

Computational Game Theory

Lecture 7

P2/2025

György Dán

Division of Network and Systems Engineering

Dynamic games

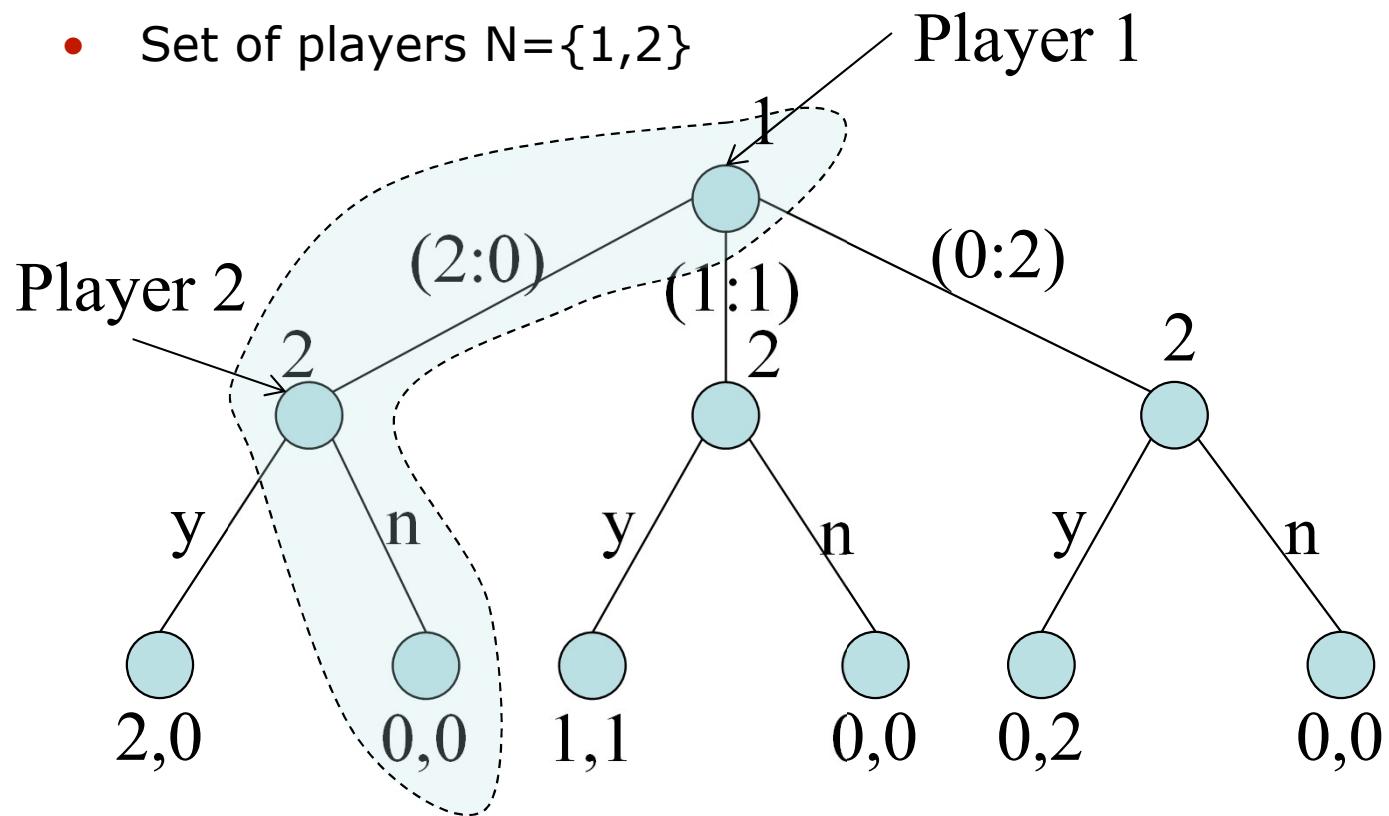
- Players make decisions at different points in time
- Extensive game
 - Players make decisions one by one (approx)
 - Can learn about the environment and others' choices
- Repeated game
 - Players play multiple strategic games
 - Decision is influenced by the history
 - Extension of extensive game
- Other forms of dynamic games
 - Stochastic game
 - Differential game

Extensive game w. perfect inf.

- A set of players N
- A set of actions for each player A
- A predefined sequence of choosing actions
 - Previous choices are known to all players
- Sequence h of actions called history
 - $(a^k)_{k=1\dots K} \in Z \subseteq H$ terminal history if
 - K is infinite
 - $\neg \exists a^{K+1} \text{ s.t. } (a^k)_{k=1\dots K+1} \in H$
- The history is
 - finite if $|H| < \infty$
 - finite horizon if longest $h \in H$ is finite

A 2-Player Extensive Game

- Set of players $N=\{1,2\}$



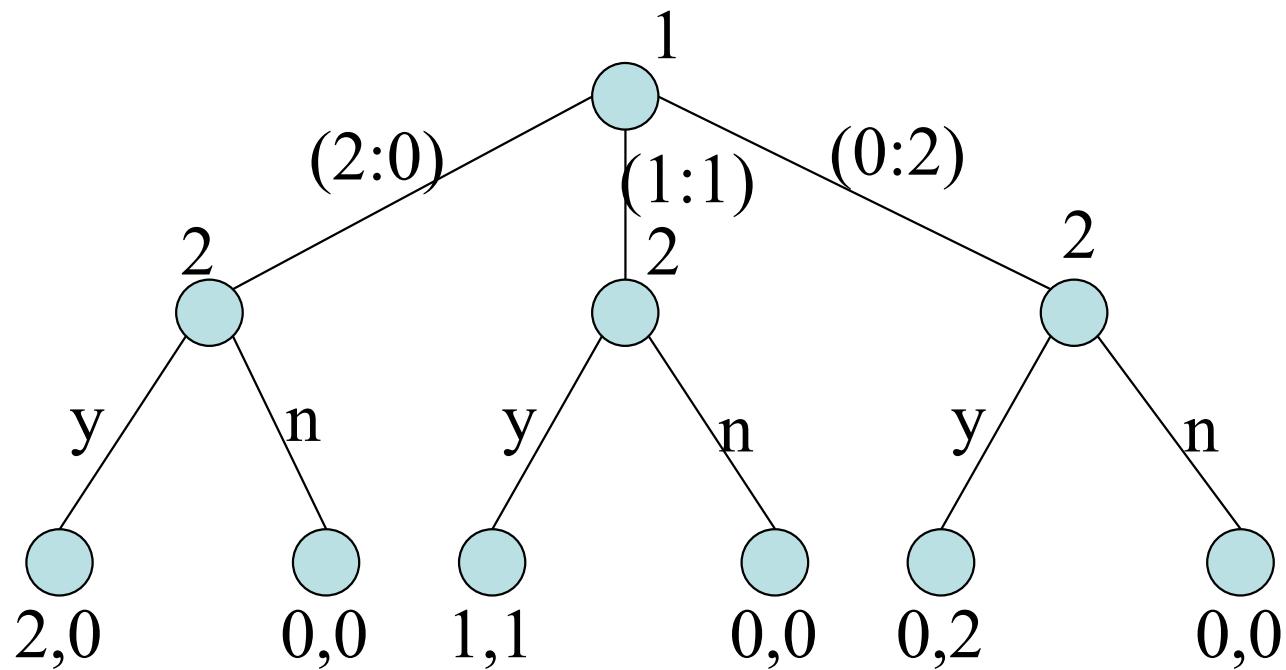
Extensive game - definition

- An extensive game with perfect information $G = \langle N, H, P, \succ_i \rangle$ consists of
 - A set N of players
 - A set H of sequences (histories) that satisfies
 - $\emptyset \in H$
 - if $(a^k)_{k=1 \dots K} \in H$ and $L < K \Rightarrow (a^k)_{k=1 \dots L} \in H$
 - if $(a^k)_{k=1}^{\infty}$ satisfies $(a^k)_{k=1 \dots L} \in H$ for $\forall L > 0 \Rightarrow (a^k)_{k=1}^{\infty} \in H$
 - A function $P: H \setminus Z \rightarrow N$ (player function)
 - A preference relation \succ_i on Z for $\forall i \in N$
- Similar to strategic games, \succ_i may be represented by $u_i: Z \rightarrow \mathbb{R}$
- Set of actions implicitly defined

$$A(h) = \{a : (h, a) \in H\}$$

Example I - Definition

- Set of players $N=\{1,2\}$
- Player function $P(\emptyset)=1$, $P((2:0))=P((1:1))=P((0:2))=2$
- Set of histories $H=\{\emptyset, (2:0), (1:1), (0:2), ((2:0), y), ((2:0), n), ((1:1), y), ((1:1), n), ((0:2), y), ((0:2), n)\}$

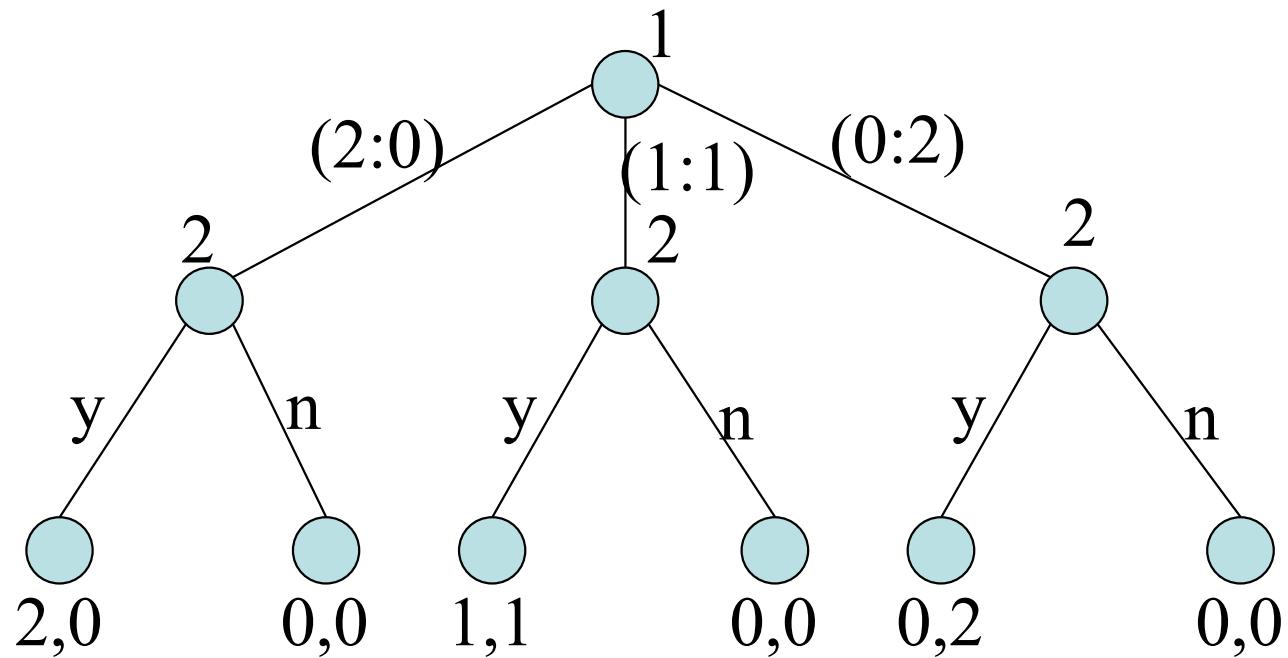


Example I – Definition contd.

- Preference relations

$$((2:0), y) \succ_1 ((1:1), y) \succ_1 ((0:2), y) \sim_1 ((2:0), n) \sim_1 ((1:1), n) \sim_1 ((0:2), n)$$

$$((0:2), y) \succ_2 ((1:1), y) \succ_2 ((2:0), y) \sim_2 ((2:0), n) \sim_2 ((1:1), n) \sim_2 ((0:2), n)$$



Strategies

- A strategy of player $i \in N$ in the extensive game with perfect information $G = \langle N, H, P, \succ_i \rangle$ is a function that *assigns* an *action* in $A(h)$ to every history in $\{h \in H \setminus Z : P(h) = i\}$
 - Strategy depends on N, H, P
- Example strategies:
 - Player 1: (2:0), (1:1), (0:2)
 - Player 2: (y,y,y), (y,y,n), (y,n,n), (y,n,y), (n,y,n), (n,y,y), (n,n,y), (n,n,n)

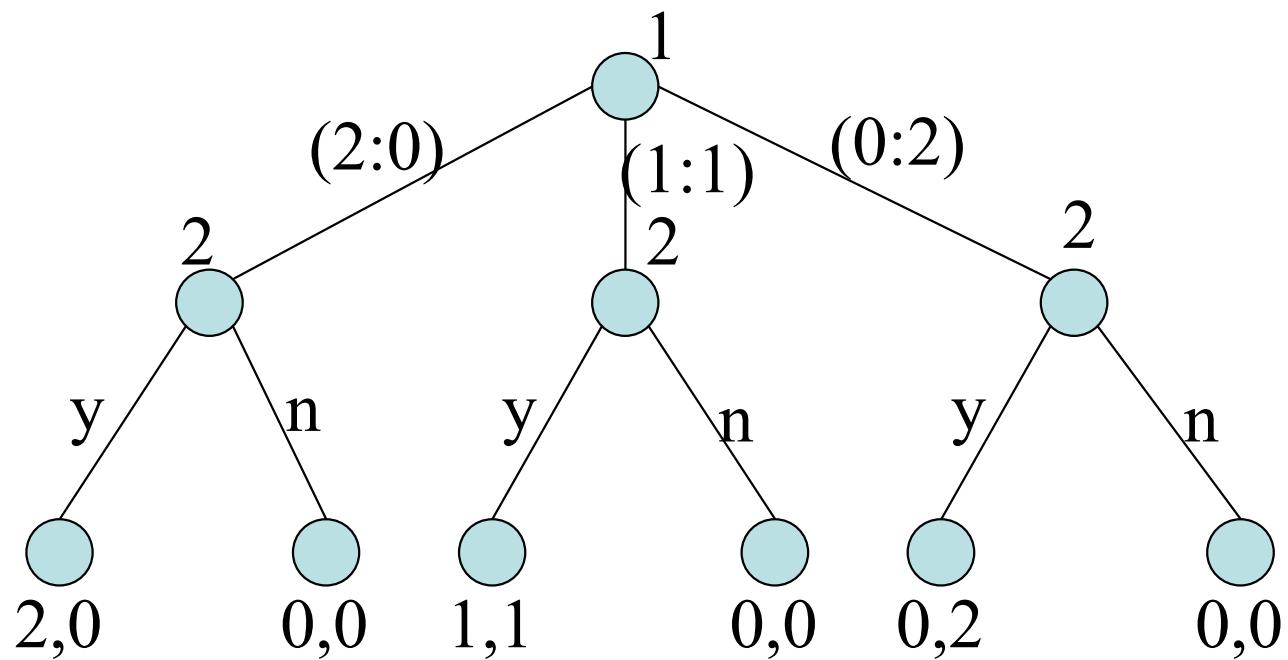
Outcomes

- The outcome $O(s)$ of a strategy profile $(s_i)_{i \in N}$ in the extensive game with perfect information $G = \langle N, H, P, \succ_i \rangle$ is the terminal history $h \in Z$ that results if every player follows its strategy s_i .
- $O(s) = (a^1, a^2, \dots, a^K) \in Z$ such that

$$s_{P(a^1, \dots, a^k)}(a^1, \dots, a^k) = a^{k+1} \quad 0 \leq k \leq K$$

Example I contd.

- What is the solution of the game?



Nash equilibrium

- A Nash equilibrium of an extensive game with perfect information $G = \langle N, H, P, \geq_i \rangle$ is a strategy profile s^* such that for $\forall i \in N$

$$O(s_{-i}^*, s_i^*) \succsim_i O(s_{-i}^*, s_i) \quad \forall s_i$$

- A Nash equilibrium of an extensive game with perfect information $G = \langle N, H, P, \geq_i \rangle$ is the Nash equilibrium of the strategic game $G^* = \langle N, (A_i), (\geq'_i) \rangle$ given as

- $A_i = S_i$
- $a \geq'_i a' \Leftrightarrow O(s_i, s_{-i}) \succsim_i O(s_i', s_{-i}) \quad \forall s, s' \in S = \times_{i \in N} S_i$

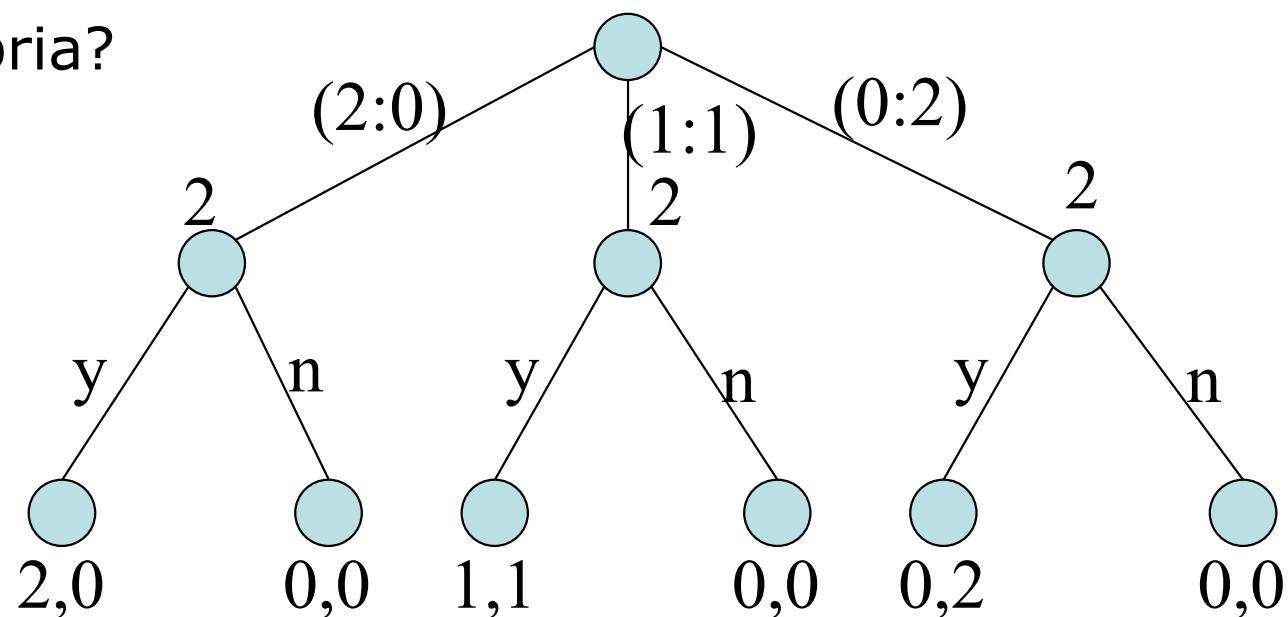
Example I revisited

	(y,y,y)	(y,y,n)	(y,n,n)	(y,n,y)	(n,y,n)	(n,y,y)	(n,n,y)	(n,n,n)
(2:0)	2,0	2,0	2,0	2,0	0,0	0,0	0,0	0,0
(1:1)	1,1	1,1	0,0	0,0	1,1	1,1	0,0	0,0
(0:2)	0,2	0,0	0,0	0,2	0,0	0,2	0,2	0,0

Nash equilibria?

•Plausible?

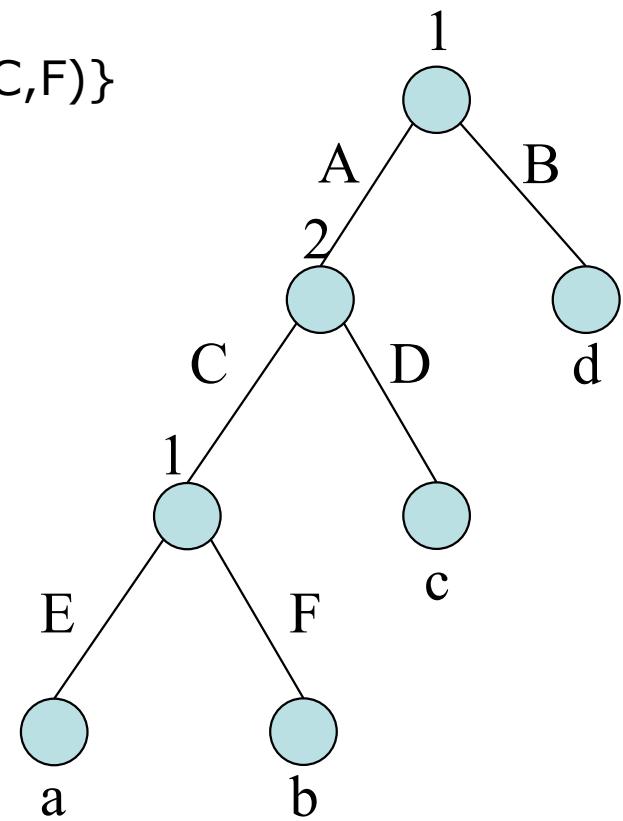
$((2:0),yyy)$, $((2:0),yy\bar{n})$,
 $((2:0),y\bar{y}n)$, $((2:0),y\bar{y}\bar{n})$,
 $((2:0),\bar{y}nn)$, $((2:0),\bar{y}ny)$,
 $((1:1),n\bar{y}y)$, $((1:1),n\bar{y}\bar{y})$,
 $((0:2),\bar{y}ny)$



Another example (II)

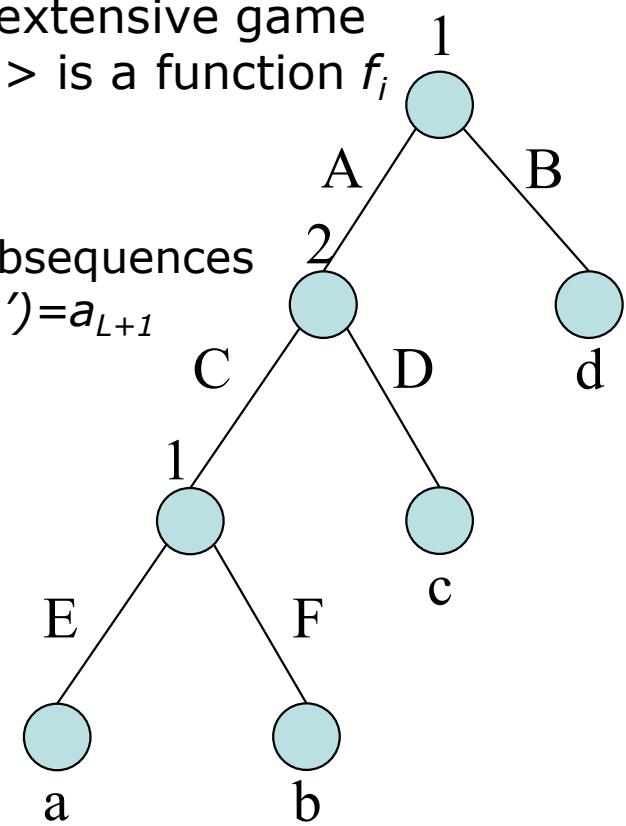
- $N=\{1,2\}$
- $H=\{\emptyset, (A),(B),(A,C),(A,D),(A,C,E),(A,C,F)\}$
- $P(\emptyset)=1, P(A)=2, P((A,C))=1$
- Strategies
 - $S_1=\{(A,E),(A,F),(B,E),(B,F)\}$
 - $S_2=\{(C),(D)\}$
- Strategy is not necessarily consistent
 - Outcomes are indifferent
- Corresponding strategic game

	C	D
AE	a	c
AF	b	c
BE	d	d
BF	d	d



Reduced strategy

- The reduced strategy of player i in an extensive game with perfect information $G = \langle N, H, P, \succ_i \rangle$ is a function f_i such that
 - its domain is $\text{dom}(f_i) \subseteq \{h \in H : P(h) = i\}$
 - $h \in \text{dom}(f_i) \Leftrightarrow h = (a^k)$ and for all its subsequences $h' = (a^k)_{k=1 \dots L}$ with $P(h') = i$ we have $f_i(h') = a_{L+1}$
- Example II reduced strategies
 - Player 1
 - $f_1(\emptyset) = B$
 - $f_1(\emptyset) = A$ and $f_1((A, C)) = E$
 - $f_1(\emptyset) = A$ and $f_1((A, C)) = F$
 - Player 2
 - $f_2(A) = C$
 - $f_2(A) = D$



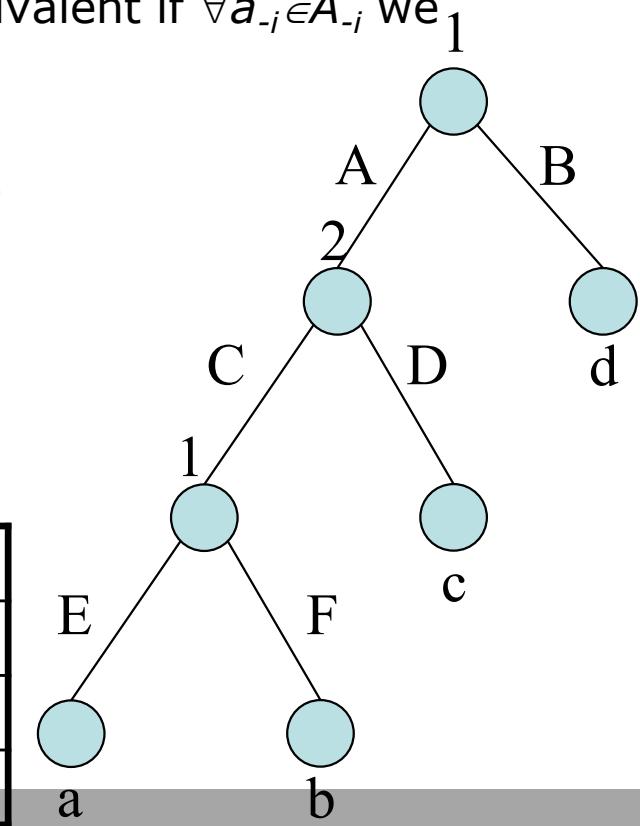
Reduced strategic form

- Let $G = \langle N, H, P, \geq_i \rangle$ be an extensive game with perfect information and $\langle N, (A_i), (\geq_i) \rangle$ be its strategic form.

For $i \in N$ actions $a_i \in A_i$ and $a'_i \in A_i$ are equivalent if $\forall a_{-i} \in A_{-i}$ we have $(a_{-i}, a_i) \sim_j (a_{-i}, a'_i)$ for every $j \in N$.

- The reduced strategic form of G is the strategic game $\langle N, (A'_i), (\geq''_i) \rangle$ in which A'_i contains only one of the equivalent strategies $a_i \in A_i$ and \geq''_i is the preference ordering over $\times_{j \in N} A'_j$ induced by \geq'_i .

	C	D
AE	a	c
AF	b	c
B	d	d

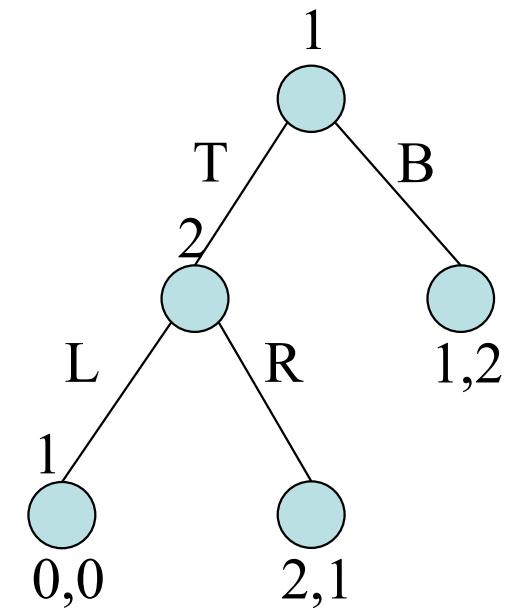


A similar example (III)

- $N=\{1,2\}$
- $H=\{\emptyset, B, T, (T,L), (T,R)\}$
- $P(\emptyset)=1, P(T)=2$
- Nash equilibria?
 - Strategic form

(T,R)
(B,L)

	L	R
T	0,0	2,1
B	1,2	1,2



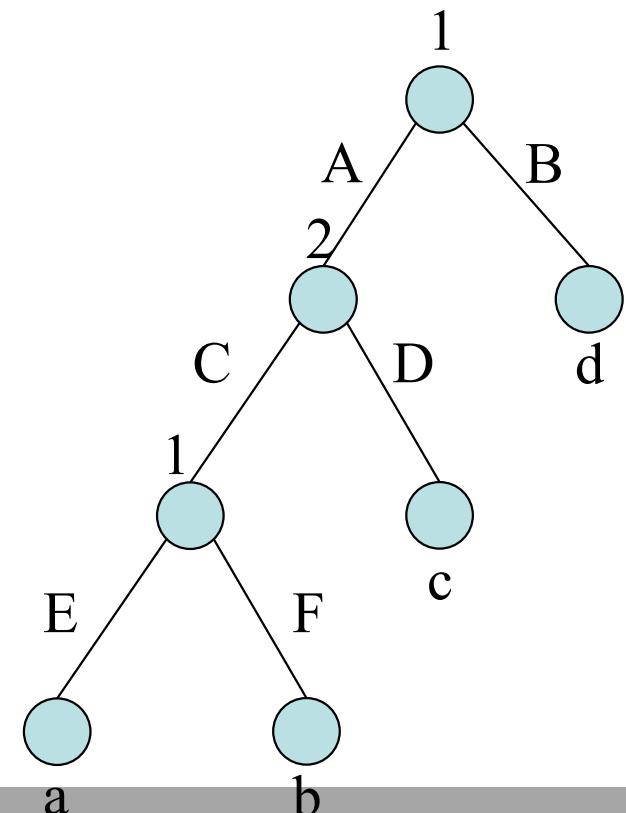
- Reduced strategic form

	L	R
T	0,0	2,1
B	1,2	1,2

More suitable equilibrium concept?

Subgame of a game

- The subgame of the extensive game with perfect information $G = \langle N, H, P, \geq_i \rangle$ that follows the history h is the extensive game with perfect information $G = \langle N, H|_h, P|_h, \geq_{i|h} \rangle$, where
 - $H|_h = \{h' : (h, h') \in H\}$,
 - $P|_h(h') = P(h, h')$ for $h' \in H|_h$,
 - $h' \geq_{i|h} h'' \Leftrightarrow (h, h') \geq_i (h, h'')$



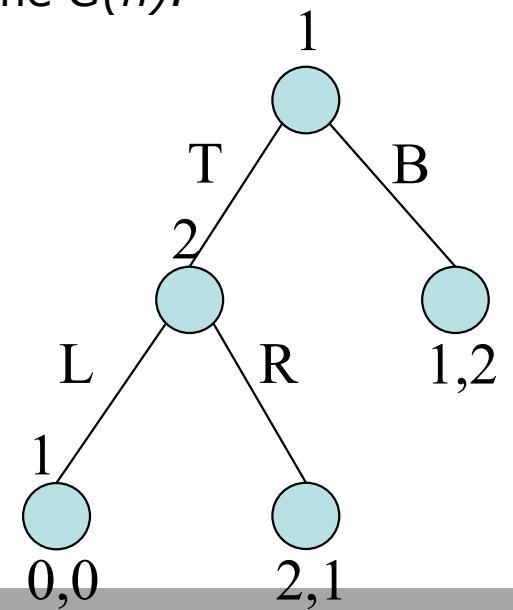
Subgame perfect equilibrium

- A subgame perfect equilibrium of an extensive game with perfect information $G = \langle N, H, P, \succ_i \rangle$ is a strategy profile s^* such that for every player $i \in N$ and every nonterminal history $h \in H \setminus Z$ for which $P(h) = i$

$$O(s_{-i}^*|_h, s_i^*|_h) \succ_i |_h O(s_{-i}^*|_h, s_i) \quad \forall s_i$$

for every strategy s_i of player i in the subgame $G(h)$.

- Example:
 - The NE of the game were
 - (B,L)
 - (T,R)
 - What are the SPE of the game?
 - what are the nonterminal histories?



One deviation principle

- Let $G = \langle N, H, P, \geq_i \rangle$ be a finite horizon extensive game with perfect information. The strategy profile s^* is a SPE of G iff for every player i and every history $h \in H$ for which $P(h) = i$ we have

$$O(s_{-i}^*|_h, s_i^*|_h) \succsim_i |_h O(s_{-i}^*|_h, s_i) \quad \forall s_i$$

for every strategy s_i^* of player i in the subgame $G(h)$ that differs from $s_i|_h$ only in the action it prescribes after the initial history of $G(h)$.

- Consequence
 - Can find the SPE of a finite horizon game with backwards induction (and some patience)

Existence and uniqueness of SPE

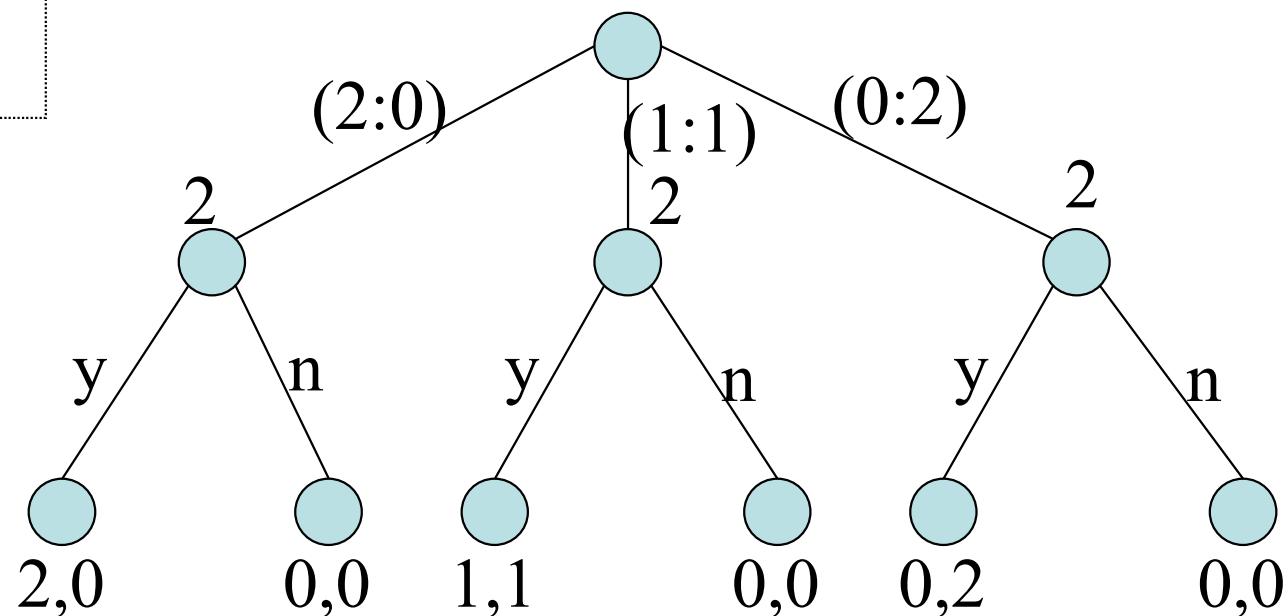
- Every finite extensive game with perfect information has a SPE.
- Proof
Use the one deviation principle to construct a SPE from every terminal history $h \in Z$
- If none of the players is indifferent between any two outcomes then the SPE is unique.
- Q: What about finite/infinite horizon?

Example I again

- The NE of the game were
$$((2:0),yyy), ((2:0),yyn), ((2:0),ynn), ((2:0),yny),\\ ((2:0),nnn), ((2:0),nny), ((1:1),nyy), ((1:1),nyn),\\ ((0:2),nny)$$
- What are the SPE of the game?

$((2:0),yyy)$

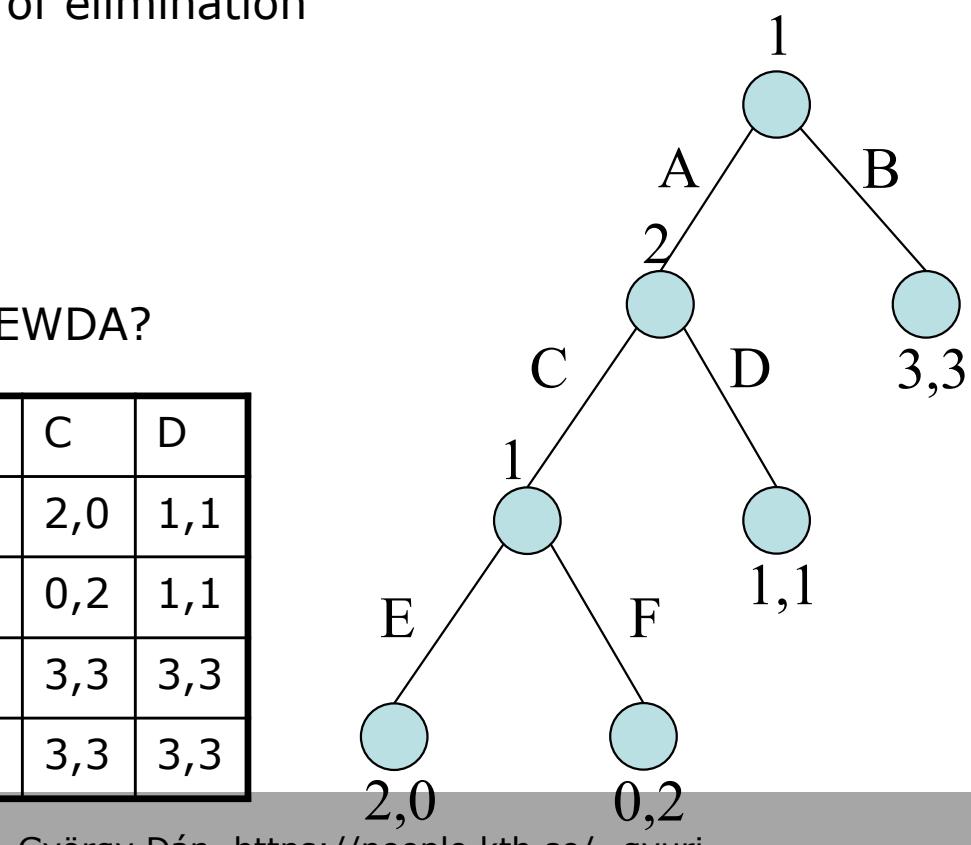
$((1:1),nyy)$



Iterated elimination of weakly dominated actions and SPE

- For a finite extensive game with perfect information and no indifferent outcomes the IEWDA in the strategic form of the game *can* lead to the unique SPE
 - depends on the order of elimination
- Example
 - What is the SPE?
 - What is the order of IEWDA?

	C	D
AE	2,0	1,1
AF	0,2	1,1
BE	3,3	3,3
BF	3,3	3,3



Some extensions

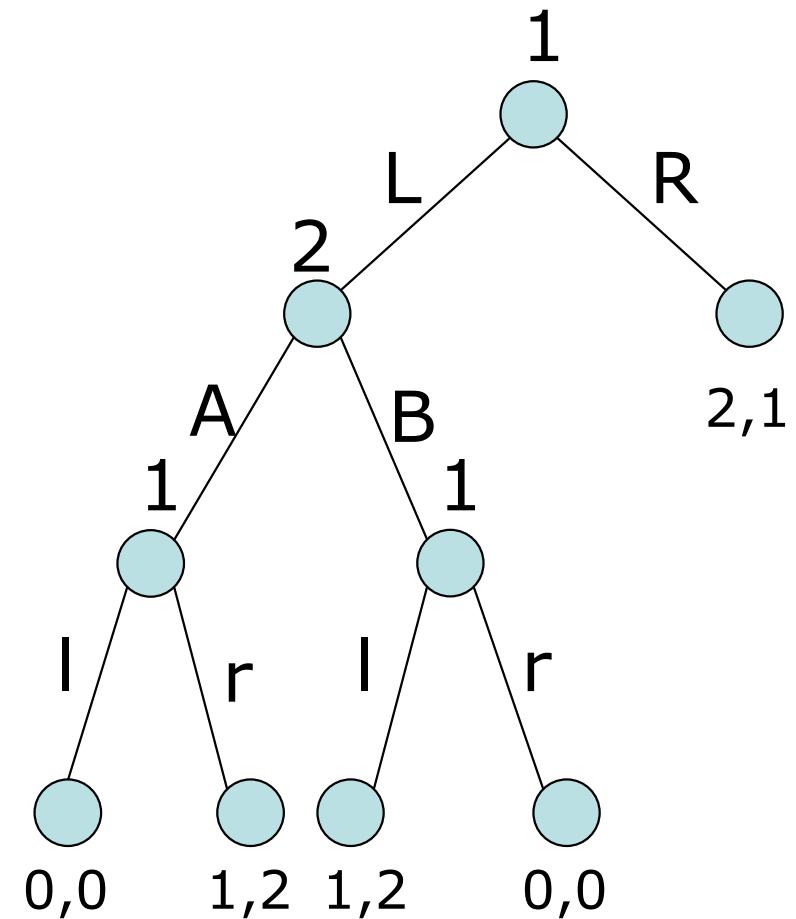
- Introduce an “environment” player c
 - $P(h)=c$ for some $h \in H \setminus Z$
 - c picks action from $A_c(h)$ at random (with density $f_c(h)$)
 - preferences interpreted over lotteries
 - called chance moves
- Imperfect information
 - Players may not know other players’ past actions
 - Notion of *information set*
- Introduce simultaneous moves
 - $P(h) \subseteq N$
 - History $h \in H$ is a sequence of vectors

Mixed vs. Behavioral strategies

- Mixed strategy not used in extensive games with perfect information w/o simultaneous moves
 - Does not lead to new solutions
- Mixed strategy of player i
 - Probability measure over the set of player i 's pure strategies
- Behavioral strategy of player i
 - Collection of independent probability measures over the sets of possible actions for each non-terminal history
- Kuhn's theorem: In an extensive game of perfect recall for every mixed strategy there is a behavioral strategy that yields the same payoff to every player.

Example

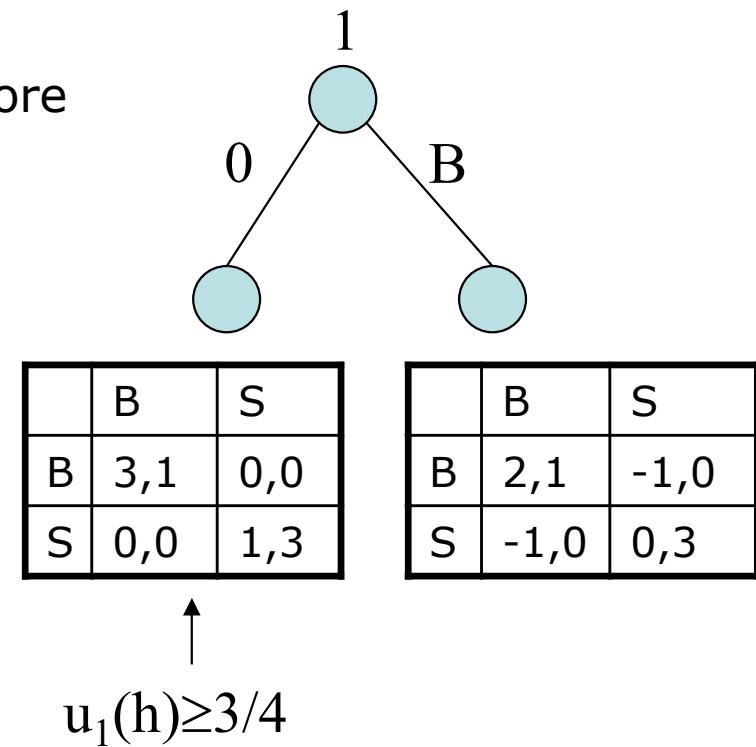
- Player 1's pure strategies
 - $(R, l, l), (R, l, r), (R, r, l), (R, r, r)$
 $(L, l, l), (L, l, r), (L, r, l), (L, r, r)$
- Player 2's pure strategies
 - $(A), (B)$
- Player 1's mixed strategies
 - $\alpha_{11}, \dots, \alpha_{18}$
- Player 2's mixed strategies
 - α_{21}, α_{22}
- Player 1's behavioral strategies
 - $\alpha_{111}, \alpha_{112}$
 - $\alpha_{121}, \alpha_{122}$
 - $\alpha_{131}, \alpha_{132}$
- Player 2's behavioral strategies
 - α_{21}, α_{22}



A last example

- Slightly modified BoS game
- Player 1 can burn a dollar bill before
- What is the SPE?

	BB	BS	SB	SS
0B	3,1	3,1	0,0	0,0
0S	0,0	0,0	1,3	1,3
BB	2,1	-1,0	2,1	-1,0
BS	-1,0	0,3	-1,0	0,3



Repeated games

- A set of players N
- A set of actions for each player A
- Players play the “constituent” strategic game repeatedly
- Number of times the game is played can be
 - infinite
 - finite
- Objective vs. subjective number of repetitions
- Formally
 - Extensive game with simultaneous moves

Infinitely Repeated Game

- Let $G = \langle N, (A_i), \geq_i \rangle$ be a strategic game, A_i is compact, and \geq_i is continuous. An infinitely repeated game of G is an extensive game with perfect information and simultaneous moves $G = \langle N, H, P, \geq_i^* \rangle$ in which
 - $H = \{\emptyset\} \cup \{\cup_{t=1}^{\infty} A^t\} \cup A^{\infty}$
 - $P(h) = N \ \forall t$
 - \geq_i^* is a preference relation on A^{∞} that satisfies the condition of weak separability, i.e., if $(a^t) \in A^{\infty}$, $a, a' \in A$, and $a \geq_i a'$
 $(a^1, \dots, a^{t-1}, a, a^{t+1}, \dots) \geq_i (a^1, \dots, a^{t-1}, a', a^{t+1}, \dots)$
- Strategy of player i assigns an action to every $h \in H \setminus Z$
($Z = A^{\infty}$)

Preference relations

- Preference relation \geq_i^* based on the payoff u_i in G
 - assume u_i is bounded
- Payoff profile of G
$$v = \underline{u}(a) = (u_1(a), \dots, u_{|N|}(a)) \quad \text{for } a \in A$$
- v is a *feasible payoff profile* of G if
$$v = \sum_a \lambda_a \underline{u}(a), \quad \sum_a \lambda_a = 1$$
- How can strategies be compared?
 - Payoffs have “time” dimension
 - $(0, 0, 1, 0, 0, 0, \dots)$ $(0, 1, 0, 0, 0, 0, \dots)$???
 - Model different forms of “human” preferences
 - Compare sequences of payoffs

δ -discounted criterion

- Payoff profile in the repeated game

$$\sum_{t=1}^{\infty} \delta^{t-1} v_i^t \quad \delta \in (0,1)$$

- Preference relation defined as

$$(v^t) \succsim_i^* (w^t) \Leftrightarrow \sum_{t=1}^{\infty} \delta^{t-1} (v_i^t - w_i^t) \geq 0 \quad \delta \in (0,1)$$

- δ -discounted infinitely repeated game of $G = \langle N, (A_i), (u_i) \rangle$

$$(1,1,1,0,0,0,\dots) \succ (0,0,0,2,2,2,2,\dots) \quad \delta < \sqrt[3]{\frac{1}{3}}$$

$$(0,0,0,2,2,2,2,\dots) \succ (1,1,1,0,0,0,\dots) \quad \delta > \sqrt[3]{\frac{1}{3}}$$

Limit of means criterion

- Payoff profile in the repeated game

$$\lim_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T v_i^t$$

- Preference relation defined as

$$(v^t) \succ_i^* (w^t) \Leftrightarrow \liminf_{T \rightarrow \infty} \frac{1}{T} \sum_{t=1}^T (v_i^t - w_i^t) > 0$$

- Limit of means infinitely repeated game of $G = \langle N, (A_i), (u_i) \rangle$

$$(0, \dots, 0, 2, 2, 2, 2, \dots) \succ (1, 1, 1, \dots, 1, 0, 0, 0, \dots)$$

$$(-1, 2, 0, \dots) \sim (0, \dots)$$

Overtaking criterion

- Payoff profile in the repeated game

$$\sum_{t=1}^{\infty} (v_i^t)$$

- Preference relation defined as

$$(v^t) \succ_i^* (w^t) \Leftrightarrow \liminf_{T \rightarrow \infty} \sum_{t=1}^T (v_i^t - w_i^t) > 0$$

- Overtaking infinitely repeated game of $G = \langle N, (A_i), (u_i) \rangle$

$$(1, -1, 0, \dots) \sim (0, \dots)$$

$$(-1, 2, 0, \dots) \succ (0, \dots)$$

Famous example

- Infinitely repeated prisoner's dilemma
- Constituent game

	Do not confess	Confess
Do not confess	3,3	0,4
Confess	4,0	1,1

- Should the players play the NE of the constituent game?
 - Is that a NE of the repeated game?
 - What is a subgame perfect equilibrium?
 - What payoff profiles should we expect?

Folk theorems

- Characterize the set of payoff profiles of the repeated game
 - Nash equilibrium
 - Subgame perfect equilibrium
- Proofs constructive
 - Strategies that lead to the profile
 - Strategies often described as state machines
 - finite
 - infinite
- Not strong results
 - depend on the criterion used

The worst outcome: Minmax

- Player i 's minmax payoff: The lowest payoff that other players can force upon player i

$$v_i = \min_{a_{-i} \in A_{-i}} \max_{a_i \in A_i} u_i(a_{-i}, a_i)$$

- Use it as a threat
 - p_{-i} is the most severe punishment
 - $B_i(p_{-i})$ are the best responses to the punishment

- Enforceable payoff profile (and corresponding outcome a)

$$w_i \geq v_i \quad i \in N$$

- Strictly enforceable payoff profile (and outcome a)

$$w_i > v_i \quad i \in N$$

Example (mixed vs. pure)

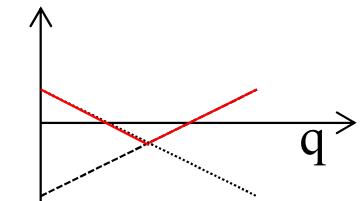
- Pure strategies
 - $v_1=1, v_2=1$
- Mixed strategies
 - Player 1's minmax payoff
 - $q=\alpha_2(L)$
 - $v_T(q) = -3q + 1$
 - $v_M(q) = 3q - 2$
 - $v_B(q) = 0$
 - Minimize $\max(v_T, v_M, v_B)$
 - $q=0.5 \rightarrow v_T=v_M=-0.5, v_1=v_B=0$
 - Player 2's minmax payoff
 - $p_T=\alpha_1(T), p_M=\alpha_1(M)$

$$v_L(p_T, p_M) = 2(p_T - p_M) + (1 - p_T - p_M)$$

$$v_R(p_T, p_M) = -2(p_T - p_M) + (1 - p_T - p_M)$$

- Minimize $\max(v_L, v_R)$
 - $p_T=0.5, p_M=0.5 \rightarrow v_2=v_L=v_R=0$

	L	R
T	-2,2	1,-2
M	1,-2	-2,2
B	0,1	0,1



The worst outcome

- Every Nash equilibrium payoff profile of the repeated game of $G = \langle N, (A_i), (u_i) \rangle$ is an enforceable payoff profile of G
 - for the limit of means criterion
 - for the δ -discounting criterion ($\delta \in (0, 1)$)
- Proof:
Assume s^* is NE and $w_i < v_i$ for player i (i.e., not enforceable)

Then s_i^* can be improved

$$s'_i(h) \in B_i(s_{-i}(h)) \Rightarrow w_i \geq v_i \Rightarrow s^* \text{ is not a NE}$$

Nash folk theorems

- **Limit of means:** Every feasible enforceable payoff profile of $G = \langle N, (A_i), (u_i) \rangle$ is a NE payoff profile for the limit of means infinitely repeated game of G .
 - play each outcome a for β_a number of times in every cycle of rounds
$$w = \sum_{a \in A} \frac{\beta_a}{\gamma} u(a), \quad \text{where} \quad \gamma = \sum_{a \in A} \beta_a$$
 - players $j \neq i$ punish player i who first deviates from this strategy by playing $(p_{-i})_j$ forever
 - player i loses by deviating $\Rightarrow NE$
- **δ -discounted:** Let w be a feasible strictly enforceable payoff profile of $G = \langle N, (A_i), (u_i) \rangle$.
Then $\forall \varepsilon > 0 \ \exists \delta^* < 1$ s.t. if $\delta > \delta^*$ then the δ -discounted infinitely repeated game of G has a NE with payoff profile w' , $|w - w'| < \varepsilon$.

Plausibility

- Consider these two constituent games

G_1	D	C
D	3,3	0,4
C	4,0	1,1

minmax

G_2	D	C
D	2,3	1,5
C	0,1	0,1

- Threat is not credible
 - Punishes the punisher

Perfect folk theorems

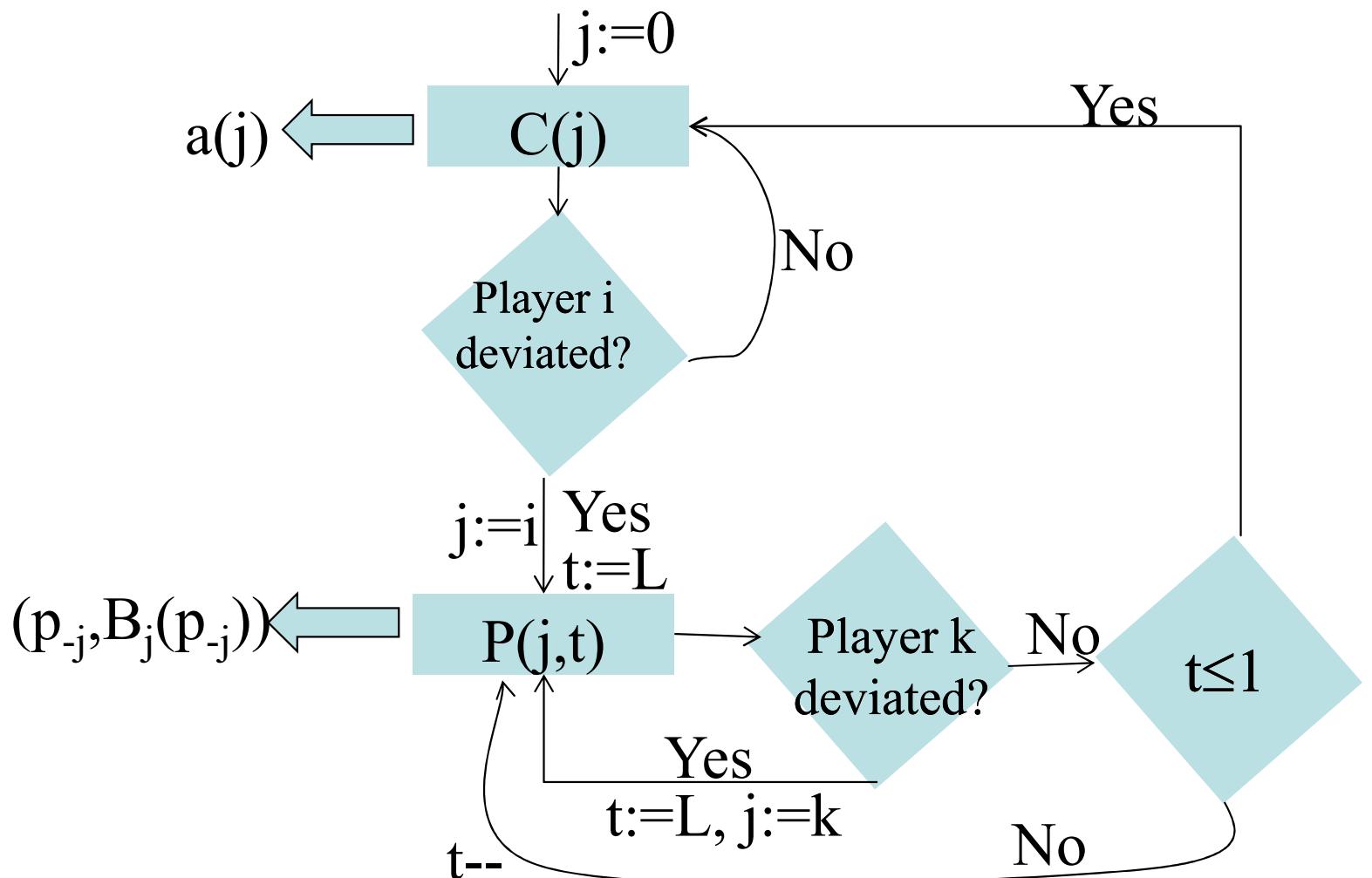
- Punishment phase should not punish the punisher
 - Punish deviation for a limited amount of time
 - Just enough to cancel out the gain of the deviation
 - Compensate the punisher if needed
- PFT for limit of means criterion
 - Every strictly enforceable feasible payoff profile
 - Punish for a limited length of time
- PFT for overtaking criterion
 - Any strictly enforceable outcome a^*
 - Punish for a limited length of time and punish misbehaving punishers

PFT for the discounting criterion

- Let a^* be a strictly enforceable outcome of $G = \langle N, (A_i), (u_i) \rangle$. Assume that there is a collection $(a(i))_{i \in N}$ of strictly enforceable outcomes of G s.t.
 - $a^* \succ_i a(i)$
 - $a(j) \succ_i a(i)$for all $j \in N \setminus \{i\}$. Then $\exists \delta^* < 1$ s.t. $\forall \delta > \delta^*$ there is a subgame perfect equilibrium of the δ -discounted infinitely repeated game of G that generates the path (a^t) in which $a^t = a^*$ for $\forall t$
- Proof:
 - Start with profile a^*
 - Punish deviation of player j
 - Play $(p_{-j}, B_j(p_{-j}))$ for a period L large enough
 - Then choose outcome $a(j)$
 - Unless a punisher k misbehaves
 - choose $a(k)$ for period L to punish the misbehaving punisher

D. Fudenberg, E.S. Maskin, "The folk theorem in repeated games with discounting or with incomplete information", *Econometrica*, vol. 54, pp. 533-554, 1986

State Machine for the PFT



PFT for the discounting criterion

- Deter player i from deviating from outcome $a(j)$
 - Choose L large enough

$$M - u_i(a(j)) < \underbrace{L(u_i(a(j)) - v_i)}_{\text{Gain from deviation}} \quad \forall i \in N, j \in \{0\} \cup N$$

$$Non\ discounted\ loss\ of\ payoff\ during\ punishment$$
 - Choose $\delta < 1$ s.t. for $\delta > \delta'$

$$M - u_i(a(j)) < \underbrace{\sum_{k=2}^{L+1} \delta^{k-1} (u_i(a(j)) - v_i)}_{\text{Gain from deviation}} \quad \underbrace{\sum_{k=L+1}^{\infty} \delta^{k-1} (u_i(a(j)) - v_i)}_{\text{Discounted loss of payoff during punishment}}$$
- Deter punisher from deviating from the punishment rule
 - Choose $\delta^* > \delta'$ s.t. for $\delta > \delta^*$

$$\underbrace{\sum_{k=1}^L \delta^{k-1} (M - u_i(p_{-j}, b_j(p_{-j})))}_{\text{Deviation gain for the punisher}} < \underbrace{\sum_{k=L+1}^{\infty} \delta^{k-1} (u_i(a(j)) - u_i(a(i)))}_{\text{Potential punishment of the punisher}}$$

D. Fudenberg, E.S. Maskin, "The folk theorem in repeated games with discounting or with incomplete information", *Econometrica*, vol. 54, pp. 533-554, 1986

Some extensions to infinitely repeated games

- Long run and short run players
- Overlapping generations of players
- Randomly matched opponents

Finitely repeated games

- Let $G = \langle N, (A_i), \geq_i \rangle$ be a strategic game, A_i is compact, and \geq_i is continuous. A repeated game of G is an extensive game with perfect information and simultaneous moves $G = \langle N, H, P, \geq_i^* \rangle$ in which
 - $H = \{\emptyset\} \cup \left\{ \bigcup_{t=1}^T A^t \right\}$
 - $P(h) = N$
 - \geq_i^* is a preference relation on A^T that satisfies the condition of weak separability, i.e., for $\forall t$
 $(a^t) \in A^T, a \in A, a' \in A, a \geq_i^* a' \Rightarrow (a^1, \dots, a^{t-1}, a, a^{t+1}, \dots) \geq_i^* (a^1, \dots, a^{t-1}, a', a^{t+1}, \dots)$
- Strategy of player i assigns an action to every $h \in H \setminus Z$
- Preference relation (similar to limit of means)
$$(v^t) \succ_i^* (w^t) \Leftrightarrow \frac{1}{T} \sum_{t=1}^T (v_i^t - w_i^t) > 0$$
- T period finitely repeated game

Example

- Finitely repeated PD

	Do not confess	Confess
Do not confess	3,3	0,4
Confess	4,0	1,1

- Should the players play the NE of the constituent game?

Another example

- Modified PD

	L	M	R
T	3,3	0,4	0,0
C	4,0	1,1	0,0
B	0,0	0,0	0.5,0.5

- Should the players play the NE of the constituent game?

Minmax payoffs in all NE

- If the **payoff profile in every NE** of the constituent game G is the profile (v_i) of **minmax payoffs** in G then for any value of T the outcome (a^1, \dots, a^T) of every NE of the T -period repeated game of G is such that **a^t is a NE of G** for $t=1, \dots, T$.
 - Proof: by contradiction. If not all actions are NE, player i can improve by exchanging the last non-NE action to the NE, and then play $B_i(p_{-i})$.
- If the constituent game G has a **unique NE payoff profile** then for any T the **action profile** chosen after any history in any SPE of the T -period finitely repeated game of G **is a NE of G** .
 - Proof: by induction, the last period has to be a NE, etc.

Nash folk theorem

- If the constituent game G has a NE a^* s.t. $u_i(a^*) > v_i$ then for any strictly enforceable outcome a' of G and $\varepsilon > 0$ $\exists T^*$ s.t. the T period repeated game of G has a NE (a^1, \dots, a^T) for which

$$\left| \frac{1}{T} \sum_{t=1}^T u_i(a^t) - u_i(a') \right| < \varepsilon \quad \forall T > T^*$$

- Proof sketch:
 - Play a' until period $T-L$
 - Play a^* after period $T-L$
 - Punish player j by playing $(p_{-j})_i$
 - Choose L to cancel gain of deviation
$$\max_{a_i \in A_i} u_i(a'_{-i}, a_i) - u_i(a') \leq L(u_i(a^*) - v_i)$$
 - Choose T^* big enough to be within ε
$$\left| \frac{1}{T^*} [(T^* - L)u_i(a') + Lu_i(a^*)] - u_i(a') \right| < \varepsilon$$

Perfect folk theorem

- Let a^* be a strictly enforceable outcome of the constituent game G . Let G be s.t.
 - $\forall i \in N$ there are two NE of G that differ in their payoffs for player i
 - there is a collection $(a(i))_{i \in N}$ of strictly enforceable outcomes of G such that
 - $a^* \succ_i a(i) \quad \forall i \in N$
 - $a(j) \succ_i a(i) \quad \forall j \in N \setminus \{i\}$

Then $\forall \varepsilon > 0 \ \exists T^*$ s.t. the T -period repeated game of G has a SPE (a^1, \dots, a^T) in which

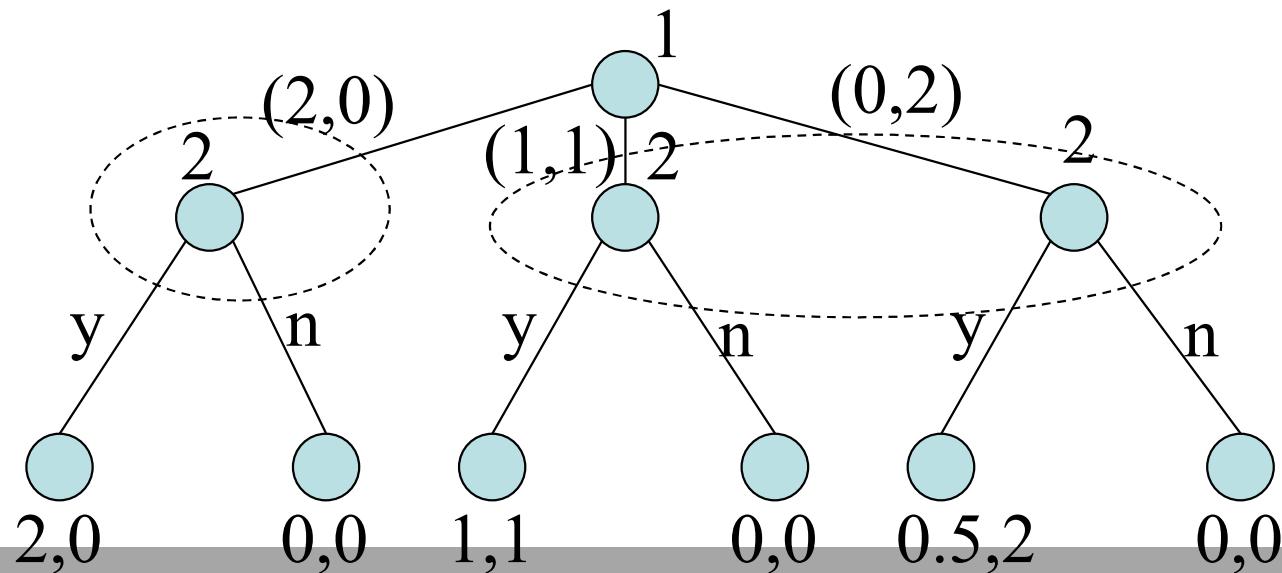
$$\left| \frac{1}{T} \sum_{t=1}^T u_i(a^t) - u_i(a^*) \right| < \varepsilon \quad \forall T > T^*$$

Dynamic games

- Players make decisions at different points in time
- Extensive game
 - Players make decisions one by one
 - Can learn about the environment and others' choices
- Repeated game
 - Players play multiple strategic games
 - Decision is influenced by the history
 - Extension of extensive game
- Other forms of dynamic games
 - Stochastic game
 - Differential game

Reduction of the history set

- Consider an extensive game $G = \langle N, H, P, (u_i) \rangle$
 - For all t we can write
$$u_i(a^0, \dots, a^T) = u_i(h^t, f^t)$$
(f^t is future)
- For each t partition the set of histories
 - $\{H^t(h^t)\}_{t=0 \dots T}$ disjoint and exhaustive

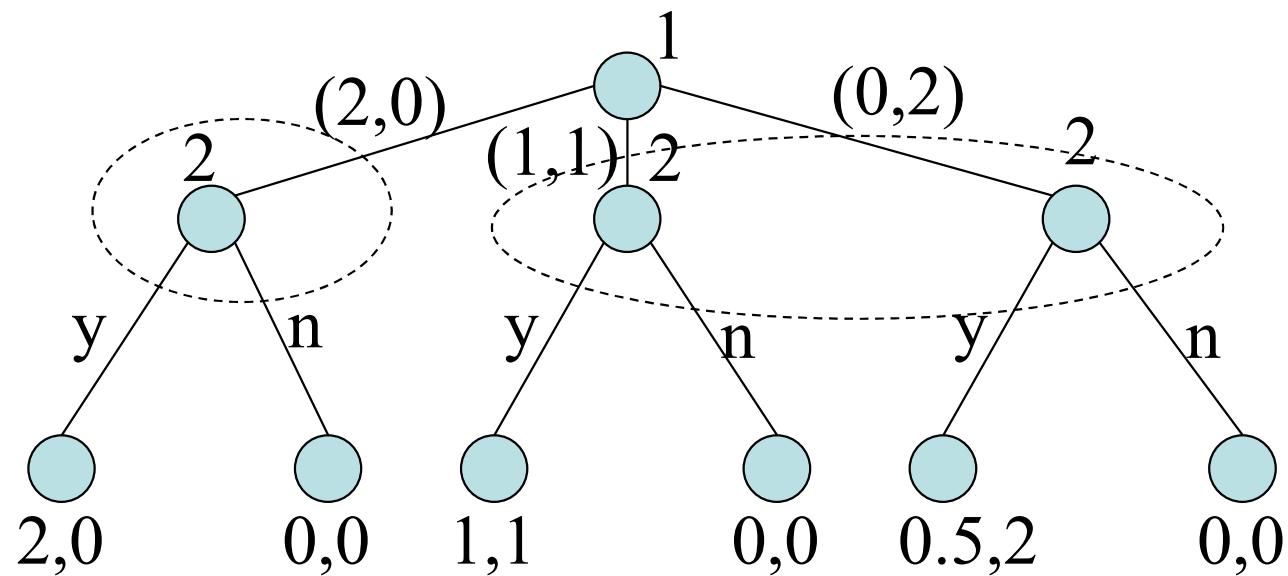


Sufficient partition

- A partition $\{H^t(h^t)\}_{t=0\dots T}$ is sufficient if, for all t , h^t and $h^{t'}$ such that $H^t(h^t)=H^{t'}(h^{t'})$, the subgames starting at date t after histories h^t and $h^{t'}$ are equivalent
 - identical action spaces
$$A_i^{t+\tau}(h^t, a^t, \dots, a^{t+\tau-1}) = A_i^{t+\tau}(h^{t'}, a^t, \dots, a^{t+\tau-1}) \quad \forall i, \forall \tau \geq 0$$
 - utility functions represent the same preferences
 - uniqueness of the utility function to an affine transformation
$$u_i(h^t, f^t) = \lambda_i(h^t, f^t)u_i(h^{t'}, f^{t'}) + \mu_i(h^t, h^{t'}, f_{-i}^t)$$
- Trivial sufficient partition
 - $H^t(h^t)=\{h^t\}$

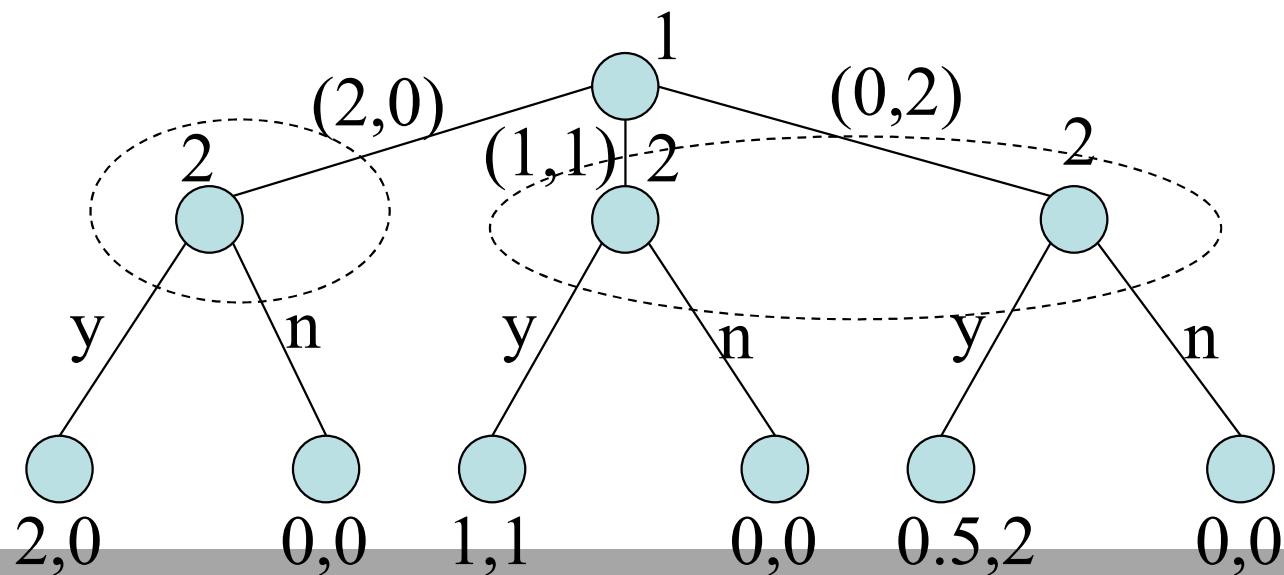
Payoff relevant history

- Payoff relevant history is the minimal sufficient partition
 - the coarsest sufficient partition



Markov strategy

- Markov strategy is a strategy that is measurable with respect to the payoff relevant history
$$H^t(h^t) = H^t(h^{t'}) \Rightarrow \sigma_i^t(h^t) = \sigma_i^t(h^{t'}) \quad \forall i$$
 - consistent with rationality – no coarser history would give equally good payoffs
- No need to know the entire history



Markov perfect equilibrium

- Markov perfect equilibrium
 - Profile of Markov strategies σ that are subgame perfect equilibrium.
- Sufficient condition for existence (mixed case)
 - finite-horizon extensive game
 - infinite-horizon extensive game with continuous payoff profile at ∞
$$\lim_{t \rightarrow \infty} \sup_{h, \tilde{h} \text{ s.t. } h^t = \tilde{h}^t} |u_i(h) - u_i(\tilde{h})| = 0$$
 - δ -discounted criterion ($\delta < 1$), per-period payoffs are bounded

E. Maskin, J. Tirole, "Markov Perfect Equilibrium, I," Journal of Economic Theory, vol. 100, pp. 191-219, 2001

Stochastic games

- History summarized in “state”
 - Available actions depend on the state
 - Current payoffs depend on the state and the actions
- A stochastic game $G = \langle N, K, (\Delta A_i(k)), Q, \geq_i \rangle$ consists of
 - Set N of players
 - Set K of states
 - Sets of mixed action profiles on $A_i(k)$
 - Transition function $Q = (q(k^{t+1} | k^t, a^t))$
 - Preference relation on the sequence of outcomes and states (objective function)
 - δ -discounted $u_i = \sum_{t=0}^{\infty} \delta^t g_i(k^t, a^t)$
 - Limit of means

Markov (stationary) strategy in Stochastic Games

- Assume players other than i play Markov strategies
 - h' and h two histories both leading to state k
 - a_i and $a_{i'}$ actions chosen by player i after h and h' resp.
 - value $V_i(k, s_{-i})$ highest expected payoff i can achieve starting from state k

- Value function V_i

$$V_i(k; s_{-i}) = \max_{a_i \in A_i(k)} \mathbb{E} \left[g_i(k, s_{-i}(k), a_i) + \delta \sum_{k' \in K} q(k' | k, s_{-i}(k), a_i) V_i(k', s_{-i}) \right]$$

- Maximizers form Markov best response

Existence of MPE

- Markov perfect equilibria always exist in stochastic games with a finite number of states and actions.
 - Proof:
 - Markov strategic form
 - Agent (i, k) has u_i of player i starting from state k
$$u_{i,k}(a) = E \left[\sum_{t \geq 0} \delta^t g_i(k^t, a(1, k^t), \dots, a(N, k^t)) \mid k^0 = k \right]$$
 - Finite states \Rightarrow finite # of agents and actions
 - There is a mixed strategy NE $(\sigma_{i,k}^*)$
 - Markov strategy of player i is $\sigma_i^*(k) = \sigma_{i,k}^*$
 - Depends on the state only
 - By construction it is subgame perfect
 - agents optimize in each state
 - Other existence results
 - Countably infinite state space
T. Parthasarathy, "Existence of Equilibrium Stationary Strategies in Discounted Stochastic Games", Sankhya Series A, vol 44, pp. 114-127, 1982
 - etc.

Differential games

- Continuous time stochastic games
- A differential game $G = \langle N, (k^t), (h_j^t), (u_i) \rangle$ consists of

- Set N of players - often $|N|=2$
- State vector $k^t = (k_1^t, \dots, k_n^t) \in \mathbb{R}^n$
- Sets of actions $A_i(k^t) \in \mathbb{R}^{i^a}$
- Transition functions

$$\frac{dk_j^t}{dt} = h_j^t(k^t, a^t)$$

- Payoff functions

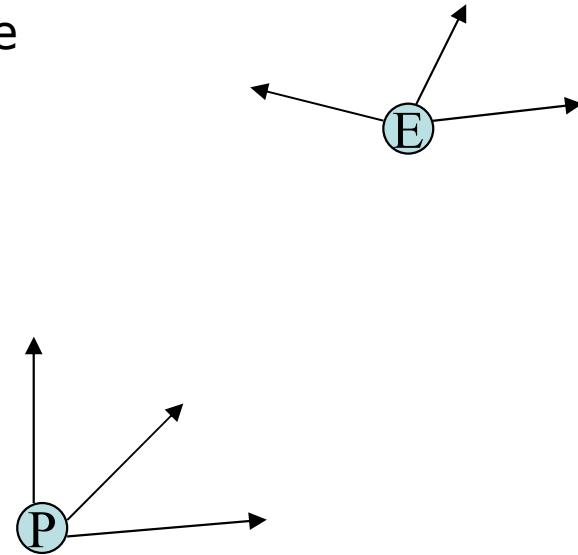
$$u_i = \int_0^T g_i^t(k^t, a^t) dt + v_i^T(k^T)$$

- Initial condition

$$k^0 = k(0) \in \mathbb{R}^n$$

Example

- Simple pursuit game in the plane
 - Two players: P and E
 - P has speed W
 - E has speed w
 - $W>w$
 - State variable
 - Position
 - Action space
 - Angle
- Objective
 - Time of capture
- Markov perfect equilibrium?
 - Direct fleeing



R. Isaacs, "Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization", Courier Dover, 1999

Literature

- D. Fudenberg, J. Tirole, "Game Theory", MIT press, 1991
- M.Osborne, A Rubinstein, "A course in game theory", MIT press, 1994
- T. Parthasarathy, "Existence of Equilibrium Stationary Strategies in Discounted Stochastic Games", *Sankhya Series A*, vol 44, pp. 114-127, 1982
- D. Levhari, L.Mirman, "The great fish war", *Bell Journal of Economics*, 1980, pp.322-344
- J.H. Case, "Towards a theory of many player differential games", *SIAM Journal of Control*, vol. 7, 1969, pp 179-197.
- A. Starr and Y.C. Ho, "Nonzero-sum differential games", *Journal of Optimization Theory and Applications*, vol 3., 1969., pp. 183-206

