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Implementation theory
Mechanism design
• Game theory

• Set of players N
• Preferences over outcomes

• Strategic: Action profile a
• Extensive: Terminal histories z

• What is a reasonable solution?
• Equilibrium concepts

• Implementation theory - Mechanism design
• Set of players N
• Preference profiles over outcomes

• Partially unknown

• Create rules of a game
• Solution should lead to specific outcome
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Example: Shortest path

• Communication network digraph
• Two special nodes: s and t

• Find least cost path from s to t
• Based on costs reported by the players
• Edges report their costi

• How would you find the shortest path?
• Will players report their real costs?

1=1 4=5
2=3

3=2

s t
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Detour: Social Choice Theory

• Input
• Set of individual preferences

• Output
• Single preference relation
• Aggregate preference of the “society”

• Is aggregation of individual preferences possible?
• Formal model
• Possibility/impossibility results
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Example: Voting

• Set of players N={1,2,3}
• Set of candidates A={a,b,c}
• Preference profiles of the players

• We would like to have the following outcomes

• Is there a mechanism that would lead to this outcome?
• Majority voting
• Other examples

• Borda count voting
– Assign points to every candidate based on individual preferences

• Range voting
– Assign score to every candidate from a range

• Approval voting
– Range voting on {0,1}
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Example: Condorcet’s paradox 
and Strategic voting
• Set of players N={1,2,3}
• Set of candidates A={a,b,c}
• Majority voting to select winner
• Condorcet paradox: Non-cyclic individual preferences 

may lead to cyclic societal preferences

• Strategic voting

• Can we design a scheme that would avoid strategic 
voting?
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Aggregation of Preferences 

• Set of players N, |N|=n
• Set of consequences C
• Set L of total orderings on C
• Preference relation           for every player i

• Set of preference profiles P=Ln

• Welfare function F:PL
• Aggregation of preference relations

• Social choice function f:PC
• Aggregation into a single choice

• Social choice rule f:P2C

• Aggregation into a set of choices

Li
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Example: Borda Count Voting

• Set of players N={1,2,3,4,5}
• Set of alternatives C={A,B,C,D,E}
• Preference relations

• Borda count voting results
• A=17, B=16, C=18, D=13, E=10
• Winner: C

• Social welfare function

• Social choice rule
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Welfare function properties

• Unanimity

• Case of complete agreement

• Non-imposition (citizen sovereignty)

• Every ordering can be achieved
• consequence of unanimity

• Dictatorial
• Player i is a dictator in F if

• The aggregate always reflects i’s preferences
• Welfare function F is dictatorial if  i dictator

),,(for 1 ni Fbaiba  

LF nin   ,,),,( 11

Lbaba n  ,,, 1



Computational Game Theory – P2/2025 György Dán, https://people.kth.se/~gyuri

More properties

• Monotonicity
• If a is promoted by at least one player then 

a should not be worse off in the aggregate ordering

• Independence of irrelevant alternatives

• Preference between a and b should not depend on 
• The preferences w.r.t. third alternatives
• The existence of third alternatives
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Example: Borda Count Voting
• N={1,2,3,4,5}, C={A,B,C,D,E}
• Preference relations

• Borda count voting results
• A=17, B=16, C=18, D=13, E=10
• Winner: C

• New preference relations

• Borda count voting results
• A=17, B=19, C=18, D=10, E=11
• Winner: B

• Unanimous, non-dictatorial, monotonic, non-IIA
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Arrow’s impossibility theorem

• For a welfare function over a set of more than two outcomes 
(|C|3) the three conditions
• unanimity
• independence of irrelevant alternatives 
• non-dictatorship

are inconsistent.
(assuming that all preference relations are allowed)

• Relax some conditions
• Limit the set of preference relations 

• Single peaked in one dimension – distance from most preferred 
(Majority rule)

• Quasi-transitive welfare function
• Example: 100sek ~ 101sek, 101sek~102sek, etc but 100sek<200sek
• Majority rule satisfies the rest
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Implementation Problem 

• Set of players N, |N|=n
• Set of consequences C
• Set L of total orderings on C

• Preference relations           for every player i
• Set of preference profiles P=Ln

• Set  of game forms G=<N,(Ai),g> with consequences in C
• Set of players N
• Sets of actions Ai

• Outcome function g:AC

• Choice function f:PC
• Aggregation into a single choice

• Choice rule f:P2C

• Aggregation into a set of choices
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Example: Divorce
• Set of players N={Husband,Wife}
• Set of outcomes C={Divorce, No divorce}
• Preference relations
• Choice function f:L2C
• Sets of actions Ai={Go to court, Not go to court}
• Outcome function g: AC
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N. Baigent, 
“Mechanism Design: 
A quick tour” 
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Implementation Problem
• Planner is given 

• Environment (N,C,P,)
• Choice rule f:P2C

• Solution concept S: PA

• Choose a game form G that (fully) S-implements f

• Outcome of G coincides with choice rule for all preference profiles

• Choose a game form G that truthfully S-implements f
• G=<N,(Ai),g> with AiP
• and for every 

• Reporting the true preference is a solution of the game

• The outcome corresponding to truthful reporting is in

• G is called incentive compatible

• Note the difference between the two definitions
• There might be non-truthful solutions that do not implement f
• Not every outcome in the choice rule corresponds to a solution
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Example: Divorce
• Set of players N={Husband,Wife}
• Set of outcomes C={Divorce, No divorce}
• Preference relations
• Choice function f:L2C
• Sets of actions Ai={Go to court, Not go to court}
• Outcome function g: AC
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Implementation in Dominant Strategies

• Consider the strategic game G=<N,(Ai),(     )>.
The profile a*A is a dominant strategy equilibrium if

• Best response to every collection of actions of the other players

• Revelation principle for DSE-implementation
• Let <N,C,P,> be an environment in which  is the set of 

strategic game forms. 
If a choice rule f:P2C is DSE implementable then

• f is truthfully DSE-implementable
• there is a strategic game form G*=<N,(Ai),g*> in which Ai is the set of 

all preference relations (instead of profiles) s.t.  the action 
profile      is a dominant strategy equilibrium of the strategic game  

and 

• Truthful DSE implementation is called strategyproof
• Incentive compatible in dominant strategies
• Not the same as group-strategyproof (collusion)

NiAaaaaa iiii  ,),(),( * 

P 


 ,*G )()(*  fg 

i



Computational Game Theory – P2/2025 György Dán, https://people.kth.se/~gyuri

Example: Divorce

• Set of players: N={Husband,Wife}
• Sets of actions: Ai={Go to court, Not go to court}
• Set of outcomes: C={Divorce, No divorce}
• Outcome function: g: AC

• Choice rule: Divorce if both prefer it

NGCGC

NDDGC

NDNDNGC

Veto

Is this a DSE implementation?
Is this a truthful DSE-implementation?
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Gibbard-Satterthwaite theorem

• Let <N,C,P,> be an environment with 
• At least three alternatives |C|3
• P is the set of all possible preference profiles P=Ln

•  is the set of strategic game forms.
Let f:PC be a choice function that is DSE implementable and

then f is dictatorial.

• Proof based on 
• Arrow’s impossibility theorem and 
• Revelation principle for DSE implementation

• Get around it
• Limit the set of preference relations

aftsPCa  )(.. 

M.A. Satterthwite, “Strategy-proofness and Arrow's conditions: Existence 
and correspondence theorems for voting procedures and social welfare 
functions”, Journal of Economic Theory 10(2), pp. 187-217, 1975 



Computational Game Theory – P2/2025 György Dán, https://people.kth.se/~gyuri

Example: Solomon’s dilemma

• Two players N={A,B} (and a baby to be allocated)
• Set of consequences: C={a,b,c} (Give to A,Give to B,Cut)
• Preference relations

• Choice function

• Question: Is the true mother A or B?
• Original mechanism

• Ai={t,t}

• Modified mechanism

• Not DSE implementable
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Implementation with Money

• Every player has a type

• Could correspond to its preference relation

• Player i’s preferences described by a scalar

• Planner is allowed to make transfers 
• Levy a fine mi on player i
• Subsidize player i by -mi

• Utility of player i is quasi-linear
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Example: Public project

• N players interested in a public project
• Valuation of player i is i

• Set of outcomes C={0,1}
• Utility of player i is quasi-linear

• Project should be implemented if

• Is there a mechanism that would truthfully 
DSE-implement f()?
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Desiderata: Budget balance

• Planner should not subsidize the players
• r()=cost of implementing c, given  (e.g., r()=0)

• Ex-ante budget balance
• Expected payments cover costs

• Ex-post budget balance
• Actual payments cover costs

• Weak budget-balance
• No net payments from the planner to the players

)()(  rm
Ni

i 


 )()(   rEmE
Ni

i 


 










Computational Game Theory – P2/2025 György Dán, https://people.kth.se/~gyuri

Desiderata: Individual rationality

• Participants are allowed not to participate
• Obtain expected utility          when not participating

• Ex-ante individual rationality

• Expected externality mechanism

• Interim individual rationality

• Groves mechanism

• Ex-post individual rationality
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Example: Public project

• N players interested in a public project
• Valuation of player i is i

• Set of outcomes C={0,1}
• Utility of player i is quasi-linear

• Project should be implemented if

• Is there a mechanism that would truthfully 
DSE-implement f()?
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Groves Mechanism

• Set of players: N
• Player i has type i

• Set of outcomes: {(c,m):cC,mRn}
• Players’ utilities: 
• Choice rule (maximizes social welfare):

• Groves mechanism
• Set of actions aiR
• Choose optimal consequence based on players’ actions

• Require payment from player i
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Groves Mechanism

• The Groves mechanism is truthful
• Player i tries to maximize

• Last term is independent of ai, so equivalently

• But c* is a maximizer only if ai=i

• Truthfulness is independent of hi(a-i)
• but hi(a-i) influences the amount of payments

• Gibbard-Satterthwaite theorem?
• Utility functions are quasi-linear
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Clarke pivot rule

• Clarke pivot rule

• as if player i did not exist

• The Groves mechanism with Clark pivot payments is 
weakly budget balanced (makes no positive transfers)

• The Groves mechanism with Clark pivot payments is 
interim individually rational if 
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Example: Public project
Vickrey-Clarke-Groves mechanism

• Introduce player n+1 “government” with
• Cost  if the project is undertaken 

• Each player reports its valuation ai

• The project is undertaken iff 

• Payments made by the players

• Example: 
• Two players: i=1, =2
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•Three players: 1,2=0.9,3=0.5,=1.5
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Pivotal players pay, not budget balanced
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Example: Shortest path

• Communication network digraph
• Edges are players with costi

• Two special nodes: s and t
• Find cheapest path from s to t based on costs reported 

by the players

• Set of players: N (edges of the graph)
• Set of outcomes: C (all (s,t) paths in the graph)

• value of player i is 0 if not on path, -i if on path

• Design a game to find the shortest path
• Will players report their real costs?
• Payments are allowed
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Example: Shortest path

• Shortest path (1,3,4) and d(s,t)=8

• Clarke-Groves mechanism
• Each edge reports cost: ai

• Calculate cheapest path for reported costs: a
• Payment given to player i

• mi=0 if i is not on the shortest path
• if i is on the shortest path

• Utility of player i
• ui=0 if i is not on the shortest path

• ui=mi- i if i is on the shortest path

• Transfers made by planner
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Example: Shortest path

• Assume link i (i=2,3) reports a’i instead of i

• If shortest path is unchanged then irrelevant
• If link i was not on shortest path, but now it is (a’i< i)

• If link i was on shortest path, but now it is not (a’i> i)
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Nash Implementation

• Consider Nash equilibrium solutions of the game 

• Revelation principle for Nash implementation
• Let <N,C,P,> be an environment in which  is the set of 

strategic game forms. If a choice rule f:P2C is Nash-
implementable then it is truthfully Nash-implementable.

• Note: 
• Players’ actions are preference profiles
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Example: Divorce

• Set of players: N={Husband,Wife}
• Sets of actions: Ai={Go to court, Not go to court}
• Set of outcomes: C={Divorce, No divorce}
• Outcome function: g: AC

• Choice rule: Divorce if both prefer it

NGCGC

NDDGC

NDNDNGC

Veto

Is this a Nash-implementation?
Is this a truthful Nash-implementation?
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Properties of choice rules

• A choice rule f:PC is monotonic if whenever

• Outcome degrades if it degrades for at least one player
• Examples 

• Weakly Pareto efficient outcomes
• Outcomes top ranked by at least one player

• A choice rule f:PC has no veto power if 
whenever for at least |N|-1 players
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Nash-implementability

• Let <N,C,P,> be an environment in which  is the set 
of strategic game forms

• If a choice rule is Nash-implementable then it is monotonic

• If |N|3 then any choice rule that is monotonic and has no 
veto power is Nash-implementable

• Gibbard-Satterthwite still applies
• Choice rule (instead of function)
• Limited domain (preference profiles)

E. Maskin, ”The theory of implementation in Nash equilibrium: a 
survey,” in Social Goals and Social Organizations, Cambridge Univ. 
Press, pp. 173–204.,1985
E. Muller, M.A. Satterthwite, ” The equivalence of strong positive 
association and strategy-proofness”, Journal of Economic Theory 
14(2), pp. 412-418, 1977
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Example: Solomon’s dilemma

• Two players N={A,B} (and a baby to be allocated)
• Set of consequences: C={a,b,c} (Give to A,Give to B,Cut)
• Preference relations

• Choice function

• Question: Is the true mother A or B?
• Original mechanism

• Ai={t,t}

• Is it Nash-implementable?
• Truthfully-Nash implementable?

acbcba BBAA
 

bfaf  )()(  

cabbca BBAA
 

cttgttgbttgattg  ),(),(),(),( 

Not monotonic for “b”…
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Example: Solomon’s dilemma v2

• Two players N={1,2} (and an object to be allocated)
• Set of consequences: C={(x,m1,m2):x{0,1,2},miR}

• x=0 nobody gets it
• mi fine paid by player i

• Quasi-linear preferences (H: true owner, L: false owner)

• Choice function (superscript: legitimate owner)

• Nash-implementation
• M=(vH+vL)/2
• >0

)0,0,2()()0,0,1()( 21   ff

LHiLiiHi vvmvLumvHu  )()(

Mine+HersMine

(2, ,M)(1,0,0)(0,, )Mine

(0,0,0)(0, , )(2,0,0)His

(0,2,2)(0,0,0)(1,M, )Mine+

Assume player 1 is true owner!
What are the NE?
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Randomized mechanisms

• Randomized mechanism is a distribution over 
deterministic mechanisms
• It is the planner that randomizes

• Incentive compatible randomized mechanism
• Universal sense

• Each mechanism is incentive compatible

• Expectation 
• Truth is a dominant strategy in expectation

N. Nisan, A. Ronen, “Algorithmic Mechanism Design”, Games and 
Economic Behavior vol. 35, pp. 166-196, 2001
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Topics not covered

• Bayesian-Nash Implementation
• Revelation principle
• Expected externality mechanism (dAGVA)

• Subgame Perfect Implementation
• Extensive games

• Practical implementability of mechanisms
• Algorithmic complexity

• Distributed mechanisms
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