψ̂0,1(ζ)),

while for l = 0 and j = 1, 2, 3, . . . the coefficient function is given by

Π̂j,0(ζ) = 2 Re bj(ζ) + Tj,0,

where Tj,0 := hj,0 − Rj,0 + Jj,0 ∈ POL(j − 1,Σj,1). Moreover, for j = 0, 1, 2, . . . and
l = 1, 2, 3, . . . the coefficient function Π̂j,l is given by

Π̂j,l = −2(4∆R(ζ))
1
2 Re(ζ̄ψ̂j+1,l−1(ζ)) + Tj,l,

where Tj,l := Hj,l − sj,l + Jj,l ∈ POL(j,Σ), with Σ as the index set

Σ = {(p, q) ∈ Σj+1,l ∪ Σj,l+1 : (p, q) ≺L (j + 1, l − 1)}.

Proof. The formula for Π̂0,0 = Πs,t|s=t=0 is immediate from the definition (6.4.1). Indeed,
ψ0,0(ζ) = ζ, and the formula (6.4.1) reads, where hs = 2 Re log fs,

Π0,0(ζ) = h0(ζ) + log
(

Re
(
− ζ̄ψ̂0,1(ζ)

))
,

where we use the fact that R0,0 = 0 according to Proposition 6.9.1. The conclusion now
follows by observing that h0(ζ) = 2 Re b0(ζ).

The coefficients Π̂j,0 for j ≥ 1 are given by

Π̂j,0 = Hj,0 −Rj,0 + Jj,0.
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The main contribution will come from the term Hj,0, and we need to prove that the remain-
der of this term, as well as both terms Rj,0 and Hj,0 belong to the polynomial complexity
class POL(j − 1,Σj,1). By Proposition 6.10.1, it follows that

Hj,l = 2 Re bj + hj,l

with hj,l ∈ POL(j − 1,Σj,0). Moreover, by Proposition 6.9.1 and Proposition 6.10.1, re-
spectively, it follows that

Rj,0 ∈ POL(Σj,0) ⊂ POL(j − 1,Σj,1), and Jj,0 ∈ POL(Σj,1) ⊂ POL(j − 1,Σj,1)

and hence the claim follows.
We next turn to the coefficients Π̂j,l with (j, l) ∈ Z2κ for which l ≥ 1. The main term of

Π̂j,l = Hj,l −Rj,l + Jj,l

will come from the term Rj,l, while the total remainder, consisting of the remainder from
the term Rj,l together with the full terms Hj,l and Jj,l, is supposed to lie in the correct
polynomial complexity class POL(j,Σ), where

Σ = {(p, q) ∈ Σj+1,l ∪ Σj,l+1 : (p, q) ≺L (j + 1, l − 1)}.

By Proposition 6.10.1, we have for such indices (j, l) that

Rj,l = −2(4 ReR)
1
2 Re(ζ̄ψ̂j+1,l−1) + sj,l,

where sj,l ∈ POL(j,Σ). By Proposition 6.10.1 it also follows that

Hj,l ∈ POL(j,Σj,l) ⊂ POL(j,Σ), and Jj,l ∈ POL(Σj,l+1) ⊂ POL(j,Σ).

which proves the claim. �

6.12. Algorithmic resolution of the master equation. We are now ready to make the
algorithm outlined in §6.4 rigorous. We recall the master equation for the Taylor coefficients
(6.4.2)

Π̂j,l =

− 1
2 log(4π) for ζ ∈ T and (j, l) = (0, 0),

0 for ζ ∈ T and (j, l) ∈ Z2κ \ {(0, 0)}.
In order to solve this system, we solve for the coefficient functions of hs and ψs,t iteratively,
according to the algorithm outlined in §6.4.

Proof of Proposition 6.2.1. In view of Propositions 6.2.3 and 6.8.1, the conformal mapping
ψ0,t and its Taylor coefficients ψ̂0,l for l = 0, 1, . . . , 2κ+1 with respect to the time parameter
t of the flow are well-defined, and they satisfy the required smoothness properties: for t near
0, the conformal mapping ψ0,t extends holomorphically across the boundary T to an exterior
disk De(0,

√
%1) according to Proposition 6.3.1. In addition, the derivative ψ′0,t remains

uniformly bounded as long as the weight R is confined to a uniform family in W(%0, σ0)

for fixed %0 and σ0. Moreover, the coefficient functions ψ̂0,l extend holomorphically to
De(0, %1), by Remark 6.1.4. This completes Step 1 of the algorithmic procedure.

Turning our attention to Step 2, we recall from Proposition 6.8.1 that on the circle T,
we have Re(−ζ̄ψ̂0,1) = (4∆R(ζ))−

1
2 . Hence, by Proposition 6.11.1 the equation Π̂0,0 =

− 1
2 log(4π) is equivalent to

2 Re b0 − 1
2 log(4∆R) = −1

2
log(4π) on T.
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Since we want the function fs to be zero-free in the exterior disk and real at infinity, this
tell us that

b0 = − 1
4 log(4π) + 1

4HDe

[
log(4∆R)

]
.

We note that this automatically gives the normalization Im b0(∞) = 0. By Proposition 6.1.5
and Remark 6.1.4, it follows that b0 extends holomorphically to the exterior disk De(0, %1).
Moreover, b0 clearly remains uniformly bounded provided that R is confined to a uniform
family in W(%0, σ0). This completes Step 2.

We proceed to Step 3 of the algorithmic procedure. We are now in the following
situation. For some j0 ≥ 1, our known data set is POL(j0 − 1,Σ), where

Σ = {(j, l) ∈ Z2κ : (j, l) ≺L (j0, 0)}

and all elements of POL(j0 − 1,Σ) meet the required extension conditions. In particular,
all the functions b0, . . . , bj0−1 and ψ̂j,l for all (j, l) ∈ Z2κ+1 with (j, l) ≺L (j0, 0) are already
known. In addition, the relations (6.4.2) are met for all (j, l) ∈ Z2κ with (j, l) ≺L (j0−1, 1).
We will now show how this allows us to obtain the relations (6.4.2) for all subsequent indices
(j, l) ∈ Z2κ with (j, l) ≺L (j0, 0), by making appropriate choices of the functions ψ̂j0,l for
l ≥ 0 with (j0, l) ∈ Z2κ+1. The additional indices for which we need to solve (6.4.2) are
those (j, l) ∈ Z2κ of the form (j, l) = (j0 − 1, l + 1), where l ≥ 0.

To achieve this, we assume that for all l with 0 ≤ l ≤ l0 − 1, we have obtained the
coefficient functions ψ̂j0,l by solving the equation (6.4.2) for the index pair (j0 − 1, l + 1),
and turn to the next equation. This reads Π̂j0−1,l0+1 = 0, as long as (j0 − 1, l0 + 1) ∈ Z2κ.
At this point, the known data set is POL(j0 − 1,Σ′), where

Σ′ = {(j, l) ∈ Z2κ+1 : (j, l) ≺L (j0, l0)}

If l0 is too large for (j0, l0) ∈ Z2κ+1 to hold, we are in fact done, we don’t need to obtain
ψ̂j0,l0 for such indices. On the other hand, if (j0, l0) ∈ Z2κ+1 we proceed as follows. By
Proposition 6.11.1, the equation Π̂j0−1,l0+1 = 0 may be written in the form

Π̂j0−1,l0+1 = −2(4∆R)
1
2 Re(ζ̄ψ̂j0,l0) + Tj0−1,l0+1 = 0 on T,

where Tj0−1,l0+1 ∈ POL(j0 − 1,Σ′). We provide a solution to this equation by the formula

(6.12.1) ψ̂j0,l0 = 1
2ζHDe

[
Tj0−1,l0+1

(4∆R)
1
2

]
.

The function Tj0−1,l0+1 has a polarization which is holomorphic in (z, w̄) for (z, w) ∈
Â(%1, σ1), and the same holds for the weight R. As a consequence, it follows that ψ̂j0,l0
extends holomorphically to the exterior disk De(0, %1), and that ψ̂j0,l0(ζ) = O(|ζ|) with an
implicit constant which is uniformly bounded, provided that R is confined to a uniform
family in W(%0, σ0).

The base step l0 = 0 of the induction procedure of Step 3 is entirely analogous. Indeed,
the known data set is POL(j0−1,Σ) with Σ as above, and by Proposition 6.11.1 the relevant
equation Π̂j0−1,1 = 0 takes the form

−2(4∆R)
1
2 Re(ζ̄ψ̂j0,0) + Tj0−1,1 = 0 on T,

where Tj0−1,1 in particular lies in POL(j0 − 1,Σ). Hence we obtain ψ̂j0,0 by the formula
(6.12.1) with l = 0 replaced by 0.
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We now turn to Step 4. After the completion of Step 3, the situation is as follows. the
known data set is POL(j0 − 1,Σ) with

Σ = {(j, l) : (j, l) ≺L (j0 + 1, 0)},

where every element of POL(j0 − 1,Σ) polarizes to Â(%1, σ1). In addition, the relations
(6.4.2) are met for all (j, l) ∈ Z2κ with (j, l) ≺L (j0, 0). We recall that this in particular
this means that the known data set consists of the coefficient functions b0, . . . , bj0−1 and
ψ̂j,l for (j, l) ∈ Z2κ+1 with (j, l) ≺L (j0 + 1, 0) are known. In this step, we need to find the
function bj0 , and verify that the relation (6.4.2) is then met with (j, l) = (j0, 0). To this
end, we apply Proposition 6.11.1, and observe that the equation (6.4.2) with (j, l) = (j0, 0)

is equivalent to having

Π̂j0,0 = 2 Re bj0 + Tj0,0 = 0 on T,

where Tj0,0 ∈ POL(j0−1,Σ), with the same Σ as above. Since POL(j0−1,Σ) is a collection
of known functions, we hence obtain an equation for the unknown function bj0 , with solution

bj0 = − 1
2HDe

[
Tj0,0

]
.

In view of Proposition 6.1.5 and Remark 6.1.4, the function bj0 extends holomorphically to
the exterior disk De(0, %1), and remains uniformly bounded if the weight R is confined to a
uniform family in W(%0, σ0). Moreover, we observe that bj0 has the required normalization
at infinity: Im bj0(∞) = 0.

We finally turn to Step 5. The key observation is that we are now in a position to
return to Step 3 followed by Step 4, with j0 replaced by j0 + 1. Since Step 1 and Step
2 combine to form the initial data for Steps 3 and 4 with j0 = 1, the algorithm produces
iteratively the entire set of coefficient functions, and solves in the process all the equations
(6.4.2) for (j, l) ∈ Z2κ.

Equipped with the functions bj for j = 0, . . . , κ, the conformal mappings ψ0,t and the
coefficients ψ̂j,l for (j, l) ∈ Z2κ+1 ∩{(j, l) : j ≥ 1}, we observe that the functions hs and ψs,t
given by

hs(ζ) =

κ∑
j=0

sjbj(ζ), ψs,t(ζ) = ψ0,t +
∑

(j,l)∈Z2κ+1

j≥1

sjtlψ̂j,l(ζ)

are well-defined, and have the desired smoothness and mapping properties. By the Becker-
Pommerenke criterion of Lemma 6.2.5, it is immediate that ψs,t, as defined, is univalent
in a neighborhood of the closed exterior disk De for s and t close to 0. As ψs,t extends
holomorphically to the exterior disk De(0,

√
%

1
), and since ψs,t is a smooth perturbation of

the identity it follows that ψs,t is univalent on De(0, %2) and that

ψs,t(De(0, %2)) ⊂ De(0, %1)

for s, t close to 0, provided that %2 is chosen appropriately with √%1 ≤ %2 < 1.
The conclusion of Proposition 6.2.1 is now an immediate consequence of the relations

(6.4.2) for the Taylor coefficients of the logarithm of the function

exp(Πs,t(ζ)) = |fs ◦ ψs,t(ζ)|2e−2s−1{(R◦ψs,t)(ζ)−
1
2 t

2}Re
(
− ζ̄∂tψs,t(ζ)ψ′s,t(ζ)

)
for ζ ∈ T, in the variables (s, t) near (0, 0), as verified in the above algorithm. �
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6.13. Implementation of the orthogonal foliation flow for R = Rτ . It remains only
to prove the key lemma (Lemma 3.4.1). The hard work was completed in the previous
subsection. The existence of the orthogonal foliation flow now follows if we use s = 1/m as
our quantization parameter.

Proof of Lemma 3.4.1. We first claim that Q◦φ−1
τ is uniformly real-analytic in the exterior

disk De(0, ρ0,0) for τ ∈ Iε0 . By this we mean that there exists a number σ0,0 > 0 such that
Q◦φτ has a polarization which is uniformly bounded on the 2σ0,0-fattened diagonal annulus
Â(ρ0,0, σ0,0) (see Definition 6.1.1). Let ρ1,0 be the number given by ρ1,0 := max

{
ρ0,0, ((1 +

σ2
0,0)

1
2 + σ0,0)−1

}
. Moreover, the function Q~

τ ◦ φ−1
τ , which is the harmonic extension

of Q ◦ φ−1
τ |T to the exterior disk De, is uniformly bounded on Â(ρ1,0, σ0,0) in view of

Proposition 6.1.2 and an elementary decomposition of harmonic functions into holomorphic
and conjugate holomorphic functions. In view of (2.1.2), the same holds for Q̆τ ◦ φ−1

τ

and consequently also for Rτ = (Q − Q̆τ ) ◦ φ−1
τ . In view of the uniform flatness of Rτ

near the unit circle, the function Rτ,0 defined by the relation Rτ (ζ) = (1 − |ζ|2)2Rτ,0(ζ)

enjoys the same property as well, namely that its polarization is uniformly bounded on
Â(ρ1,0, σ0,0). By possibly replacing σ0,0 by a smaller positive number σ1,0 we may guarantee
that the polarization of Rτ,0 remains bounded away from zero in the slightly smaller fattened
diagonal annulus Â(ρ1,0, σ1,0). If necessary, we replace ρ1,0 by the larger number ρ2,0 =

max{ρ1,0, ((1 + σ2
1,0)

1
2 + σ1,0)−1}, which is still smaller than 1.

In view of the above considerations and the uniform bounds from Proposition 3.3.1,
the family Rτ for τ ∈ Iε0 constitute a uniform family in W(%0, σ0) where %0 = ρ2,0 and
σ0 = σ1,0. By Proposition 6.1.5 we obtain numbers %1 and σ1 with 0 < %1 < 1 and σ1 > 0.
We set ρ0 = %1 and apply Proposition 6.2.1 to obtain the desired conformal mappings
ψm,n,t = ψs,t and f

〈κ〉
m,n = fs with associated asymptotic expansion to precision κ, where

s = m−1. Here, the function f
〈κ〉
m,n is holomorphic and bounded on De(0, ρ0), positive at

infinity and bounded away from zero in the entire exterior disk De(0, ρ0). Moreover, the flow
equation (3.4.2) of Lemma 3.4.1 holds to the desired accuracy, in view of Proposition 6.2.1
with s = m−1. �

7. Connection with soft Riemann-Hilbert problems

7.1. Matrix ∂̄-problems and orthogonal polynomials. Given the successful applica-
tion of Riemann-Hilbert problem methods to the study of orthogonal polynomials in the
context of the real line and the unit circle, it has been proposed that the planar orthogonal
polynomials should be approached in a similar fashion. Following Its and Takhtajan [39],
we consider a matrix ∂̄-problem (or a soft Riemann-Hilbert problem) and see how it fits in
with our orthogonal foliation flow.

A polynomial is said to be monic if it has leading coefficient equal to 1. So, let πm,n
denote the monic orthogonal polynomial of degree n with respect to the measure e−2mQdA

where Q is assumed 1-admissible. In other words, πm,n is given by

πm,n(z) = κ−1
m,nPm,n(z),

where κm,n is the leading coefficient of the normalized orthogonal polynomial Pm,n.
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If f ∈ Lp(C) for some 1 < p < 2, we let Cf be its Cauchy transform, given by

Cf(z) =

∫
C

f(w)

z − w
dA(w)

which is well-defined almost everywhere and represents a function which is locally in the
Sobolev space W 1,p. The importance of the Cauchy transform comes from the fact that in
the sense of distribution theory, ∂̄Cf = f .

In [39], Its and Takhtajan propose to study the asymptotics of πm,n starting from the
observation that the matrix-valued function

(7.1.1) Ym,n(z) =

(
πm,n(z) −C

[
π̄m,ne

−2mQ
]
(z)

−κ2
m,n−1πm,n−1(z) κ2

m,n−1C
[
π̄m,n−1e

−2mQ
]
(z),

)

solves the ∂̄-problem

(7.1.2)


∂̄Y (z) = −Ȳ (z)W (z), for z ∈ C,

Y (z) =
(
I + O

(
z−1
))zn 0

0 z−n

 , as |z| → +∞,

where W (z) = Wm(z) is the matrix-valued function

W (z) =

(
0 e−2mQ(z)

0 0

)
.

Moreover, the solution is unique, as shown in [39]. We remark that classical Riemann-
Hilbert problems where a jump occurs on a curve Γ may be phrased as ∂̄-problems where
∂̄Y (z) is understood as a matrix-valued measure supported on Γ, and the above problem
is a natural generalization to a more genuinely two-dimensional situation.

The idea that underlies the Its-Takhtajan approach, as well as the classical Riemann-
Hilbert approach to orthogonal polynomials, is the expectation that one may constructively
obtain an approximate solution Ỹ = Ỹm,n(z) to the problem (7.1.1) (or the corresponding
RHP), which should then produce an entry (Ỹm,n)1,1 which is approximately equal to
πm,n(z).

7.2. Integration of Riemann-Hilbert problems along curve families. Unfortunately,
it has proven difficult to solve the problem (7.1.1) constructively. The following simple ob-
servation shows how our orthogonal foliation flow reduces the ∂̄-problem to a family of more
classical Riemann-Hilbert problems along closed curves.

In order to describe this problem, we denote by J(z) a 2× 2 jump matrix and let Γ be
an oriented smooth simple closed curve in C. We denote by Ω+ and Ω− the interior and
exterior components of the complement C \ Γ, respectively. If f is a function defined on
C \ Γ, which is continuous up to the boundary Γ as seen from each component, we define
the two boundary value functions f+ and f− on Γ by

f±(ζ) = lim
z→ζ
z∈Ω±

f(z), ζ ∈ Γ.
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We consider the Riemann-Hilbert problem of finding a 2 × 2 matrix-valued function Y (z)

which meets

(7.2.1)



Y is holomorphic on C \ Γ,

Y +(z) = Y −(z) + Ȳ −(z)J(z), for z ∈ Γ,

Y (z) = (I + O(z−1))

zn 0

0 z−n

 , as |z| → +∞.

In order to analyze this problem, we need a variant of the Cauchy transform, which applies
to functions defined on Γ. For smooth Γ and reasonable f , we write

CΓf(z) =
1

2πi

∫
Γ

f(w)

w − z
dw, z ∈ C \ Γ.

As is well-known, the classical Plemelj formula is a useful tool in the study of Riemann-
Hilbert problems:

(7.2.2) (CΓf)+(z) = (CΓf)−(z) + f(z).

We now connect the more classical Riemann-Hilbert problem (7.2.1) with the matrix ∂̄-
problem (7.1.2).

Proposition 7.2.1. Let {Γt}t∈I be a smooth strictly expanding flow of positively oriented
simple closed curves, and denote by D the union D =

⋃
t∈I Γt. Let ω(z) denote a smooth

positive function on D, and denote by ξ : D → C the vector field νη̄, where η(z) denotes
the outward unit normal field to the curve family and ν denotes the scalar normal velocity
of the flow. Then, for each t ∈ I, there is a unique solution Yt(z) to the Riemann-Hilbert
problem (7.2.1) with jump matrix

J =

(
0 2ωξ

0 0

)
.

Moreover, if there exists a continuous positive function λ(t) such that (Yt)1,1 and λ(t)(Yt)2,1

are independent of t, then the matrix-valued function

Y (z) = Λ−1
1

∫
I

Λ(t)Yt(z)dtΛ−1
2

is the unique solution to (7.1.2), with W =

(
0 1D ω

0 0

)
, provided that

Λ(t) =

(
1 0

0 λ(t)

)
, Λ1 =

(
1 0

0
∫
I
λ(t)dt

)
, Λ2 =

(
|I| 0

0 1

)
.

Proof. We first establish the existence of solutions to the problem (7.2.1) of Γt, which may
be expressed in terms of a family of t-dependent orthogonal polynomials. We recall that ξ
factors as νη̄, where ν denotes the speed of the boundary in the normal direction while η
denotes the outward pointing unit normal field. Since arc-length measure |dz| on Γt relates
to the complex line element dz by dz = τ |dz| where τ denotes the unit tangent vector field
along Γt, it follows that

1

2πi
dz =

1

2π
(−iτ)|dz| = η ds
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where we recall the convention ds = |dz|
2π . From this it follows that (2πi)−1ξ dz = ν ds, and

we may consequently define an inner product by

〈f, g〉t :=

∫
Γt

f(z)ḡ(z)ν(z)ds(z) =
1

2πi

∫
Γt

f(z)ḡ(z)ξ(z)dz.

Let {π?n,t}n denote the sequence of monic orthogonal polynomials with respect to this inner
product, such that π?n,t has degree n, and denote by κ?n,t the sequence of leading coefficient of
the corresponding normalized orthogonal polynomials P ?n,t = κ?n,tπ

?
n,t. It is straightforward

to check that the function(
π?n,t 2CΓt [π̄

?
n,tωξ]

− 1
2 (κ?n−1,t)

2π?n−1,t −(κ?n−1,t)
2CΓt [π̄

?
n−1,tωξ](z)

)
supplies a solution to the Riemann-Hilbert problem (7.2.1).

As for the uniqueness, it is clear from Plemelj’s formula (7.2.2) and the jump condition
that any solution Yt(z) must take the form

Yt(z) =

(
at(z) ut(z) + 2CΓt [ātωξ](z)

bt(z) vt(z) + 2CΓt [b̄tωξ](z)

)
,

where at, bt, ut, vt are entire functions. From the growth constraint at infinity, we see that
these four functions are all polynomials. Moreover, ut = vt = 0 for the same reason. A
standard expansion of the Cauchy kernel at infinity shows that at is a monic polynomial of
degree n which is orthogonal to the lower degree polynomials Poln with respect to ωξdz on
Γt. It follows that at = π?n,t. Analogously, bt is given by bt = − 1

2 (κ?n−1,t)
2π?n−1,t. We have

established the unique solvability of the Riemann-Hilbert problem (7.2.1) with the given
jump matrix.

Next, we turn to the connection with the ∂̄-problem (7.1.2). Under the assumption that
(Yt)1,1 = at = A is independent of t, and that for some t-dependent parameter λ(t), the
expression λ(t)(Yt)2,1 = λ(t)bt = B is also independent of t, we may consequently write

Λ(t)Yt(z) =

(
A(z) 2CΓt [Āωξ](z)

B(z) 2CΓt [B̄ωξ](z)

)
,

where we recall that Λ(t) is the matrix given in the proposition. Recall that we may
integrate over the flow {Γt}t using the disintegration∫

t∈I

(
2

∫
Γt

u(z)ν(z)ds

)
dt =

∫
D
u(z)dA(z),

for functions u such that the indicated integrals have a well-defined meaning. It now follows
that if 〈λ〉I =

∫
I
λ(t)dt, the matrix-valued function

Ŷ (z) := Λ−1
1

∫
I

Λ(t)Yt(z)dtΛ−1
2 = Λ−1

1

(
|I|A(z) −C[Āω 1D](z)

|I|B(z) −C[B̄ω 1D](z)

)
Λ−1

2

=

(
A(z) −C[Āω 1D](z)

(〈λ〉I)−1B(z) −(〈λ〉I)−1 C[B̄ω 1D](z)

)
solves

∂̄Ŷ (z) =

(
0 −Āω 1D

0 −(〈λ〉I)−1B̄ω 1D

)
= −Ŷ (z)

(
0 ω 1D

0 0

)
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with asymptotics

Ŷ (z) =
(
I + O

(
z−1
))(zn 0

0 z−n

)
, as |z| → +∞,

as a consequence of the corresponding asymptotics of Yt for each t ∈ I. �

Remark 7.2.2. (a) For the orthogonal foliation flow, in the context of a neighborhood of the
boundary curve of the droplet Sτ with τ = n

m , the (approximate) orthogonal polynomial
of degree n is also approximately orthogonal to the lower degree polynomials along the
individual flow loops corresponding to ω = e−2mQ. So, in view of Proposition 7.2.1, the
conditions

(7.2.3) ∂t(Yt)1,1 = 0, ∂t
(
λ(t)(Yt)2,1

)
= 0

should be met at least approximately for some appropriate scalar-valued function λ(t) (cf.
the presentation in §1.6). Alternatively, we could use (7.2.3) as a criterion to define a flow
of curves. In the given setting, this should give us back our orthogonal foliation flow. In
other words, (7.2.3) should be analogous to the condition (6.4.2), once the Riemann-Hilbert
problems of Proposition 7.2.1 are approximately solved in a constructive fashion, and we
would expect that in an approximate sense,

Γt ∼ φ−1
τ (ψm,n,−t(T)).

It is entirely possible that the conditions (7.2.3) would be more stable close to the zeros
of the orthogonal polynomial πm,n. For instance, this might be the case with a highly
eccentric ellipse.
(b) In their work, Its and Takhtajan use a bounded domain Ω to address possible conver-
gence issues. Here, the potential Q grows sufficiently rapidly, so there is no need for us to
consider such a truncation.
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