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A bird’s eye view of learning

Strategic game G=<N,(A)),(u;))>
Revision rule determines
a’ = f£(a?,...,a")

Sequence of strategy profiles

VETENSKAP ° a(O), a(l)’___’ a(k)
Question
Convergence to (what) equilibrium
)
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Acyclic Weakly acyclic
#Hof steps




Taxonomy of Learning models

e Revision rule

e Myopic learning

o Best/better reply

Fictitious play
Adaptive play
Regret-minimization
Experimentation dynamics
e (Coordinated Bayesian learning

e Rational learning
E. Kalai, E. Lehrer, “Rational learning leads to Nash equilibrium”, Econometrica, 61(5), 1993

e Revision opportunity (Revision process)
e Synchronous
e Asynchronous
e Independent
e Plesiochronous/Conflict-free (on graphs)




Revision process
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Revision process is a probability measure g on the
powerset of N, P(N)=2N, such that
> (),

VieNdJc Nstied g
where g; is the probability that exac{Iy players ieJ

receive a revision opportunity (independently across
periods)

Revising set for revision process q: Ri={JcN|qg;>0}

Special cases:
e Asynchronous learning: RI={{i}|ieN}
e Synchronous learning: Ri={N}
e Independent learning: RI={P(N)}
e Regular learning: {{i}|ieN}cRd



Best and Better Reply Dynamic

e Better reply dynamic
JieN:u(a*",a®)y>u(a") and o’ =a"
e Best reply dynamic
JieN:a"" eB(a"¥) and a¥" =a"

e Improvement graph
e Digraph G(AE)
(a,a)=E<3JieN:u(a,a,)>u(a) and a_ =a_,
e Sink: NE
e Best-improvement graph
e Digraph G(AE)
(a,a)=E < a, eB(a,)u(a)>u(a) and a_ =a,
e Sink: NE




Examples

2
e Matching pennies b@
<D <D

H 2,0 0,2
T 0,2 2,0

VETENSKAP
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e Modified MP

H 2,0 0,2 0,0
T 02 2,0 0,0
X 0,0 1,0 3,3

"""" Better reply
— Best reply




Schedulers and x-Cyclicity

e Scheduler for game I
e Subgraph G'(A,E") of G(A,E)
e E'CE,s.t.(a,a')€EE —>3(a,a")€EE’
e If E'cE’' then G” weaker than G’
TR e Default scheduler: G
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e Path in scheduler G(A,E)
e Sequence of edges ecE

e Cyclicity
e Scheduler G

e Acyclic: no closed path in G
e Weakly acyclic: 3G’ acyclic, weaker than G

e Game T < default scheduler
e I-acyclic = BlI-acyclic = BI-weakly acyclic = I-weakly acyclic

Milchtaich, “Schedulers, Potentials and Weak Potentials in Weakly Acyclic Games,” Tech. Rep, May 2013
Apt, K.R. and Simon, S. “A classification of weakly acyclic games” Theory and Decision, v.78, 2015




Potential and Weak Potential

e Generalized ordinal potential ¥ for game I”
o (a,a’)eE = ¥(a’)>™a)

Weak generalized ordinal potential ¥ for game I”
e G’ weaker scheduler, s.t. (a,a’)eE’ = H(a’)>¥a)

 verensiar e Construction of the (weak) potential
é&cﬁ%&x@ﬁg P(a) =—max{m > 0| Ipath of length m starting at a}
(0,1,1) (1,0,0)
P=-2 P=-1
(0,1,0) (1,1,1)
P=s P=0
(0,0,0) (1,1,0)
P=- P=-2
(1,0,1) (0,0,1)
P=-2 P=-1

I. Milchtaich, “Schedulers, Potentials and Weak Potentials in Weakly Acyclic Games,” Tech. Rep, May 2013




Sufficient Conditions for WA

e (Game /is solvable by iterated elimination of never best
response strategies (IENBS) if there is a sequence of
games [19(=r),119,..., 1tm), s.t., all strategy profiles in
™) are equilibria.

e LetI be a finite game. If I"is solvable by IENBS then I

5 e is weakly BI-acyclic.

5&&%}%&?@% e Proof: Assume [ is solvable, consider 119(=r),19,..., (™

Define height h(a;)=max, a,er?’’
Define height h(a) as average height of strategies
Claim: ¥(a)=h(a) is a weak potential for I
if h(a)=m = a is equilibrium
if h(a)<m = let l,,=a;,,=min;(h(a;))

T 2,1 0,0 a,«Il,+1) = never best response
pick a;; best response, a’=(a;,a.)

M 01 2,0 h(a’)>h(a)

B 1,1 1,2




Sufficient Conditions for WA
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Subgame I"'=<N,(A’),(u;)> of game I'=<N,(A;),(u;)>

- A’A, for some ieN

Let 7" be a finite game. If every subgame has a unique
equilibrium then T" is weakly BI-acyclic.

Example: Matching pennies v2

H 2,0 02 0,0
T 0,2 20 O1
X o0 1,0 3,3

Equilibria?
(Best)-improvement graph cyclic/wa/acyclic?

Fabrikant, A., Jaggard, A. D. and Schapira, M. “On the structure of weakly acyclic games,” LNCS 6386, 2010, pp.126—137




Example: Resource Allocation

e Digraph G=(N,E)
e Players N
 (ij)eE=(j,i)eE
;=0 Yi,j)eE
e Action sets Ac{a,b,c,d}
e |ail=K;
o Utility
Ura.a ). {Cir if VjeN@) réea;
o,c, 1f FjeN(@)st.rea,
U(a)=) U/ (a)

V. Pacifici, G. Dan, “Convergence in Player-Specific Graphical Resource Allocation Games,” IEEE JSAC, 30(11), 2012




Resource Allocation

e G complete: BI-acyclic

e G non-complete: BI-weakly acyclic
P1-P8:c .>c,

ir*

P1-P4:3r'st.c, > d.c,.
P5-P8:0c,.>c,

ir*

e Cycle:(a,b,d,a) > (a,b,¢,a) 3 (b,b,c,a) 2 (b,b,c,d)
7 (be.ed) > (a,e.e,d) = (a,¢,d,d)

— (a,b,d.d) — (a,b,d.a)
e NE: (ab,cd) ° *

V. Pacifici, G. Dan, “Convergence in Player-Specific Graphical Resource Allocation Games,“ IEEE JSAC, 30(11), 2012




Synchronous Best and Better Reply

e Best reply - Synchronous
a e B (a") VieN

-

1,1 0,0
. D 0,0 1,1
e Convergence problematic ! !
VETENSKAP e Coordination games
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[o o e Anticoordination games
N o
a a
D 1,1 0,0

e Super/submodular games

-

e A compact,

ComP o u 6,6 0,9
e u; upper/lower-semicontinuous on A,(a_;) Vva_eA;
e a( js |east/greatest element of A D 9,0 1,1

= convergence to equilibrium

e Due to ascending/descending property of the best
response correspondences B;(a_;)




Regular Best and Better reply

e LetI be (B)I-weakly acyclic. Under a regular revision
process (best)better-reply dynamic converges to
equilibrium with probability 1.

e Proof: If players play asynchronously long enough it
converges.

LYY
% VETENSKAP
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Bo of®
Q%X&m

e LetI be (B)I-acyclic graphical game. Under a
plesiochronous (conflict-free) revision process the
game is weakly acyclic.

V. Pacifici, G. Dan, “Convergence in Player-Specific Graphical Resource
Allocation Games,” IEEE JSAC, 30(11),2012

V. Pacifici, G.Dan, “Content-peering Dynamics of Autonomous Caches in a
Content-centric Network," in Proc. of IEEE Infocom, Apr. 2013.




Fictitious Play - Discrete

e Infinite memory of past strategies
o Belief y4 of player j's play
e Empirical distribution of past strategies

t
#i(a;) = ZI {a,(v)=a;}
=1

VETENSKAP
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5&9 eﬂg e Other players’ play assumed independent
,uit(a—i)znluit(aj)

e Revision rule: best reply to belief

Uity )= 3 Utana) [T4(a,)

a_,eA_; a;ea_;

'€ B, (/u—i)

G.W.Brown, “Iterative Solution of Games by Fictitious Play”, Activity
Analysis of Production, Wiley, New York, 1951

D. Monderer, L.S.Shapley, “Fictitious Play Property for Games with
Identical Interests”, Journal of Economic Theory, 68, pp.258-265,1996

U. Berier, “Brown’s Oriiinal Fictitious Plai”, Journal of Ecomonic




Asynchronous Fictitious Play

e 2 players
e If an AFP process for a non-degenerate game contains
a switch from (ay;,a,;) to (ay,ay) then there is an
improvement path from (a;;,a,) to (ay,ay)
& verensus e Proof: Switch ik (Au5"), —(Aws "), > 0and (4145), — (Auy), <0
mgg&zm KONS;I"%%,@ But: ; B r—1 1 1
TP ® luZ(GZj)_TIUZ (aZj)+;I{a2(t)=a2j}

thus (4); —(4), <0

e Consequence: Every AFP process converges to a pure
NE in a non-degenerate 2 player ordinal potential
game.

G.W.Brown, “Iterative Solution of Games by Fictitious Play”, Activity
Analysis of Production, Wiley, New York, 1951

D. Monderer, L.S.Shapley, “Fictitious Play Property for Games with
Identical Interests”, Journal of Economic Theory, 68, pp.258-265,1996
U. Berger, “Brown’s Original Fictitious Play”, Journal of Ecomonic
Theory 135(1), pp. 572-578,2007




Synchronous Fictitious Play

e Example

A Y NC 3,3 0,4
KTH 3 C 4,0 1,1

Y
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e Equilibrium?
e Does SFP converge to NE? In what sense?
e Convergence:
e Zero-sum games
e 2X2 games
e Games with identical interests (weighted potential)

e Dominance solvable games , _ o o
G.W.Brown, “Iterative Solution of Games by Fictitious Play”, Activity

Analysis of Production, Wiley, New York, 1951

D. Monderer, L.S.Shapley, “Fictitious Play Property for Games with
Identical Interests”, Journal of Economic Theory, 68, pp.258-265,1996
U. Berger, “Brown’s Original Fictitious Play”, Journal of Ecomonic
Theory 135(1), pp. 572-578,2007




Fictitious Play - Observations

e Example
T 1,1 0,0
VETENSKAP B 0,0 1,1
%?HKONSJ% e Equilibria? Convergence?

e Pure Equilibrium FP: If at=a for t>T then a is a pure NE of G.

e Mixed Equilibrium FP: Ifhm,u = and u is @ mixed NE of G then FP
converges to equilibrium.
e FP converges in beliefs to equilibrium < it converges in beliefs to

equilibrium in the Cesaro mean.
i PUSST (0 BOWY _ s

T—o T

D. Monderer, L.S.Shapley, “Fictitious Play Property for Games with Identical
Interests”, Journal of Economic Theory, 68, pp.258-265,1996

D. Monderer, A. Sela, “Fictitious Play and No-Cycling Conditions”, mimeo,
1992




Fictitious Play - Cycling

e Generalized RSP
e NE?
T 1,0 0,0 0,1

C o1 1,0 1,0
D o0 0,1 1,0

Y
{% VETENSKAP
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e Synchronous FP

e Cycle if starting from (T,M)
e Run lengths increase exponentially
| ; ;

Il'

| |
(Dprefers1’) | (Dprefers 2°) (I prefers 2) I (I prefers 3)
i i

I's strateqy space I's strategy spoce

Shapley L. (1964) "Some Topics in Two-Person Games" in Advances in Game Theory M. Dresher, L.S. Shapley, and A.W. Tucker (Eds.), Princeton University Press




Fictitious Play - Continuous

Infinite memory of past strategies
Belief 4 of player i's play
e Empirical distribution of past strategies

t t
o 1 (@) =[_; lasnds t 2t

Other pIayers pIay assumed independent
luz (a—z)_Hluz (a )

]il

Revision rule Drift towards an element of best response

da
—t B a
= () -

Iflimu’ =4 and 4 is a mixed NE of G then CFP converges

t—

to equilibrium

Convergence
e 2x3 games (nhon-degenerate)

D. Monderer, A. Sela, “Fictitious Play and No-Cycling Conditions”, mimeo, 1992




Joint Strategy Fictitious Play

Infinite memory of past strategies

o Belief x4 of other players’ play
e Empirical distribution of past strategies

t
#@) =2 e orma
=1

e Other players’ play assumed correlated
ﬂit(a—i)'_'t]:[ﬂ:(aj)

e Revision: best reply to belief
aitJrl e B,(1')

—1 1
Ui (aialuii) = ZUi(aia a_; ):uit (a—i) = tTUi(ainu:l) +;Ui (ai9 ail)

a_eA;

D. Monderer, A. Sela, “Fictitious Play and No-Cycling Conditions”,
mimeo, 1992




Observation

e LetT be finite n-person game. If for t>0 the action profile at
generated by JSFP is a strict NE then at*r=at, >0
e Proof:

Uaj,u')2U(a,', ') Vi,a,'

—_

VETENSKAP t t ! t . ! t
g 0cH ronsT g Ul(a;,a;))>U./(a,',a’,)) Via'#a
a%x 1)

t 1
Ui(a'tnu:'rl) - _Ui(az'taﬂii)+_Ui(az'taaii

1

t+1 t+1
[ 1
>—U.(a',u' ) +—U/a',a’,)
r+1 r+1 ! !
e Example:
° Nf{l 2 3} a 0,0,0 1,1,1 a 1,1,1 R
12y b 1,1,1 0,0,0 b -100,-100,-100 1,1,1
¢ Ai={alb}

Under FP: a%=(a,A,a)->(b,B,B)->(a,B,a)->...
Under JFP:a%= (a IAIG)_ > (bl BIB) J.R. Marden, G. Arslan, J. Shamma, “Joint strategy fictitious

ilai with inertia for iotential iamesl” IEEE TAC| 54‘ 2 “ 2009




Adaptive Play

e Finite memory m of past strategies with sample size S
o Belief baﬁed on sample

luik (ajl) - Zl{aj(r)zaﬂ} /uzk (a—i) = Hluzk (ajl)

=k aea;

jse[k_mak]a ISSSS, S<m

ETENSKAP
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a%xgﬁgg e Revision rule

e Play best reply to belief with probability 1-¢
a*" e B(u)
e Play random strategy with probability ¢
e Transitions for e = 0 described by Markov chain P°
e Strict equilibrium played m times= absorbing state
e Best-reply graph 7"weakly acyclic =
if s<m/(maxL(a)+2) then AP(¢=0) converges to strict NE w.p.1

e [(a) is length of shortest path from a
to a strict NE in the best reply graph G

H. P. Young, “The Evolution of Conventions”,
Econometrica 61(1), pp. 57-84, 1993




Example: Adaptive Play

e Typewriter game

D 55 0,0
Q 0,0 4,4 H

QDQD
o lLetm=4,5=2,6=0 DDQD
e Sample={QQ} = best reply = Q H25/36
o Samplez{QQ} = best reply = D QDQD <5:/3:6| DQDQ ——,QDQQ
DDQQ QDDQ 5/36 DDQD
e Absorbing states 1/3(§DQQ

« {DDDD} DO

» {QQQQ} 2]
DQQQ ——QQQQ
DQQQ 1/4 'QQQQ

H. P. Young, “The Evolution of Conventions”, Econometrica 61(1), pp. 57-84, 1993

H.P. Youni, “Individual strateii and social structure,” Princeton Univ. Press, 2001




Perturbed Markov Process

e P:is a regular perturbed Markov process for PO if P:is
irreducible for every ¢<(0,¢*], and

lin& P =P) Vzz'eZ H
P >0=0<limP’% /"% <o, r(z,2')>0
VETENSKAP - 0 - QDQD
! R . , DDQD
é&‘;;}“”fgz e Resistance: r(z,z’)>0 HQ
> . . .
e P¢irreducible = u# exists ae 25/36
Stationary distribution QDQD 4= DQDQ —,QDQQ
) Y DDQQ QDDQ 5735 DDQD
1/36
e Example: QDQQ
e Typewriter: 0<r(z,z")<2 I/BIﬁQQ
e General: #errors DOQQ 6000
DQQQ 1/4 'QQQQ
QDDQ —— DQDD —=, QDDD H. P. Young, “The Evolution of Conventions”,
DDQQ *>~ DDDQ 1-... DDQD Econometrica 61(1), pp. 57-84, 1993

H.P. Young, “Individual strategy and social




Stochastic Potential

e State z’ accessible from state z if P(z,z’)k>0 for some k>0
e States z’and z communicate if mutually accessible
e Communication class

e Recurrence class E;: communication class s.t. no state
VETENSKAP zg¢E,; is accessible

2 OCH KONST 2% .
S&"“Q%)}gﬁ?g“% ¢ I.]_path: y=(zll Y Zn)l Z; EE,', ZnEEj
e Resistance r
o jj-path: r(&)=r(z;,z,)+...+r(z2,.1,2,)
* ry=minJs(£)>0
e Digraph of recurrence classes

e Rooted trees T, for E, /l_\

e Resistance r(T;.) QQQQ DDDD
QQQQ DDDD

e Stochastic potential of E; \2_/

7(i) = min r(T,)




Stochastic Stability

e Let P¢be a regular perturbed Markov process for PO,
and let «# be the unique stationary distribution of P¢ for
each &>0. Then

o Iimu’ =4’

c—0

e /P is a stationary distribution of P9,

VETENSKAP
g OCH KONST &¢ e zeE;s.t. fi)=min;i) = z stochastically stable

Bt

e Rooted trees for the Typewriter game

m
QQQQ DDDD QQQQ DDDD
QQQQ DDDD QQQQ DDDD

e DDDD is stochastically stable




Logit-response Dynamic

e Logit choice function
eﬂ”i(aiaa—i)

pla;,a )= Z P (a;'a_;) p>0
e 1 1971

'
a;'€4;

e LetT be a potential game with potential ¥(a). Under
asynchronous learning (with prob g;) the invariant
distribution is (Gibbs-Boltzmann)

ﬂ oA (@)
(a) = Z Ao (a)
a'ed
e Proof: it satisfies the detailed balance equations
p p PV @ PV (aita) /3
H(a)F = Se pyan 4 S e ) (a)F),
a"eA a;"e4;

C.A. Ferrer, N. Netzer, “The logit-response dynamics,” Games and Economic Behavior, 68(2), 2010, pp. 413-427




Logit-response dynamics

ETENSKAP
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Asynchronous learning: Let I"be a potential game with
potential ¥(a). The set of stochastically stable states of
the logit-response dynamics is equal to the set of
maximizers of ¥.

e Proof: Limit of previous result for B—o

Synchronous regular learning: Let I" be BI-weakly
acyclic. The stochastically stable states are a subset of
the NE.

Independent learning: Let I"be a potential game with
potential ¥(a). Let player i use logit-response with
probability w=e#">0. For large m the stochastically
stable states are the maximizers of ¥.

C.A. Ferrer, N. Netzer, “The logit-response dynamics,” Games and Economic Behavior, 68(2), 2010, pp. 413-427
J.R. Marden, J. Shamma, “Revisiting Log-Linear Learning: Asynchrony, Completeness and Payoff-Based Implementation,” Games and Economic Behavior, 75(2), 2012




Logit-response with a twist

e Consider the following update rule
e Payoff performance vector x}

. _ i (aa Nif d =a
gﬁ? ——— 9&9 e Update rule x1lt+1 _ (1 Vni)xn + Ynu;(a;, a_;) lf. an = q;
*"KTH“’ X otherwise
& g - : i — i
i{;}g verenskap S e Mixed strategy given by p}, = o'(x}) '
Ro of® Update for used action
TR Bix
. e ta
l —
oa(x) = ;
ZaEc/li eBixa
e Extension to continuous action set

e Critic x},
e Update rule x},; = (1 — y)x + vu(a;, a_;) < Update for all actions
e Mixed strategy update
*  Dhe1 = Ph+ an(8y, — ph), where b; ~ o' (x)

e Assume&—0

Yn n—oo

Cominetti et al, “A payoff-based learning procedure and its application to traffic games” Games and Economic Behavior, vol. 70., 2010
S. Perkins et al., “Mixed-strategy learning with continuous action sets,” IEEE Trans. on Automatic Control, 2015




Regret-matching

e Regret of player i for action a;

R ()= EZ(U (a,,a%)~U, (af))}

e Regret matching

s oo & Pla' =a)= R (t)
TEERES® Z R (1)
a;e4;

o If every player follows regret matching then the
empirical distribution of play x4 converges almost surely
as t—w to the set of correlated equilibrium distributions
of the game.

S. Hart and A. Mas-Colell, “A simple adaptive procedure leading to correlated




Experimentation Dynamics

| mood
e State of player z =(m,-,T,-,L7,-)

. benchmark payoff
benchmark action

e Moods
e content, discontent, watchful (c), hopeful (ct)

ETENSKAP
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Q%Xg;@gg e Experimentation probability ¢

e Acceptance functions
e F(u)=-f;*u+f,, ;>0,0<F(u)<1/2n
o G(4u)=-g,*Au+g,, g;>0, 0<G(4u)<1/2

B.S.R. Pradelski, H.P.Young, “Learning efficient equilibria in distributed
systems,” Games and Economic Behavior, 75(2), 2012




experiment(c) U, U

By
¥ KTH %

VETENSKAP
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B.S.R. Pradelski, H.P.Young, “Learning efficient equilibria in distributed




Convergence

e Welfare of state: W(z)zzn:u,.(a)
e eequilibrium: -
u,(a,a;)-u(a)<e ViVa,eA
e Instability of state z: S(z) =min{¢: zisa ¢ equilibrium}
e Interdependence:
Game 7=<N,(A,),(u;)> is interdependent if for

every aeA and every d-JcN there exists some
player iJ and an action profile a;” such that

u;(ay",ang)# ui(ag,anyg)-

e Let /"'be interdependent game and log-linear trial and
error learning with experimentation probability «.

o Ifthere is a pure NE then every stochastically stable state
is a NE that maximizes W(z)

o Ifthere is no pure NE then every stochastically stable state
maximizes f,W(z)-g,5(z)

B.S.R. Pradelski, H.P.Youni, “Learmni efficient eiulhbna in distributed




Example

e Coordination game

U a,a cd U 6,6 4,1
D dc b,b D 1,4 8,8
e Assume a-d > b-c > 0, and b>a
e (D,R) Pareto optimal
e (U,L) risk dominant
e (D,R) selected most of the time as ¢—>0

B.S.R. Pradelski, H.P.Young, “Learning efficient equilibria in distributed




Example — No NE

e Game w/o pure NE

U 30,30 0,40
By
ERTHS D 24,23 10,20

VETENSKAP . . s .
2 Direction of optimization

Qé?&OCH KONSTg%p
e Nw
o - o-—~
/9=l _ ===~ uL
47 o
D,L
U,R
30 O
D,R
B.S.R. Pradelski, H.P.Young, “Learning efficient equilibria in
> distributed systems,” Games and Economic Behavior, 75(2),
3 6 10
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