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0. Introduction

Let D be the open unit disc in the complex plane C, T the unit circle, and L2 (D) the
Bergman space, consisting of those analytic functions on [ that are square integrable on D
with respect to area measure. The Bergman space is a closed subspace of the Hilbert space
L?(D) of all square integrable complex-valued functions on [. The inner product in L? (D),
and hence in L2 (D), is given by the formula

= [[QFEAE), fgel?(D),

where dA4 denotes planar area measure. The associated norm is denoted by || - || ... Suppose
a = {a;}{ is a finite sequence of points in D\ {0}, and let

N a a,—z
=[] A2 D

ji=1
be the Blaschke product associated with a. Usually, we will find it convenient to think of a as
a set of points lying in the disk D, although strictly speaking it is not, but at times, it will suit
us better to think of it as an N-tuple lying in the polydisk D". This will hopefully not lead to
any confusion. Suppose for the moment that f is an analytic function on D which vanishes
on a, by which we mean that we count multiplicities should the same number occur more
than once in the sequence a. If f belongs to the Hardy space H?*(D), f/ B, € H*(D), and
| f/Bllgz2 = |l fllg2- However, if feL2(D), it is still true that f/B,e LZ(D), but
Il f/Ball.2 > || f Il > unless a is empty or f vanishes entirely. This indicates that Blaschke
products are unsuitable as divisors for the Bergman space. In H?(D), B, appears as the
unique extremal function for the problem
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sup{Re f(0): fe H*(D), f=0ona, || fllz< 1} .

This suggests that we should study the extremal functions for the problem

0.1) sup {Re f(0): fe LZ(D), f=0on a, || fll2 <1} .

Consider for a moment the related extremal problem

inf {|| f|l.: fe L2(D), f=0on a, Ref(0) =1},

which has a unique extremal function, by standard Hilbert space theory (see, for instance,
[10], p. 83). Since these two problems are essentially the same, we realize that this implies
that (0.1) has a unique extremal function, which we will call G,,. The main result of this paper
is that G, is a contractive divisor on the Bergman space, that is, if fe L2 (D) vanishes on a, we
have f/G, € L2(D),and || f/ G,||.> £ || f ]| ... In case all a; are distinct, it turns out that G, is a
finite linear combination of the functions 1, (1 — @,z)~2, ..., (1 — @yz) 2, and as such it is
uniquely determined by the conditions G,(a;) =0 for j=1,...,N, G,(0)>0, and
|G,ll- = 1. Suppose b= {b;}? is an infinite sequence of points in D\{0}, and put
by = {b;}}. The functions G, converge as N — oo to a function G, € L?(D), which vanishes
on b, and || G, || .. is either 0 or 1. If || G, || .. = 0, G,, vanishes identically, and b is not the zero
set of an L2 (D) function. If || G, || .. = 1, G, is the unique extremal function for the problem

sup {Ref(0): fe L2(D), f=0on b, || fll» < 1},

G, vanishes precisely on b, and if fe L2(D) vanishes on b, we have f/G,e L2(D) and
| £/ Gy ll2 < || flL2- In other words, every function fe L2 (D) which vanishes on b has the

form f= G, g, where ge L2(D), and || g||.> < || f |l 2. It follows that the subspace

F(b) ={feL2D):f=0on b}
has the form
S (b) = L2(D)nG,L2(D).

It turns out that G, is unique, up to unimodular constant multiples, among all functions
G € #(b) with norm <1 admitting the above factorization. One may wonder for which
fe L2(D) we have G, fe L2(D). We shall see that this holds for all fe H?(D); in fact, G, is
contractive as a multiplier H2(D) — L2 (D), that is,

Gy Sl S 1 fllg2s fe H*(D).
It follows from [13], p. 232, that G, enjoys the estimate
G, (1 ~|z))"2, zeD,

so that G, is somewhat better than an arbitrary Bergman space function. This is analogous to
the Hardy space situation, where the extremal functions are Blaschke products, which are
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uniformly bounded on D, and hence multipliers H2(D) — H?*(D). The functions G, have
appeared previously in the literature; they are solutions to certain Akutowicz-Carleson
minimum interpolation problems, see [2], [11]. Charles Horowitz [5], [6] and Boris
Korenblum [7] have constructed divisors for Bergman space functions, but in general, these
do not lie in the Bergman space themselves.

Korenblum [8] has introduced a domination concept for analytic functions on the unit
disk. If g, he L2(D), we say that g < h if

[18f1?dA < [|hfI*dA

for all (analytic) polynomials f. In particular, > 1 if || Af|| . = || f|| .. for all polynomials f.

An invariant subspace of L2(D) is a closed subspace which is invariant under
multiplication by the coordinate function z. If /is an invariant subspace, and 0 ¢ Z (), where

Z(I)={zeD:f(z) =0 for all fel},
let G; be the unique extremal function for the problem

sup{Re f(0): fe L || fll. = 1} .

If b is an infinite sequence as above, and £ (8) = { fe L2(D): f= 0 on b} its associated
invariant subspace, then G, = G,. We will show that for an invariant subspace I, G, is a
contractive divisor on the invariant subspace I(G;) generated by G,, that is,
I f/Gillz S | f g2 for all feI(G;). In other words, G, > 1. On the other hand, G, is a
contractive multiplier H? (D) — L2 (D). The functions G, correspond to inner functions in
the Hardy space case. They are described intrinsically as follows: a function G € L2 (D) is a
G, for some invariant subspace I of L2 (D) with 0 ¢ Z(I) if and only if G(0) > 0, ||G||,- = 1,
and ||Gf||.. 2 | f(0)| for all polynomials f.

Our main tool for proving the above results is a technical result, which is stated first in
Theorem 2.4, and later, in a more general setting, in Theorem 4.1. The reason why we first
prove the result in a simpler situation is that we hope that this disposition will make the proof
more accessible to the reader.

This paper was circulated in preprint form in the spring of 1990. Shortly afterwards,
Harold Shapiro [12], Peter Duren, and Dmitry Khavinson found a way to prove my
factorization result, based on the fact that the biharmonic Green’s function for the unit disk
is positive, which had the additional benefit to be applicable to the spaces L2(D, dA), for
1 < oo; this will eventually be published jointly [3]. When p tends to infinity, the extremal
functions for finite zero sets converge to Blaschke products, and this is as it should be,
because in the limit one would like to have the well-known factorization theory of the space
H>(D).
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1. Preliminaries
Let H* (D) denote the space of bounded analytic functions on [, supplied with the
uniform norm. Also, let I(f) denote the invariant subspace generated by fe L2(D) in

L3(D).

Proposition 1.1. Let g, he L2(D), and suppose g < h. We then have (g h) ¢ € I1(g) for
every ¢ € I(h), and

I(g/M bl = NPl Pelh).

In other words, g/ h is a contractive multiplier I(h) — I1(g). In particular,

1.1) [ lgfi?dA < [Ihf1>dA

holds for all fe H® (D), and if g, he H® (D), (1.1) holds for all fe L%(D).
Proof. We first establish that g/ is a contractive multiplier (k) — I(g). To this end,

let ¢ € I (k) be arbitrary. There must then be polynomials p, such that Ap, — ¢ in L? (D) as
n — oo0. The estimate

I gpn — &PmllL2 = 18(Pn — P Iz = 12Dy — P2 = 1hD, — hDp I L2

shows that the functions gp, form a Cauchy sequence in L2 (D), and hence converge to some
function Gel(g). Since p,— ¢/h pointwise on [, G must equal (g/h)¢. Now

Il gpallL: < 1Ap, |l 2 for all n, and || gp, |l — I(g/M) S llL- and || Ap,ll 2 — ||l as n — oo,
from which we conclude that

1.2) I(e/Mllz = ll¢llL. -

If we put ¢ = hf, and use the well-known facts that I(h) > h- H* (D) in general and
I(h)o h- L2(D) if he H* (D), (1.1) follows from (1.2). The proof is complete.

Proposition 1.2. Suppose f;, g; € L2(D), f;< g; for all j,g; — g as j — co in the norm
of L2(D), and f; = fas j = oo uniformly on compact subsets of D. Then f<g.

Proof. Let ¢ be a polynomial; then
[1fi0PPda < [lgol*da.
1] D
Since g; — gas j — oo in L(D), the right hand side converges to | |g¢|*d4, and by Fatou’s
D
lemma,

;[)lfq)lsz < liminf [ | f,p|2dA4 .

j2o D
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We conclude that
[ fol?dA < [lgopl?d4A,
D

which completes the proof.

Let A (D) denote the disk algebra, which consists of those analytic functions in [ that
extend continuously to the closed disk D,

Proposition 1.3. Let fe A(D), and suppose f>>1. Then |f| =1on T.
Proof. Fix a point z, € T, and let p be the analytic function
p(2)=(z+2,)/2, zeD,
which peaks at z,. Forn =1,2,3, ..., consider the functions
¢.(2) = (p@)' /I P"llp2> ze€ D;

they have || ¢,||.. = 1 and converge to 0 uniformly on compact subsets of D\ {z,} asn — .
Since f is continuous at z,

[1f@¢.(2)1PdA@) /7 — | f(zo)?
as n — 00. On the other hand, we have
§1/(@e,2)1?dA@)n 2 [1¢,()|PdA@)/n =1

because f > 1. We conclude that |f(z,)| = 1, and the assertion follows.
Remark. Using a more sophisticated peaking function, one can show that if
f,ge H*(D) and f< g, then | f| < |g| almost everywhere on T.
2. Extremal functions for finite zero sets
We shall now try to compute the extremal function G, for the problem
sup{Re f(0): fe £ (@), l| fll.. = 1},

where £ (a) = { fe L2(D): f=0 on a} and a = {a;}}_, is a finite sequence of points in
D\ {0}. If J is a subspace of L2 (D), its annihilator is the set

Jt={feL:(D):{f,g),.=0forallgeJ}.

We shall have need for the following general result.
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Proposition 2.1. Let I be an invariant subspace of L2 (D) with 0 ¢ Z(I), and let G, be
the extremal function for the problem

sup {Ref(0): fe L, || fll,. < 1}.
Write #, = { fe L2(D): f(0) = 0}. Then G e In(In $,)*, and In (In)* is a one-dimensio-
nal subspace of L2(D). Thus G, is the unique member of this subspace which has || G,||.. = 1
and G,;(0) > 0.

Proof. A moment’s thought reveals that ||G,||,. =1 and G;(0) > 0 hold. For ee C
and he In J,, introduce the functions

P G, +¢h
€ ”GI+8h”L2,

and observe that F,e [, || F,||;. =1, and
F.(0) = G;(0)/||G, + ehll- -

Since G, is extremal, we must have F,(0) < G,(0), and consequently, |G, + ¢h||.. = 1 for all
g€ C. Now

Gy + ehliz. = |G Iz + el 1| All: + 2Re< G, eh) o,

so by varying ¢ and observing that ||G,||.. = 1, we obtain {(G,, h);. = 0, and the assertion
G, eln(InS,)* follows.

We shall now demonstrate that I (I n #,)* is one-dimensional. Since 0 ¢ Z(/), we can
find a wel with p(0)=1. If Q: L2(D) » In ¥4, is the orthogonal projection, then
o=p—Qyeln(InSy)*, and ¢(0) = 1. Now if fe In(InF,)* is arbitrary we have

f=f@pelnS)nlns)" ={0},

so that f=f(0)p. We conclude that In(In#,)"* is spanned by the vector ¢, which
completes the proof.

Remark. Itisanimmediate consequence of Proposition 2.1 that G, equals a constant

multiple of the orthogonal projection of 1 onto I For if fel, f(0) =0, and P is the
orthogonal projection onto I, then

PLf =Py =1, )= [f(2)dA@2)/n=f(0) =0,

so that P1 belongs to In(In.#,)*. Also, P1 + 0 because 1 does not belong to I*.

For a € D, the annihilator of the invariant subspace { fe L2 (D): f(x) = 0} is the linear
space spanned by the kernel function

k,(z)=(1—-az)"2, zeD.
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From this it is evident that if the points a,,...,ay are all distinct, the annihilator
(F (@) nS)* is the (N + 1)-dimensional subspace of L2(D) spanned by the vectors 1,
kg, -..»Kqy» s0 that in this case, Proposition 2.1 takes the following form.

Corollary 2.2. Suppose a = {a;}\_ | is afinite sequence of distinct points in D\ {0}, and
that G, and k, are as above. Then G, L?(D) is uniquely determined by the following
conditions:

(a) G, vanishes on a,

(b) G, is a linear combination of the functions 1, k,, ..., k,,
© N1Gall2 =1,

d) G,(0)>0.

Remark. If the points a,,...,ay are not distinct, the situation is a little more
complicated. Say, for instance, that the point a € [? occurs k times in a. Then the annihilator
# (a)* contains the functions (1 —&z)~2, z(1 —az) 3, ...,z "1 (1 — az)~* ! If we do this
for each point in Z(.# (a)), we get a basis for .# (a)*. If we add the function 1 to this basis
afterwards, we get a basis for (£ (a) n.%)*.

For an open set Q = C, let O (Q2) denote the Fréchet space of holomorphic functions on
Q, supplied with the topology of uniform convergence on compact subsets. If K< C is
compact, let @ (K) be the space of germs of functions holomorphic on neighborhoods of X,
supplied with its ordinary inductive limit topology; if f€ @ (K), we say that f is analytic on K.
For instance, f€ 0 (D) if and only if it has an analytic extension to some neighborhood of D,
and if f; is a sequence of functions in 0(D), fi—fin 0 (D) means that Jf; converges to f
uniformly on some region rD = {z€ C: |z| <r} with r>1. We need to understand the
continuity aspects of the mapping a— G,.

Proposition 2.3. For each a = {a;}}_, € (D\{O})", the function G, is analytic on
N
the set Cu{oo}\ | {1/a;}, and, moreover, the mapping a = {a;};_, > G, is continuous

_Jj=1
(D\{0})" —» 0(D).
Proof. From Corollary 2.2 and the remark thereafter, we realize that G, is analytic on

cufeoh U (1/3).

If the points in a are distinct, .# (@)* is spanned by the kernel functionsk, , ..., k,,.. We
need another set of spanning vectors which works for alla e (D\ {0})". Forj =1, ..., N, put

K} (z,a) =k, (2),
and define inductively

2.1) Kr*'(z, @) = (K} (z,0) — K; (2, @)) [ (3 — G,)
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for j = n + 1. By the construction, the functiona+— K 7z, @), which is defined for j = n,is an
antiholomorphic rational function which is antiholomorphic in the region (C\ {1/z})"; the
division in (2.1) produces no additional singularities because Kj(z, a) = K;(z, a) for a
JjZn+1if a;= a,. Also, observe that for j = n, K (z, a) is independent of the variables
;4 yq,-..,ay. If we look at the two variables z and a jointly, we see that with the notation
a* = {a;}]_ |, the mapping (z, @) — K} (z, a*) is holomorphic in the region

C¥*"\{(z,a)e CN*': za, =1 for some 1 < k <}
for j 2 n. It follows that for j 2 n, a K} (-, @) is a continuous mapping D~ — 0 (D).
Claim. The functions K!(z, a), K?(z, a), ..., K} (z, a) form a basis for .# (a)*.

First, observe that by the remark following Corollary 2.2, the dimension of .# (@)* is N,
so at least the number of spanning vectors is correct. By the construction of K} (z, a),

Koa= 3 Ko Y @G-a).
m=1 n=1

Now suppose the point g; is repeated / times in the sequence a, where / 2 1. Since K(z, a) is
independent of the variable g; if m < j, we have

a . Jj a m-—1 _ a . m-—1 ~ ~
— K1 — m o — —q —KJ . L —
K@= L K@a o 11 G-+ 7 Kea ¥ G-a)
J a m-—1 _ _
= Y KNz 5= [] @-a)
m=1 a

'j n=1

if ] 2 2,s0 that 9/0a; K} (z, a) belongs to the linear span of the vectors K| (z, ), ..., KY (z, a).
If we continue like this, we see that (8"/da}) K} (z, a) belong to the linear span of the vectors
K} (z,a),...,K}(z,a) for all n </ —1. However, we have

=n
0a;

K} (z, @)= (n+ D'2"(1 = G2) "2,

so by the remark following Corollary 2.2, all the spanning vectors of .# (a)* belong to the
linear span of K} (z, a), ..., KY (z, a); on the other hand, .# (a)* has dimension N, and the
possibly bigger linear span of K} (z, a), ..., Ky (z, a) has dimension < N, so these spaces must
coincide. The claim has been verified.

It follows that 1, K} (z, a), K2(z, a), ..., K} (z, a) form a basis for (£ (a) n#,)*. Let
H, = G,/G,(0); then H, has the form

J

N
H,(2) = AiKi(z, a),
=0

where K¢ (z, a) = 1, and the coefficients 4; are uniquely defined by the conditions H,(0) = 1
and
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N

T, 4<K](, @), K, @32 =0, n=1,...,N.
j=

Let A(z, a) be the matrix 4(z, a) = (4; . (z, @), -, Where
Aj.O(Z’ a)=ij(z,a), OéjéN,
and
4;,(z,a) = CK](-,a), Ki(, @), 0Sj<N, 1<k<N,
and let B(a) be the matrix B(a) = (B, (@)Y, -,, where
By, (a) = <Kj(,a), K{(, @), 0<j,k<N.

Since the Ii{’:(-,a) are linearly independent for j=0,..., N, B(a) is invertible for all
ae (D\{0})". One easily checks that

H,(z) = det A(z, a)/det B(a),

where “det” means taking the determinant. This formula, together with the fact that
G, = H,/||H,k||., clearly demonstrates the assertion.

To simplify our notation, let us write 0 and 0 instead of d/0z and 0/ 8z, respectively;
recall that 400 = 4, the Laplace operator. We now present the first version of the main
technical result of this paper.

Theorem 2.4. Suppose a = {a;}] is a finite sequence of distinct points in D\ {0}, and let
G, be the extremal function for the problem

sup {Re f(0): fe L2(D),f=0ona, | fll,. S1}.

There exists a unique function ® € C*(D) such that ® = 0 on T and 03® = |G,|* — 1 on D.
This solution @ is infinitely differentiable on D, and enjoys the properties

(@) 0®/0n = 0 on T, where 0/ 0n is differentiation in the outward normal direction, and

(b) 0< B(2) <1—|z|? for all ze D.

Remark. We make the assumption that the points in a are distinct for technical
reasons only. The assertion remains valid without it, as can be seen from the proof of
Theorem 4.1.

Corollary 2.5. For all finite sequences a = {a;}} of points in D\ {0}, we have G, > 1,
that is,

[1G.f1?dA z [|fI*dA

D
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holds for all fe L2(D).

Proof of the corollary. 1f u and v are two C?2 functions on D), Green’s formula [4],
p. 236, states that

(2.2) J wdu—udvydA = | (v(du/on) — u(dv/on))ds,
D T

where ds is arc length measure on 7. Let f be an arbitrary (analytic) polynomial. First, we
assume the points in a to be distinct. If we apply (2.2) to the case u = @ and v = | f|?, we get

[(1f1?00@—@|f'|Hd4d =0,

because both @ and 0®/0n vanish on 7. We obtain

[(GL? — DI f?dA = [|f?09@dA = [ B|f'|2dA 20,
D D D

because ¢ = 0 on D, and so

2.3) [1G.f12dA 2 [|f12dA
D D

holds for all polynomials £, or in other words, G, > 1. Those finite sequences a € (D \ {0})¥
whose points a,,...,ay are all distinct, form a dense open subset of (D\{0})". By
Propositions 1.2 and 2.3, we get G, > 1 foralla e (D \{0})". Since G, € H® (D), Proposition
1.1 extends (2.3) to all fe L2(D), which completes the proof of the corollary.

Proof of Theorem 2.4. The uniqueness of @ is obvious, since any harmonic function
on [ which extends continuously to [ and vanishes on 7T must vanish identically. By
Corollary 2.2, G, has the form

N

G,(2) = Ao+ 2 A(1—az2)7%, zeD,

ji=1

for some scalars 4,, ..., 4y € C, which we can compress to
N
G,2)= Y A(1—-a2)72, zeD
j=0
by putting a, = 0. Observe that we have forn =0,1,2, ...,
N N
2.4 (2"Gyy G2 =), Aiz"(1— d].z)‘z, Y A —az) "%
j=0 k=0
N N

ik=0 k=0

Introduce the smooth function
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N
Y()= Y 440 -Ga) 'A—-a2) 'A—a2 !, zeC\ C) {1/a};

jk=0
the formula
N* © ’
Y@= ) 44(Y @a))1—-az2) '0-a2*
jk=0 n=0 .
© N
=Y Y Mhdiaqt(1—az) (1 —a2)?
n=0 j,k=0

2

La(l—az) |, zeC\ \N) {1/a}

Il

Mz

o0
)
n=0

]

ji=0

N
shows that ¥(z)=0 on C\ (J {1/ a;}. Moreover, ¥ is subharmonic on the region

j:

C\ U {1/a;}, as the following computation shows:

N
0¥ (2) = Y Akhaa(l—aga) '(1-az2)*(1—-a2)?

Jj,k=0

It

Z Z /II—"H "H(l_‘7,'2)—2(1““%2)_2

n=0 j,k=0
2

© N
=y Z saitt(—az)T? , zeC\ | {1/a}
n=0 | j= ji=1
One easily checks that for n = 0,

'Frz"(l —32) "1 —a2) 'ds(2)/2n = qf(1 — Gja) ™',
so that by (2.4) we get

P(—n) = jz ¥ (z)ds(z)/2m = Z Aar(1—aa)~ % =<{z"G,, Gz

j,k=0

for all integers n = 0. For n > 1, z"G, € £ (a) n 4, so by Proposition 2.1, G, L z"G,. We
conclude that 'P(n) 0 for all n £ —1, and the function ¥ being real-valued, its positive
Fourier coefficients must vanish as well by the formula Y(—n) = m Consequently, ¥
must be constant on 7, and this constant must be ¥ (0) = ||G,||?. = 1. Also, since ¥ is
subharmonic, we have ¥ <1 on D. The desired function @ is now given by the formula

@) =0-z)H(1-¥(), zeD.
By the formula defining ¥, it is clear that this & is real analytic on D, and in particular,

infinitely differentiable. Since ¥ = 1 on T, it is easy to check that this @ vanishes along with
its normal derivative 0@ /dnon 7. Also,0 = ®(z) =1 — |z|? on D because0 < ¥ <1onD.
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What remains for us to do is to check that it solves the differential equation 80 = |G, |* — 1.
A computation shows that

00((1 -1z U - a2 ' U -4 ") = ~(1 - Ga)(1 - g2) *(1 — a,2)"?,

so that
N
009 (z2) = 65(1 —|z|> - Z Aj}fk(l — &jak)“(l —z1HU - &jz)‘l(l —a, 7))
j k=0

N
-1+ Y 44U -g27%(1—-q2?

J,k=0

N
Y A4(1—a;2)7?
j=0

2

—1+ =|G,1*—1, zeD,

which completes the proof of the theorem.

If a sequence consists of a single point § € [\ {0} only, let us write G, instead of G 5,.In
the introduction, we promised to prove that for a sequence @ = {q;}}- , of points in D\ {0},
G, has no more zeros in [?, counted with respect to multiplicity, than those in the sequence a.
In order to do that, we shall have need for the following formula:

G, () = 1Bl (1—z/B)2—|BI* —B2)
g /2 —BP (1— B2’ ’

One easily verifies that this G, is a linear combination of the functions 1 and k;, has norm 1,
and satisfies G;(0) > 0, as prescribed by Corollary 2.2. Observe that G, only vanishes at 8
inside D.

zeD.

Theorem 2.6. Let a = {a;}}_, be a finite sequence of points in D\{0}. Then the
extremal function G ,, which is analytic in a neighborhood of D, vanishes precisely on ain D,
counting multiplicities. Moreover, |G,| =1 on T.

Proof. Suppose first that G, vanishes at the point f € D at a higher multiplicity than
what is prescribed by the sequence a; f cannot be 0, because G, (0) > 0. Consider the function

G,(2) = G,(2)/G,y(2), zeD,

where G, is as above. The function G, belongs to L2(D), vanishes on a, has

G4 (0) = G,(0)/G(0) = G, (0)/(1B1)/2— |B1*) > G,(0),

and since by Corollary 2.5, multiplication by G, increases the norm, we have
|G,z £ |G, |l = 1. These properties contradict the extremality of G,, so we conclude that
G, cannot have any zeros in [ other than the points in a. By Proposition 1.3,|G,| =2 10on T,
so G, cannot have any zeros on T either. The proof is complete.
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Corollary 2.7. Let a = {a;}}_, be a finite sequence of points in D\ {0}, and put
F(a)={feL(D):f=0ona}.
Then the extremal function G, is a contractive divisor ¥ (a) — L2(D), that is,

1f/Galle = fll2s feF(a).

In other words, every fe.#(a) has a factorization f=G,-g, where ge L>(D) has
llgllez = LS M-

Proof. 1If fe #(a), f/ G, is holomorphic on D, by Theorem 2.6, and it must also be
square integrable on [, because fis, and G, is bounded away from zero near thecircle 7. The
rest follows from Corollary 2.5.

3. Extremal functions for infinite zero sets

In what follows, b = {b;}°-, is an infinite sequence of points in D\ {0}, and by its finite
subsequence {b;}}_,. As in the introduction, G, is the extremal function for the problem

sup {Re f(0): fe L7 (D),f=0on b, || fll.- < 1},

which is unique by the same argument which was applied to finite sequences in the
introduction, or simply by Proposition 2.1. The sequence b is a Bergman space zero sequence
if there exists a function fe L?([D) which vanishes precisely on b in D (counting
multiplicities). If there is a function f'e L2 (D), other than 0, which vanishes on b, we say that
bis a subsequence of a Bergman space zero sequence; observe that in that case, G, (0) > O and
|Gyl = 1. Itis a consequence of the following result that every subsequence of a Bergman
space zero sequence is in fact itself a Bergman space zero sequence; this fact has been noted
earlier by Charles Horowitz [5].

Proposition 3.1. Let b be as above. If b is a subsequence of a Bergman space zero
sequence, Gy, vanishes precisely on b in D, and G, ,— G, in L2(D) as N — oo. If b is not a
subsequence of any Bergman space zero sequence, G, . — 0 uniformly on compact subsets of D.

Proof. Let us first deal with the case when 4 is not a subsequence of a Bergman space
zero sequence. Let G be a normal limit to the sequence of G, ’s, which then has || G||. £ 1,
because ||G,, |l,. = 1 for all N, and since G is analytic and vanishes on b, G must vanish
identically. If every normal limit is 0, the sequence must converge to 0 uniformly on compact
subsets of D.

We now look at the remaining case when b is the zero sequence of a Bergman space
function. Again, let G be a normal limit to the sequence of G, ’s, which has || G || . < 1 and
G(0) 2 G,(0), because G,,, = G, (0) for all N. By the extremality of G,, G must coincide with
G,, and we obtain that G, converges to G, uniformly on compact subsets of [. It follows
that for r, 0 <r <1, we have
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|Gy |>dA - | |G,|?dA as N — oo,
bn b
rD rD

and since |G, |l = || Gpll- = 1, we get

lim [ |G, *dA—>0 as r—1,

N—->o D\rD

from which the assertion ||G,, — Gyllp2 = 0 —» 0 — oo easily follows. The fact that G,
vanishes precisely on b in [ follows by duplicating the argument in the proof of Theorem 2.6,
or by using the fact that each G, , vanishes precisely on by, and that in the limit no extra zeros
can appear unless the limit function collapses.

We are now ready to present the general factorization theorem for Bergman space
functions.

Theorem 3.2. Let b= {b}>, = D\{0} be a Bergman space zero sequence, and
suppose fe€ L%(D) vanishes on b. Then f = G, - g, where ge L2(D) and ||g||.2 < || f 2.

Proof. Letg = f/G,, which is analytic on the disk 0, by Proposition 3.1, and let b, be
the cutoff sequence {bj}’l", as above. By Corollary 2.7, f has a factorization f = G, * gy,
where gy € L2(D) has || gyll2 < || fll.2- By Proposition 3.1, we must have gy — g uniformly
on compact subsets of ) as N — o0, so by Fatou’s lemma,

llglls < liminf |l gyl S || flL -

N— oo

The proof is complete.

The following result emphasizes the uniqueness of the function G, in the formulation of
Theorem 3.2.

Theorem 3.3. Let b= {b;}>, = D\{0} be a Bergman space zero sequence, and
suppose G € L2(D) vanishes on b, G(0) 2 0, ||G||. < 1, and that for every fe L2(D) that

vanishes on b, G allows to be factored f = G - g, where ge L2 (D) has || g||2 £ || f 2. Then
G = Gb'

Proof. The function G, e L2(D) vanishes on b, so it must have a factorization
G, = G-g, where ge L2(D) has ||g|l.2 £ |G,ll2 = 1. Since G,(0) >0, we must have
G@0)>0 and therefore g(0)>0. The estimate |g(0)|> <||g|l?2<1 shows that

G(0) = G,(0). The extremality of G, now forces G to coincide with G,,.

Inner functions, which are the extremal functions in the Hardy space case, and in
particular Blaschke products, have analytic pseudo-extensions to the region outside the
closed unit disk, with the exception of a countable number of isolated poles there [4], pp.
75-76. It would be of interest to know if anything similar can be said about our extremal
functions G,. If @ = {a;}) is a finite sequence of points in D\ {0}, and G, is the corresponding
extremal function, let
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z
H,2) =[G, ()dl, zeD.
0

It is a consequence of Corollary 2.2 and the remark thereafter that H, extends to an analytic

function on Cu {o0}\ U {1/a;}. Outside the closed disk D, the extension is given by the
i=
formula ‘

Ga 1/2)~z Ga = N _
G1) H,G) = G.,(Zi/f) (G, wi Zal /Zl)_;:f )y o ze C\/D\jk:J1 {1/} .

If I'is a closed invariant subspace of L(D) with 0¢ Z(I) and G, is the corresponding
extremal function, let

H@) = [ G,Odl, zeD.
0

The formula

, 91(1/2) — 2wG, (w)

(3.2) H,(2) = i

<Gla

L2

G1(1/ 2)
defines an analytic function on C\ D\ Z, (G)), where Z,(G,) = {1/z: ze D, G,(z) = 0}.
Question 3.4. In what sense does (3.2) define an extension of H,|,?
We have obtained the following.

Theorem 3.5. Let b and by be as before. If b is a Bergman space zero sequence in D\ {0}
and Ec T is its cluster set, then the function H, = H,,, and hence G, = H,, extends
analytically across T\ E; the extension is given by (3.2) outside the closed unit disk. Moreover,
the functions G,  converge to G, as N — oo, uniformly on compact subsets of

COl]\E\ U {15}

Proof sketch. The fact that G, converges in the norm of L2 (D) to G, as N — oo can
be used to show that the expression in (3.1), with @ = by, converges to the expression in (3.2),
N

with I = # (b). Each function G, is holomorphic on Cu {c0}\ (J {1/5;}, the extension

_ i=1
being given by (3.1) outside 0. By (3.1), we have the estimate (14) in [11], which permits us to
carry through the proof of Theorem 2 in [11], to conclude that the functions H, form a

locally bounded family in the region C\E\ () {1 /b;}. Since we have convergence toward
j=1

H, outside the unit circle, we see that H, — H,, and hence H, — G,, uniformly on

compact subsets of C\ E\ U {1/b;}, by a normal families argument. A more careful

analysis near the point at mﬁmty shows that G, — G, uniformly near co.
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Remark. If the points in b are all distinct, Theorem 3.5 is more or less a direct
consequence of the results in [11].

4. Extremal functions for general invariant subspaces
This section is devoted to generalizing Theorem 2.5 to the extremal functions G, for

arbitrary invariant subspaces /in L2 (D). This time multiple zeros will not be a problem. The
result we have obtained is the following.

Theorem 4.1. Suppose I is an invariant subspace with 0 ¢ Z(I), where
Z(I)={zeD:f(z) =0 forall fel},
and let G, be the extremal function for the problem

sup {Re f(0): fe L[| fll- < 1} .

There exists a unique function ® € C(D )~ C® (D) such that ® = 0 on T and 30® = |G,|*> — 1
on D. This solution enjoys the properties

(@) for every polynomial f in the variables z and z, | (0®/0n)(z) f(z)ds(z) - 0 as

r7
r — 17, where 0/0n is differentiation in the outward normal direction, and ds is arc length

measure, and

b) 0SS D(2) <1 —|z|? for all ze D.
Proof. The uniqueness of @ is obvious. Forn =0, 1,2, ..., introduce the functions

E(2) = [ w'(1 —wz) " G (w)dA(w)/x,
D
which are all analytic on D. If G, has the power series expansion
G(@)= Y oz, zeD,
i=0

a computation shows that

et o ;
F(2) = —J*tn i zeD,
"() jZLj-Fn-+1

so that F, belongs to the Dirichlet space, meaning that F, € L2(D), and in particular
F, € H*(D). Observe that

e o}

@) Y UElz= X lgP/G+n+1)*= ) ol /k+1)=Gllf.=1.
n=0 k=0

jn=0
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Extend the functions F, to the circle 7 via non-tangential boundary values; then each F, is
defined almost everywhere (with respect to arc length measure) on 7, and belongs to L2(7)

there. For N =0,1, 2, ..., introduce the functions
N —
W@ = Y |E@P?, zeD,
n=0

and their limit case

e

¥Y(2) = Y IR@P, zeD;

n=0

these functions are defined everywhere on [, and almost everywhere on 7. Clearly, ¥y
belongs to C° (D), but we do not know much about the function ¥. We shall see, however,
that ¥, too, is infinitely differentiable on D. If fe H?(D), a simple calculation yields the
following two estimates:

(42) If@IS I fllg(X = 12172, ze D,
(4.3) If@OI=20fllg=(1 =217, zeD.

Using (4.1), we arrive at the estimates

N
Py@ < Y IEIRA-12)" = -121)7", zeD,

n=0

and
0Py (2)| = 0Py (2)| < 2_: |, (2) F,(2)]

N
20—z Y EIFRS20-121)7%, zeD,

n=0

which tell us that the sequence { ¥y} 7~ forms an equicontinuous family in C(D). Since any
normal limit of the ¥, ’s must equal ¥, Arzela-Ascoli’s theorem [1], p. 222, shows that ¥ is
continuous on [, and that ¥, converges to ¥ uniformly on compact subsets of Das N — co.
It is not difficult to write down estimates of the kind (4.2), (4.3) for higher order derivatives of
H?*(D) functions, which can be used to show that {0¥y}¥-, and {0¥y}y-, form
equicontinuous families of functions in C(D), and a simple argument using line integrals
shows that they must converge to 0¥ and J¥, respectively. If we continue this way, we can
show that ¥ € C* (D) and that ¥y converges to ¥ in C* (D) as N — co.

Observe that by (4.1),

[¥@ds@)/2n= Y [IE@Pds@/2n= 3 IElE=1,
T n=0T n=0

so that ¥|, e L' (T). For fe L'(T), let P[f] be its Poisson integral:

5 Journal fiir Mathematik. Band 422
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1—|z?
PLf1(@) = _fﬁf(C)dS(C)/ﬂf, zeD.

T1{—2z|
Since | F,|? is subharmonic and has a harmonic majorant, we have
|F@I* < PIFI*1(2), zeD,
where we, for reasons of convenience, write P[| F,|*] instead of P[|F,|?|,]. It follows that
Yv(2) < P[¥V1(2), zeD,

and since Py|; —» ¥|;in L'(T) as N - o0, we get

4.4 Y(z) < P[Y]1(2), zeD.
Our next step is to show that ¥ = 1 almost everywhere on 7, so that ¥ < 1 on D. We will do
this by computing the Fourier coefficients of ¥. Let m = 0 be an integer. Since the Taylor

polynomials of F, converge to F, in the norm of H? (D), an approximation argument shows
that

n 0]

~im0| ' (,i01240/27 = O +m+n X+ m ’
_j,,e |E (€D d0]2m kg‘o(k+m+n+1)(k+n+1)

where the right hand side is absolutely convergent, because Y |o,|*/(n+1) =1 < c0.

n=0
Forming finite sums, we obtain
(4 5) E e—imOW (eiO)de/zn — i i ak+m+n&k+n
' 2 N oo k+m+n+)(k+n+1)
Observe that
SERE %+ m+n O+l - .
Z Z Z 'aj+maj'/(j+m+1)

oxok+mtn+)k+n+1) S,

o}

< (3 (aunl/G+m+ D)2(S a2 /G +m+ D)
j=0

i=0

< 2 gl /G+D)=1<o,
i=0

so that since Yy|, = ¥|; in L'(T) as N — oo, we get

n

im0 ; _ ® X ak+m+n&k+n
(4.6) _’;e ¥ (e")db/2n "go ,E’o k+m+n+1)(k+n+1)

=Y tum&G/G+m+1)
j=0
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by letting N tend to infinity in (4.5). On the other hand,

@7 (G 2"Gpoa= T tyomy /G m+1)
j=0

as well, so that (4.6) boils down to

n

Pm)= [ e ™¥(®)d0/2n = {(G,, 2" Gy

-n

for all integers m =2 0. For m 21, z"G,e In #,, so by Proposition 2.1, G, L z"G,. We
conclude that ¥ (n) = 0 for all m =1, and the function ¥ being real-valued, its negative
Fourier coefficients must vanish as well, by the formula ¥ (—m) = ¥ (m). Consequently, ¥
must be constant almost everywhere on 7, and this constant must be ¥ (0) = ||G,||2. = 1. We
conclude that ¥ <1 on D. The desired function @ is now given by the formula

d2)=01-1zH(1-¥(@), zeD.
The function @ is infinitely differentiable on D, and since 0 < ¥ <1 on D, we have
0<d(z)<1-|z>, zeD,

so that @ has a continuous extension to D, which vanishes on T. Let us now check that ¢
solves the differential equation 60 = |G,|*> — 1. Clearly,

o) =1—lz= ¥ IE@QF+ ¥ 1ZE@P, zeD,
n=0

n=0

and since these sums converge in C 2(D) because ¥y — ¥ in C*(D)as N — oo, and we have
d/dz(2F, , | (2) = F,(z) and d/dz(zF,(2)) = G, (2), we get

[e o]

050 = —1— 3 IE@F+ ¥ 1d/dzGE@)E = 1G,@F -1, zeD.
n=0

n=0

What remains for us to do is to check that (a) holds. To this end, let H, be the function

H,(2) = (;)G,(C)d{ = izo (o,/(n+1))z"*1 = .;1 (@,_y/m)2z", zeD,

which belongs to the Dirichlet space, and in particular, to the Hardy space H (D). Consider
the function

U(2) = |H@P -~ @) +1-|zI*, zeD.

A computation shows that é9U; =0 on D, so that U, is harmonic, and since
0 < ®(z) <1 —|z|? on D, we have Uj(z) 2 | H;(z)|* on D. On the other hand, the functions
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z U (rz), ze T, converge to | H;|*|,in L*(T) as r - 17, and so U, must be the smallest
harmonic majorant to | H,|?, that is, U; = P[| H,|*]. This shows that ® has the representa-
tion

®(z) =1—Iz> +|H,(2)* = P[|H,I*1(2), zeD.
If we expand H, and P[|H,|*], we get

o0l 0y Oy

d(z)=1—|z)? —mnm  ontlzm+l _ %% a-m
@ 12l +,,,,,zgo n+DHm+n- PZW nrDmtD
o, o
- — """ zeD,
m>§;0 (n+1)(m+1)
so that
o
0P(z) = —z+ Zhzmtl n—m)y— =" ___m-l e,
@) nmzzom"'l n>§;0( )(n+1)(m+1)
or, in polar coordinates,
aQ(rei()) = _._re_i6+ Z an&m rn+m+lei(n—m—1)6
~m+1
— —_ ___~g£§ﬂ____ n—-m—1 _iln—m—1)80
n_m§>m(" M Dmrn ¢
— -ig it-1)8 v Fm+k Om pamtk+1
+Ze % m+1
_ Z oitk— 1)02 Oy 4 Ly ferk—1

Py ~“m+k+1)(m+1)

where we declare o; = 0 for j> 0. Let / be an integer. We shall try to evaluate
lim | e"0®(re’®)d6/2n.
r-+1- —-=n

If I = 2, we see that

lim _|" e'”’6¢(re"’)d0/2n—2am 1410,/ (m+1)

r-+1- —-=n

Z 0004y — JG+D=(2"1G, G =0,

by (4.7) and the fact that G, L z' ! G,, which follows from Proposition 2.1. For / =1, we
have
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lim [ e®00(re®)d0/2n = —1+ Y a,&,/(m+1)=[|G,|2.—1=0,

r-1- -n=n m

and for 1 £ 0, we have

li T 1956 (rei®d /21 = & _ _ U1+ 1 O
fim § €000 d0/2n= T a vy n 4 1) = T (=14 1) Tt

= Zam—l+1&m/(m _l+2) = <(;I’Z—1+1GI>L2 = 0’

again by (4.7) and Proposition 2.1. We conclude that for any pair of integers n, m = 0,

lim | z"zZ"0d(z)ds(z)=0.

r=>1-rT

If we shift » an m and take complex conjugates in the above relation, we get

lim | z"z"0®(z)ds(z) =0,

Pl T
and since

0/0n=(z/t)0/00z+ (z/]r)d]0z
on r T, we arrive at

lim [ z"z"(8®/dn)(z)ds(z) =0,

r=>1-r7T
from which (a) follows by forming finite sums. The proof of the theorem is complete.

Corollary 4.2. Suppose I is an invariant subspace in L2 (D) with 0 ¢ Z (1), and let G, be
the corresponding extremal function. Let o be the space

o ={feL2(D): | ®|f'|*dA < o},
D
supplied with the norm
WANZ = IfNE+ | @I 1PdA m,
D

where @ is as in Theorem 4.1. Moreover, let o, be the closure of the polynomials in o. Then
multiplication by G, is an isometry o, — L%(D).

Proof. If uand vare two C? functions on D, Green’s formula [4], p. 236, states that

(4.8) [ (v4u—udvydAd = | (v(3u/Sn) — u(dv/dn))ds,
rD r7
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where ds is arc length measure on r 7. Let f be an arbitrary (analytic) polynomial. If we apply
(4.8) to the case u = @ and v = | |2, we get

§ (f1?000 — @|f'1)d4d =(1/4) | (1f1>(@®/on) — (3(f1*)/on) D)ds
rD rT

and by (a) and (b) of Theorem 4.1, we get

[ Uf?000 — ®|f'|*)dAd =0

if we let r tend to 1, because | f|? is a polynomial in z and Z. We obtain

JUGIP=DIfIPdA = [|f1?000dA = | ®|f'|*d4,
D D D

so that

[1G fPdA= [|f1PdA+ [|f|*®dA.
D D D

In other words, we have the isometry ||G,fl||..=|f|l, for all polynomials f. An
approximation argument now extends the isometry to all fe 2.

Remark. It is an easy consequence of Corollary 4.2 that G, - &/, = I(G)).

The space & introduced in Corollary 4.2, is contained in L2 (D), and the injection
mapping &/ — L2 (D) is contractive. On the other hand, the norm on H? (D) can be written
in the form

IAZ+ A =1z2P)1f" (DIPdA@)/n,
D

so by (b) of Theorem 4.1 and the fact that the polynomials are dense in H?(D), H*(D) is
contained within s/, and the injection mapping H?2 (D) — s/, is contractive. We arrive at
the following result.

Corollary 4.3.  Suppose I is an invariant subspace in L2 (D) with 0 ¢ Z(I), and let G, be
the corresponding extremal function. Then G, > 1, so that G, is a contractive divisor
1(G) -~ L{(D):

Wf/Glle S W Sflle2 s fe1(GY).
Moreover, G, is contractive multiplier H*(D) — L2(D).
Remark. We cannot expect G, to be a multiplier L2 (D) — L2 (D) in general, for it

would then be bounded, and its zeros would satisfy the Blaschke condition, which violates
Proposition 3.1, because not all Bergman space zero sequences are Blaschke sequences.
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Corollary 4.4.  Suppose I is an invariant subspace in L2 (D) with 0 ¢ Z(I), and let G, be
the corresponding extremal function. Then

G/ = ~1z1)7Y2, zeD.

Proof. This follows from [13], p. 232, since G, is a contractive multiplier
H?*(D) —» L?(D), by Corollary 4.3.

Corollary 4.5. Suppose b is an infinite sequence of points in D\ {0}, and that b’ is a
subsequence of b. If b is a Bergman space zero sequence, and G, and G,, are the extremal
functions associated with b and b', respectively, then

1G,(2)/ Gy ()| = (A = 2zP)712, zeD.

Proof. First, observe that by Proposition 3.1, the function G,/ G,, is holomorphic on
D. By Theorem 3.2 and Corollary 4.3, we have for polynomials f

1(Gs/ Gp) fllz = |Gy f] Gy llz NGy [l SN g2

which makes G,/G, a contractive multiplier H2(D) — L2(D). The assertion is now
immediate from [13], p. 232.

It is tempting to suggest that the following is true; the notation is as in Corollary 4.2.
Conjecture 4.6. Multiplication by G, is an isometry sf — L2(D).

In this context, the following question is fundamental.

Question 4.7. For which extremal functions G; do we have &, = &/?

If the invariant subspace I has the so-called codimension one property (see, for
instance, [9]), we see by mimicking the proof of Theorem 2.6 that G, has no more zeros than
do the functions in 7, so that f/ G, is holomorphicin D for all f€ I; the author does not know
if this remains true for general invariant subspaces. All singly generated invariant subspaces
have the codimension one property [9], p. 596. We are inclined to make the following
conjecture; if we want to be cautious, we could add the requirement that I be singly generated
to our assumptions.

Conjecture 4.8. Suppose I is an invariant subspace in L% (D) with 0 ¢ Z(I), having the
codimension one property, and let G, be the corresponding extremal function. Then G, is a
contractive divisor I — L2(D), that is, /G, € L2(D) and || f/ G |l < | fll 2 for all fe L.

By the results in the previous section, this is true for invariant subspaces associated with
zero sets.

If Conjectures 4.6 and 4.8 both have affirmative answers, we could expect the following
structure theorem to hold.
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Conjecture 4.9. Every invariant subspace I of L2(D) with 0¢ Z(I), which has the
codimension one property, has the form I = G, - B, where # is a closed z-invariant subspace of
& containing .

Remark. It is possible to define extremal functions G, also for invariant subspaces /
with 0 € Z(I). Say, for instance, that the functions in / have a common zero of order n at 0.
We can define G, to be the extremal function for the problem

sup{Re f®(0): fe L || fll.- <1} .
Most of the results presented in this paper hold for these extremal functions as well.
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