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Interpolating sequences and invariant
subspaces of given index in the Bergman spaces
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Kristian Seip at Trondheim

1. Introduction

For 0<a, p<+ 0, let 4,*=A,%(D) be the space of all complex-valued holo-
morphic functions f on the open unit disk D that are subject to the boundedness con-
dition

1S llaz== ([ 1F@I1PA = 2[)71**PdS ()" < + 0
D

here, dS(z) = dxdy is area measure in the plane (z = x + iy). These spaces are commonly
referred to as the standard weighted Bergman spaces. We also consider the case p = o0
fe A % if f is holomorphic on D and

Il flluze = sup{1 —1z1>)*|f(2)]: ze D} < + o0 .

The reason why we use this somewhat nonstandard indexation is that for fixed «,
many function theoretic properties of 4, * remain almost constant in p, such as the collection
of zero sets. A closed subspace .# of A, ¢ is said to be invariant (or z-invariant) if z.# is
contained in .#. Since the operator of multiplication by z is bounded below on 4,°%, z.#
is a closed subspace of .#. We define the index of the invariant subspace .# to be the
dimension of the quotient space .#/z.#, with values in the set {0,1,2, ..., +c0}. We will
at times refer to this number as ind(#). The index of .# can only equal 0 if .# is the
zero subspace.
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14 Hedenmalm, Richter and Seip, Bergman spaces

It is known that in 4,* there are invariant subspaces of arbitrary index, finite or
infinite. The simplest nontrivial example of an invariant subspace that comes to mind is
that of a zero-based one: given a zero sequence A in D for A% let

I(4,4;%) = {fe A;*: f=0on 4},

counting multiplicities whenever necessary. When it is clear what space we are working
with, we write 7(A) in place of 1(4, A, *). Zero-based invariant subspaces have index 1.
The following characterization of general index 1 invariant subspaces is interesting: an
invariant subspace .# has index 1 if and only if whenever fe .# has an extraneous zero
A€ D, we may divide f through by 4 — z and remain in .# [10]; in [10], this was carried
out in the Banach space case 1 < p < + oo, but the result holds for all 0 < p < +00. As
an application, it is possible to show that the collection of all index 1 invariant subspaces
is closed under any of the various topologies suggested in [9]. In the closure of the
zero-based invariant subspaces we find the Beurling type invariant subspaces [7], where
boundary measures play a role. However, to obtain invariant subspaces of higher index,
we must resort to other methods of constructing invariant subspaces. Given two invariant
subspaces .# and .#, we may form the smallest invariant subspace containing them, .# v .4,
by taking the closure of the linear subspace .# + .4/ The notation naturally extends to
larger collections of invariant subspaces. In [5], it was shown that for p =2 and a =1/2,
there are zero-based invariant subspaces .# and A" in 4, * which are at a positive angle
from one another, so that #/Nn A" = {0} and A& v N = M + N It then follows that A4 v N
has index 2. It was also noted that .# and 4" could be chosen so that

Z(M)NZ(N) =0,
where for a general invariant subspace,
Z(M)={leD:f(A)=0forall fe.#}.

It was also indicated how to build zero-based invariant subspaces .#,, ..., .#, such that
M,V -+ v M, has index n, for arbitrary integers n, 0 < n < + co. The methods of [5] are
of a general nature, and after some technical work they extend to all the spaces 4, %, with
0 < p, a < oo (compare with Theorem 6.1 and the remark after it).

Let #4,, ..., #, be invariant subspaces in 4 P with index 1, and assume 1 £ p < + o0,
so that 4,* is a Banach space. In this paper, we study, first in the context of general
Banach spaces of analytic functions, what conditions the .#; need to satisfy in order that
MV - v M, has maximal index n. We also construct a sequence of points in the disk
which is on the “edge” between interpolating and sampling sequences, which enables us
to construct an explicit invariant subspace in 4, ® with infinite index. It is explained how
to modify the construction to incorporate the case 0 < p < 1. It is then indicated how the
existence of such an object (for p = 2) makes the lattice of invariant subspaces on 4 “ so
complicated that if we could answer a certain question about it, then we would also have
the answer to the invariant subspace problem in Hilbert space.
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2. Some general observations about the index of an invariant subspace

In [5] it was shown that if 4 is a zero sequence for L2 = A, !/? and if # is any
invariant subspace of 45 !/? with Z(.#)n A =0, then .# + I(A) is dense in A; */? if and
only if ind(# v I(A)) =1. Furthermore, it thus follows from the results of [6] that
M + I(A) must be dense in 4; /2 for any .# with Z(.#)n A =, whenever 4 does not
accumulate at every point of the boundary of D. We shall now investigate the situation
more closely (see also Section 4).

Let © be a region in the complex plane, and let ¢ (£2) be the space of all holomorphic
functions on , supplied with the topology of uniform convergence on compact subsets.
We say that a Banach space % is a Banach space of analytic functions on €2, where Q is a
region in C, provided that it is a linear subspace of ((2), and the injection mapping
2 — 0(Q) is continuous.

Nota bene. (a) The term ‘““Banach space of analytic functions” thus requires more
of the space than being a Banach space with elements that are analytic functions.

(b) By appealing to the Banach-Steinhaus theorem, that additional condition can be
weakened to the following requirement: every point evaluation functional corresponding
to points of Q is continuous.

In the following, we assume that the region Q is bounded, and let # be a Banach
space of analytic functions on Q which satisfies the following axioms:

(a) Multiplication by z operates on 4, that is, zfe # whenever fe %.

(b) 2 has the division property, that is, f/(z — 1) € # whenever A € Q and fe # with
f(A)=0.

These are the same axioms that were used in [10]. By use of the closed graph theorem
it is easy to check that multiplication by z is a bounded linear transformation on %#. We
shall denote this operator by (M,, #) or simply by M,. Furthermore, for each 1€ Q the
operator M, — A is bounded below and the codimension of the range of M, — A in & is
one (see [10]).

We modify the definition of Z(.#) in this setting:
Z(M)={AeQ:f(A)=0forall fe #} .

It was shown in [10] that for 1€ Q, the dimension of the quotient space .#/(z — 1) .#
does not depend on 4, that is,

@2.1) ind(#) = dim.#/(z— D) M, LeQ.

In [10], Theorem 3.10, a condition on two invariant subspaces % and A~ with index
one was found that was equivalent to £ v 4" having index one. In the following theorem
we shall generalize the condition to the span of several invariant subspaces and also
modify it.
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Thus, let S + @ be a finite or countably infinite index set and for each je S, let M;
be a nonzero invariant subspace of (M,, #) with index one. Let card S be the cardinality
of the set S (that is, the number of points in S), taking values in {1,2, ..., +c0}. We set,
for ie S,

M=\/{M:jeS} and M, =\/{M;:jeS, ]+ i)}

(here the big v is used to denote the closed linear span of a family of subspaces). Note
that one always has ind (#) < card S (see [10], Proposition 2.16). We shall start out with
a condition which implies that ind () = card S. This condition will be used in Section 6
to construct invariant subspaces with infinite index.

Theorem 2.1. Suppose there is a Ae Q\(\) Z(M;)) such that for all i€ S

jeS
[ fA] = Cill f @y, » fed,,
holds for some C;, 0 < C; < + 0. Then ind(#) = card S.

Proof. We shall prove the theorem by contraposition. Thus, suppose that
ind(#) < cardS, and fix Ae Q\(|J Z(#;)). We must show that there is an index ie S

jes
and sequences { f,}, < #;, {g,}, < M, such that | f,(4)| =1 and || f, — g,ll4 = 0.

Let Q denote the quotient map Q: A — #/(z — A) #, and for each je S, pick an
hje M; with h;(2) =1.

Notice that Q.# =span{Qh;:je S}, because for each je S, ind(#;)=1 and
Q(z—A) M; = (0). Thus, for each finite subset S’ of § with ind(#) = dimQ.# < card S’
we have that the set {Qh;:je S’} is linearly dependent, so there must be an i€ S’ < S such
that Qh,espan{Qh;:je §',j*i} c A We fix such i and a function ge M, such that
h; — g € (z — ) M. Now note that M = M,V M,, thus there must be sequences {h, ntn © M,
and {.}n < M, such that

hi+z—-Ah,,—g—(z—21g, -0 asn—> +00.
Chis concludes the proof because the sequences
b Sa=hi+(@—Dh,,, and {g}, &=g+(E—-NE,

have the required properties. 0O

It is clear that the converse to Theorem 2.1 cannot be true if card S is infinite. Indeed,
suppose S=2Z,={1,2,...} and ind(#) = +c0. Let #, = .#, and set

N =span{#;:jeZ,u{0}}.

Then, of course, #'= A = M, ind(A) = card(Z, U {0}) = + 0, and ||f||g,,v,,0 =0 for
all fe #, < M,. Thus, since .#, was assumed to be nonzero the condition in the theorem



Hedenmalm, Richter and Seip, Bergman spaces 17

cannot be satisfied. However, if card S is finite, then Theorem 2.1 has a converse. In fact,
the argument in the proof of Theorem 2.1 can be reversed. Note that

ind(A) = dim(H/(z — L) M)

does not depend on A€ Q, so the condition in question should be satisfied either for no

A2e Q\(|J Z(#,)) or for all Ae Q. With a little extra effort we can make the constants
ieS
independent of A as long as 4 stays in some compact set K < Q.

Lemma 2.2. Let & and A be invariant subspaces of (M,,#) with ind(¥) =1,
ind(A#)=n< 400, and ind(&L v &) =n+ 1. Then for each compact subset K of Q, there
exists a constant C(K), 0 < C(K) < + o0, such that

SN = CE) fllgjw> feZ AeK.

Proof. 1t suffices to check the bound locally near each fixed point 1, € Q. Since the
index of M, — A does not change with A € Q [10], we can assume without loss of generality
that 4, =0. Set /=% v 4, and let Q , be the quotient map # — #/z.#. We pick
hoe £\z%, and let hy,..., h,e &/ be such that the images of these vectors under the

quotient map N — N[z A are linearly independent, that is, if z a;h; ez A" for complex
j=1
a;, then z |o;| = 0. Since ind (A") = n, every g € #"can be written as g = Z ajh;+ 28y,
j=1 ji=1
with g, € 4. Note that it follows from the hypothesis that the vectors

Q‘/ﬂhO’ Q.ﬂhl’ A thn

form a basis for .#/z.#. The dual of #/z.# is isometrically isomorphic to the annihilator
of z.# in M*, thus we can find a dual basis {e,, e, ..., e,} in (z.#)*, so that

<hy, ej> = 5,’,‘, 0sij=n.

For he #, the function h— Y, <{h,e>h; is in z.#, because it is annihilated by
i=0
every ¢;, j=0, ..., n. Thus, the map L,

Lh(z)=z""! (h(z) - i <h, e,)h,-(z)) , zeQ\{0},

i=

is a bounded linear transformation from .# into itself. Furthermore, L leaves . invariant,
that is, LY < % In fact, any fe % is of the form f=ah,+ zf,, for some aeC and
fi€ %, and thus Lf =f, € &, since zf, L e;, i=0,...,n. Similarly, one checks that L leaves
A invariant.

For small Ae @, |1] <d=|L||"*, the operator 1 — AL is invertible as an operator
M — M, and on a smaller disk there is a uniform norm bound,

IA=AL) s 4, |Ad<e,
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for some constant 4, 0 < 4 < + oo. Here, we have fixed an ¢, 0 < ¢ < §, such that the
closed disk | 1| < ¢ is contained in Q. For |1]| < ¢, set L, = (I — AL)™ 'L, which is then also
uniformly norm bounded. One checks that for 4 € 4,

(M,—A)Lih=(M,L—ALY(1—AL) ‘h=h— Z (A= AL) ‘h e h,.
i=0

Moreover, for fe %, we have (1 — AL) ™' fe %, so that

2.2) M.~ DL, f=f— 3 A=AL)fedh,
i=0

=f—<(1—AL) ' f,eod hg =f— (A hg,
where

a(d) =<1 = AL) " fieo).

Similarly, for g € 4, we have

23) M,-)L,g=g— i ;(Dh;, (A =<KT—-AL) g, e)>.

i=1

Let d, be the distance of A, to the linear span of A, ..., h,:

d0=inf{ ho— 3 ﬁ,-h,.”:ﬁl,...,ﬂ,,ec}>0.
i=1

Then for each A € Q with |1]| < ¢, fe %, and g e 4, we have, by (2.2)-(2.3),

n

a(Dho— Y a.-(i)h."l =I-GC=-HL)S-lIsClf-¢gl,

i=1

dola(A)| =

where C = sup{||1 — (M, — A)L,|| : |A| < &} < +00. By the observation that the left hand
side of (2.2) vanishes at the point z = 1, we get (1) = a(4) hy(4), so that

(24) |f(D)] = Cdg |hoDINI f-2ll, feZL gen.

The function A, (A) is analytic on £, and hence uniformly bounded on || < ¢&. Thus, by
(2.4), we get

| fDI=CN fllaw, 1Al <e feZ,
with C’' = Cdy *sup{|ho(4)|:|A| < &}. This concludes the proof of Lemma 2.2. O

We now return to the situation that we considered in and before Theorem 2.1, only
this time we assume that card S =n < + .

Theorem 2.3. Let neZ,=1{1,2,3,...}, and let M, M,, ..., H, be invariant sub-
spaces of (M,, #), each with index one. Set M=\/{M;:i=1,...,n}, and consider the
seminorm on # given by
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Nl = Z ”f”.taa/,ﬁj, feR.
j=1
Then the following are equivalent:
(@) ind(#)=n,

(b) there is a A€ Q\( Uz (.x/l,)) such that for some constant C, we have, for all
i=1

i=1’--"n, If('{)lécnfllm/ﬁ,,fE/”u

(c) there is a leQ\(

functional on M with respect to the seminorm || - || for some constant C, | f(A)| S C|| fIl,
holds for all fe A,

Z (Jl,.)> such that the point evaluation at 1 is a bounded
=1

(d) the seminorm ||-||, is a norm on M, and the set {he #:| h||, <1} is a normal
family on Q.

Proof. By the definition of what constitutes a Banach space of analytic functions

on Q, (d) implies (c). It is trivial that (c) implies (b), and that (b) implies (a) is Theorem
2.1, so we only need to show the implication (a) = (d).

We assume that ind (.#) = n, and let K be an arbitrary compact subset of Q.

Fix i, 1<i<n, and note that ind(j/,-)§n— 1, because ./l?,. is the glosed linear
pan of n—1 index one in\iariant subspaces [10]. Since # = .#,v.#;, we have
n=ind(A) < ind(A,) + ind(A;) =1+ ind(#;) £ 1+ (n —1) = n, so that

ind(M)=n—1.

By Lemma 2.2, and the fact that we have only finitely many invariant subspaces .#,, there
is a constant C(K), 0 < C(K) < + o0, such that

DI = CKN S l@ai» S€Hy LK.

For every f of the form f= Y f, f;€ #;, we have
i=1

13

DI T 1AD S CEK) }”:l 1 fillars = CE) S 11 fllapas AEK.
i=1 i=

i=1

However, elements of the form f= Z /; are dense in .#, so (d) follows. O

i=1

If the subspace .# is complemented in 4, then one can substitute % for .# in part
(d) of Theorem 2.3.
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Corollary 24. LetneZ, andlet #,, #,, ..., H#, be invariant subspaces of (M ,, B),
each with index one. Set M =\/{M;:i=1,...,n}, and suppose that M is complemented in
B, that is, there is a norm closed subspace N of B such that M\ N = (0) and M+ N = B.
Then ind(#) = n if and only if the seminorm

I flla= 2 I fllaja, X,
j=1

is a norm, and the set {he #:||h||, < 1} is a normal family on Q.
One notes that if £ is a Hilbert space, then all subspaces are complemented.

Proof. Clearly, if point evaluations are continuous on %,, then condition (b) of
Theorem 2.3 is satisfied, so ind(.#) = n.

Conversely, assume that ind(.#)=n. Let K< Q be compact. We shall show that
every A€ K is a uniformly bounded point evaluation for # with the norm || - || .. This then
finishes the proof by a normal families argument.

Let &/ be a complement of .#. Then any he £ has a unique representation
h=f+g, fe # and ge 4, and there is a constant § > 0 such that

oS +lgh=lif+gll=lfII+1gll

for all fe # and g e 4. Now let g, € ./4;; then by Theorem 2.3,
A =1 /DI + gD = C(K)< > ||f||ga/,42,.+llgllx>
i=1

= C(K) Z, (Ul f-glls+1glle) = C(K)S™* Z If+g—2gilla

i=1 i=1

=C(K)o™' Y llh—gllg, AcK.
i=1

i

Taking‘the infimum over all possible choices of g; € .#;, we obtain |h(A)| £ C(K)d ™! 1Al
on Le K, for every he . O

Remark. For n =2, condition (b) of Theorem 2.3 can be relaxed a little. If .# and
A are two invariant subspaces with index one, and if e Q\(Z(¥)u Z(A4")) such that
| fMIECIl fllgu for all fe Z, then |g(A)| < C'||gllg,e for all ge A Indeed, for fe &£
and ge 4 we have

gD =g =S DI+ 1SN =CUlg =S+ 11/ Na)n)
=C(lg=flI+llg—flla) =C'llg—=11I.
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Corollary 2.5. Let # be an invariant subspace of (M,, #) with ind(#)=1. Then
the following are equivalent:

(a) there exists an invariant subspace N of (M,, #B) which contains # and has index
two,

(b) there exists an fe B, a e Q\(Z(M) U Z(f)), and a constant C, 0 < C < + o0,
such that

[PQ)| < CllpS llayu for every polynomial p,

(c) there exists an fe & such that the seminorm on polynomials ||p|l, = || pf |l g).« is
a norm, and the set {p : p polynomial, ||p||, < 1} is a normal family on Q.

Proof. The implication (c) = (b) is clear. (b) = (a) follows from Theorem 2.3
together with the above remark, just take /" =[f]v A.

(a) = (c): We have & =\/{[f]:feAN}v.M Thus, if ind(#")=2, then by

Theorem 3.13 (b) of [10] there must be an fe A4 such that ind(.# v [f])=2. For
polynomials p, the isometry || p||, = || fpll, holds, where

gl = ||g||9a/[f]+||g“ga/m, geN =MV [f].

Thus, (c) folows from Theorem 2.3. O

3. Sequences: interpolation, separation, and sampling

Let 0 <a, p < + 0. For a fixed point A € D, consider the extremal problem

sup {| f)1: 1 flla;= =1}

By direct inspection of the solution, we see that the norm of the point evaluation func-
tional at A is comparable to (1 — |4|%)~*~ /7. Hence, for a sequence A = {4,), of points in
D, the operator

Tpo: [ {0 = 14,12 P £ (2,0},
maps A4, * into /. The sequence A is said to be interpolating for A,* if T, , maps 4,*

into and onto #”. Closely related to the concept of interpolating sequences is the notion
of separation: the sequence A is separated if

. }'i——ij
mf{‘l—-l-,-ij

Separated sequences are sometimes referred to as being uniformly discrete. All inter-
polating sequences are separated. Moreover, if 4 is interpolating, then

:i,j,i#j}>0.

© 1/p
W agereay =N T a fller = ( Zl WACHIE —Iinlz)“"“) , fed,”,
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(the = sign means that the two quantities are comparable in size) where I(A) is the zero-
based invariant subspace associated with A. For separated A, we just know that

W Tpafller = CN S Nazoray SE€A".

The sequence A is sampling if

”T;:.af“tpx”f”A;ﬂ, fEAp_".

To describe more concretely the sampling and interpolating sequences, we need the concept
of density. For separated 4, let

Y A=y
D(A,r)= JilAjl<r
log

1 , 0<r<1.

1—r

For every ze D, we form a new sequence

The lower uniform density of 4 is

D™ (A) = liminfinf {D(4,,r):ze D},
r—=1-

and the upper uniform density of A4 is

D*(A) = limsup sup {D(4,,r): ze D}.
r—1-

The following two theorems from [12] describe completely the interpolating and sampling
sequences. Strictly speaking, they were stated explicitly in [12] only for p =2 and p = o0;
however, only minor modifications are needed for the general case.

Theorem 3.1. A sequence A = {4,}, of points in D is interpolating for A, * if and only
if it is separated and D* (A) < a.

Theorem 3.2. A sequence A = {A,}, of points in D is sampling for A, * if and only if
it can be expressed as a finite union of separated sequences and there exists a separated
subsequence A' = A for which D~ (A') > a.

4. Applications to the Bergman spaces

We now apply the general results of Section 2 to the Bergman spaces # = A4, * in
the Banach space case, that is, 0 < a < + o0 and 1 < p < + 0. For some zero-based inva-
riant subspaces, we shall be able to make the conditions (b) and (v) of Corollary 2.5, which
involve quotient norms, more concrete.
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Given a discrete sequence 4 ={4,}, of points in D and a real parameter 7,
1<y < + 0, we associate a Borel measure u, , on D,

dﬂA.y = Z (1 —|}."l2)yd51n,
n=1

where dd, is the unit point mass at the point 1€ D. For a finite positive Borel measure p
on D, we let P?(u) denote the closure of the polynomials in L?(D, u).

Corollary 4.1. (1<p<+o0,0<a< +o0) Let A ={4,}, be interpolating for A,*.
Then the following are equivalent:

(@) there is an invariant subspace N of A, * with I(A) = A and ind(A") = 2,

(b) there are fe A,°, L€ D\(Z(f)u ), and a constant C, 0 < C < + o0, such that
for all polynomials q,

lgWIP = CJ1g@I1P1 f@)IPdpyapsr s
D

(c) thereis an fe A, " such that with du = | f(2)|Pdug, 4p + 1, P¥ (1) is a Banach space
of analytic functions on D.

Proof. The equivalence of (a) and (b) follows from Corollary 2.5 and the remarks
in Section 3. Furthermore, by the definition of Banach space of analytic functions, (c)
implies (b). That (b) implies (c) follows from Corollary 2.5 together with a normal families
argument and an easy exercise using the fact that u is a finite measure which is concentrated
in the open unit disk. [

In the case of an interpolating sequence A4, this corollary explains the earlier obser-
vation that if 4 has the property (a) in Corollary 4.1, then 4 has to accumulate at every
point of the unit circle. We also note that by the equivalence of norms statements in Section
3, it follows that for an interpolating (in the space 4, *) 4, property (c) of Corollary 4.1
implies that 4 is dominating for H®. In other words, if an interpolating A fails to be
dominating for H*, then any invariant subspace .4 that contains /(A4) has index one.
Thus, for interpolating A which are not dominating for H®, it follows from the argument
in the proof of [5], Theorem 2.4, that if 4" is an invariant subspace of 4, ? and if
N > I(A) has no common zeros, then A" = A4; !/2; the proof in [5] generalizes to certain
other values of p, a: modulo a few technical points that require checking, it should be all
right for 0 < a £2/p (this is definitely so for p =2, and we expect it to generalize to
1<p<+ow).

In the other direction we have the following corollary.

Corollary 4.2. (1<p<+00,0<a<+w) Let A,, A, =D be two zero sequences
for A, * with the following property; there are interpolating subsequences A1 < A, A < 4,,
such that for some A€ D\(A]u A}), there isa C, 0 < C < + o0, such that
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lq(l)lp é an; |q|pdﬂA',uA'2,ap+1

holds for all polynomials q. Then ind (I(A,) v I(4,)) = 2.

Proof. This follows immediately from the results of Sections 2 and 3. O

5. Special sets of uniqueness for A4, *

We shall now construct special sets of uniqueness for 4, The crucial point here is
that in a certain sense these sequences live on the “‘edge” between sampling and inter-
polating sequences. The main result of this section is the following. The notation is as in

the previous sections.

Proposition 5.1. (0 < a, p < + o) There exists a separated sequence A = D\{0} with
D*(A) = D™ (A) = a, such that

G 1fOISCUT, , flle=C(J1f@DIPdpupop+1 (D), feA,?,
D

where C a positive constant independent of f.

We shall prove the proposition by modifying the approach of [11]. For given real
parameters a, b, and ¢, with 1 <a< +o00 and 0 < b < 4 00, let

Wpp=a"b,n+i), mnel,

which is a sequence of points in the upper half plane. Here,

b = b ifm=20,

m {b—c/lml ifm<o0.

In the strip 0 < 3z < 1, the sequence W is slightly fatter for ¢ > 0 and slightly thinner for
¢ < 0 than the hyperbolically equi-distributed sequence which is obtained for ¢ = 0. The
Cayley transform z+ (z —i)/(z + i) maps the open upper half plane C, onto the unit
disk D; let 4,, , denote the image of w,, , under it, and put f = 2n/(bloga). Let A’ be the
sequence {4, ,}m »» and set 4 = 4'\{0}. The pseudohyperbolic metric in D is denoted by g,

z—{
ez, 0) = 1—Zz|’ z,{eD,
and in C, by 6,
5(z0) = z:%l, z,(eC,.

The metrics extend to set-valued entries by taking infima. Clearly, the sequence W is
separated, that is,

inf{d(z,w):z,weW, z£w}>0.



Hedenmalm, Richter and Seip, Bergman spaces 25
Let D be an arbitrary disk in C,, and write 4 (D) for its hyperbolic area. A computation
then shows that the quotient card(Wn D)/A(D) tends to a certain constant value as
A(D) - + oo. The value of that constant, and the slightly different equivalent definition
of densities in [12] (see also [11]), give
D*(A)=D"(A)=D"(A)=D"(4)=§.
The key to the proof of Proposition 5.1 is the following lemma.

Lemma 5.2. Let @ be the function

11—z

2nc/b?
¢(z)=(1—|z|2)"’<max<1,log—~—>> , zeD.

1—]z|?

Then the above-defined sequence A is the zero set of a function g, analytic in D, which satisfies
the estimates

(5.2) Cio(z, ) P(2) =12 = C,P(2), zeD,
(5.3) C,(A=12)7 1o s1g’(Dl, Aed,
for some positive constants C,, C,.

Proof. To the above-defined sequence W = {w,, ,},. ,,» We associate the expression

h) = ( ﬁ sin(nb,:x(i—a—kz))>( Hl J2nin sjn(nb[—l(a—lz_i)))'

o sin(nb Yi+a*2) )\ = o sin(nb; '(a™'z + 1))

By the usual convergence test for infinite products, the two products converge absolutely
and for every ze C,, and the convergence is uniform on compact subsets. Hence 4(z) is
analytic in the upper half-plane C,, and W is its zero set. For integers j, let

< sin(nb,t;(i—a"*z)) 1 sin(nb Y (a7 z — i)
h. = - J 2n/b - - J .
1) (kl;lo sin(nb,2;(i+a*2) ,J]m ¢ sin(nb; ' (a™'z + 1))
where, just as with /(z), the infinite products converge absolutely and uniformly on com-
pacts. One checks that

(5.9 h(a’jz)=(—-1)jhj(z)exp<2n:i 51_>’ zeC,;
k=1

-k

j 0

should j be negative, the sum ) is to be identified with — ) . We use this relation
k=1 k=j+1

to estimate the growth of 4. A computation reveals that there exist positive constants K,

and K,, independent of j, such that

Koz, aW)S|hjd) = K,, a
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Combining these inequalities with (5.4) and the fact that d(az, aW) = §(z, W), we obtain
the global estimates (f = 27 /(bloga))

2nc/b2
(5.5) |h(z)|§Cy‘”<max<1,log;)> , z=x+iyeC,,
and
2nc/b?
(5.6) |h(2)| = Co(z, W)y"”(rnax (1, log;>> , z=x+iyeC,.

We pass to D and define
14z

z>’ ze D\{0};

g@)=01-2"- h(

the singularity at 0 is removable. The desired estimate (5.2) is obtained from (5.5) and
(5.6), and (5.3) follows from (5.2). 0O

Proof of Proposition 5.1. We assume first 1 < p < oo and that in the construction
of A,c = b*/(np’), where p’ = p/(p —1). Let a and b be such that the associated  equals
o. We claim that

e () g0)
G- f0= Eﬂga)a ’

fed,”,
where g is as in Lemma 5.2. The assertion then follows, since by Holder’s inequality and
(5.3), we have

1/p
(5.8) X f@Ira - MIZ)‘”’“> ,

AeA

f(A) g0) (0)
).ze:A g'() A <

where

= 2nep’/b2\ /P’
) < +00.

— A2
max(l log |11 |1:2>

=C<Z A=141%

AeA
To see that K< + o0, let

= {AeD: 11— A2 <2(1— A1)},

which is a smaller disk tangential to D at 1, and observe that since the sequence A is
separated, we can estimate the sum defining K with an integral (on an appropriate class
of functions on D, the point mass (1 —|1]|?)2dé, at A€ D may be estimated by the area
measure restricted to the disk with fixed pseudohyperbolic radius r, 0 < r <1, around A)

ds(z) M —z]2\"2 dS(z) \'/*
< .
K=C(fL4;2+AQO%1—uw) 1—1z27) °

here, we used the assumption ¢ = b?/(np’).
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It suffices to verify (5.7) for f that extend holomorphically to a larger disk rD, r > 1,
because it then extends, by approximation and (5.8), to all fe 4, % To this end, we use
the separation of A to find a small positive real number d such that the circles g(z, 1) = d,
with 4 € 4, are nonintersecting. For 0 < ¢ <1, let S(¢) denote the positively oriented closed
path around the origin which is the union of the set of z € D on the circle | z| = ¢ for which
0(z, 4) = d and the shorter arcs of those circles ¢(z, A) = d, with 4 € 4, which intersect the
circle |z| = ¢. It is clear that the length of S(¢) is uniformly bounded. The path S(¢) encloses
a domain D(¢). By the calculus of residues, we have

1 S f£0) AG)
— [ === L
2ni s{:) g(0)¢ ‘ g(0) * AEAZAD(t) g' (M4

In view of (5.2), the integral on the left tends to 0 as z+1 because g(S(¢), 4) = d and
| £(0)] is bounded throughout D.

For 0 < p <1, we choose ¢ =0 and proceed similarly. O

6. Invariant subspaces with infinite index

In this section, we shall use the results of Sections 2, 3, and 5 to construct an in-
variant subspace .# of A, * with infinite index in the Banach space case

0<a< 400, 1Zp<+ocw,
and indicate how to extend the construction to 0 <p <1.

The existence of such subspaces has been known for some time in the Hilbert space
case p = 2. It follows from a theorem of Apostol, Bercovici, Foiag, and Pearcy (see [1]),
which asserts that the shift M, on A;* is in the class A of universal dilations. This
theorem also implies that one could answer the invariant subspace problem for separable
Hilbert space affirmatively, if, for a fixed &, 0 <a < + 00, one were able to show that
between any two shift invariant subspaces A4 < . of the Bergman space 4, with
dim (# © #") = + o0, there is an invariant subspace X, /"¢ A & . For the benefit of
the reader who is not familiar with the machinery of [1], [2], we indicate in a corollary
how that result can be obtained from Theorem 6.1 and two dilation theorems, whose
(short) proofs are based on elementary Hilbert space theory.

The existence of invariant subspaces in 4, * of arbitrary index was settled by Esch-
meier [3] in the Banach space case 1 < p < oo, with a =1/p. The machinery of [1], [2],
[3] provides an existence proof of these invariant subspaces; we carry out an actual
construction.

Theorem 6.1. (1< p < +00,0<oa< +00) There exists an invariant subspace M of
A, ® with ind (M) = + o0.
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Proof. Let A ={J,}, < D be the separated sequence that was constructed in Section
5 (there, 4 was indexed by two parameters n and m, but here it is more convenient to
have a single index parameter n). Recall that it satisfies 4 = D\{0},

D (A =D*A)=ua,
and

OIS C(J1f1Pdpyy4ap)'” forall fe4;°,
10

where dy, , +,, is as in Section 4. Let 4, =@, and define inductively A4, by saying that it
k-1

should be formed by taking every other point of 4\ Y A;, fork=1,2,3,...; this sounds
j=0

vague, but can be made quite specific by looking at the sequence W in C, that 4 comes

from, and at each horizontal level line that contains points from W, we pick every other
k-1

point in the sequence corresponding to A\ () 4;. Form the complementary sequences
j=o0

B, = A\A,. Then, by an argument similar to the one that gave the upper and lower uni-

form densities of 4 in Section 5, we have, for j =1,2,3,...,

D*(4)=D"(4)=2"a<a,
D*(B)=D"(B)=(1-2")a<ua,
so that by Theorem 3.1, 4; and B are interpolating sequences for 4, % and, in particular,

I(B)) # (0). We claim that /# = VI (B;) has index +oco. By Theorem 2.1, it suffices to
verify that for each je N, j=1

| f(0)] = Cj”f”A;“/.ﬁj’ fel(B),

where ./?J = \/ I(B). Note that J?J < I(4;). Thus, for fe I(B;), we have

iri%]
SIS CU 1S Py svap) = CUL1S 1Py, 0p)™
S CNS Nazorran = CNS Nlag i, -
Here we used that the sequence A is separated (see Section 3). The proof is complete. O
Remark. The assertion of Theorem 6.1 holds also for 0 < p <1, though to see that

this is so requires extra work, because 4,“ is not a Banach space then. Note that for
0<p<1, 4,*is a homogeneous invariant F-space: it has a complete invariant metric

d(f,®=If—gli- fged,*,
which is homogeneous of degree p,

d(tf,0) =|71?d(f,0), fed,* 1eC.



Hedenmalm, Richter and Seip, Bergman spaces 29

One checks that these properties are for some purposes sufficient to obtain desired results.
For instance, if L is a continuous linear operator on 4, %, then 1 — BL is invertible for
B € C near 0. As a consequence, one can prove that (2.1) holds for 4% by writing down
a direct proof of it in the Banach space situation which does not appeal to the Fredholm
theory. It follows that Theorem 2.1, suitably modified, holds as well (the proof just uses
some elementary arguments from finite-dimensional linear algebra). The rest of the con-
struction in the proof of Theorem 6.1 works without modifications for 0 < p < 1.

Let T be an operator on a Hilbert space # A subspace )" of # is called semi-
invariant for 7, if there are two invariant subspaces .# and A" of T with 4 < .4, such
that "= . #© /. Let P be the orthogonal projection operator # — . Then the com-
pression of T to the semi-invariant subspace ¢ is T, = PT|,. The following corollary
(see [1]) shows the connection to the invariant subspace problem that was mentioned
above.

Corollary 6.2. (0 <a < +00) Let # be a separable Hilbert space and let A be a
strict contraction on ¥, that is, || A|| < 1. Then there is a semi-invariant subspace A < A5 *
of the Bergman shift M, such that the compression of M, to A" is unitarily equivalent to A.

Proof. Choose B, ||A]| < B <1, and let # be an invariant subspace of M, with
ind(#)= + 0. Then for each ne N, z"4# has index + o0, and we may choose n,e N
such that if A = z"_#, then the operator M, |, is bounded below by B. Thus, the adjoint
(M, | ,)* satisfies the hypothesis of Theorem 5.9 of [2] and we may conclude that M, |,
has a semi-invariant subspace J, so that the compression of M,|, to S is unitarily
equivalent to SU, where U is the (forward unweighted) shift of infinite multiplicity. More-
over, it is well known (see [13], Theorems I.4.1 and II. 2.1) that the strict contraction 4
with ||4]| < B is unitarily equivalent to the compression of U to some semi-invariant
subspace. It follows that A4 is unitarily equivalent to the compression of M, to some semi-
invariant subspace. 0O
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