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Exponential solutions of the Klein-Gordon equation

The Klein-Gordon equation in 1+ 1 dimensions can be written in the form

u′′xy + u = 0.

If we try for pure complex exponential solutions

u(x , y) = eiλx+iµy ,

then
u′′xy + u = (1− λµ) eiλx+iµy = 0

holds if and only if λµ = 1. Such pure complex exponential solutions are
bounded if and only if (λ, µ) ∈ R2. In other words, the bounded complex
exponential solutions are parametrized by (λ, µ) ∈ R2 with λµ = 1.
Replacing λ by t and µ by 1/t, such solutions are given by

u(x , y) = eitx+iy/t ,

for t ∈ R× := R \ {0}.



L1-mixed bounded exponential solutions

A function of the form

u(x , y) = Uϕ(x , y) =

∫
R

eitx+iy/tϕ(t) dt

where ϕ ∈ L1(R), is said to be an L1-mixed bounded exponential
solution. It is bounded and solves the Klein-Gordon equation
u′′xy + u = 0. The restrictions to the characteristic axes,

u(x , 0) =

∫
R

eitxϕ(t) dt, u(0, y) =

∫
R

eiy/tϕ(t) dt

are inter-connected. For instance, it is possible to see that

u(0, y) = u(0, 0)−
∫ +∞

0
J1(−y , t)u(t, 0) dt, y ≤ 0, (1)

where

J1(x , y) :=
+∞∑
k=0

(−1)k

k!(k + 1)!
xk+1yk

is a two-variable version of the familiar Bessel function.



The Goursat problem for L1-mixed bounded solutions

The Klein-Gordon equation u′′xy + u = 0 has as characteristic directions
the two axes (or any translate of the axes). Starting from the intersection
point of the axes (=the origin), we can split the plane in four
quarter-planes:

x , y ≥ 0 or x , y ≤ 0 (time-like),

and
x ≥ 0, y ≤ 0 or x ≤ 0, y ≥ 0 (space-like).

In the space-like quarter-planes, the values on the the boundary lines
influence each other strongly, as in the formula with the Bessel function.

Goursat problem (space-like)
For an L1-mixed bounded solution u, we would like to prescribe

u(x , 0) = f (x), u(0, y) = g(y), x ≥ 0, y ≤ 0,

for given continuous functions f , g .



Overdetermination of the Goursat problem

In view of the relationship (1), the Goursat problem cannot be solved for
arbitrary, say smooth, functions f and g , given that we look for bounded
solutions u of the given form. Of course, one way out is to ask that f , g
should be connected, but an alternative idea is to reduce the quantity of
boundary data. If we ask that the boundary data should hold on thinned
out versions of the two semi-axes, we might stand a chance to have a
well-defined problem.

Lattice-cross Goursat problem
For the quarter-plane x ≥ 0, y ≤ 0, we consider lattice-cross data

u(αm, 0) = f (αm), u(0,−βn) = g(−βn), m, n ∈ Z≥0.

Here, α, β are positive reals which are spacing parameters. The functions
f , g are assumed smooth with compact support.



Illustration of the discretized Goursat problem
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Critical lattice-cross Goursat problem

Theorem (over/underdetermined)
The lattice-cross Goursat problem is overdetermined if αβ < π2,
underdetermined if αβ > π2, and critical if αβ = π2.

What the theorem says is (a) if αβ < π2, the points are too dense in the
lattice-cross so that some dependence between the data still remains, and
(b) if αβ > π2 the density is too low for the solution u to be unique.
However, if αβ = π2, the density is precisely right (critical). In the
critical case, we may use scaling invariance to assume α = β = π.

Critical Goursat: uniqueness
(Hedenmalm, Montes-R) If α = β = π, we have that for u = Uϕ with
ϕ ∈ L1(R),

∀m, n ∈ Z≥0 : u(πm, 0) = u(0,−πn) = 0
⇐⇒ ∀x ≥ 0, y ≤ 0 : u(x , y) = 0.



Dual formulation of critical Goursat
Let Hp

+(R) denote the usual Hardy space on the real line consisting of
Lp(R) functions whose Poisson formula harmonic extensions to the upper
half-plane (=hyperbolic plane)

H :=
{
τ ∈ C : Im τ > 0

}
are holomorphic.

THEOREM (critical Goursat)
The system

eiπmt , e−iπn/t , m, n ∈ Z≥0,

is weak-star complete in H∞+ (R). In other words, for ϕ ∈ L1(R), we have
that

∀m, n ∈ Z≥0 :

∫
R

eiπmtϕ(t) dt =

∫
R

e−iπn/tϕ(t)dt = 0⇐⇒ ϕ ∈ H1
+(R).

Remark
This theorem is due to Hedenmalm and Montes-Rodriguez (Annals
2011), and the proof is based on the dynamics of the Gauss-type map
g2(x) = −1/x mod 2Z on the interval [−1, 1].



Critical Goursat: the interpolation problem

Problem
Suppose we try to solve for Kronecker delta data:

u(πm, 0) = δk,m, u(0,−πn) = 0, m ∈ Z, n ∈ Z6=0,

or
u(πm, 0) = 0, u(0,−πn) = δk,n, m ∈ Z, n ∈ Z6=0.

Here, k ∈ Z≥0 and u = Uϕ with ϕ ∈ L1(R).

Note:
(a) By symmetry, the two instances are equivalent, as we may
interchange x ↔ y in the Klein-Gordon equation and nothing happens.
So we may concentrate on the first instance.
(b) Do such solutions u = Uϕ exist? What do they look like? What is the
corresponding ϕ? If so, are they smooth? How smooth? These functions
would be the Klein-Gordon analogue of the cardinal sine functions for the
Paley-Wiener space, or the Pehr Beurling functions for H∞ interpolation.



Critical interpolation in terms of the density ϕ

Problem
Given k ∈ Z≥0, find ϕk ∈ L1(R) such that∫

R
eiπmtϕk(t)dt = δk,m,

∫
R

eiπn/tϕk(t)dt = 0,

for all m ∈ Z and n ∈ Z6=0.

Note that if ϕk exists, it must belong to the Hardy space H1
−(R). It turns

out that we find the functions ϕk for free if we study hyperbolic Fourier
series.



Hyperbolic Fourier series

Definition
A series of the form ∑

n∈Z
aneiπnt + bne−iπn/t

is called a hyperbolic (or bipolar) Fourier series. To avoid double
representation of constants, we usually ask that b0 = 0.

Note:
(a) We have not made any requirement about convergence, so it may be
just a formal expression. Moreover, whereas the sum of two hyperbolic
Fourier series is another hyperbolic Fourier series (just add the
corresponding coefficients), the product of two hyperbolic Fourier series
does not appear to be a hyperbolic Fourier series (at least not
automatically).
(b) Which functions may be expressed as hyperbolic Fourier series?
(c) Can we even extend the notion to hyperbolic Fourier series expansion
to distribution theory?



Why study hyperbolic Fourier series?
Hyperbolic Fourier series may look strange at first glance.

1

∞

−1

0

Basic idea
Like in differential geometry, we cover the line with two patches and
corresponding coordinates: On the interval (−1, 1) we use t, while on the
complement, we use 1/t (or −1/t) as the basic coordinate.



Hyperbolic Fourier series and critical interpolation

Underlying observation
Using the series ∑

n∈Z
aneiπnt

we can represent any function on (−1, 1), while using the series∑
n∈Z

bne−iπn/t

we can represent any function on the complement R \ [−1, 1]. By
summing the two we should be able to represent any function on the
whole line, although we ought to worry about interference (due to the
periodicity of each term).

Question
How would hyperbolic Fourier series help us find the function ϕk we
mentioned before?



Hyperbolic Fourier series and critical interpolation II

Suppose we are lucky and able to expand rather general functions or even
distributions into hyperbolic Fourier series in a stable way, i.e.

f (t) ∼
∑
n∈Z

an(f )eiπnt + bn(f )e−iπn/t

with well-defined and unique coefficients an(f ) and bn(f ) that depend
linearly on f , as in Fourier theory.

Biorthogonal system
f 7→ an(f ) and f 7→ bn(f ) are linear functionals. In terms of the pairing

〈f , g〉R =

∫
R
f (t)g(t) dt,

an, bn should correspond to test functions An,Bn associated with the
space of distributions we are working with. These functions form a
biorthogonal system to {eiπnt , e−iπn/t}n, and ϕn = An is the function we
seek.



The Schrödinger transform

Schrödinger evolution
If ϕ(x) is a function on Rd , the extended function

Φ(x , t) := e−it∆xϕ(x)

solves the potential-free Schrödinger equation with initial datum
Φ(x , 0) = ϕ(x):

i∂tΦ−∆xΦ = 0.

Definition of Schrödinger transform
The Schrödinger transform of ϕ is the function

Sϕ(t) := Φ(0, t).

Question
Does the Schrödinger transform Sϕ determine ϕ uniquely?



The Schrödinger transform and Fourier theory
Let the Fourier transform ϕ̂ be given by

ϕ̂(ξ) :=

∫
Rd

e−i〈x,ξ〉ϕ(x) dVold(x), ξ ∈ Rd .

Then the Schrödinger evolution of ϕ may be written in the form

Φ(x , t) =
1

(2π)d

∫
Rd

ei〈x,ξ〉eit|ξ|2 ϕ̂(ξ) dVold(ξ)

so that the Schrödinger transform becomes

Sϕ(t) = Φ(0, t) =
1

(2π)d

∫
Rd

eit|ξ|2 ϕ̂(ξ) dVold(ξ).

If ϕ̂ is radial, i.e., if ϕ is radial, this looks like a variant of the Fourier
transform and we expect the Schrödinger transform to be one-to-one on
such functions. In fact, if ϕ̂ is replaced by its radialization

ϕ̂rad(ξ) =
1

|Sd−1|

∫
Sd−1

ϕ̂(|ξ|η)dVold−1(η)

and ϕrad denotes its inverse Fourier transform, which is radial too, then
Sϕrad = Sϕ.



The Schrödinger transform of basis functions

Complex exponential ϕ
If ϕ(x) = eα(x) := ei〈α,x〉 for some vector α ∈ Rd , then its Schrödinger
evolution is Φ(x , t) = ei〈α,x〉+i|α|2t , and, in particular,

Sϕ(t) = Seα(t) = Φ(0, t) = ei|α|2t .

Point mass ϕ
If ϕ(x) = δβ(x) for some β ∈ Rd , then its Schrödinger evolution is
Φ(x , t) = 2−dπ−d/2(t/i)−d/2e−i|x−β|2/(4t), and, in particular,

Sϕ(t) = Sδβ(t) = Φ(0, t) = 2−dπ−d/2(t/i)−d/2e−i|β|2/(4t).

Choice of parameter values
We choose α, β ∈ Rd such that |α|2 = πm and |β|2 = 4πn for integers
m, n with m ≥ 0 and n > 0. Then

Seα(t) = eiπmt , Sδβ(t) = 2−dπ−d/2(t/i)−d/2e−iπn/t .



Fourier interpolation
Assumption
Suppose that we have obtained a unique power skewed holomorphic
hyperbolic Fourier series expansion

f (τ) =
+∞∑
n=0

an,d(f ) eiπnτ + bn,d(f ) (τ/i)−d/2 e−iπn/τ , τ ∈ H,

for a wide collection of holomorphic functions f in H. Suppose moreover
that

an,d(f ) = 〈An,d , f 〉R, bn,d(f ) = 〈Bn,d , f 〉R,
for smooth functions An,d and Bn,d .

Consequence: Fourier interpolation formula
Suppose g : Rd → C is a smooth radial test function, and write also g
for the function on R≥0 given by g(|x |) = g(x). Let S∗ be the adjoint of
S, which takes functions on R and makes them radial functions on Rd .
We then obtain the Fourier interpolation formula

g(y) =
+∞∑
n=0

ĝ(
√
πn)S∗An,d(y)+2dπd/2g(2

√
πn)S∗Bn,d(y), y ∈ Rd .



Distribution theory and harmonic extensions

Distributions on the unit circle
A distribution on the unit circle T is a continuous linear functional on
C∞(T) = D(T), written u(f ) = 〈f , u〉T, where we may think of u as a
"generalized function".

Harmonic functions from distributions on T
For z ∈ D, let

P(z ,w) := (2π)−1 1− |z |2

|1− zw̄ |2
, w ∈ T,

be the Poisson kernel, and associate with a distribution u ∈ D′(T) the
harmonic function

ũ(z) := 〈P(z , ·), u〉T, z ∈ D. (2)

The harmonic function then has the growth bound ("moderate growth")

|ũ(z)| = O(1− |z |2)−N

as |z | → 1, for some finite number N. The number N + 1 is then an
upper bounds for the order of the distribution.



One-to-one correspondence distribution ↔ harmonic
function

The harmonic function ũ has the distribution u as "boundary values"
(boundary trace). Moreover, the distributions on T are in a one-to-one
correspondence with the harmonic functions on D with moderate growth.
For this reason, we may skip the tilde and denote both by u.



Ultradistribution theory/Hyperfunctions

In distribution theory, all distributions have finite order. For instance,
only a finite number of derivatives of delta functions are allowed. But if
we reduce the space of test functions from C∞ to some other class of
smooth functions, like the Carleman classes, we can allow for
(ultra)distributions of infinite order. The formula (2) defines a harmonic
function also for a given ultradistribution, but the growth rate goes up.
Still, the one-to-one correspondence between u and ũ stays in place. The
support of an ultradistribution is the complement on the circle T of the
open set where the ultradistribution vanishes (in the sense of Schwarz
reflection). Given two complementary arcs on the circle (the intersection
set is two points only), when can we split the ultradistribution as the sum
of two ultradistributions of the same type, one supported on one arc and
the other on the other arc? This can be explained in terms of the growth
rate of the harmonic function.



Non-quasianalyticity condition

The non-quasianalyticity condition decides when such splitting is possible.

Theorem
Suppose u : D→ C is harmonic with

|u(z)| = O(M(|z |)) as |z | → 1−,

where M : [0, 1[→ R is an increasing function. Given two closed arcs
I1, I2 ⊂ T with I1 ∪ I2 = T and I1 ∩ I2 consisting of two points, we may
split u = u1 + u2 where each uj has the same kind of growth and is
supported on Ij (j = 1, 2), provided that∫ 1

0
log+ log+ M(t) dt < +∞.



Ultradistributions on the extended real line

The Cayley transform

ζ =
τ − i
τ + i

takes the upper half plane H onto the unit disk D. Moreover, the Cayley
transform takes the extended real line R∞ := R ∪ {∞} onto the unit
circle T. A calculation shows that

1
1− |ζ|2

=
|τ + i|2

4Im τ
� |τ |

2 + 1
Im τ

,

which tells us that distributions on R∞ are in a one-to-one
correspondence with the harmonic functions on H of moderate growth:

|u(τ)| = O
(
1 + |τ |2

Im τ

)n

.

Faster growth would be interpreted as ultradistribution theory.



Harmonic extension of hyperbolic Fourier series

The harmonic extension to H of eiπnt is the function{
eiπnτ if n ≥ 0,
eiπnτ̄ if n < 0.

Likewise, the harmonic extension to H of e−iπn/t is the function{
e−iπn/τ if n ≥ 0,
e−iπn/τ̄ if n < 0.

It follows that the harmonic extension of the hyperbolic Fourier series is∑
n≥0

{
aneiπnτ + bne−iπn/τ} +

∑
n<0

{
aneiπnτ̄ + bne−iπn/τ̄}.

For this series to converge in H we need to impose that

|an|, |bn| = O(exp(ε|n|))

as |n| → +∞, for each positive real ε.



Uniqueness of hyperbolic Fourier series

Uniqueness theorem
Suppose b0 = 0 while for each ε > 0,

|an|, |bn| = O(exp(ε|n|))

as |n| → +∞, and that

|an| = o
(
|n|−3/4 exp

(
2π
√
|n|
))

as |n| → +∞. If∑
n≥0

{
aneiπnτ + bne−iπn/τ} +

∑
n<0

{
aneiπnτ̄ + bne−iπn/τ̄} = 0

holds for each τ ∈ H, then an = bn = 0 for all n.



Sharpness considerations

Question
Do we really need to impose any additional restraints on the coefficients
an, bn beyond that which guarantees convergence in H?

Answer
It is needed and the condition is sharp. We consider the modular lambda
function

λ(τ) =
ϑ2(τ)4

ϑ3(τ)4 =
+∞∑
n=1

λ̂(n) eiπnτ ,

where λ̂(1) = 16, λ̂(2) = −128, λ̂(3) = 704, etc. It has the functional
property that

λ(τ) + λ(−τ−1)− 1 = −1 +
+∞∑
n=1

λ̂(n)
(
eiπnτ + e−iπn/τ) = 0.

The coefficient growth is λ̂(n) = O
(
|n|−3/4 exp

(
2π
√
|n|
))
.



Beyond uniqueness

Question
What happens when we allow for faster growth of the coefficients? Can
we say that the coefficients are unique modulo some small linear space of
exceptional functions?

Exceptional coefficient classes Ek
For integers k ≥ 0, we say that the pair of sequences {an, bn}n≥0 with
b0 = 0 belongs to the exceptional coefficient class Ehol

k provided that
there exists a polynomial P of degree ≤ k with P(0) = 0 such that∑

n≥0

an eiπnτ = P(λ(τ)),
∑
n>0

bn eiπnτ = −P(1− λ(τ)).

Moreover, we say that the pair of sequences {an, bn}n∈Z with b0 = 0
belongs to the exceptional coefficient class Eharm

k provided that both
{an, bn}n≥0 and {a−n, b−n}n≥0 are in Ehol

k . The complex dimension of
the linear space Ehol

k equals k , while the dimension of Eharm
k equals 2k .



What happens beyond uniqueness

Beyond uniqueness theorem
Suppose b0 = 0 while for each ε > 0, |an|, |bn| = O(exp(ε|n|)) as
|n| → +∞, and that for some integer k ≥ 1,

|an| = o
(
|n|−3/4 exp

(
2π
√
k |n|

))
holds as |n| → +∞. If∑

n≥0

{
aneiπnτ + bne−iπn/τ} +

∑
n<0

{
aneiπnτ̄ + bne−iπn/τ̄} = 0

holds for each τ ∈ H, then {an, bn}n∈Z belongs to the exceptional
coefficient class Eharm

k−1 .



Growth classes of harmonic and holomorphic functions

Growth classes
Let M : H→ R+ denote the function

M(τ) :=
max{1, |τ |2}

Im τ
.

For a real γ > 0, we letMγ
harm denote the space of harmonic functions

h : H→ C with the growth bound

|h(τ)| = O(exp(γM(τ))

uniformly in H. Likewise, we denote byMγ
hol the subspace ofMγ

harm
consisting of holomorphic functions.

Lemma
Each h ∈Mγ

harm decomposes as h = f + ḡ , where f , g ∈Mγ
hol.

We know that ∇ = (∂, ∂̄) applied to h gives ∂h = f ′ and ∂̄h = ḡ ′. We
estimate the gradient and integrate backwards.



Harmonic hyperbolic Fourier series: step 1

The setting
We have a harmonic function h in the upper half-plane H. We want to
expand it in a convergent hyperbolic Fourier series

h(τ) =
∑
n≥0

aneiπnτ + bne−iπn/τ +
∑
n<0

aneiπnτ̄ + bne−iπn/τ̄

for τ ∈ H. This can be interpreted in terms of expanding the boundary
hyperfunction/ultradistribution along the extended real line R∞.

First step
We split h = f + ḡ , where f , g are holomorphic. This is unique up to an
additive constant. It is then enough to expand f , if possible, as a
holomorphic hyperbolic Fourier series

f (τ) =
∑
n≥0

aneiπnτ + bne−iπn/τ .

This is because g would then have the analogous expansion.



Why the given growth classes?

Coefficient classes
(0 < α < +∞) A coefficient sequence {an}n is in Gα if

|an| = O(exp(α
√
|n|))

as |n| → +∞.

Remark
From the uniqueness theorem we have uniqueness in the representation if
one of the sequences {an}n or {bn}n is in Gα for α < 2π, and, at the
same time we have controlled non-uniqueness for 2π ≤ α < +∞.

Proposition
If {an}n and {bn}n are both in Gα, then the associated hyperbolic Fourier
series

h(τ) =
∑
n≥0

{
an eiπnτ + bn e−iπn/τ} +

∑
n<0

{
an e−iπnτ̄ + bn eiπn/τ̄}

is inMγ
harm for each γ > α2/4π.



Fundamental HFS theorem

Our fundamental theorem is a converse to the proposition on the
previous slide.

HFS theorem
Suppose h : H→ C is harmonic. Then h has a (possibly non-unique)
hyperbolic Fourier series representation

h(τ) =
∑
n≥0

{
an eiπnτ + bn e−iπn/τ} +

∑
n<0

{
an e−iπnτ̄ + bn eiπn/τ̄}

where b0 = 0 and |an|, |bn| = O(exp(ε|n|)) as |n| → +∞. If h is in the
growth classMγ

harm for some γ, 0 < γ < +∞, then coefficients may be
found which belong to the classes classes Gα for any given real parameter
α > 2

√
πγ. The coefficients are unique in the interval 0 < γ < π. For

πk ≤ γ < π(k + 1), however, they are unique up to an exceptional pair
of sequences in Eharm

k .



Observations

Remarks
The boundary "values" on R∞ exist as an ultradistribution, in a
one-to-one correspondence with the harmonic function. In this sense any
such ultradistribution has a hyperbolic Fourier series expansion, which is
unique with coefficients in the growth class Gα for α < 2π provided that
the growth of the corresponding harmonic function is fromMγ

harm with
0 < γ < π. For kπ ≤ γ < (k + 1)π, we have uniqueness in the expansion
up to an additive exceptional sequence in Eharm

k .



The holomorphic HFS theorem

Holomorphic HFS theorem
Suppose f : H→ C is holomorphic. Then f has a (possibly non-unique)
holomorphic hyperbolic Fourier series representation

f (τ) =
∑
n≥0

{
an eiπnτ + bn e−iπn/τ}

where b0 = 0 and an, bn = O(exp(ε|n|)) as |n| → +∞. If f is in the
growth classMγ

hol for some γ, 0 < γ < +∞, then coefficients {an, bn}n
may be found from the coefficient classes Gα for any given α > 2

√
πγ.

The choice is unique if α < 2π is allowed, which is the case for
0 < γ < π. For If kπ ≤ γ < (k + 1)π, the choice is unique up to an
additive exceptional sequence in Ehol

k .



Some notes

Remark
Clearly, this is a special case of the fundamental HFS theorem. However,
the holomorphic HFS theorem implies the general result, as we may split
h ∈Mγ

harm as h = f + ḡ , with f , g ∈Mγ
hol and expand f and g

separately using the holomorphic HFS theorem.

Remark
In the presentation below, we consider mainly f ∈Mγ

hol for 0 < γ < π.



Solving a Dirichlet problem

U periodic U periodic

U = f

Re

Im

−1 0 1

i

− 1
2

1
2

The domain DΘ and the corresponding Dirichlet problem.



Observations

Considering that we have periodic conditions along the linear
semi-infinite segments, we may think of the domain as glued together
there to form a cylindrical domain with boundary points along the circle
and the point +i∞. We fill in the point +i∞, so that what remains is
just the upper half of the unit circle. The function U is the harmonic
function on this surface with boundary values equal to those of f . To
ensure the existence of U, the boundary values cannot be too wild. This
is ensured by the condition that f is in the growth classMγ

hol for γ < π.

Immediate properties of U
The function U is harmonic and 2-periodic: U(τ + 2) = U(τ). It is
initially defined in the region Ω1 obtained by all removing circular disks of
radius 1 from H, centered at 2Z. As a 2-periodic function, U has a
Fourier series

U(τ) =
∑
n≥0

Û(n) eiπnτ +
∑
n<0

Û(n) eiπnτ̄ , Im τ > 1.

Moreover, U(τ) = f (τ) holds for τ ∈ H with |τ | = 1.



From the Dirichlet problem to the HFS
We make the following temporary assumption.

Assumption
Suppose the Fourier series expansion of U actually converges for all
τ ∈ H.

Conclusion
Then for τ ∈ H with |τ | = 1, τ̄ = 1/τ , so that

f (τ) = U(τ) =
∑
n≥0

Û(n) eiπnτ +
∑
n<0

Û(n) eiπn/τ .

Now, since
f (τ)−

∑
n≥0

Û(n) eiπnτ +
∑
n<0

Û(n) eiπn/τ

is a holomorphic function in H which vanishes on |τ | = 1, by the
uniqueness theorem for holomorphic functions it vanishes identically.
Consequently, we obtain the HFS expansion

f (τ) =
∑
n≥0

Û(n) eiπnτ +
∑
n<0

Û(n) eiπn/τ , τ ∈ H.



What do we need to know?

Conclusion
It follows that

f (τ) =
∑
n≥0

an eiπnτ + bn e−iπn/τ , τ ∈ H,

where an = Û(n), bn = Û(−n), and b0 = 0.

Question
What else would we need to know?

Answer
We would like to know that the sequences {an}n and {bn}n belong to the
growth classes Gα, for each α > 2

√
πγ. This is then the same as asking

that the sequence {Û(n)}n is in Gα. Morally speaking, this should be the
same as getting an appropriate growth bound on the harmonic function
U in H. Let us try to see what we can get.



A first growth bound

Growth bound on DΘ

Since f ∈Mγ
hol, we know that

|f (τ)| = O
(

exp

(
γ

Im τ

))
as Im τ → 0+ while τ ∈ T+ := T ∩H. Since 0 < γ < π, the function is
integrable with respect to harmonic measure, and, moreover, we may
estimate that

|U(τ)| = O
(

exp

(
γ

Im τ

))
holds uniformly on DΘ.

Comment
The region Dθ, with the two linear boundary segments zipped to form a
cylinder, may be mapped conformally to the unit disk D. In terms of disk
coordinates we have a boundary function with bound O(|z − 1|−β) where
0 < β < 1, and then the harmonic function on D with those boundary
values is O(|z − 1|−β) as well.



Schwarz reflection

Our boundary data f for the Dirichlet problem is a holomorphic function
in H. This tells us that U must be better as well.

Schwarz reflection
The harmonic function U(τ)− f (τ), which is initially well-defined in
Ω1 = H \ ∪j D̄(2j , 1), vanishes along T+, so it extends across T+ by
Schwarz reflection to

−U
(
1
τ̄

)
+ f

(
1
τ̄

)
.

Thus extended, the function U enjoys the functional identity

U(τ) + U

(
1
τ̄

)
= f (τ) + f

(
1
τ̄

)
.



Consequences of Schwarz reflection

Some transformations on H
The transformations S(τ) := −1/τ , S~(τ) := 1/τ̄ , R(τ) := −τ̄ , and
T (τ) := τ + 1 all act on H. We see that S ◦ R = R ◦ S = S~, and,
moreover, that

T n ◦ R = R ◦ T−n,
so that

T n ◦ S~ = T n ◦ R ◦ S = R ◦ T−n ◦ S .

Invariance property of U
In terms of fsym := f + f ◦ S~, the solution u to the Dirichlet problem
has the following two properties:

U = U ◦ T 2, u = −U ◦ S~ + fsym.

Combine the two:

U = −U ◦ T 2k ◦ S~ + fsym, k ∈ Z.



Iterated Schwarz reflection

Iterated invariance property
By iteration:

U = (−1)NU ◦ T 2kN ◦ S~ ◦ · · · ◦ T 2k1 ◦ S~

+ fsym +
N−1∑
j=1

(−1)j fsym ◦ T 2kj ◦ S~ ◦ · · · ◦ T 2k1 ◦ S~.

In terms of S
For even j ,

T nj ◦ S~ ◦ · · · ◦ T n1 ◦ S~ = T nj ◦ S ◦ T−nj−1 ◦ S ◦ · · · ◦ T−n1 ◦ S ,

while for odd j ,

T nj ◦ S~ ◦ · · · ◦T n1 ◦ S~ = R ◦T−nj ◦ S ◦T nj−1 ◦ S ◦ · · · ◦T−n1 ◦ S .



When is this identity useful?

The strip S+

Let
S+ := {τ ∈ H : |Re τ | ≤ 1}.

Facts about u
1. U(τ + 2) = U(τ) so it is enough to estimate U(τ) for τ ∈ S+.
2. We have a good estimate of U(τ) for τ ∈ S+ with |τ | > 1, i.e. for
τ ∈ DΘ.

The remaining region
We need to control U(τ) for τ ∈ S+ with |τ | ≤ 1, i.e. for τ ∈ S+ ∩ D̄. In
so doing, we also extend U harmonically to all of H.

Application of the identity
Suppose τ ∈ S+ ∩ D̄ while T 2kN ◦ S~ ◦ · · · ◦ T 2k1 ◦ S~(τ) ∈ DΘ. The
identity then allows us to estimate U(τ) in terms of known quantities.



The lifted Gauss-type map g2

What we want
For τ ∈ S+, we want T 2kN ◦ S~ ◦ · · · ◦ T 2k1 ◦ S~(τ) ∈ DΘ in a minimal
number of steps (= N). If we are lucky, we begin with τ ∈ DΘ, and then
there is nothing to do. We should choose k1 ∈ Z such that
τ1 := T 2k1 ◦ S~(τ) ∈ S+. If then |τ1| > 1, i.e. τ1 ∈ DΘ, we stop with
N = 1. If not, we keep going and choose k2 ∈ Z such that
τ2 := T 2k2 ◦ S~(τ1) ∈ S+. Again, if |τ2| > 1, i.e. τ2 ∈ DΘ, we stop with
N = 2. If not, keep going.

The map mod2 and the lifted Gauss map g2

Let mod2 : H→ S+ be such that τ −mod2(τ) ∈ 2Z. Moreover, we put
g2 := mod2 ◦ S . Then g2 maps S+ → S+, and we are interested in the
first time the g2-iterates of τ ∈ S+ hits the subdomain DΘ, or at least
the closure D̄Θ. The required number of iterates defines the height (or
stopping time) n(τ) ∈ Z≥0 of the point τ ∈ S+.



The height and orbits of points in H

Height of points according to g~
2

Let g~
2 := mod2 ◦ S~ and define the g~

2 -height of a point τ ∈ S+ to be
the number of iterates required to get the point in S+ to fall in DΘ.

Observation
The g~

2 -height of a point τ ∈ S+ is the same as the g2-height n(τ).

Extension of the height to H
We extend the height function n : S+ → Z≥0 to n : H→ Z≥0 by
declaring n(τ + 2k) = n(τ) for k ∈ Z.

Lemma
We have that for τ ∈ H with |τ | < 1,

Img2(τ) = Im S(τ) = −Im
1
τ

= −Im
τ̄

|τ |2
=

Im τ

|τ |2
> Im τ.

In particular, the g2-iterates (and the g~
2 -iterates) of points move upward

away from the real line, up until the stopping time (= the height).



Iterated invariance up to the stopping time

Application of the iterated invariance property
For τ in the semistrip S+, we have

U(τ) = (−1)n(τ)U ◦ (g~
2 )◦n(τ)(τ) +

n(τ)−1∑
j=0

(−1)j fsym ◦ (g~
2 )◦j(τ).

Fundamental estimates
(RV = Radchenko-Viazovska, BRS = Bondarenko-Radchenko-Seip) We
have that as y → 0+,

n(t + iy) = O(1/y)

while ∫ 1

−1
n(t + iy) dt =

2
π

log2 y + O(log y).



Estimation of U for f ∈Mγ
hol

We recall that

fsym(τ) = f (τ) + f ◦ S~(τ) = f (τ) + f

(
1
τ̄

)
.

Estimate of fsym

f ∈Mγ
hol =⇒ fsym ∈Mγ

hol.

First estimate of U
Suppose that f ∈Mγ

hol for some 0 < γ < π. Then by the estimate of U
on DΘ, we have, uniformly on S+,∣∣U◦(g~

2 )◦n(τ)(τ)| = O
(

exp(γ/Im (g~
2 )◦n(τ)(τ)

)
= O

(
exp(γ/Im τ)

)
.

Estimate of fsym terms
For τ ∈ S+ and j = 0, 1, . . . ,n(τ), we have∣∣fsym ◦ (g~

2 )◦j(τ)| = O
(

exp(γ/Im (g~
2 )◦j(τ)

)
= O

(
exp(γ/Im τ)

)
.



Implementation of the estimate of U for f ∈Mγ
hol

Estimate of U
For 0 < γ < π and f ∈Mγ

hol, we have that for τ ∈ S+,

|U(τ)| = O
(
(n(τ) + 1) exp(γ/Im τ)

)
= O

(
(1 + 1/Im τ) exp(γ/Im τ)

)
,

where in the last step, we applied the fundamental estimate of
Radchenko-Viazovska. Moreover, as U is by definition 2-periodic, the
above estimate extends to all of H.



Splitting U in analytic and conjugate-analytic parts

Decomposing U
We split U = U+ + U−, where U+ is holomorphic in H while U− is
conjugate-holomorphic. Since U is 2-periodic, the functions U+,U− are
2-periodic as well. Moreover, as U is bounded in any half-plane
Hε = iε+ H with ε > 0, the same goes for U+,U−, and we arrange it so
that U−(+i∞) = 0. The estimate

|U(τ)| = O
(
(1 + 1/Im τ) exp(γ/Im τ)

)
, τ ∈ H,

carries over to U+,U−:

|U+(τ)| = O
(
(1 + 1/Im τ) exp(γ/Im τ)

)
, τ ∈ H,

and
|U−(τ)| = O

(
(1 + 1/Im τ) exp(γ/Im τ)

)
, τ ∈ H.

Representation of f
It follows that f = U+ + U− ◦ S~, i.e., f (τ) = U+(τ) + U−(1/τ̄).



Estimate of Fourier coefficients

Consequences
U = U+ + U−, where

U+(τ) =
∑
n=0

Û+(n) eiπnτ , τ ∈ H,

and

U−(τ) =
+∞∑
n=1

Û−(−n) e−iπnτ̄ , τ ∈ H.

The growth control on U+,U− implies that for each α > 2
√
πγ,

|Û+(n)| = O(exp(α
√
n)) as n→ +∞,

and
|Û−(−n)| = O(exp(α

√
n)) as n→ +∞.



Proof of the analytic HFS theorem

Since

f (τ) = U+(τ)+U−(1/τ̄) =
+∞∑
n=0

Û(n) eiπnτ+
+∞∑
n=1

Û(−n) e−iπn/τ , τ ∈ H,

the analytic HFS theorem follows.



Integral representation of the function U

The modular lambda function z = λ(τ) maps DΘ one-to-one and onto
the slit half-plane {

z ∈ C : Re z <
1
2
, z /∈ R≤0

}
.

The two half-lines where Re τ = ±1 are mapped to R≤0 ± i0
(respectively), while the semi-circle T+ gets mapped to the line
Re z = 1

2 . We denote by λ4 the local inverse to λ, which may be
expressed in terms of a ratio of the hypergeometric function. Then
U ◦ λ4 becomes harmonic in the above slit half-plane.

Observation
U(τ + 2) ≡ U(τ) implies that U ◦ λ4 extends harmonically across the slit
R≤0.

Poisson representation

U(τ) =
1
π

∫
T+

1
2 − Reλ(τ)

|λ(τ)− λ(η)|2
f (η) |λ′(η)| |dη|, τ ∈ DΘ.



Consequences of the Poisson representation

Poisson representation, rewritten
If T+ is given a counter-clockwise orientation, we have λ(η) ∈ 1

2 + iR for
η ∈ T+ and idλ(η) = iλ′(η)dη = |λ′(η)| |dη|, so that

U(τ) =
1

i2π

∫
T+

(
1− λ(τ)

(1− λ(η))(λ(τ)− λ(η))

+
λ̄(τ)

λ̄(η)(λ̄(τ)− λ̄(η))

)
f (η)λ′(η) dη

= U+(τ) + U−(τ), τ ∈ DΘ,

where

U+(τ) =
1

i2π

∫
T+

1− λ(τ)

(1− λ(η))(λ(τ)− λ(η))
f (η)λ′(η) dη, τ ∈ DΘ,

and

U−(τ) =
1

i2π

∫
T+

λ̄(τ)

λ̄(η)(λ̄(τ)− λ̄(η))
f (η)λ′(η) dη, τ ∈ DΘ.



Consequences of the Poisson representation, cont

Since λ(+i∞) = 0, it follows that:

Properties of U+,U−
The function U+ is holomorphic in H while U− is conjugate-holomorphic.
Moreover, both functions are 2-periodic: U+(τ + 2) = U+(τ) and
U−(τ + 2) = U−(τ). Finally, U−(+i∞) = 0 while U+(+i∞) = U(+i∞).

Schwarz reflection on U−
We apply Schwarz reflection in the semi-circle T+ to u−, to get a
holomorphic function for τ ∈ S~(DΘ) = S(DΘ):

U−

(
1
τ̄

)
=

1
i2π

∫
T+

λ̄( 1
τ̄ )

λ̄(η)(λ̄( 1
τ̄ )− λ̄(η))

f (η)λ′(η) dη.



Rewriting the Schwarz reflection of U−

Since λ̄( 1
τ̄ ) = λ(− 1

τ ) = 1− λ(τ) and λ̄(η) = 1− λ(η), we obtain

U−

(
1
τ̄

)
= − 1

i2π

∫
T+

1− λ(τ)

(1− λ(η))(λ(τ)− λ(η))
f (η)λ′(η) dη

for τ ∈ S(DΘ). Note that except for the sign, this formula looks identical
with the formula for U+, which may make us doubt our calculations!
After all, the sum would add up to 0, which cannot be true. However,
what makes things work is the fact that the two expressions U+(τ) and
U−(1/τ̄) are defined on the disjoint sets DΘ and S(DΘ), respectively.



Movement of contours

Now, the integrand is holomorphic, so we may deform the contour. To
this end, let Γ+, Γ− be smooth deformations of T+ such that some
(small) neighborhood of each endpoint ±1 is preserved. The rest of the
curve Γ+ is deformed downward (but not going further down than
S(DΘ), while Γ2 is similarly deformed upward. We find that in the above
formulae deining U+(τ) and U−(1/τ̄), we may deform T+ to Γ1 and Γ2,
respectively, since the integrand is holomorphic in the relevant region.

Integral HFS representation of f

f (τ) = U+(τ) + U−

(
1
τ̄

)
=

1
i2π

∫
Γ1−Γ2

1− λ(τ)

(1− λ(η))(λ(τ)− λ(η))
f (η)λ′(η) dη

holds for τ ∈ T+ ∪ DΘ ∪ S(DΘ) in the region between the contours Γ1
and Γ2.



A comment

Note on the integral HFS representation
This representation is a straightforward consequence of the Cauchy
integral formula. From this point of view, the HFS is a consequence of
the remarkable properties of the modular lambda function.



The associated projections

IfMγ∗
per denotes the space of locally bounded continuous functions

F : H→ C with F (τ + 2) = F (τ) and

F (τ) = O
((

1 +
1

Im τ

)
exp

(
γ

Im τ

))
uniformly in H, then

max
{
‖U+‖Mγ∗

per
, ‖U−‖Mγ∗

per

}
,≤ Cγ‖f ‖Mγ , 0 < γ < π.

In other words, f 7→ U+ and f 7→ U− ◦ S~ defines projections
Mγ

hol →M
γ∗
hol,per andMγ

hol →M
γ∗
conj−hol,per ◦ S~, which add up to

the identity: U+ + U− ◦ S~ = f . We write Qf = U+ and
Q~f = U− ◦ S~ to have convenient notation.



The coefficient functionals

For f ∈Mγ
hol, Qf = U+ ∈Mγ∗

hol,per and hence may be expressed by a
Taylor-Fourier series

Qf (τ) =
+∞∑
n=0

an(f ) einπτ , τ ∈ H.

We may then recover the coefficients via the formula

an(f ) =
1
2
eπεn

∫
[−1,1]

Qf (t + iε) e−iπntdt,

for any ε > 0. The map f 7→ an(f ) then defines a bounded linear
functionalMγ

hol → C and it becomes a legitimate question how such
linear functionals may be represented. If we fix a γ′ with γ < γ′ < π, we
may write

an(f ) =

∫
H
f (τ) e−γ

′M(τ)dνn(τ), f ∈Mγ
hol,

for a finite complex Borel measure νn on H, because γ′ may replace γ
above. How does this translate into a smooth function on R instead?



Duality formula for the circle

Suppose F is bounded and holomorphic in D, and Φ is C 1-smooth in D̄,
then we have the identity

〈ζF ,Φ〉T =

∫
T
ζF (ζ)Φ(ζ)ds(ζ)

=
1
2πi

∫
T
F (ζ)Φ(ζ) dζ =

∫
D
F (ζ)∂̄ζΦ(ζ)dA(ζ).

Moreover, even if F is unbounded in the disk, we may make sense of the
left-hand side in terms of the dilates Fr (ζ) = F (rζ):

〈ζF ,Φ〉T := lim
r→1−

〈ζFr ,Φ〉T.

From the above formula, we see that it is enough to ask that Fr ∂̄Φ
converges in L1(D) to F ∂̄Φ ∈ L1(D) as r → 1−. This is thought as a
requirement on Φ. Note that we may minimize the smoothness
assumptions on Φ.



Duality formula for the real line

Suppose f is bounded and holomorphic in H, and Φ is C 1-smooth in H̄,
with appropriate control at infinity, then we have the analogous identity

〈f ,Φ〉R =

∫
R
f (t)Φ(t)dt = i2π

∫
H
f (τ)∂̄τΦ(τ)dA(τ).

We should thus solve
∂̄τΦn =

1
i2π

µn,

where
dµn = e−γ

′Mdνn, M(τ) =
max{1, |τ |2}

Im τ
,

and we know νn is a finite complex Borel measure on H. The natural
solution is

Φn(τ) =
1

i2π2

∫
H

e−γ
′M(ξ)

τ − ξ
dνn(ξ), τ ∈ H.

Then
〈f ,Φn〉R =

∫
H
f (τ) e−γ

′M(τ)dνn(τ) = an(f ).



Properties of Φn

Smoothness of Φn

The function Φn is holomorphic in H̄−, and extends C∞-smoothly to H̄−
with decay |Φn(τ)| = O(|τ |−1) at infinity.

Decay of Φn for n > 0
For n = 1, 2, 3, . . ., |Φn(τ)| = O(|τ |−2) at infinity in H̄−. Moreover, the
function τ 7→ τ−2Φn(−1/τ) is C∞-smooth on H̄− as well. We have the
Gevrey type bound ‖Φ(k)

n ‖L∞(R) = On(k
1
2 (k!)2γ−k) and the analogous

bound holds for for the derivatives of t−2Φn(−1/t) as well.

Remark
This is based on the property that

0 = an(1) =

∫
H

e−γ
′M(τ)dνn(τ).



Connection with the biorthogonal system

Recall that we write

an(h) = 〈h,An〉R =

∫
R
h(t)An(t) dt, bn(h) = 〈h,Bn〉R =

∫
R
h(t)Bn(t) dt,

in connection with the hyperbolic Fourier series for h.

Theorem
We have An = Φn for n > 0, so that in particular,∫

R
eiπjtΦn(t)dt = 0,

∫
R

e−iπk/tΦn(t)dt = 0,

for all integer pairs (j , k) with j 6= n.

Symmetry property
We have A−n(t) = Ān(t) for all n ∈ Z, whereas for n 6= 0, we have
Bn(t) = t−2An(−1/t).



The function Φ̃0

We put

Φ̃0(τ) :=
1

i2π2

∫
H

(
1

τ − ξ
− 1
τ − ξ̄

)
e−γ

′M(ξ)dν0(ξ)

=
1
π2

∫
H

Im ξ

(τ − ξ)(τ − ξ̄)
e−γ

′M(ξ)dν0(ξ).

Here, it is possible to argue that we may require without loss of
generality that ν0 is real-valued (if not it may be replaced by a
real-valued measure which gives rise to the same functional on the
subspace of L∞(H) of functions e−γ

′Mh for h ∈Mγ
harm). Consequently,

Φ̃0 is real-valued along the line R. Moreover,

∂̄Φ̃0(τ) =
1

i2π
e−γ

′M(τ)dν0(τ), τ ∈ H,

and Φ̃(τ) = O(|τ |−2) as |τ | → +∞, so that

a0(f ) =

∫
H
f e−γ

′Mdν0 =

∫
R
f (t)Φ̃0(t)dt = 〈f , Φ̃0〉R, f ∈Mγ

hol.



The function A0

Theorem
We have A0 = Φ̃0, so that in particular,∫

R
eiπjtΦ̃0(t)dt =

∫
R

e−iπj/tΦ̃0(t)dt = 0,

for all integers j 6= 0.



Decomposition of a point mass

The harmonic extension of a point mass
We consider h = hξ = δξ, the unit point mass at ξ ∈ R. The
corresponding harmonic extension is

h(τ) =
1
π

Im τ

|ξ − τ |2
, τ ∈ H.

If
f (τ) = fξ(τ) =

1
i2π

1
ξ − τ

, τ ∈ H,

then f is holomorphic and h(τ) = 2Re f (τ) = f (τ) + f (τ).

We now look for the HFS decomposition of f = fξ, which in its turn gives
the HFS decomposition of h = δξ:

h(τ) = 2Re
{∑

n≥0

an(f ) eiπnτ + bn(f ) e−iπn/τ
}
,

so that a0(h) = 2Re a0(f ), while an(h) = an(f ), bn(h) = bn(f ) for n > 0,
and an(h) = a−n(f ), bn(h) = b−n(f ) for n < 0.



Relation with the bilinear system

The bilinear system
For n ∈ Z and m ∈ Z6=0 and ξ ∈ R,

an(hξ) = an(δξ) = An(ξ), bm(hξ) = bm(δξ) = Bm(ξ).

Basic properties
For ξ ∈ R, and n ∈ Z>0, we have that

A0(ξ) = 2Re a0(fξ), An(ξ) = an(fξ), Bn(ξ) = bn(fξ),

and, in addition, for n ∈ Z6=0,

An(ξ) = A−n(ξ) = A−n(−ξ), Bn(ξ) = B−n(ξ) = B−n(−ξ).



HFS decomposition of f = fξ (1)

The coefficient a0(fξ)

We have

a0(fξ) =
1
2π

∫
T+

|λ′(η)|
|λ(η)|2

f (η) |dη| =
1

i4π2

∫
T+

|λ′(η)|
|λ(η)|2

(ξ − η)−1 |dη|,

so that with λ4(ζ) = iF4(1− ζ)/F4(ζ) and F4(ζ) = F ( 1
2 ,

1
2 ; 1; ζ),

A0(ξ) = a0(hξ) = 2Re a0(fξ) =
1

2π2

∫
T+

|λ′(η)|
|λ(η)|2

Im η

|ξ − η|2
|dη|

=
1

2π2

∫
1
2 +iR

Imλ4(ζ)

|ξ − λ4(ζ)|2
|dζ|
|ζ|2

.

Symmetry property of fξ
We have

fξ ◦ S(τ) =
1

i2πξ
+ ξ−2f−1/ξ(τ).



Consequences of the symmetry property

Corollary
(a) We have that

a0(fξ)− ξ−2a0(f−1/ξ) =
1

i2πξ
,

so that A0(ξ) = ξ−2A0(−1/ξ).
(b) For n ∈ Z6=0, we have

Bn(ξ) = bn(fξ) = ξ−2an(f−1/ξ) = ξ−2An(−1/ξ).

It follows that once we have the coefficients An(ξ), we automatically
have Bn(ξ) as well. Consequently, we may focus on expressing An(ξ) for
n > 0, by symmetry.



The coefficient functions An

Since

Uξ(τ) =
1

i2π2

∫
T+

1
2 − Reλ(τ)

|λ(τ)− λ(η)|2
1

ξ − η
|λ′(η)| |dη|, τ ∈ Dθ,

the Fourier coefficient Ûξ(n) of this harmonic function is, for n > 0, given
by

An(ξ) = Ûξ(n) =
1
2

∫ 1

−1
e−iπn(t+iβ)Uξ(t + iβ) dt, β > 1.

It is easy to see that in the decomposition Uξ = U+ + U−, Û−(n) = 0 for
n > 0. Consequently, Ûξ(n) = Û+(n) for n > 0, and we find that if Γβ
denotes the horizontal line segment from −1 + iβ to 1 + iβ,

An(ξ) = Ûξ(n) = Û+(n) =
1
2

∫
Γβ

e−iπnτU+(τ) dτ

=
1

i4π

∫
T+

fξ(η)λ′(η) dη
1− λ(η)

∫
Γβ

1− λ(τ)

λ(τ)− λ(η)
e−iπnτdτ.



A change of variables

By integration by parts and periodicity, we obtain that∫
Γβ

1− λ(τ)

λ(τ)− λ(η)
e−iπnτdτ = −1− λ(η)

iπn

∫
Γβ

e−iπnτ λ′(τ)

(λ(τ)− λ(η))2 dτ.

We apply the change of variables τ = λ4(ζ), so that ζ = λ(τ), where ζ
is in C \ (]−∞, 0] ∪ [1,+∞[). This gives∫

Γβ

1− λ(τ)

λ(τ)− λ(η)
e−iπnτdτ = −1− λ(η)

iπn

∫
Γ̃β

e−iπnλ4(ζ)

(ζ − λ(η))2 dζ

where Γ̃β = λ(Γβ). The function

Gn(ζ) := exp(−iπnλ4(ζ))

is holomorphic in C \ ({0} ∪ [1,+∞[), with a pole of order n at z = 0.
The curve Γ̃β goes one counterclockwise loop around 0 and does not go
around the point λ(η) ∈ 1

2 + iR.



Evaluating the integral

We split the function Gn in two components:

Gn(ζ) = Sn(1/ζ) + Rn(ζ),

where Sn is a polynomial of degree n with Sn(0) = 0, while Rn is
holomorphic in the slit plane C \ [1,+∞[. It now follows that∫

Γβ

1− λ(τ)

λ(τ)− λ(η)
e−iπnτdτ = −1− λ(η)

iπn

∫
Γ̃β

Gn(ζ)

(ζ − λ(η))2 dζ

= −1− λ(η)

iπn

{∫
Γ̃β

Sn(1/ζ) dζ
(ζ − λ(η))2 +

∫
Γ̃β

Rn(ζ) dζ
(ζ − λ(η))2

}
= −1− λ(η)

iπn

∫
Γ̃β

Sn(1/ζ) dζ
(ζ − λ(η))2 =

2
n

(1− λ(η))
d

dζ
Sn(1/ζ)

∣∣∣∣
ζ=λ(η)

.



The coefficient functions An for n > 0

The functions An

For n > 0, we obtain that

An(ξ) =
i

2πn

∫
T+

fξ(η)S ′n(1/λ(η))

λ(η)2 λ′(η) dη

=
1

i2πn

∫
T+

Sn(1/λ(η))f ′ξ (η) dη = − 1
4π2n

∫
T+

Sn(1/λ(η))

(ξ − η)2 dη

= − 1
4π2n

∫
1
2 +iR

Sn(1/ζ)λ′4(ζ)dζ
(ξ − λ4(ζ))2 .

Here, we used integration by parts. We should mention that

λ4(ζ) = i
F4(1− ζ)

F4(ζ)
, λ′4(ζ) =

1
iπζ(1− ζ)F4(ζ)2 ,

so that
λ′4(ζ)

(ξ − λ4(ζ))2 =
1

iπζ(1− ζ)(ξF4(ζ)− iF4(1− ζ))2 .



Distributional identities

Decomposition of the point mass
We have, for ξ ∈ R, in the sense of distribution theory,

δξ(t) = A0(ξ) +
∑

n∈Z6=0

An(ξ) eiπnt + Bn(ξ) e−iπn/t .

Decomposition of Hilbert kernel
We have, for ξ ∈ R, in the sense of distribution theory,

pv
1

π(t − ξ)
= Ã0(ξ) +

∑
n∈Z6=0

Ãn(ξ) eiπnt + B̃n(ξ) e−iπn/t ,

where Ã0(ξ) = 2Im a0(fξ), and, for n ∈ Z6=0,

Ãn(ξ) = −i sgn(n)An(ξ), B̃n(ξ) = −i sgn(n)Bn(ξ).

Here, Ã0(ξ)− ξ−2Ã0(−1/ξ) = −1/(πξ).



A concrete example

The classical theta function

ϑ(τ) = ϑ3(τ) :=
∑
n∈Z

eiπn2τ , τ ∈ H,

enjoys the functional equation

ϑ(τ) = (τ/i)−
1
2ϑ(−1/τ).

We form fourth powers in the functional equation:

ϑ(τ)4 = −τ−2ϑ(−1/τ)4, ϑ(τ)4 = 1 +
∑

n∈Z>0

r4(n) eiπnτ .

Here, r4(n) stands for the number of ways to represent n as the sum of
four squares of integers. After integration, this gives that∑

n∈Z>0

r4(n)

iπn
(eiπnτ + e−iπn/τ ) =

1
τ
− τ + C .



Consequence for An,Bn, n > 0

Since
i
2π

τ−1 = a0(f0) +
∑

n∈Z>0

An(0) eiπnτ + Bn(0) e−iπn/τ ,

we obtain that
i
2π

(τ−1 − τ) = 2a0(f0) +
∑

n∈Z>0

(An(0) + Bn(0)) (eiπnτ + e−iπn/τ ).

Consequence
It follows that for n ∈ Z>0,

An(0) + Bn(0) =
r4(n)

2π2n
.



Further consequences

Another identity
A similar argument based on another theta identity gives that for n > 0,

An(0) =
r̃4(n)

2π2n
,

where r̃4(n) counts the number of ways to write n as the sum of four
squares of half-integer numbers (i.e., from 1

2 + Z).

Consequence for A0(0)
We have that a0(f0) = 1

2A0(0), where

A0(0) =
1
π
−

+∞∑
n=1

r4(n)

π2n
e−πn =

4
π2 log 2.

Asymptotics of a0(fξ) as |ξ| → +∞

a0(fξ) =
ξ−1

i2π
+

1
2
A0(0) ξ−2 + O(ξ−3).



One more example of a hyperbolic Fourier series

Expansion of the sign function
Let

ck =
∑

m,n≥1:2mn=k

1
n
− 2

∑
m,n≥1:(2m−1)n=k

(−1)n−1

n
.

We then have that

sgn(t) = − 2
π

+∞∑
k=1

ck(sinπkt + sinπk/t)

and

pv log |t| = 2
+∞∑
k=1

ck(cosπkt − cosπk/t).

As a consequence, we have

δ0(t) = −2
+∞∑
k=1

kck(cosπkt − t−2 cosπk/t).



The effect of scaling

We may rescale the distributional identities on the previous slide.

Decomposition of the point mass
We have, for ξ ∈ R and ε > 0, in the sense of distribution theory,

δξ(t) = εA0(ξ) + ε

{ ∑
n∈Z6=0

An(εξ) eiπnεt + Bn(εξ) e−iπn/(εt)

}
.

We may compare this formula with the Fourier integral identity

δξ(t) =
1
2

∫
R

eiπxt e−iπxξdx ,

which suggests that

lim
n→+∞

An

(
xξ

n

)
=

1
2

e−iπxξ.

We note that for x = 0, An(0) = r̃4(n)/(2π2n)→ 1
2 holds only on

average as n→ +∞ (like in QUE).



`2 theory

There is no good `2 theory associated with the hyperbolic Fourier series.
We can of course obtain a bilinear formula∫

R
f (t)g(t) dt = 〈f , g〉R = 〈f ,A0〉R〈g , 1〉R

+
∑

n∈Z 6=0

〈f ,An〉R〈g , en〉R + 〈f ,Bn〉R〈g , e~n 〉R,

where en(t) = eiπnt , e~n (t) = e−iπn/t . But when we have such a formula,
we would like to know which f , g we can plug in. A natural question then
is for which f we are sure that an(f ) = 〈f ,An〉R and bn(f ) = 〈f ,Bn〉R are
in `2, and for which g we know that 〈g , en〉R and 〈g , e~n 〉R are in `2.

Theorem
If f ∈W

1
2 ,2(R), then ({an(f )}n, {bn(f )}n) ∈ `2 ⊕ `2. Moreover, if∫

R(1 + t2)|g(t)|2dt < +∞, then 〈g , en〉R and 〈g , e~n 〉R are both in `2.
On the other hand, if

∫
R |f (t)|2(1 + t2)−1dt < +∞, then we get

an(f ), bn(f ) = o(|n|3/2) as |n| → +∞.



Conjugate hyperbolic Fourier series

Conjugate hyperbolic Fourier series
If g : R→ C is measurable with

∫
R(1 + t2)|g(t)|2dt < +∞, we obtain

from the distributional identity the conjugate hyperbolic Fourier series
expansion

g(ξ) = α0(g)A0(ξ) +
∑

n∈Z6=0

αn(g)An(ξ) + βn(g)Bn(ξ),

in the sense of distribution theory, where

αn(g) = 〈g , en〉R, βn(g) = 〈g , e~n 〉R,

form `2 sequences. Moreover, if in addition∑
n∈Z

(|n|+ 1)3/2(|αn(g)|+ |βn(g)|) < +∞,

then the series converges in L2(R, (1 + t2)dt).



The distributional identity and Poisson summation

Poisson summation
In the sense of distribution theory, we have that∑

k∈Z
δξ+2k(t) =

1
2

∑
n∈Z

eiπnte−iπnξ.

We want to relate the decomposition of the point mass to the Poisson
summation formula. We obtain from that decomposition that∑

k∈Z
δξ+2k(t) =

∑
k∈Z

A0(ξ + 2k)

+
∑

n∈Z6=0

{
eiπnt

∑
k∈Z

An(ξ + 2k) + e−iπn/t
∑
k∈Z

Bn(ξ + 2k)

}
.

The Poisson summation identity follows from this identity once the
following properties of the functions An,Bn are established.



Summation properties of the biorthogonal system

Summation properties
We have that in the sense of distribution theory,∑

k∈Z
An(ξ + 2k) = e−iπnξ, n ∈ Z,

and ∑
k∈Z

Bn(ξ + 2k) = 0, n ∈ Z6=0.

Moreover, Bn(ξ) = ξ−2An(−1/ξ) for n ∈ Z6=0.



Symmetrized summation properties

Symmetrized biorthogonal system
For n ∈ Z6=0, let

A+
n (ξ) := An(ξ) + Bn(ξ) = An(ξ) + ξ−2An(−1/ξ)

and
A−n (ξ) := An(ξ)− Bn(ξ) = An(ξ)− ξ−2An(−1/ξ).

These functions enjoy the symmetry properties ξ−2A+
n (−1/ξ) = A+

n (ξ)
and ξ−2A−n (−1/ξ) = −A−n (ξ).

Transfer operator T
Let T denote the transfer operator

Tf (t) =
∑

k∈Z 6=0

(t + 2k)−2f (−1/(t + 2k)),

which acts contractively on L1(−1, 1).



Transfer operator equation for A+
n ,A

−
n

Transfer operator equation
For n ∈ Z6=0, we have that

(I + T)A+
n (ξ) = e−iπnξ

and
(I− T)A−n (ξ) = e−iπnξ.

Remark
This suggests that a careful spectral analysis of the transfer operator T
on a space of smooth functions (Lipschitz etc) could give us A+

n and A−n
via calculation of (I + T)−1 and (I− T)−1.



Multiplicative properties of HFS

Question
When can we multiply two hyperbolic Fourier series? How to write the
result as a hyperbolic Fourier series?

Possible answer
Since we can express a rather general distribution, even an
ultradistribution, as a hyperbolic Fourier series, this question contains
with it the subtle issue of multiplying distributions. This is often
impossible, but it is possible to multiply holomorphic functions in H and
obtain a holomorphic function. This suggests multiplying two series of
the type

f (τ) = a0 +
∑

n∈Z≥1

an eiπnτ + bn e−iπn/τ ,

which leads to the issue of expanding functions of the type

fk,l(τ) := eiπ(kτ−l/τ), k , l ∈ Z≥1,

in a hyperbolic Fourier series for τ ∈ H.



Symmetry property of fk ,l

Symmetry property

fk,l ◦ S(τ) = fk,l(−1/τ) = fl,k(τ).

Consequences
(a) a0(fk,l) = a0(fl,k).
(b) bn(fk,l) = an(fl,k) for n ∈ Z≥1.

Note
an(fk,l) = bn(fk,l) = 0 holds for n ∈ Z<0 since fk,l is holomorphic.



The constant coefficient a0(fk ,l)

The constant coefficient
We have that

a0(fk,l) =
1

i2π

∫
1
2 +iR

exp
(
iπ(kλ4(ζ)− l/λ4(ζ))

) dζ
ζ(1− ζ)

.



The remaining coefficients

The coefficients an(fk,l) for n ∈ Z>0

an(fk,l) =
1

4π2n

∫
1
2 +iR

ζ−2S ′n(1/ζ) eiπ(kλ4(ζ)−l/λ4(ζ))dζ.

=
1

4π2n

∫
1
2 +iR

Sn(1/ζ)
d
dζ
(
eiπ(kλ4(ζ)−l/λ4(ζ))

)
dζ.

Comment
We should study the asymptotic behavior of an(fk,l) as n→ +∞. It
appears we can show that an(fk,l) = O(log2 n) as n→ +∞ holds
uniformly in k , l ∈ Z>0. Is it in fact O(1) or even o(1)?



Growth control on An,Bn

We already know the functions An,Bn are extremely smooth (Gevrey
class). But can we also say something about how big they are, uniformly
and in integral sense?

Theorem
We have the control

An(ξ),Bn(ξ) = O
(
n log2(n + 1)

1 + ξ2

)
uniformly in n > 0 and ξ ∈ R.

Theorem
We have the integral control∫

R
|An(ξ)|dξ =

∫
R
|Bn(ξ)|dξ = O(log3(n + 1))

uniformly in n > 0.



Power skewed hyperbolic Fourier series
If f ∈Mγ

hol with 0 < γ < π, we have the hyperbolic Fourier series
expansion

f (τ) =
+∞∑
n=0

an eiπnτ + bn e−iπn/τ , τ ∈ H.

If β ≥ 0, we speak of a power β-skewed expansion if instead

f (τ) =
+∞∑
n=0

an eiπnτ + (τ/i)−βbn e−iπn/τ , τ ∈ H.

Such power skewed hyperbolic Fourier series appear in the context of
Fourier interpolation pairs of radial functions (see [5] below). Note that
such series appear naturally with β = 2 when we take the derivative in
the hyperbolic Fourier series (the constant term disappears, though). The
quantity 2β corresponds to the dimension of the space where the Fourier
transform is applied. For other β, we may multiply the hyperbolic Fourier
series by a power of the theta function to obtain power skewed
expansions.
N. B. : When β < 0 instead we may use the transformation S to
consider β > 0 instead.



The theta function

We will use the theta function

ϑ(τ) = ϑ3(τ) :=
∑
n∈Z

eiπn2τ , τ ∈ H,

so that ϑ ◦ T 2(τ) = ϑ(τ + 2) = ϑ(τ) while ϑ ◦ R(τ) = ϑ(−τ̄) = ϑ̄(τ),
which moreover enjoys the functional equation

ϑ(τ) = (τ/i)−
1
2ϑ(−1/τ).

This theta function has no zeros in H, and has modest growth:

|ϑ(τ)| = O
(
1 + (Im τ)−

1
2
)
.

The decay however is at times much more drastic:

|ϑ(τ)|−1 = O
(
(1 + (Im τ)−

1
2 ) exp(π4 (Im τ)−1)

)
.

We may form, for a given real parameter β, the power (ϑ(τ))2β , and get
a function obeying the functional identity

(ϑ(τ))2β = (τ/i)−β(ϑ(−1/τ))2β .



Twisting by theta powers

Method
Suppose f : H→ C is holomorphic function. We form g := (ϑ)−2βf . If f
is in the growth classMγ

hol, then g is in the growth classMγ′

hol for each
γ′ > γ + 1

2βπ. If γ
′ < π, we apply the hyperbolic Fourier series

decomposition to g :

g(τ) =
∑
n≥0

an(g) eiπnτ + bn(g) e−iπn/τ ,

where b0(g) = 0 by definition. Since f = (ϑ)2βg and ϑ enjoys its
functional equation, the representation

f (τ) = (ϑ(τ))2β
∑
n≥0

an(g) e−iπnτ +(τ/i)−β(ϑ(−1/τ))2β
∑
n>0

bn(g) e−iπn/τ

holds. This is the sought after power skewed decomposition!



Observation

Requirements
We need 0 < γ < π − 1

2βπ here.

Growth of coefficients
If we write

(ϑ(τ))2β
∑
n≥0

an(g) e−iπnτ =
∑
n≥0

an(f , β) eiπnτ

and
(ϑ(−1/τ))2β

∑
n>0

bn(g) e−iπn/τ =
∑
n>0

bn(f , β) e−iπn/τ ,

we can easily control the growth of the coefficients an(f , β), bn(f , β):

|an(f , β)|, |bn(f , β)| = O(exp(α
√
n))

as n→ +∞, for each α >
√

4γπ + 2βπ2.



The limit as β → 2

Remark
When β = 2 the above decomposition method does not apply, for a
simple reason. By simply differentiating the holomorphic hyperbolic
Fourier series expansion, we obtain the β = 2 case. Moreover, since
differentiation kills constants, the expansion now lacks a constant term,
while the twisted theta decomposition would have one. The constant
term is indeed superfluous, as it holds that

− 1
2π2 =

∑
n>0

nBn(0) eiπnτ + nAn(0) τ−2e−iπn/τ , τ ∈ H.



Exponentially skewed hyperbolic Fourier series

Definition
A representation of the form

f (t) ∼
∑
n∈Z

an eiπ(n+α)t + bn e−iπn/t

where α ∈ R we call an exponentially skewed hyperbolic Fourier series.
Without loss of generality, 0 ≤ α < 1, and we exclude α = 0 as the
already known instance of HFS.

Special case
For holomorphic f , we look for

f (τ) =
∑
n≥0

an eiπ(n+α)τ + bn e−iπn/τ .



Twisting by powers of λ

Method
We form g(τ) = (λ(τ))−αf (τ). We then expand g in a hyperbolic
Fourier series:

g(τ) = a0(g) +
∑
n>0

an(g) eiπnτ + bn(g) e−iπn/τ .

We then recover f , and use that λ(τ) = 1− λ(−1/τ):

f (τ) = λα(τ)
∑
n≥0

an(g) eiπnτ + (1− λ(−1/τ))α
∑
n≥0

bn(g) e−iπn/τ .

The second term is of the correct form, while the first has a factor eiπατ ,
as required.



Origin of exponentially twisted series

The Klein-Gordon equation and the lattice
Considering instead at the outset the interpolation set of points

(π(n + α), 0), (0, πm), m, n ∈ Z,

leads naturally to exponentially skewed hyperbolic Fourier series.

Remark
Exponentially skewed hyperbolic Fourier series may arise when we
consider certain functional identities for theta functions and form
products of four such, and finally take the primitive.
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