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Subharmonic potentials

We let C be the complex plane. We let Q : C→ R be a C 2-smooth
potential, with sufficient growth at infinity:

τQ := lim inf
|z|→+∞

Q(z)

log |z |
> 0.

CONES OF SUBHARMONIC FUNCTIONS
Let SH(C) denote the cone of subharmonic functions. Moreover, for
w0 ∈ C and 0 ≤ τ < +∞, let

SHτ,w0(C) :=
{
q ∈ SH(C) : q(z) ≤ τ log |z − w0|+ O(1) as z → w0

}
,

which we may refer to as the (τ,w0)-pinched subharmonic functions.
Informally, these are the subharmonic functions whose Laplacian has a
point mass of magnitude at least τ at the point w0.



Exponentially varying weights and associated Bergman
spaces

Exponentially varying weights and Bergman spaces
For a positive real parameter m, let A2

mQ denote the space of entire
functions with finite norm

‖f ‖2mQ :=

∫
C
|f (z)|2e−2mQ(z)dA(z) < +∞.

Here, dA denotes the area element, normalized so that the unit disk D
gets unit area.

Nested subspaces of functions vanishing at a point
Let A2

mQ,n,w0
denote the subspace

A2
mQ,n,w0

:=
{
f ∈ A2

mQ : f (z) = O(z − w0)n as z → w0
}
.

This is a closed subspace of A2
mQ .



Bergman kernels
Associated with the Hilbert space A2

mQ is the inner product

〈f , g〉mQ :=

∫
C
f (z)ḡ(z) e−2mQ(z)dA(z).

The Bergman kernel
The Bergman kernel for A2

mQ is the function Km(·, ζ) ∈ A2
mQ with

f (ζ) = 〈f ,Km(·, ζ)〉mQ , ζ ∈ C.

Correspondingly, the Bergman kernel for the subspace A2
mQ,n,w0

is
denoted by Km,n,w0(·, ζ).

Root functions
The root function of of order n at w0, denoted km,n,w0 is the solution to
the optimization problem

max
{
Re f (n)(w0) : f ∈ A2

mQ,n,w0
, ‖f ‖mQ ≤ 1

}
provided the maximum exists as a positive number. Otherwise, we
declare km,n,w0 = 0.



The Bergman kernel in C2 for a tubular domain

Consider the tubular domain in C2 given by

ΩmQ :=
{

(z ,w) ∈ C2 : |w | < e−mQ(z)
}
.

Then the Bergman kernel KΩmQ
for the space A2(ΩmQ) is such that

KΩmQ
((z , 0), (ζ, 0)) = constKmQ(z , ζ),

where the constant depends on normalizations.

Pseudoconvexity
We use the defining function ρ = log |w |+ mQ(z), in which case (when
w 6= 0) the associated quadratic form of (a, b) ∈ C2 on the complex
tangent plane a

2w + m ∂Q
∂z b = 0 is

L(ρ)(a, b) = m
∂2Q

∂z∂z̄
|a|2.

This quadratic form is positive semidefinite if and only if ∆Q ≥ 0, and
consequently ΩmQ is pseudoconvex if and only if ∆Q ≥ 0. Moreover,
ΩmQ is locally pseudoconvex wherever ∆Q ≥ 0.



Root functions and the Berman kernel

LEMMA
We have that

Km,n,w0(z , ζ)

Km,n,w0(ζ, ζ)1/2 → km,n,w0(z)

if ζ approaches w0 along an appropriate direction.

Expansion of Bergman kernel in root functions
We have that

Km,n,w0(z , ζ) =
+∞∑
l=n

km,n,w0(z)km,n,w0(ζ).



An obstacle problem

Let
Q̂(z) := sup

{
q(z) q ∈ SH(C), q ≤ Q on C

}
,

and, analogously, for the (τ,w0)-pinched problem,

Q̂τ,w0(z) := sup
{
q(z) q ∈ SHτ,w0(C), q ≤ Q on C

}
.

Spectral droplets
We put

S := {z ∈ C : Q(z) = Q̂(z)}, Sτ,w0 := {z ∈ C : Q(z) = Q̂τ,w0(z)},

and call these spectral droplets (or spectra). The bulk of the spectral
droplet S is the set

bulk(S) := {z ∈ int(S) : ∆Q(z) > 0},

with the obvious modifications in the case of Sτ,w0 .

Note that Sτ,w0 gets smaller as τ increases, starting with S for τ = 0.



Illustration of the obstacle problem

Figure: Illustration of the spectral droplet corresponding to the potential
Q(z) = |z |2 − log(a+ |z |2), with a = 0.04. The spectrum is illustrated with a
thick line, and appears as the contact set between Q (solid) and the solution Q̂
to the obstacle function (dashed).



illustration of a compact spectral droplet.

Figure: Illustration of a compact spectral droplet (shaded) with two simply
connected holes. In this case there are three off-spectral components: the two
holes as well as the unbounded component. If we think of this in the context of
the Riemann sphere we may allow for the point at infinity to be inside the
spectrum.



Admissible potentials Q

Admissibility
The C 2-smooth function Q : C→ R is said to be admissible if
(i) τQ > 0,
(ii) Q is real-analytically smooth and strictly subharmonic in a
neighborhood of ∂S,
(iii) there exists a bounded component Ω of the complement Sc = C \ S
which is simply connected, with real-analytically smooth Jordan curve
boundary.

In particular, we read off from (iii) that Sc must be nontrivial, and hence
subharmonic Q are excluded from consideration under admissibility of Q.



(τ,w0)-admissible potentials Q

Pinched admissibility
The C 2-smooth function Q : C→ R is said to be (τ,w0)-admissible if
(i) 0 ≤ τ ≤ τQ ,
(ii) Q is real-analytically smooth and strictly subharmonic in a
neighborhood of ∂Sτ,w0 ,
(iii) the point w0 is an off-spectral point, i.e., w0 /∈ Sτ,w0 , and the
component Ωτ,w0 of the complement Scτ,w0

containing w0 is bounded and
simply connected, with real-analytically smooth Jordan curve boundary.

For an interval I ⊂ [0,+∞[, we speak of (I ,w0)-admissibility if we have
(τ,w0)-admissibility for each τ ∈ I , while the associated domains Ωτ,w0

change smoothly as τ moves in the interval I .
Here, subharmonic potentials Q are allowed, because Scτ,w0

is
automatically nontrivial for τ > 0.



Some notation

Conformal mappings
Let ϕw0 denote the conformal mapping Ω→ D with ϕw0(w0) = 0 and
ϕ′w0

(w0) > 0, provided w0 ∈ Ω. In the pinched situation, we denote by
ϕτ,w0 the conformal mapping Ωτ,w0 → D with ϕτ,w0(w0) = 0 and
ϕ′τ,w0

(w0) > 0.

Complexification of Q
We let Qw0 be the function which is bounded and holomorphic in Ω and
whose real part equals Q along ∂Ω, while ImQw0(w0) = 0. Analogously,
in the pinched situation, we Qτ,w0 for the bounded holomorphic function
in Ωτ,w0 whose real part equals Q along ∂Ωτ,w0 , while ImQw0(w0) = 0.
These functions are tacitly extended holomorphically across the
corresponding boundary curves.



Off-spectral expansion of the Bergman kernel

THEOREM I
Suppose Q an admissible potential. Then, given a positive integer κ and
a positive real A, there exist a neighborhood Ω〈κ〉 of the closure of Ω and
bounded holomorphic functions Bj,w0 on Ω〈κ〉 for j = 0, . . . , κ, as well as
domains Ωm = Ωm,κ,A with Ω ⊂ Ωm ⊂ Ω〈κ〉 which meet

distC(∂Ωm, ∂Ω) ≥ Am−
1
2 (logm)

1
2 ,

such that the normalized Bergman kernel at the point w0 enjoys the
expansion

km(z ,w0) =
Km(z ,w0)

Km(w0,w0)1/2 = m
1
4 (ϕ′w0

(z))
1
2 emQw0 (z)

×
{ κ∑

j=0

m−jBj,w0(z) + O(m−κ−1
}
,

as m→ +∞, where the error term is uniform on Ωm.



The first term of the expansion

In the theorem, the first term B0,w0 is obtained as the unique zero-free
holomorphic function on Ω which is smooth up to the boundary, positive
at w0, with prescribed modulus on the boundary

|B0,w0(z)| = (4π)−
1
4 |∆Q(z)| 14 , z ∈ ∂Ω.

As for the later terms Bj,w0 , with j = 1, 2, 3, . . ., they may be obtain
algorithmically. The expressions do get a bit large though.



The Gaussian wave associated with the normalized Bergman
kernel

Associated with the normalized Bergman kernel we have the probability
wave

|km(z ,w0)|2e−2mQ(z).

Figure: Illustration of the the probability wave of the Bergman kernel for
w0 = 0 and Q(z) = 1

2 |z |
−2 − 1

8 Re(z
−2) + (1+ 2

m
) log |z |.



Off-spectral expansion of root functions

THEOREM I
Suppose Q is (I0,w0)-admissible, where I0 is compact. Then, given a
positive integer κ and a positive real A, there exist a neighborhood Ω

〈κ〉
τ,w0

of the closure of Ωτ,w0 and bounded holomorphic functions Bj,w0 on
Ω
〈κ〉
τ,w0 for j = 0, . . . , κ, as well as domains Ωτ,w0,m = Ωτ,w0,m,κ,A with

Ωτ,w0 ⊂ Ωτ,w0,m ⊂ Ω
〈κ〉
τ,w0 which meet

distC(Ωc
τ,w0,m,Ωτ,w0) ≥ Am−

1
2 (logm)

1
2 ,

such that the root function of order n at w0 enjoys the expansion

km,n,w0(z) = m
1
4 (ϕ′τ,w0

(z))
1
2 [ϕτ,w0(z)]nemQw0 (z)

×
{ κ∑

j=0

m−jBj,τ,w0(z) + O(m−κ−1
}
,

on Ωτ,w0,m as n = τm→ +∞ while τ ∈ I0, where the error term is
uniform.



The first term in the expansion of root functions

In the theorem, the first term B0,τ,w0 is obtained as the unique zero-free
holomorphic function on Ωτ,w0 which is smooth up to the boundary,
positive at w0, with prescribed modulus on the boundary

|B0,w0(z)| = (4π)−
1
4 |∆Q(z)| 14 , z ∈ ∂Ωτ,w0 .

As for the later terms Bj,w0 , with j = 1, 2, 3, . . ., they may be obtain
algorithmically. The expressions do get a bit large.



Boundary rescaled kernel and correlation kernel

We consider the rescaled density profile (“1-point function”)

%m(ξ) = %m,n,w0(ξ) =
2

m∆Q(zm(ξ))
Km,n,w0(zm(ξ), zm(ξ)) e−2mQ(zm(ξ)),

where
zm(ξ) = z0 +

νξ√
m
2 ∆Q(z0)

,

is a way to blow up around the point z0. Here, n = τm, and ν ∈ C is a
fixed unit vector, and ξ measures the deviation away from z0.

BOUNDARY UNIVERSALITY
If z0 is a boundary point for the spectrum and the associated hole Ω is
smooth, while ν is the inward-pointing unit normal to ∂Ω, then

lim
m→+∞

%m(ξ) = erf(2Re ξ) = (2π)−1/2
∫ +∞

2 Re ξ
e−t

2/2dt,

with uniform convergence on compact subsets.



Some comments

Not just the density profile gets determined but the whole blow-up
process as well. The key approach is (1) the expansion of the Bergman
kernel in terms of root functions, and (2) the asymptotic expansion of
root functions.
As for the asymptotics of the root functions, there is a non-local effect,
coming from the fact that we begin at an off-spectral point. Compare
the picture with the typical Gaussian probability wave associated with a
bulk point.
The methods involve modifications of our earlier work of the asymptotics
of planar orthogonal polynomials [HW1]. To be more precise, the Laplace
method for area integral is used in the direction perpendicular to the
boundary curve, and a foliation near ∂Ω is constructed in order to prove
that the expansion suggested by Laplace’s method is in fact correct.



The missing link: an elementary approach to local Bergman
kernel expansions

We observe that if we consider the problem of maximizing |f (z0)| given
that

‖f ‖2mQ =

∫
C
|f (z)|2e−2mQ(z)dA(z) = 1,

the answer is that the maximum is Km(z0, z0)
1
2 , and it is attained for

f = Km(z0, z0)−
1
2Km(·, z0). Without loss of generality, we put z0 = 0,

and we try to see how big we can get |f (0)| given the integral condition,
where (by locality) we may if necessary integrate instead over a fixed
neighborhood of 0. By polar coordinates,

1 = ‖f ‖2mQ =

∫ +∞

0

∫ π

−π
|f (reiθ)|2e−2mQr (eiθ)dθ rdr ,

where we write for convenience Qr (eiθ) := Q(reiθ).



The missing link II

To convert this into an estimate of |f (0)|, we write Q̃r for the harmonic
extension of Qr to the interior disk D. The function

ζ 7→ |f (rζ)|2e−2mQ̃r (ζ)

is logarithmically subharmonic, hence subharmonic, so that by the
sub-mean value property

|f (0)|2e−2mQ̃r (0) ≤
∫ π

−π
|f (reiθ)|2e−2mQr (eiθ) dθ

2π
.

Integrating with respect to r as well we obtain

|f (0)|2
∫ +∞

0
e−2mQ̃r (0)rdr ≤

∫ +∞

0

∫ π

−π
|f (reiθ)|2e−2mQr (eiθ) dθ

2π
rdr =

1
2π
,

and hence
|f (0)|2 ≤ (2π)−1∫ +∞

0 e−2mQ̃r (0)rdr
.



The missing link III

This estimate is rather crude but still is in the right ballpark. It is
possible to show that

Q̃r (0) ∼ Q(0) + a1r
2∆Q(0) + a2r

4∆2Q(0) + · · ·

for some coefficients a1, a2, . . ., which in its turn shows that our estimate
obtains the first term in the expansion of Km(0, 0). To do better, we
introduce a local conformal mapping γ with γ(0) = 0 and replace Q by
Q ◦ γ in the above argument. This is a surprisingly good idea, and it
permits us to recover the next few terms in the expansion. However, to
recover all terms we need to do even better. But what? We just need γ
to be such that the restriction to a circle |z | = r is the restriction of a
conformal mapping γ̃r which fixes the origin, γ̃r (0) = 0. So, γ need not
be conformal itself, it suffices to glue it together from a continuous
family of conformal mappings.
This was first worked out with Shimorin and later with Gaunard [GHS]. It
is hoped that we may conclude this line of investigation with the
assistance of Wennman.
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