

Computational Game Theory

Lecture 10

P2/2025

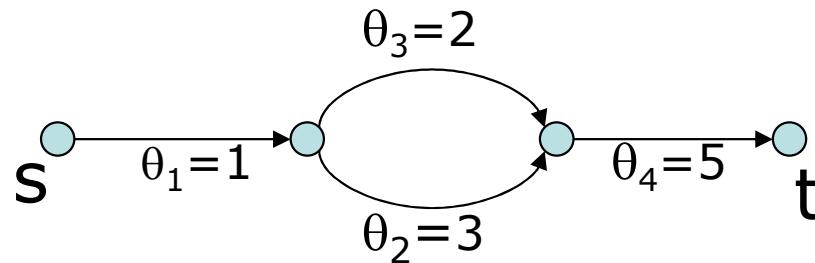
György Dán

Division of Network and Systems Engineering

Implementation theory Mechanism design

- Game theory
 - Set of players N
 - Preferences over outcomes
 - Strategic: Action profile a
 - Extensive: Terminal histories z
 - What is a reasonable solution?
 - Equilibrium concepts
- Implementation theory - Mechanism design
 - Set of players N
 - Preference profiles over outcomes
 - Partially unknown
 - Create rules of a game
 - Solution should lead to specific outcome

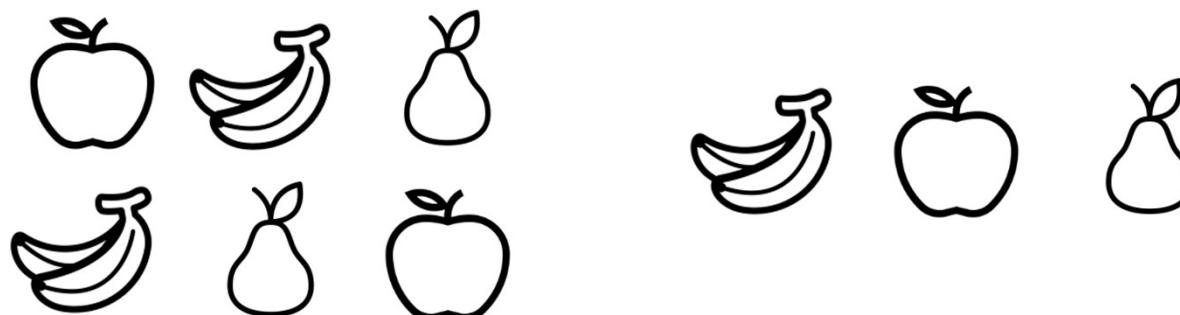
Example: Shortest path



- Communication network digraph
 - Two special nodes: s and t
- Find least cost path from s to t
 - Based on costs reported by the players
 - Edges report their cost θ_i
- How would you find the shortest path?
 - Will players report their real costs?

Detour: Social Choice Theory

- Input
 - Set of individual preferences
- Output
 - Single preference relation
 - Aggregate preference of the “society”
- Is aggregation of individual preferences possible?
 - Formal model
 - Possibility/impossibility results



Example: Voting

- Set of players $N=\{1,2,3\}$
- Set of candidates $A=\{a,b,c\}$
- Preference profiles of the players
 - $a \succ_1 b \succ_1 c$
 - $c \succ_2 a \succ_2 b$
 - $b \succ_3 c \succ_3 a$
- We would like to have the following outcomes
 - a, b, c
 - c
- Is there a mechanism that would lead to this outcome?
 - Majority voting
 - Other examples
 - Borda count voting
 - Assign points to every candidate based on individual preferences
 - Range voting
 - Assign score to every candidate from a range
 - Approval voting
 - Range voting on $\{0,1\}$

Example: Condorcet's paradox and Strategic voting

- Set of players $N=\{1,2,3\}$
- Set of candidates $A=\{a,b,c\}$
- Majority voting to select winner
- Condorcet paradox: Non-cyclic individual preferences may lead to cyclic societal preferences

$$\begin{array}{l} a \succ_1 b \succ_1 c \\ c \succ_2 a \succ_2 b \\ b \succ_3 c \succ_3 a \end{array} \qquad \qquad a \succ b \succ c \succ a$$

- Strategic voting

$$c \succ_3 a \quad \longrightarrow \quad c \succ a \succ b$$

- Can we design a scheme that would avoid strategic voting?

Aggregation of Preferences

- Set of players N , $|N|=n$
- Set of consequences C
- Set L of total orderings on C
- Preference relation $\succ_i \in L$ for every player i
 - Set of preference profiles $P=L^n$
- Welfare function $F:P \rightarrow L$
 - Aggregation of preference relations
- Social choice function $f:P \rightarrow C$
 - Aggregation into a single choice
- Social choice rule $f:P \rightarrow 2^C$
 - Aggregation into a set of choices

Example: Borda Count Voting

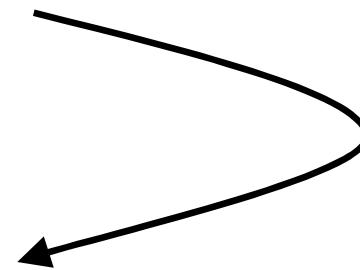
- Set of players $N=\{1,2,3,4,5\}$
- Set of alternatives $C=\{A,B,C,D,E\}$
- Preference relations

$$\begin{aligned} A >_i B >_i C >_i D >_i E & \quad i = 1,2,3 \\ C >_i D >_i E >_i B >_i A & \quad i = 4 \\ E >_i C >_i D >_i B >_i A & \quad i = 5 \end{aligned}$$

- Borda count voting results
 - $A=17, B=16, C=18, D=13, E=10$
 - Winner: C
- Social welfare function
$$F(.) = C > A > B > D > E$$
- Social choice rule
$$f(.) = C$$

Welfare function properties

- Unanimity
$$a \succ_i b \quad \forall i \Rightarrow a \succ b \quad \text{for } \succ = F(\succ_1, \dots, \succ_n)$$
 - Case of complete agreement
- Non-imposition (citizen sovereignty)
$$\neg \exists a, b \quad a \succ b \quad \forall \succ_1, \dots, \succ_n \in L$$
 - Every ordering can be achieved
 - consequence of unanimity
- Dictatorial
 - Player i is a dictator in F if
$$F(\succ_1, \dots, \succ_n) = \succ_i \quad \forall \succ_1, \dots, \succ_n \in L$$
 - The aggregate always reflects i 's preferences
 - Welfare function F is dictatorial if $\exists i$ dictator



More properties

- Monotonicity
 - If a is promoted by at least one player then a should not be worse off in the aggregate ordering
- Independence of irrelevant alternatives
$$a \succ_i b \Leftrightarrow a \succ'_i b \Rightarrow a \succ b \Leftrightarrow a \succ' b$$
$$\succ = F(\succ_1, \dots, \succ_n)$$
$$\succ' = F(\succ'_1, \dots, \succ'_n)$$
$$\succ_1, \dots, \succ_n, \succ'_1, \dots, \succ'_n \in L$$
 - Preference between a and b should not depend on
 - The preferences w.r.t. third alternatives
 - The existence of third alternatives

Example: Borda Count Voting

- $N=\{1,2,3,4,5\}$, $C=\{A,B,C,D,E\}$
- Preference relations

$$\begin{aligned} A &\succ_i B \succ_i C \succ_i D \succ_i E \quad i=1,2,3 \\ C &\succ_i D \succ_i E \succ_i B \succ_i A \quad i=4 \\ E &\succ_i C \succ_i D \succ_i B \succ_i A \quad i=5 \end{aligned}$$

- Borda count voting results
 - $A=17, B=16, C=18, D=13, E=10$
 - Winner: C

$$\begin{aligned} F(.) &= C \succ A \succ B \succ D \succ E \\ f(.) &= C \end{aligned}$$

- New preference relations

$$\begin{aligned} A &\succ_i B \succ_i C \succ_i D \succ_i E \quad i=1,2,3 \\ C &\succ_i B \succ_i E \succ_i D \succ_i A \quad i=4 \\ E &\succ_i C \succ_i B \succ_i D \succ_i A \quad i=5 \end{aligned}$$

- Borda count voting results
 - $A=17, B=19, C=18, D=10, E=11$
 - Winner: B

$$\begin{aligned} F(.) &= B \succ C \succ A \succ E \succ D \\ f(.) &= B \end{aligned}$$

- Unanimous, non-dictatorial, monotonic, *non-IIA*

Arrow's impossibility theorem

- For a welfare function over a set of more than two outcomes ($|C| \geq 3$) the three conditions
 - unanimity
 - independence of irrelevant alternatives
 - non-dictatorshipare inconsistent.
(assuming that all preference relations are allowed)
- Relax some conditions
 - Limit the set of preference relations
 - Single peaked in one dimension – distance from most preferred (Majority rule)
 - Quasi-transitive welfare function
 - Example: $100\text{sek} \sim 101\text{sek}$, $101\text{sek} \sim 102\text{sek}$, etc but $100\text{sek} < 200\text{sek}$
 - Majority rule satisfies the rest

Implementation Problem

- Set of players N , $|N|=n$
- Set of consequences C
- Set L of total orderings on C
- Preference relations $\succ_i \in L$ for every player i
 - Set of preference profiles $P=L^n$
- Set Γ of game forms $G=<N,(A_i),g>$ with consequences in C
 - Set of players N
 - Sets of actions A_i
 - Outcome function $g:A \rightarrow C$
- Choice function $f:P \rightarrow C$
 - Aggregation into a single choice
- Choice rule $f:P \rightarrow 2^C$
 - Aggregation into a set of choices

Environment (N, C, P, Γ)

Example: Divorce

- Set of players $N=\{\text{Husband}, \text{Wife}\}$
- Set of outcomes $C=\{\text{Divorce}, \text{No divorce}\}$
- Preference relations $\succ_i \in L = \{\text{Divorce} \succ \text{No divorce}, \text{No divorce} \succ \text{Divorce}\}$
- Choice function $f: L^2 \rightarrow C$
- Sets of actions $A_i = \{\text{Go to court}, \text{Not go to court}\}$
- Outcome function $g: A \rightarrow C$

	GC	NGC
GC	ND	ND
NGC	ND	ND

Vatican mechanism

	GC	NGC
GC	D	D
NGC	ND	ND

Dictatorial

	GC	NGC
GC	D	ND
NGC	ND	ND

Veto

	GC	NGC
GC	D	ND
NGC	D	ND

Dictatorial

N. Baigent,
"Mechanism Design:
A quick tour"

Implementation Problem

- Planner is given
 - Environment (N, C, P, Γ)
 - Choice rule $f: P \rightarrow 2^C$
 - Solution concept $S: \Gamma \times P \rightarrow A$
- Choose a game form $G \in \Gamma$ that (fully) **S-implements** f
 - $g(S(G, \succ)) = f(\succ) \quad \forall \succ \in P$
 - Outcome of G coincides with choice rule for all preference profiles
- Choose a game form $G \in \Gamma$ that **truthfully S-implements** f
 - $G = \langle N, (A_i), g \rangle$ with $A_i \subseteq P$
 - and for every $\succ \in P$
 - Reporting the true preference is a solution of the game
 - $a^* \in S(G, \succ)$, where $a_i^* = \succ, \forall i \in N$
 - The outcome corresponding to truthful reporting is in $f(\succ)$
 $g(a^*) \in f(\succ)$
 - G is called incentive compatible
- Note the difference between the two definitions
 - There might be non-truthful solutions that do not implement f
 - Not every outcome in the choice rule corresponds to a solution

Example: Divorce

- Set of players $N=\{\text{Husband}, \text{Wife}\}$
- Set of outcomes $C=\{\text{Divorce}, \text{No divorce}\}$
- Preference relations $\succ_i \in L = \{\text{Divorce} \succ \text{No divorce}, \text{No divorce} \succ \text{Divorce}\}$
- Choice function $f: L^2 \rightarrow C$
- Sets of actions $A_i = \{\text{Go to court}, \text{Not go to court}\}$
- Outcome function $g: A \rightarrow C$

	GC	NGC
GC	ND	ND
NGC	ND	ND

Vatican mechanism

	GC	NGC
GC	D	D
NGC	ND	ND

Dictatorial

	GC	NGC
GC	D	ND
NGC	ND	ND

Veto

	GC	NGC
GC	D	ND
NGC	D	ND

Dictatorial

N. Baigent,
"Mechanism Design:
A quick tour"

Implementation in Dominant Strategies

- Consider the strategic game $G = \langle N, (A_i), (\succ_i) \rangle$.
The profile $a^* \in A$ is a dominant strategy equilibrium if
$$(a_{-i}, a_i^*) \succ (a_{-i}, a_i) \quad \forall a \in A, i \in N$$
 - Best response to every collection of actions of the other players
- Revelation principle for DSE-implementation
 - Let $\langle N, C, P, \Gamma \rangle$ be an environment in which Γ is the set of strategic game forms.
If a choice rule $f: P \rightarrow 2^C$ is DSE implementable then
 - f is truthfully DSE-implementable
 - there is a strategic game form $G^* = \langle N, (A_i), g^* \rangle$ in which A_i is the set of all preference relations (instead of profiles) s.t. $\forall \succ \in P$ the action profile \succ is a dominant strategy equilibrium of the strategic game $\langle G^*, \succ \rangle$ and $g^*(\succ) \in f(\succ)$
 - Truthful DSE implementation is called *strategyproof*
 - Incentive compatible in dominant strategies
 - Not the same as group-strategyproof (collusion)

Example: Divorce

- Set of players: $N=\{\text{Husband, Wife}\}$
- Sets of actions: $A_i=\{\text{Go to court, Not go to court}\}$
- Set of outcomes: $C=\{\text{Divorce, No divorce}\}$
- Outcome function: $g: A \rightarrow C$

	GC	NGC
GC	D	ND
NGC	ND	ND

Veto

- Choice rule: Divorce if both prefer it

Is this a DSE implementation?
Is this a truthful DSE-implementation?

Gibbard-Satterthwaite theorem

- Let $\langle N, C, P, \Gamma \rangle$ be an environment with
 - At least three alternatives $|C| \geq 3$
 - P is the set of all possible preference profiles $P = L^n$
 - Γ is the set of strategic game forms.

Let $f: P \rightarrow C$ be a choice function that is DSE implementable and

$$\forall a \in C \quad \exists \succ \in P \quad s.t. \quad f(\succ) = a$$

then f is dictatorial.

- Proof based on
 - Arrow's impossibility theorem and
 - Revelation principle for DSE implementation
- Get around it
 - Limit the set of preference relations

M.A. Satterthwaite, "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions", Journal of Economic Theory 10(2), pp. 187-217, 1975

Example: Solomon's dilemma

- Two players $N=\{A,B\}$ (and a baby to be allocated)
- Set of consequences: $C=\{a,b,c\}$ (Give to A , Give to B , Cut)
- Preference relations
 - $a \succ_A^\alpha b \succ_A^\alpha c \quad b \succ_B^\alpha c \succ_B^\alpha a$
 - $a \succ_A^\beta c \succ_A^\beta b \quad b \succ_B^\beta a \succ_B^\beta c$
- Choice function
 - $f(\succ^\alpha) = a \quad f(\succ^\beta) = b$
- Question: Is the true mother A or B?
- Original mechanism
 - $A_i = \{t_\alpha, t_\beta\}$
 - $g(t_\alpha, t_\alpha) = a \quad g(t_\beta, t_\beta) = b \quad g(t_\alpha, t_\beta) = g(t_\beta, t_\alpha) = c$
- Modified mechanism
 - $g(t_\beta, t_\beta) = a$
- Not DSE implementable

Implementation with Money

- Every player has a type $\theta_i \in \Theta_i$
 - Could correspond to its preference relation
- Player i 's preferences described by a scalar $v_i(\theta, c) \quad \theta \in \Theta, c \in C$
- Planner is allowed to make transfers
 - Levy a fine m_i on player i
 - Subsidize player i by $-m_i$
- Utility of player i is quasi-linear
$$u_i(\theta, c) = v_i(\theta, c) - m_i$$

Example: Public project

- N players interested in a public project
 - Valuation of player i is θ_i
- Set of outcomes $C=\{0,1\}$
- Utility of player i is quasi-linear
$$u_i(\theta_i, c) = v_i(\theta_i, c) - m_i$$
- Project should be implemented if $\sum_{i \in N} \theta_i \geq \gamma$

$$f(\theta) = \begin{cases} 0 & \sum_{i \in N} \theta_i < \gamma \\ 1 & \sum_{i \in N} \theta_i \geq \gamma \end{cases}$$

- Is there a mechanism that would truthfully DSE-implement $f(\theta)$?

Desiderata: Budget balance

- Planner should not subsidize the players
 - $r(\Theta) = \text{cost of implementing } c, \text{ given } \Theta$ (e.g., $r(\Theta)=0$)
- Ex-ante budget balance
 - Expected payments cover costs
$$E_{\theta \in \Theta} \left[\sum_{i \in N} m_i(\theta) \right] = E_{\theta \in \Theta} [r(\theta)]$$
- Ex-post budget balance
 - Actual payments cover costs
$$\sum_{i \in N} m_i(\theta) = r(\theta)$$
- Weak budget-balance
 - No net payments from the planner to the players

Desiderata: Individual rationality

- Participants are allowed not to participate
 - Obtain expected utility $\tilde{u}_i(\theta_i)$ when not participating
- Ex-ante individual rationality
$$E_{\theta \in \Theta} [u_i(f(\theta), \theta_i)] \geq E_{\theta_i \in \Theta_i} \tilde{u}_i(\theta_i)$$
 - Expected externality mechanism
- Interim individual rationality
$$E_{\theta_{-i} \in \Theta_{-i}} [u_i(f(\theta_{-i}, \theta_i), \theta_i)] \geq \tilde{u}_i(\theta_i)$$
 - Groves mechanism
- Ex-post individual rationality
$$u_i(f(\theta), \theta_i) \geq \tilde{u}_i(\theta_i)$$

Example: Public project

- N players interested in a public project
 - Valuation of player i is θ_i
- Set of outcomes $C=\{0,1\}$
- Utility of player i is quasi-linear
$$u_i(\theta_i, c) = v_i(\theta_i, c) - m_i$$
- Project should be implemented if $\sum_{i \in N} \theta_i \geq \gamma$

$$f(\theta) = \begin{cases} 0 & \sum_{i \in N} \theta_i < \gamma \\ 1 & \sum_{i \in N} \theta_i \geq \gamma \end{cases}$$

- Is there a mechanism that would truthfully DSE-implement $f(\theta)$?

Groves Mechanism

- Set of players: N
 - Player i has type θ_i
- Set of outcomes: $\{(c, m) : c \in C, m \in R^n\}$
- Players' utilities: $u_i(\theta, c) = v_i(\theta, c) - m_i$
- Choice rule (maximizes social welfare):
$$f(\Theta_1, \dots, \Theta_n) \in \arg \max_{c \in C} \sum_{i \in N} v_i(\Theta_i, c)$$
- Groves mechanism
 - Set of actions $a_i \in R$
 - Choose optimal consequence based on players' actions
$$c^* = \arg \max_{c \in C} \sum_{i \in N} v_i(a_i, c)$$
 - Require payment from player i
$$m_i(a) = h_i(a_{-i}) - \sum_{j \neq i} v_j(a_j, c^*)$$

Groves Mechanism

- The Groves mechanism is truthful
 - Player i tries to maximize
$$u_i(a_i) = v_i(a_i, c^*) + \sum_{j \neq i} v_j(a_j, c^*) - h_i(a_{-i})$$
 - Last term is independent of a_i , so equivalently
$$u_i(a_i) = v_i(a_i, c^*) + \sum_{j \neq i} v_j(a_j, c^*) = \sum_{j \in N} v_j(a_j, c^*)$$
 - But c^* is a maximizer only if $a_i = \theta_i$
 - Truthfulness is independent of $h_i(a_{-i})$
 - but $h_i(a_{-i})$ influences the amount of payments
- Gibbard-Satterthwaite theorem?
 - Utility functions are quasi-linear

Clarke pivot rule

- Clarke pivot rule
$$h_i(a_{-i}) = \max_{c \in C} \sum_{j \neq i} v_j(a_j, c)$$
 - as if player i did not exist
- The Groves mechanism with Clark pivot payments is weakly budget balanced (makes no positive transfers)

$$m_i(\theta) = h_i(a_{-i}) - \sum_{j \neq i} v_j(\theta_j, c^*) = \max_{b \in C} \sum_{j \neq i} v_j(a_j, b) - \sum_{j \neq i} v_j(\theta_j, c^*) \geq 0$$

- The Groves mechanism with Clark pivot payments is interim individually rational if $v_i(c) \geq 0 \quad \forall c \in C, i \in N$

$$v_i(c) - m_i(a) = v_i(c) + \sum_{j \neq i} v_j(c) - \sum_{j \neq i} v_j(b) = \sum_{j \in N} v_j(c) - \sum_{j \in N} v_j(b) \geq \sum_{j \in N} v_j(c) - \sum_{j \in N} v_j(b) \geq 0$$

Example: Public project

Vickrey-Clarke-Groves mechanism

- Introduce player $n+1$ “government” with
 - Cost γ if the project is undertaken
- Each player reports its valuation a_i
- The project is undertaken iff $\sum_{i \in N} a_i \geq \gamma \Rightarrow x(a) = 1$
- Payments made by the players

$$m_i(a) = h_i(a_{-i}) + x(a) \left(\gamma - \sum_{j \in N \setminus \{i\}} a_j \right)$$

$$h_i(a_{-i}) = \max_{c \in C} \left[x(a_{-i}) \left(\sum_{j \in N \setminus \{i\}} v_j(a_j, c) - \gamma \right) \right]$$

- Example:
 - Two players: $\theta_1=1, \gamma=2$
 $m_1((1,1)) = 0 + 1 * 1 = 1$
 - Three players: $\theta_1, \theta_2=0.9, \theta_3=0.5, \gamma=1.5$
 $m_1(0.9, 0.9, 0.5) = 0 + 1 * 0.1 = 0.1$

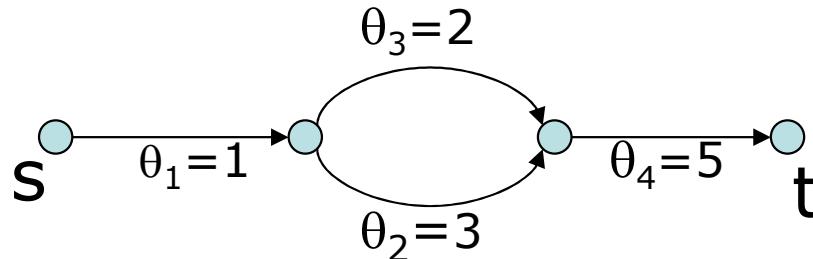
$$m_2((1,1)) = 0 + 1 * 1 = 1$$
$$m_3(0.9, 0.9, 0.5) = 0.3 + 1 * (-0.3) = 0$$

Pivotal players pay, not budget balanced

Example: Shortest path

- Communication network digraph
 - Edges are players with cost θ_i
- Two special nodes: s and t
- Find cheapest path from s to t based on costs reported by the players
- Set of players: N (edges of the graph)
- Set of outcomes: C (all (s,t) paths in the graph)
 - value of player i is 0 if not on path, $-\theta_i$ if on path
- Design a game to find the shortest path
 - Will players report their real costs?
 - Payments are allowed

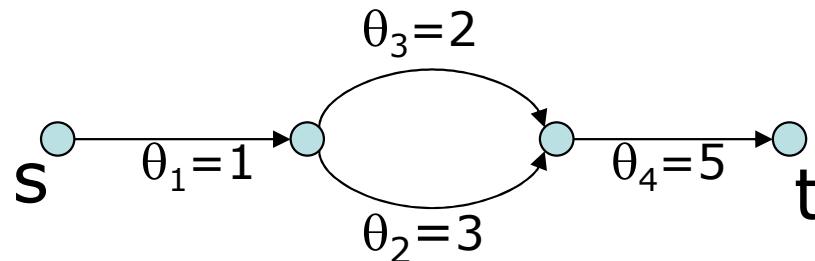
Example: Shortest path



- Shortest path (1,3,4) and $d(s,t)=8$
- Clarke-Groves mechanism
 - Each edge reports cost: a_i
 - Calculate cheapest path for reported costs: a
 - Payment given to player i
 - $m_i=0$ if i is not on the shortest path
 - $m_i = d(s,t)|_{a_i=\infty} - d(s,t)|_{a_i=0}$ if i is on the shortest path
 - Utility of player i
 - $u_i=0$ if i is not on the shortest path
 - $u_i=m_i - \theta_i$ if i is on the shortest path
- Transfers made by planner

$$m_3 = \theta_2 = 3 \Rightarrow u_3 = \theta_2 - \theta_3 = 1 \quad u_2 = 0 \quad \text{Not budget balanced}$$

Example: Shortest path



- Assume link i ($i=2,3$) reports a'_i instead of θ_i
 - If shortest path is unchanged then irrelevant
 - If link i was not on shortest path, but now it is ($a'_i < \theta_i$)
$$u_i(a_{-i}, \theta_i) = 0 \quad u_i(a_{-i}, a'_i) = a_{-i} - \theta_i < 0$$
 - If link i was on shortest path, but now it is not ($a'_i > \theta_i$)
$$u_i(a_{-i}, \theta_i) = a_{-i} - \theta_i > 0 \quad u_i(a_{-i}, a'_i) = 0$$

Strategyproof

Nash Implementation

- Consider Nash equilibrium solutions of the game
- Revelation principle for Nash implementation
 - Let $\langle N, C, P, \Gamma \rangle$ be an environment in which Γ is the set of strategic game forms. If a choice rule $f: P \rightarrow 2^C$ is Nash-implementable then it is truthfully Nash-implementable.
- Note:
 - Players' actions are preference profiles

Example: Divorce

- Set of players: $N=\{\text{Husband, Wife}\}$
- Sets of actions: $A_i=\{\text{Go to court, Not go to court}\}$
- Set of outcomes: $C=\{\text{Divorce, No divorce}\}$
- Outcome function: $g: A \rightarrow C$

	GC	NGC
GC	D	ND
NGC	ND	ND

Veto

- Choice rule: Divorce if both prefer it

Is this a Nash-implementation?
Is this a truthful Nash-implementation?

Properties of choice rules

- A choice rule $f:P \rightarrow C$ is monotonic if whenever $c \in f(\succ)$ and $c \notin f(\succ')$ $\Rightarrow \exists i \in N, b \in C \quad c \succ_i b$ and $b \succ'_i c$
 - Outcome degrades if it degrades for at least one player
 - Examples
 - Weakly Pareto efficient outcomes
 - Outcomes top ranked by at least one player
- A choice rule $f:P \rightarrow C$ has no veto power if $c \in f(\succ)$ whenever for at least $|N|-1$ players $c \succ_i y \quad \forall y \in C$

Nash-implementability

- Let $\langle N, C, P, \Gamma \rangle$ be an environment in which Γ is the set of strategic game forms
 - If a choice rule is Nash-implementable then it is monotonic
 - If $|N| \geq 3$ then any choice rule that is monotonic and has no veto power is Nash-implementable
- Gibbard-Satterthwite still applies
 - Choice rule (*instead of function*)
 - Limited domain (preference profiles)

E. Maskin, "The theory of implementation in Nash equilibrium: a survey," in Social Goals and Social Organizations, Cambridge Univ. Press, pp. 173–204., 1985

E. Muller, M.A. Satterthwite, " The equivalence of strong positive association and strategy-proofness", Journal of Economic Theory 14(2), pp. 412-418, 1977

Example: Solomon's dilemma

- Two players $N=\{A,B\}$ (and a baby to be allocated)
- Set of consequences: $C=\{a,b,c\}$ (Give to A , Give to B , Cut)
- Preference relations
 - $a \succ_A^\alpha b \succ_A^\alpha c \quad b \succ_B^\alpha c \succ_B^\alpha a$
 - $a \succ_A^\beta c \succ_A^\beta b \quad b \succ_B^\beta a \succ_B^\beta c$
- Choice function
 - $f(\succ^\alpha) = a \quad f(\succ^\beta) = b$
- Question: Is the true mother A or B?
- Original mechanism
 - $A_i = \{t_\alpha, t_\beta\}$
 - $g(t_\alpha, t_\alpha) = a \quad g(t_\beta, t_\beta) = b \quad g(t_\alpha, t_\beta) = g(t_\beta, t_\alpha) = c$
- Is it Nash-implementable?
 - Truthfully-Nash implementable?

Not monotonic for "b"...

Example: Solomon's dilemma v2

- Two players $N=\{1,2\}$ (and an object to be allocated)
- Set of consequences: $C=\{(x, m_1, m_2) : x \in \{0,1,2\}, m_i \in R\}$
 - $x=0$ nobody gets it
 - m_i fine paid by player i
- Quasi-linear preferences (H: true owner, L: false owner)

$$u_i(H) = v_H - m_i \quad u_i(L) = v_L - m_i \quad v_H > v_L$$
- Choice function (superscript: legitimate owner)

$$f(\succ^1) = (1,0,0) \quad f(\succ^2) = (2,0,0)$$
- Nash-implementation
 - $M = (v_H + v_L)/2$
 - $\varepsilon > 0$

Assume player 1 is true owner!
What are the NE?

	Mine	Hers	Mine+
Mine	$(0, \varepsilon, \varepsilon)$	$(1, 0, 0)$	$(2, \varepsilon, M)$
His	$(2, 0, 0)$	$(0, \varepsilon, \varepsilon)$	$(0, 0, 0)$
Mine+	$(1, M, \varepsilon)$	$(0, 0, 0)$	$(0, 2\varepsilon, 2\varepsilon)$

Randomized mechanisms

- Randomized mechanism is a distribution over deterministic mechanisms
 - It is the planner that randomizes
- Incentive compatible randomized mechanism
 - Universal sense
 - Each mechanism is incentive compatible
 - Expectation
 - Truth is a dominant strategy in expectation

N. Nisan, A. Ronen, "Algorithmic Mechanism Design", Games and Economic Behavior vol. 35, pp. 166-196, 2001

Topics not covered

- Bayesian-Nash Implementation
 - Revelation principle
 - Expected externality mechanism (dAGVA)
- Subgame Perfect Implementation
 - Extensive games
- Practical implementability of mechanisms
 - Algorithmic complexity
- Distributed mechanisms

Literature

- M.Osborne, A Rubinstein, "A course in game theory", MIT press, 1994
- D. Fudenberg, J. Tirole, "Game Theory", MIT press, 1991
- N. Baigent, "Mechanism Design: A quick tour"
- M.A. Satterthwite, "Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions", *Journal of Economic Theory* 10(2), pp. 187-217, 1975
- E. Maskin, "The theory of implementation in Nash equilibrium: a survey," in *Social Goals and Social Organizations*, Cambridge Univ. Press, pp. 173-204.,1985
- E. Muller, M.A. Satterthwite, " The equivalence of strong positive association and strategy-proofness", *Journal of Economic Theory* 14(2), pp. 412-418, 1977
- A. Cabrales, A. Calvó-Armengol and M. O. Jackson, "La Crema: A Case Study of Mutual Fire Insurance," *Journal of Political Economy* 111, pp. 425-458, 2003
- N. Nisan, A. Ronen, "Algorithmic Mechanism Design", *Games and Economic Behavior* vol. 35, pp. 166-196, 2001
- P. Dasgupta, P. Hammond, E. Maskin, "The Implementation of Social Choice Rules: Some General Results on Incentive Compatibility", *The Review of Economic Studies* 46(2), pp. 185-216, 1979
- C. d'Aspremont, L-A. Gérard-Varet, "Incentives and incomplete information", *Journal of Public Economics* 11(1), pp. 25-45, 1979
- K. Arrow, "The property rights doctrine and demand revelation under incomplete information", *Economies and Human Welfare*, Academic Press, 1979

