

Computational Game Theory

Lecture 5

P2/2025

György Dán

Division of Network and Systems Engineering

Today's topics

- Efficiency of equilibria
- Potential games
- Super/submodular games

Nash equilibrium vs. Social optimum

- Strategic game $G = \langle N, (A_i), (u_i) \rangle$
- Social optimum – best possible outcome

$$U = \max_a SWF(u_1(a), u_2(a), \dots, u_{|N|}(a))$$

- Social welfare function SWF can be
 - Utilitarian $SWF = \Sigma$ *(no fairness)*
 - Bernoulli-Nash $SWF = \Pi$ *(proportional fairness)*
 - Rawls $SWF = \min$ *(max-min fairness)*

Inefficiency of equilibria

- Nash equilibria a^* are in general not social optimum
- Price of Anarchy (pure)

$$PoA = \frac{\max_{a \in A} SWF(u_1(a), \dots, u_{|N|}(a))}{\min_{a^*} SWF(u_1(a^*), \dots, u_{|N|}(a^*))}$$

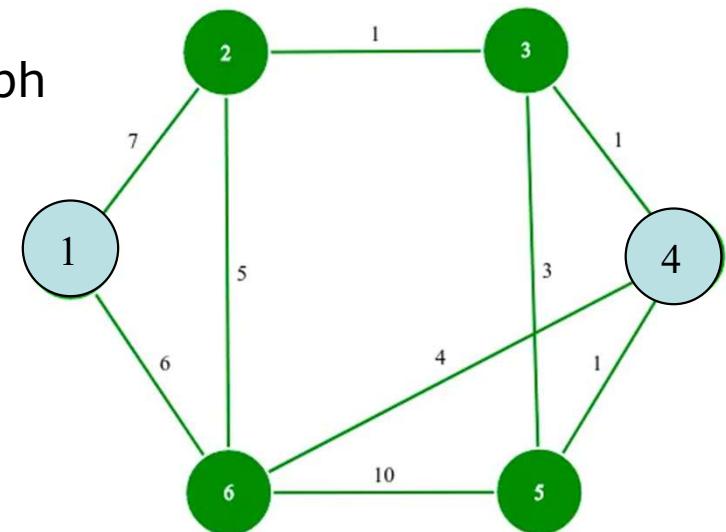
- Price of Stability (pure)

$$PoS = \frac{\max_{a \in A} SWF(u_1(a), \dots, u_{|N|}(a))}{\max_{a^*} SWF(u_1(a^*), \dots, u_{|N|}(a^*))}$$

- Mixed and Bayes-Nash PoA and PoS exist
- Extension to adversarial setting – Price of Malice

Steiner problem in networks

- Digraph (V, E)
 - Edge costs $c_e \geq 0 \ \forall e \in E$
 - Set of pairs of vertices $N = (s_i, t_i)_{i=1..n}$
 - For all (s_i, t_i) t_i is reachable from s_i
 - Set of paths from s_i to t_i is A_i
 - All possible combinations of paths $A = \times_{i=1..n} A_i$
 - Construct minimum weight subgraph
- $$\min_{a \in A} \sum_{e \in a} c_e$$
- Applications
 - Routing in networks
 - VLSI design
 - NP-hard in general



Shapley network design game

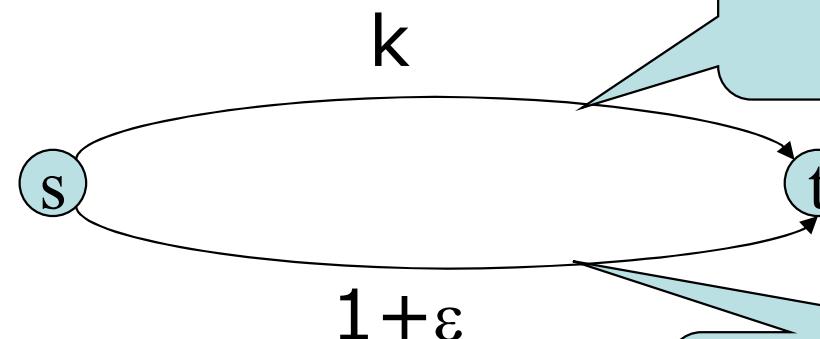
- Digraph (V, E)
 - Edge costs $c_e \geq 0 \ \forall e \in E$
- Set of players N
 - Player $i \in N$ wants to build a network such that t_i is reachable from s_i
- Sets of actions A_i
 - $a_i \in A_i$ is a path (s_i, t_i) in (V, E)
- Constructed network is $\cup_{i \in N} a_i$
- Cost function of player i in the constructed network

$$\text{cost}_i(a) = \sum_{e \in a_i} c_e / k_e$$

- $k_e = \#$ of players for which $e \in a_i$
- Shapley cost sharing mechanism (fair)

First example

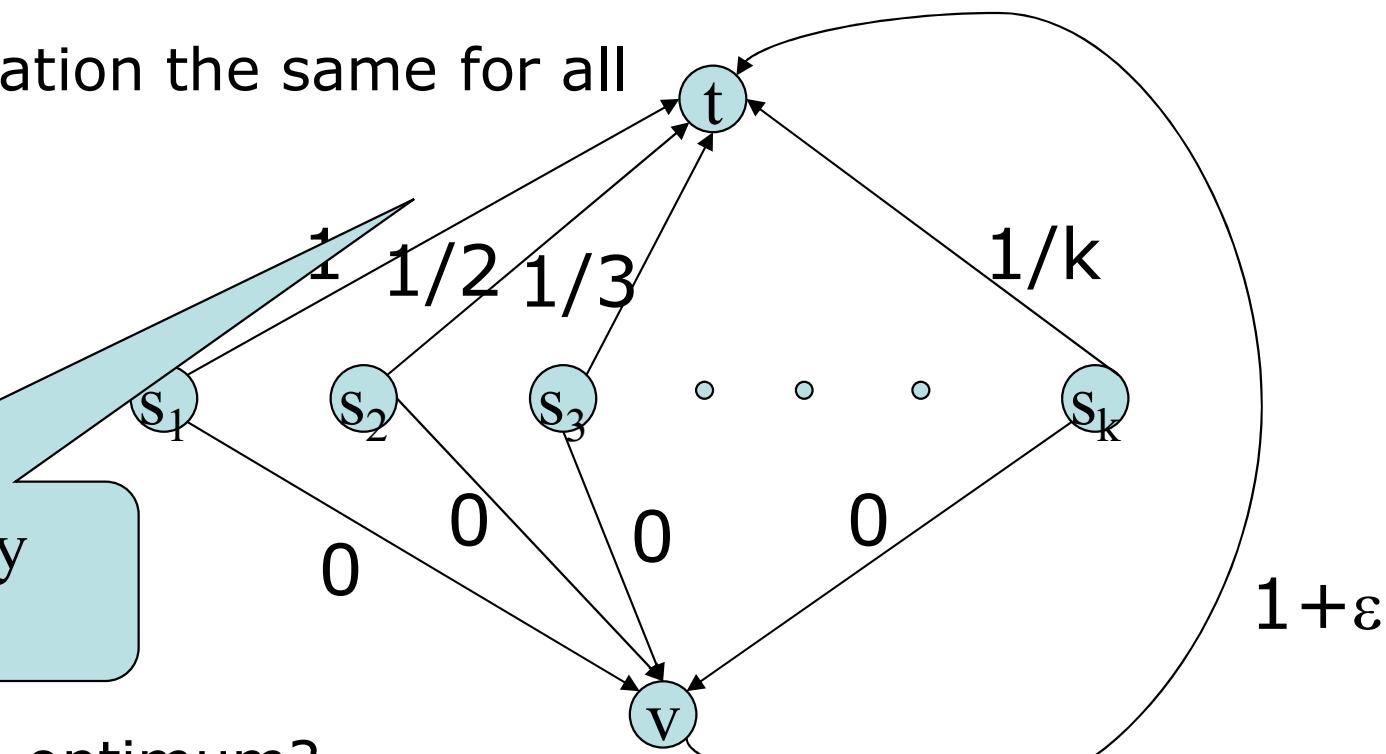
- $|N| = k$
- Source and destination the same for all



- Social optimum?
- Nash equilibria?
 - Price of Anarchy vs. Stability?

Second example

- $|N|=k$
- Destination the same for all



- Social optimum?
- Nash equilibria?
 - Price of Anarchy and Stability?

Claim

- Pure strategy equilibria always exist in the Shapley network design game

Exact potential games

- Let $G = \langle N, (A_i), (u_i) \rangle$ be a finite strategic game and $A = \times_{i \in N} A_i$.

A function $\psi: A \rightarrow \mathbb{R}$ is an **exact potential** for G if

$$\psi(a_{-i}, b_i) - \psi(a_{-i}, a_i) = u_i(a_{-i}, b_i) - u_i(a_{-i}, a_i) \quad \forall a \in A, \forall a_i, b_i \in A_i$$

- A game $G = \langle N, (A_i), (u_i) \rangle$ is called an **exact potential game** if it admits an exact potential.

An example

- Prisoner's dilemma

	Do not confess	Confess
Do not confess	6,6	0,9
Confess	9,0	1,1

- And its exact potential

0	3
3	4

Weighted potential games

- Let $G = \langle N, (A_i), (u_i) \rangle$ be a finite strategic game and $A = \times_{i \in N} A_i$.
- A function $\psi: A \rightarrow \mathbb{R}$ is a **weighted potential** for G if
$$\psi(a_{-i}, b_i) - \psi(a_{-i}, a_i) = w_i(u_i(a_{-i}, b_i) - u_i(a_{-i}, a_i)) \quad \forall a \in A, \forall a_i, b_i \in A_i, w_i > 0$$
- A game $G = \langle N, (A_i), (u_i) \rangle$ is called a **weighted potential game** if it admits a weighted potential.
- Inclusion
 - Every exact potential game is a weighted potential game.

Ordinal potential games

- Let $G = \langle N, (A_i), (u_i) \rangle$ be a finite strategic game and $A = \times_{i \in N} A_i$.
- A function $\psi: A \rightarrow \mathbb{R}$ is an **ordinal potential** for G if
$$\psi(a_{-i}, b_i) - \psi(a_{-i}, a_i) > 0 \Leftrightarrow u_i(a_{-i}, b_i) - u_i(a_{-i}, a_i) > 0 \forall a \in A, \forall a_i, b_i \in A_i$$
- A game $G = \langle N, (A_i), (u_i) \rangle$ is called an **ordinal potential game** if it admits an ordinal potential.
- Inclusion
 - Every weighted potential game is an ordinal potential game.

Another example

- Battle of the Sexes

	Theatre	Sports
Sports	3,2	0,0
Theatre	0,0	2,3

- And its ordinal potential

2	0
0	2

Existence of equilibria

- Let Ψ be an ordinal potential for $G = \langle N, (A_i), (u_i) \rangle$. The equilibrium set of G coincides with that of $\langle N, (A_i), (\Psi) \rangle$. That is,
 $a \in A$ is a NE of $G \Leftrightarrow \Psi(a_{-i}, a_i) \geq \Psi(a_{-i}, a'_i)$ for $a'_i \in A_i$
If Ψ admits a maximum value in A , then G possesses a pure strategy Nash equilibrium.
- Proof:
$$\psi(a_{-i}, b_i) - \psi(a_{-i}, a_i) > 0 \Leftrightarrow u_i(a_{-i}, b_i) - u_i(a_{-i}, a_i) > 0$$
$$\forall a \in A, \forall a_i, b_i \in A_i$$

Consider $a \in A$ for which $\Psi(a)$ is maximal.
For any $a' = (a_{-i}, a'_i)$ we have $\Psi(a_{-i}, a_i) \geq \Psi(a_{-i}, a'_i)$ and hence
 $u_i(a_{-i}, a_i) \geq u_i(a_{-i}, a'_i)$

- Consequence

Every finite ordinal potential game possesses a pure-strategy Nash equilibrium

Example continued: SND game

- Consider the SND game $\langle N, (A_i), (u_i) \rangle$
- Define for each $e \in E$

$$\Psi_e(a) = c_e H_{k_e}$$

$k_e = \#$ of players for which $e \in a_i$

$$H_k = \sum_{j=1}^k \frac{1}{j}$$

- Define the function

$$\Psi(a) = \sum_e \Psi_e(a)$$

- Claim: $\Psi(a)$ is an exact potential for the SND game

Example continued: SND game II

- Let $a = (a_i)_{i=1..k}$, $a_i' \neq a_i$ be an alternate path for player i , and $a' = (a_{-i}, a_i')$. Then

$$\Psi(a) - \Psi(a') = u_i(a') - u_i(a)$$

- Proof

$$e \in a_i, e \in a_i' \text{ or } e \notin a_i, e \notin a_i' \rightarrow \begin{cases} \psi_e(a) = \psi_e(a') \\ c_e / k_e |_{a_i} = c_e / k_e |_{a_i'} \end{cases}$$

$$e \in a_i, e \notin a_i' \rightarrow \begin{cases} \psi_e(a') = \psi_e(a) - c_e / k_e \\ u_i(a') = u_i(a) + c_e / k_e \end{cases}$$

$$e \notin a_i, e \in a_i' \rightarrow \begin{cases} \psi_e(a') = \psi_e(a) + c_e / (k_e + 1) \\ u_i(a') = u_i(a) - c_e / (k_e + 1) \end{cases}$$

- Furthermore

$$\text{cost}(a) \leq \Psi(a) \leq H_k \text{cost}(a)$$

Price of stability

- Let $G = \langle N, (A_i), (u_i) \rangle$ be a finite strategic game with exact potential Ψ such that

$$\frac{\text{cost}(a)}{C} \leq \Psi(a) \leq D \text{cost}(a)$$

for some constants $C, D > 0$. Then $\text{PoS} \leq C \times D$.

- Proof

- Let $a^* \in A$ be a local maximizer of $\Psi \Rightarrow a^*$ is NE
- Let \hat{a} be a global maximizer of Ψ

$$\left. \begin{array}{l} D \text{cost}(\hat{a}) \geq \Psi(\hat{a}) \\ \Psi(\hat{a}) \geq \Psi(a^*) \\ \Psi(a^*) \geq \frac{\text{cost}(a^*)}{C} \end{array} \right\} \implies \begin{array}{l} D \text{cost}(\hat{a}) \geq \Psi(\hat{a}) \geq \Psi(a^*) \geq \frac{\text{cost}(a^*)}{C} \\ C \times D \text{cost}(\hat{a}) \geq \text{cost}(a^*) \\ C \times D \geq \frac{\text{cost}(a^*)}{\text{cost}(\hat{a})} \end{array}$$

Improvement path

- A **path** in A is a sequence $\gamma=(a^0, a^1, \dots)$ such that for every $k \geq 1$ there is a **unique** player i such that $a^k = (a_{-i}^{k-1}, a_i^{'})$ for some $a_i^{'} \neq a_i^{k-1}$
 - Initial point of γ is a^0
 - For finite γ last element called terminal point
- A path $\gamma=(a^0, a^1, \dots)$ is an **improvement path** w.r.t. game $G = \langle N, (A_i), (u_i) \rangle$ if for all $k \geq 1$ $u_i(a^k) > u_i(a^{k-1})$, where player i is the unique deviator at step k .
 - path generated by *myopic* players
 - “Nash” or “asynchronous better reply” dynamics

Finite improvement property

- The strategic game $G = \langle N, (A_i), (u_i) \rangle$ has the **finite improvement property** (FIP) if every improvement path $\gamma = (a^0, a^1, \dots)$ is finite.
- Every finite ordinal potential game has the FIP.
- Proof
 - By definition $\psi(a^0) < \psi(a^1) < \dots$
 - Since A is finite, the improvement path must be finite
- In any finite ordinal potential game the asynchronous better reply dynamic always converges to a Nash equilibrium

Generalized Ordinal Potential

- Let $G = \langle N, (A_i), (u_i) \rangle$ be a finite strategic game, and $A = \times_{i \in N} A_i$. A function $\psi: A \rightarrow \mathbb{R}$ is a generalized ordinal potential for G if

$$u_i(a_{-i}, b_i) - u_i(a_{-i}, a_i) > 0 \Rightarrow \psi(a_{-i}, b_i) - \psi(a_{-i}, a_i) > 0 \quad \forall a \in A, \forall a_i, b_i \in A_i$$

	L	R
T	1,0	2,0
B	2,0	0,1

0	3
1	2

- Let $G = \langle N, (A_i), (u_i) \rangle$ be a finite strategic game. G has the FIP property iff G has a generalized ordinal potential.

Infinite potential games

- A strategic game $G = \langle N, (A_i), (u_i) \rangle$ is a bounded game if $(u_i)_{i \in N}$ are bounded
- Every bounded infinite weighted potential game possesses an ε -equilibrium point for every $\varepsilon > 0$
- Proof:
 - Ψ is bounded because u_i is bounded, hence
$$\exists a' \in A \text{ s.t. } \Psi(a') > \sup_{a \in A} \Psi(a) - \varepsilon$$

Approximate finite improvement

- A path $\gamma=(a^0, a^1, \dots)$ is an ε -improvement path for the strategic game $G=\langle N, (A_i), (u_i) \rangle$ if for all $k \geq 1$ $u_i(a^k) > u_i(a^{k-1}) + \varepsilon$, where i is the unique deviator at step k .
 - ε -Nash dynamics
- The strategic game $G=\langle N, (A_i), (u_i) \rangle$ has the approximate FIP property if for $\forall \varepsilon > 0$ every ε -improvement path is finite.
- Every bounded infinite potential game has the approximate FIP property.

Continuous potential games

- A strategic game $G = \langle N, (A_i), (u_i) \rangle$ is continuous if A_i are topological spaces, and u_i are continuous w.r.t $A = \times_{i \in N} A_i$.
- Let $G = \langle N, (A_i), (u_i) \rangle$ be a continuous exact potential game with compact action sets. G possesses a pure strategy Nash-equilibrium.

Construction of the potential

- Let $G = \langle N, (A_i), (u_i) \rangle$, $A_i \subset R$ compact, u_i continuously differentiable and $\Psi: A \rightarrow R$.

Then Ψ is a potential for G iff Ψ is continuously differentiable and

$$\frac{\partial u_i}{\partial a_i} = \frac{\partial \Psi}{\partial a_i} \quad \forall i \in N$$

Congestion games

- Set of players $N=\{1,\dots,n\}$
- Primary factors $T=\{1,\dots,t\}$
- Action set $A_i=\{1,\dots,a_{ij}\}\subseteq 2^T$
 - Action $a_i\subseteq T$
- Cost of action a_i

$$\text{cost}_i(a_{-i}, a_i) = \sum_{\tau \in a_i} \overleftarrow{c}_\tau(k_\tau),$$

Same for all players!

where $k_\tau = \# \text{ of players using factor } \tau \text{ in } a$

Congestion games

- Every congestion game is an exact potential game with potential

$$\Psi(a) = \sum_{\tau \in T} \sum_{y=1}^{k_\tau} c(y)$$

- Every finite potential game is isomorphic to a congestion game.

R.W. Rosenthal, "A Class of Games Possessing Pure-Strategy Nash Equilibria," vol. 2, Int. J. Game Theory, pp. 65–67, 1973

D. Monderer, L.S. Shapley, "Potential Games", Games and Economic Behavior vol. 14., pp. 124-143, 1996

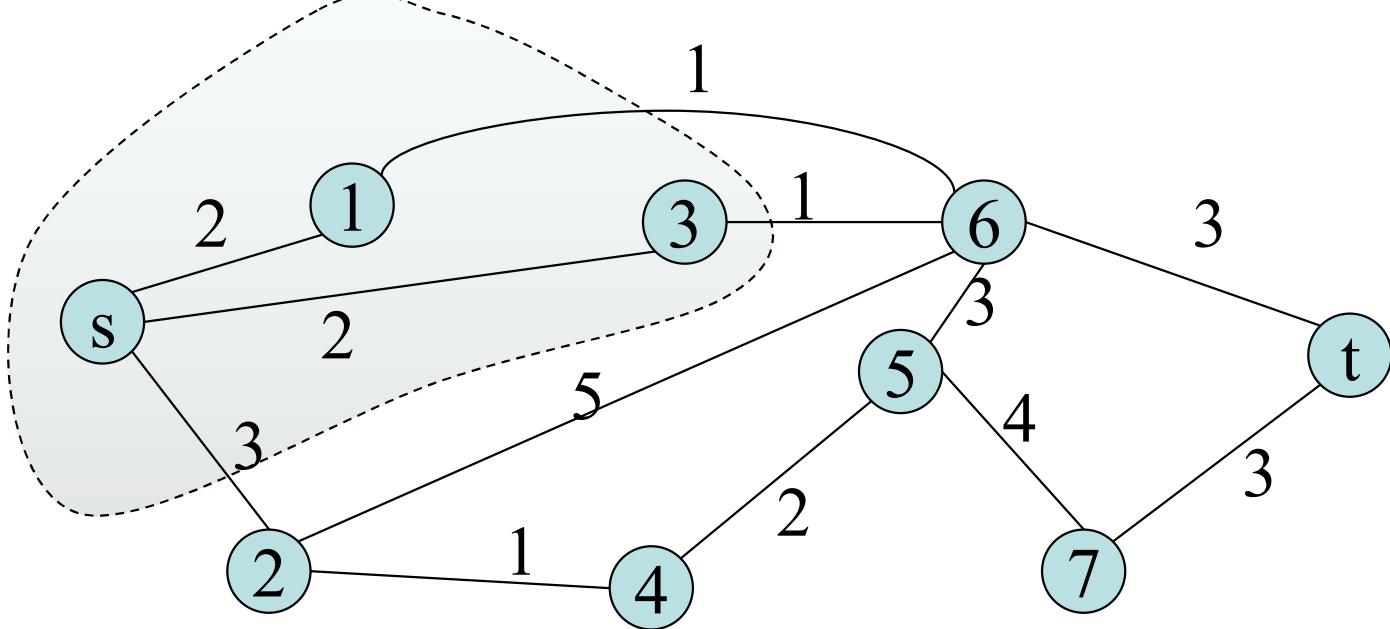
Examples of congestion games

- Selfish routing games
 - Non-atomic
 - Multipath allowed
 - Atomic non-weighted
 - Single path only
 - Same amount of traffic for all players
- Market sharing games
- Load balancing games

Minimum cut problem

- Network of nodes $V \cup \{s\} \cup \{t\}$, $|V|=m$
- Capacity $c(w,z) \geq 0$ for every pair of nodes $(w,z) \in V \cup \{s\} \cup \{t\} \times V \cup \{s\} \cup \{t\}$
- Let $X \subseteq V$ then $X \cup \{s\}$ is a *cut*
- Cut capacity
$$f(X) = \sum_{w \in X \cup s} \sum_{z \notin X \cup s} c(w,z)$$
- $X^* \cup \{s\}$ is *minimum cut* if $X^* \subseteq V$ and
$$f(X^*) \leq f(X) \quad \forall X \subseteq V$$

Minimum cut problem



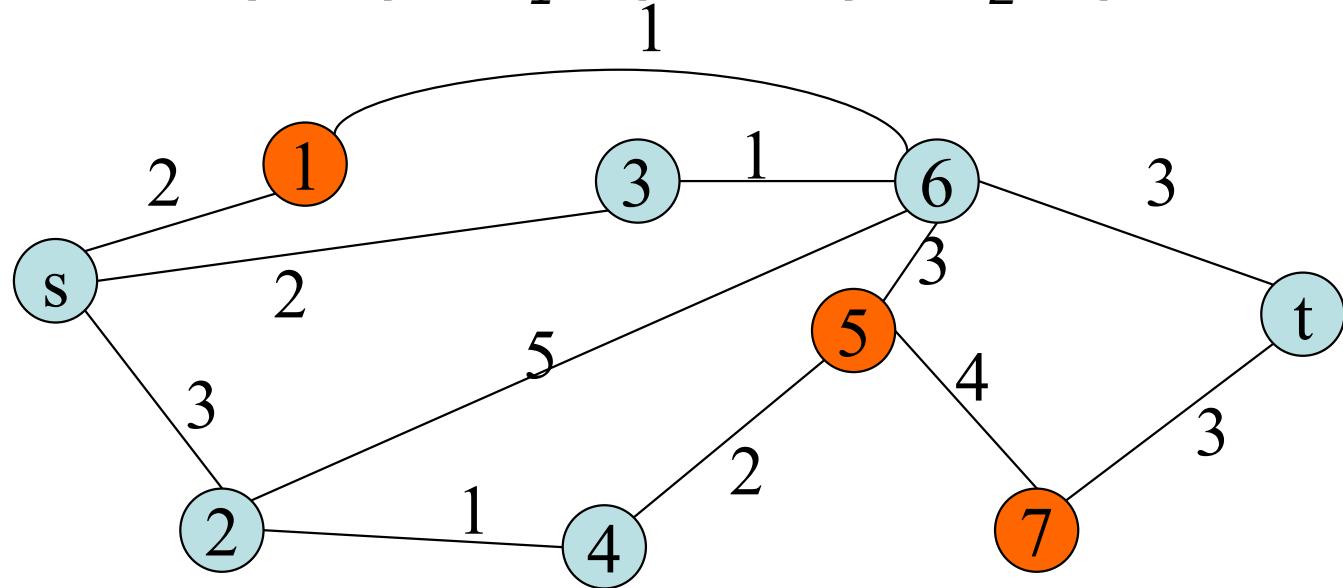
- Min-cut: $\{1, 3, s\}$

Minimum cut game

- Set of players N , $|N|=n$
 - $V = \cup_{i=1..n} V_i$, $V_i \cap V_j = \emptyset$ for $\forall i \neq j$, $|V_i| = m_i$
- Action set $A_i = \{X_i : X_i \subseteq V_i\}$
- Capacity function $c_i(w, z)$ (player specific)
- Objective of player i
$$\min_{a_i} f_i(X) = f_i(X_i \cup (\cup_{i \neq j} X_j))$$
- Claim: The minimum cut game has a pure strategy Nash equilibrium.

Minimum cut game

- $N=\{1,2\}$, $V_1=\{1,5,7\}$, $V_2=\{2,3,4,6\}$



- Min-cut: $\{1,3,s\}$
- NE: $X_1=\{1\}$, $X_2=\{3\}$

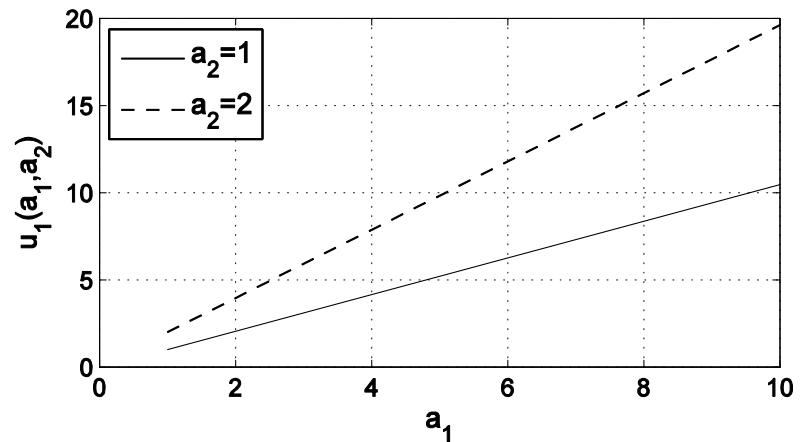
Lattices and Sublattices

- A partially ordered set (A, \geq) is a lattice if
 - for $a, b \in A$ $\exists c \in A$ s.t. $a \vee b = c$ ($c \geq a, c \geq b$, join)
 - for $a, b \in A$ $\exists c \in A$ s.t. $a \wedge b = c$ ($a \geq c, b \geq c$, meet)
- A sublattice of a lattice L is a subset of L and itself a lattice with respect to the same \wedge and \vee operators.
- If A is a nonempty compact sublattice of \mathbb{R}^m , it has a greatest and a least element.
 - the sublattice A is bounded
 - componentwise partial ordering

G. Birkhoff, "Lattice theory", American Mathematical Society, 1967

Increasing Differences

- Let X, T be posets, $S \subseteq X \times T$, $S_t = \{x | (x, t) \in S\}$
 - $u_i(a)$ has increasing differences in (a_i, a_j) if for $(a'_i, a'_j) \in S$ such that $a'_i \geq a_i$ and $a'_j \geq a_j$
$$u_i(a'_i, a'_j) - u_i(a_i, a_j) \geq u_i(a'_i, a_j) - u_i(a_i, a_j)$$
- Let A_i be poset, $A \subseteq \times A_i$
 - $u_i(a)$ has increasing differences on A if it has increasing differences in all (a_i, a_j) for $i \neq j$ and fixed $a_{-i,j}$
- Twice differentiable
- $$\frac{\partial^2 u_i}{\partial a_l \partial a_k} \geq 0 \quad \forall k, l$$
- Example
 - $f: R \rightarrow R$ convex
 - $u_i(a) = f(\prod_{i=1}^{|N|} a_i)$
 - Strictly increasing



Supermodular Functions

- $u_i(a_{-i}, a_i)$ is supermodular on A_i (lattice)
if for $a_i, a^* \in A_i$ and $\forall a_{-i} \in A_{-i}$
$$u_i(a_{-i}, a_i) + u_i(a_{-i}, a^*) \leq u_i(a_{-i}, a_i \wedge a^*) + u_i(a_{-i}, a_i \vee a^*)$$
- $u_i(a_{-i}, a_i)$ is strictly supermodular on A_i
if for $a_i, a^* \in A_i$ and $\forall a_{-i} \in A_{-i}$
$$u_i(a_{-i}, a_i) + u_i(a_{-i}, a^*) < u_i(a_{-i}, a_i \wedge a^*) + u_i(a_{-i}, a_i \vee a^*)$$

whenever a_i and a^* are not comparable w.r.t \geq
- $u_i(a)$ is supermodular on A (lattice) if for
 $a, a^* \in A$

$$u_i(a) + u_i(a^*) \leq u_i(a \wedge a^*) + u_i(a \vee a^*)$$

Substitute:
 $a = (a_{-i}, a_i)$,
 $a^* = (a_{-i}, a^*_i)$

Submodular Functions

- $u_i(a_{-i}, a_i)$ is submodular on A_i (lattice)
if for $a_i, a_i^* \in A_i$ and $\forall a_{-i} \in A_{-i}$
$$u_i(a_{-i}, a_i) + u_i(a_{-i}, a_i^*) \geq u_i(a_{-i}, a_i \wedge a_i^*) + u_i(a_{-i}, a_i \vee a_i^*)$$
- Alternative definition
 - Let f be set function defined on S , and $X \subseteq Y \subseteq S$. Then f is submodular if $\forall x \in S \setminus Y$
$$f(X \cup \{x\}) - f(X) \geq f(Y \cup \{x\}) - f(Y)$$
- Example
 - Let Q matrix with column set B . For $X \subseteq B$ let $r(X)$ be the rank of matrix formed by X . $r(x)$ is submodular.

Why Sub/Supermodularity?

- Let $f: 2^E \rightarrow \mathbb{R}$ monotone submodular set function.

$$\begin{aligned} & \max_S f(S) \\ & \text{s.t. } |S| \leq k \\ & S \subseteq E \end{aligned}$$

- Greedy algorithm
 - $S^G = \emptyset$
 - while* $|S^G| < k$
 - $e = \text{argmax}_{e \in E} |f(S^G \cup e) - f(S^G)|$
 - $S^G = S^G \cup e$
 - end*
- Theorem: $\frac{f(S^G)}{f(S^*)} \geq 1 - \frac{1}{e}$

Cornuejols, Fisher, Nemhauser “Location of Bank Accounts to Optimize Float: An Analytic Study of Exact and Approximate Algorithms”, Management Science, 1977

Simple examples

- Let $f:R \rightarrow R$ be a convex function and $u_i(a) = f(\prod_{i=1}^{|N|} a_i)$
 - $u_{-i}(a)$ is supermodular
- Let A and B be finite sets and $f(A) = g(|A|)$
 - f supermodular $\Leftrightarrow g$ convex
$$f(A) + f(B) \leq f(A \cup B) + f(A \cap B)$$
 - Example: $g(x) = x^2$

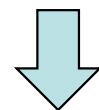
Supermodularity \Rightarrow Increasing differences

- Let A_i lattice, A sublattice of $\times A_i$,
- If $u_i(a)$ is supermodular on A then it has increasing differences on A

take $a'_i \geq a_i$ and $a'_{-i} \geq a_{-i}$ and $x = (a_{-i}, a'_i)$, $y = (a'_{-i}, a_i)$

$$u_i(x) + u_i(y) \leq u_i(x \wedge y) + u_i(x \vee y)$$

$$x \vee y = (a'_{-i}, a'_i) \qquad \qquad x \wedge y = (a_{-i}, a_i)$$



$$u_i(a'_{-i}, a'_i) - u_i(a_{-i}, a_i) \geq u_i(a_{-i}, a'_i) - u_i(a_{-i}, a_i)$$

Partial Ordering of Sublattices

- Let X, Y be nonempty sublattices of E^n

- Partial ordering \leq^p

$$X \leq^p Y \quad \text{if} \quad x \wedge y \in X \text{ and } x \vee y \in Y \quad \forall x \in X, y \in Y$$

- Let X_y be collection of nonempty sublattices of E^n for $y \in Y \subseteq E^m$
 - X_y is ascending on Y if $X_y \leq^p X_w$ for $y \leq w$
- Let X_y be lower/upper contour set on sublattice of E^n
 - X_y is ascending in y

D.M. Topkis, "Equilibrium points in nonzero-sum n-person submodular games", SIAM J. Control and Optimization 17(6), pp.773-787, 1979.

György Dán, <https://people.kth.se/~gyuri>

Topkis's Theorem

- Let D be a lattice (independent of θ , or ascending in θ). If f has increasing differences in (x, θ) and is supermodular in x then

$$x^* = \arg \max_{x \in D} f(x, \theta)$$

is increasing in the strong set order.

D.M. Topkis, "Equilibrium points in nonzero-sum n-person submodular games", SIAM J. Control and Optimization 17(6), pp.773-787, 1979.

Supermodular games

- Strategic game $G = \langle N, (A_i), (u_i) \rangle$ is (strictly) supermodular if
 - A_i is a non-empty sublattice of a Euclidean space
 - u_i has (strictly) increasing differences in (a_{-i}, a_i)
 - u_i is (strictly) supermodular on A_i

Existence of equilibria

- Let $G = \langle N, (A_i), (u_i) \rangle$ be a supermodular game,
 - A_i compact, and
 - u_i upper-semicontinuous in a_i , for each a_{-i} ,then the set of pure strategy NE is nonempty and possesses greatest and least elements.

Upper-semicontinuity:

$$\limsup_{x \rightarrow x_0} f(x) \leq f(x_0)$$

D.M. Topkis, "Equilibrium points in nonzero-sum n-person submodular games", SIAM J. Control and Optimization 17(6), pp.773-787, 1979.

Example – Min-cut game rev.

- Set of actions $A_i = 2^{V_i}$ (power set of V_i)
 - Lattice with respect to inclusion, union, intersection
- $f(X)$ is submodular on A
$$f(S) + f(T) \geq f(S \cap T) + f(S \cup T)$$
$$f(S) + f(T) - f(S \cap T) - f(S \cup T) =$$
$$= c(A(S : T)) + c(A(T : S)) \geq 0$$
$$\text{where } A(X : Y) = \{(i, j) \in E : i \in X, j \in Y\}$$
- $f_i(X)$ is submodular on X_i

D.M. Topkis, "Ordered optimal solutions",
PhD thesis, U. of Stanford, 1968

Convergence to Equilibria

- Let G be a supermodular game and let
 - A_i compact,
 - u_i upper-semicontinuous on $A_i(a_{-i}) \ \forall a_{-i} \in A_i$,
 - (the best response correspondences $B_i(a_{-i})$ have the ascending property)then the best response dynamic converges to a pure Nash equilibrium (starting from least element)
- Similar result holds for submodular games (descending property)

D.M. Topkis, "Equilibrium points in nonzero-sum n-person submodular games", SIAM J. Control and Optimization 17(6), pp.773-787, 1979.

György Dán, <https://people.kth.se/~gyuri>

Super- and submodular games

- Supermodular games
 - Strategic complements
 - Minimum cut game (e.g., choosing activities)
 - Facility location problem
 - Steiner tree in a graph (minimum spanning tree)
- Submodular games
 - Strategic substitutes
- Mixture of submodular and supermodular
 - S-modular

Literature

- D. Fudenberg, J. Tirole, "Game Theory", MIT press, 1991
- N. Nisan, T. Roughgarden, É. Tardos, V.V. Vazirani, "Algorithmic Game Theory", Cambridge University Press, 2007
- D. Monderer, L.S. Shapley, "Potential Games", Games and Economic Behavior vol 14., pp. 124-143, 1996
- R.W. Rosenthal, "A Class of Games Possessing Pure-Strategy Nash Equilibria," vol. 2, Int. J. Game Theory, pp. 65–67, 1973
- C. Daskalakis, P.W. Goldberg, C.H. Papadimitriou, "The complexity of computing a Nash equilibrium", in Proc. of ACM STOC, pp. 71-78, 2006
- D.M. Topkis, "Equilibrium points in nonzero-sum n-person submodular games", SIAM J. Control and Optimization 17(6), pp.773-787, 1979.
- D.M. Topkis, "Supermodularity and complementarity", Princeton Univ. Press., 1998