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Today "s topics

o Efficiency of equilibria
e Potential games
e Super/submodular games




Nash equilibrium vs. Social optimum

e Strategic game G=<N,(A),(u;)>

e Social optimum - best possible outcome

G oarkant gt U =max SWF(u,(a),u,(a),...,uy (a))
N 4

e Social welfare function SWF can be

e Utilitarian SWF=X (no fairness)
e Bernoulli-Nash SWF=17 (proportional fairness)
e Rawls SWF=min (max-min fairness)




Inefficiency of equilibria
e Nash equilibria @™ are in general not social optimum

e Price of Anarchy (pure)
max SWF (u,(a),...,u,y (a))

Q%ECH KONSJ%%,@ P — a.eA ” -
O min SWF(u,(a ),...,u (a )
a

e Price of Stability (pure)

max SWF (u,(a),...,u, (a))
PoS = 44

- max SWF(u, (@)t (@))

\»

e Mixed and Bayes-Nash PoA and PoS exist
e Extension to adversarial setting — Price of Malice




Steiner problem in networks

e Digraph (V,E)
e Edge costs c.=20 veeE

e Set of pairs of vertices N=(s,t).-; ,
e For all (s;,t) t; is reachable from s;
e Set of paths from s; to ¢; is A,
e All possible combinations of paths A=x;_; ,A;

e Construct minimum weight subgraph ° °

. 7 1
min Z c,

acA
eca

e Applications
e Routing in networks 6 4 I
e VLSI design

e NP-hard in general ° - °




Shapley network design game

e Digraph (V,E)
e Edge costs c,20 veeE

e Set of players N
VETENSKAP e Player ieN wants to build a network such that ¢; is
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of® reachable from s;

%“%e%x%? _
e Sets of actions A;
e a,eA,is a path (s,t) in (V,E)

e Constructed network is U;_pa;
e Cost function of player i in the constructed network
cost,(a) = c,/k,

ecaq;

e k,=#of players for which eea,
e Shapley cost sharing mechanism (fair)




First example

e Source and destination the same for all

All flows on this edge
K
1+e¢

PoA =k
e Social optimum?
e Nash equilibria?
e Price of Anarchy vs. Stability?

All flows on this edge
PoS=1




Second example

o |N| =
e Destination the same for all

All flows this way
PoA=PoS =H,

e Social optimum?
e Nash equilibria?




Claim

e Pure strategy equilibria always exist in the
Shapley network design game




Exact potential games

e lLet G=<N,(A,),(u;)> be a finite strategic game
and A=x;_A;.

A function ¥:A—R is an exact potential for G if

W(a—iabi)_l)”(a—i’ai) — ui(a—i9bi)_ui(a—i7ai)
Vae A,Va,,b, € 4

e Agame G=<N,(A;),(u;)> is called an exact
potential game if it admits an exact potential.




An example

e Prisoner’s dilemma

Do not Confess
confess
3o, 0CH KONST e Do not 6,6 0,9
Ext confess
Confess 9,0 1,1

e And its exact potential

0 3

3 4




Weighted potential games

e lLet G=<N,(A,),(u;)> be a finite strategic game
and A=x;_A;.

e A function ¥:A—R is a weighted potential for G if

W(a—iabi)_l//(a—iaai) =W, (ui(a—iabi) _ui(a—iaai))
Vae A,Va,b € 4,w >0

e Agame G=<N,(A;),(u;)> is called a weighted
potential game if it admits a weighted potential.

e Inclusion

e Every exact potential game is a weighted potential
game.




Ordinal potential games

e lLet G=<N,(A,),(u;)> be a finite strategic game
and A=x;_A;.

e A function ¥:A—R is an ordinal potential for G if

!//(a—iabi)_l//(a—iaai) >0 ui(a—iabi)_ui(a—iaai) >0
Vae A,Va, b, e A

e Agame G=<N,(A,),(u;)> is called an ordinal
potential game if it admits an ordinal potential.

e Inclusion

e Every weighted potential game is an ordinal
potential game.




Another example

e Battle of the Sexes

Theatre Sports
Sports 3,2 0,0
Theatre 0,0 2,3

e And its ordinal potential
2 0

0 2




Existence of equilibria

e Let ¥be an ordinal potential for G=<N,(A,),(u;)>. The
equilibrium set of G coincides with that of <N,(A),(¥)>.

That is,
aeAisa NE of G & Ha_a,)= Ha_,a;’) for a,’eA;
If ¥admits a maximum value in A, then G possesses a pure
strategy Nash equilibrium.

e Proof:
y(a_,b)-w(a_,a)>0=u(a;,b)—u(a_,a,)>0
Vae A,Va, b, e A
Consider a €A for which ¥(a) is maximal.
For any a’=(a_,a;’) we have ¥a_,a;)= ¥(a_,a;’) and hence
uf(a.,a)zuya.,a;’)

e Consequence

Every finite ordinal potential game possesses a pure-strategy Nash
equilibrium




Example continued: SND game

e Consider the SND game <N, (A)),(u;)>
e Define for each ecE

Y (a)=c H L

k.=#of players for which eea;

k]
H, :Z_.
=1 J
e Define the function

P(a)=) ¥.(a)

e Claim: ¥(a) is an exact potential for the SND game




Example continued: SND game II

e leta=(a,),-; «, a;/*a; be an alternate path
for player i, and a’=(a_,a;’). Then
VY(a)-Y(a')=u,(a")—u,(a)
e Proof

' ' { v, (a)=v, (a")

eca,eca, orega,e¢a, —>
’ ¢,k \,=c¢c,/k,|,
@)=y (@) —c,/k,
eca,ega, —-
| u;(a')=u,(a)+c,/k,

 [w@)=y.@) +e, [k, + 1)
e¢a,eca, —-
L ui(a') :ui(a)_ce /(ke +1)

e Furthermore
cost(a) <¥(a) < H, cost(a)




Price of stability

e Let G=<N,(A),(u)> be a finite strategic
game with exact potential ¥ such that
cost(a)
C

<W¥(a)< D cost(a)
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Yo for some constants C,D>0. Then PoS<CxD.

e Proof
e Let a*<A be a local maximizer of ¥ = a* is NE
e Let a be a global maximizer of ¥

\

D cost(a) > Y(a) . cost(a")
. D cost(a)>2V¥Y(a)2Y¥Y(a )=
W(a)>W(a) L — . C
(' Cx D cost(a) > cost(a )
LP(a!*)zcos (a) CxDZCOSt(a )

“




Improvement path

e A path in A is a sequence y=(a%al,...) such that
for every k=1 there is a unique player j such
that 4" =(a'',a,) for some g = ¢

2 OCH KONST 8¢ e Initial point of 7 is a’
e 0P .. : :
"I e For finite y last element called terminal point

e A path y=(a%al,...) is an improvement path
w.r.t. game G=<N, (A;),(u;)> if for all k=1
u(ak)>u,(ak1), where player i is the unique
deviator at step k.

e path generated by myopic players
e "Nash” or “asynchronous better reply” dynamics




Finite improvement property

e The strategic game G=<N,(A)),(u;)> has the
finite improvement property (FIP) if every
improvement path y=(a%,al,...) is finite.

e Every finite ordinal potential game has the FIP.

28 OCH KONST %%

LN . Proof
e By definition

0 1
v(a )<y(a)<..
e Since A is finite, the improvement path must be
finite

e In any finite ordinal potential game the
asynchronous better reply dynamic always
converges to a Nash equilibrium




Generalized Ordinal Potential

e Let G=<N,(A,),(u)> be a finite strategic game,
and A=x;_,A;. A function ¥:A—R is a generalized
ordinal potential for G if

ui(a—iabi)_ui(a—iaai) >0= W(a—iabi) _W(a—iaai) >0
Vae A,Va,,b e 4
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Voet® T 1 R
10| 2.0 0 3
B| 20| 01 1 2

e Let G=<N,(A)),(u;)> be a finite strategic game.
G has the FIP property iff G has a generalized
ordinal potential.




Infinite potential games

e A strategic game G=<N,(A;),(u;)> is a bounded
game if (u;);_, are bounded

e Every bounded infinite weighted potential
game possesses an g-equilibrium point for
every >0

e Proof:

e Yis bounded because u; is bounded, hence
Ja'e 4 st. ¥ (a')>sup¥(a)-¢

acA




Approximate finite improvement

e A path y=(a9%al,...) is an e-improvement path for
the strategic game G=<N,(A;),(u;)> if for all k=1
u(ak)>uak1)+¢, where i is the unique deviator
at step k.

e ¢-Nash dynamics

28 OCH KONST %%

Bt

e The strategic game G=<N,(A)),(u;)> has the
approximate FIP property if for Ve>0 every e-
improvement path is finite.

e Every bounded infinite potential game has the
approximate FIP property.




Continuous potential games

e A strategic game G=<N,(A,),(u;)> is
continuous if A; are topological spaces, and u;
are continuous w.r.t A=x;_,A;.

e lLet G=<N,(A,),(u;)> be a continuous exact
potential game with compact action sets.
G possesses a pure strategy Nash-equilibrium.




Construction of the potential

e Let G=<N,(A,),(u;)>, A,cR compact, u;
continuously differentiable and ¥:A—-R.

Then ¥is a potential for G iff ¥is

continuously differentiable and
ou. oY

t=—— VieN

Oa, Oa,

l




Congestion games

e Set of players N={1,...,n}

e Primary factors 7T={1,...,t}

e Action set A={1,...,a;,32"
e Action a,cT

Same for all players!
e Cost of action g, /
cost,(a_,a;,) =D ¢ (k,),

Teq;

where k.= # of players using factor t in a




Congestion games

e Every congestion game is an exact potential
game with potential

(@)=Y c(y)

rel y=I

VETENSKAP
9 OCH KONST 2%

Bt

e Every finite potential game is isomorphic to
a congestion game.

R.W. Rosenthal, “A Class of Games Possessing Pure-Strategy Nash
Equilibria,” vol. 2, Int. J. Game Theory, pp. 65-67, 1973

D. Monderer, L.S. Shapley, “Potential Games”, Games and Economic
Behavior vol. 14., pp. 124-143, 1996




Examples of congestion games

e Selfish routing games
e Non-atomic

e Multipath allowed

e Atomic non-weighted
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o e Single path only

é&‘“%&x%?
e Same amount of traffic for all players

e Market sharing games

e Load balancing games




Minimum cut problem

e Network of nodes VAs} At}, |V|=m
e Capacity c(w,z)>0 for every pair of nodes

(w,z) eV U{stuitixV Uis} Uit}

o Let XV then X A{s} is a cut
e Cut capacity

f(X)= 2, 2cmz)

weXuUs zg X Us

o X"ud{s} is minimum cut if X*cV and
fX)<fIX) VXV




Minimum cut problem

- 3

e Min-cut: {1,3,s}




Minimum cut game

o Set of players N, |N|=n
¢ V=Ui=1..nvi/ V,-ﬂVJ-=@fOI" \7/’.”4'.]./ |Vi|=mi
e Action set A,={X;:X,cV}

e (Capacity function c,(w,z) (player specific)
e Objective of playeri
min f;(X) = f,(X; (Y X))

e Claim: The minimum cut game has a pure
strategy Nash equilibrium.




Minimum cut game

¢ N={1/2}/ V1={1-1/5/7}/ V2={2/3/4/6}

e Min-cut: {1,3,s}
o NE: X;={1}, X,={3}




Lattices and Sublattices

o A partially ordered set (A,>) is a lattice if
e fora,beA JceA s.t. avb=c (cza, c=b, join)
o fora,beA JceA s.t. anb=c (a>c, b>c, meet)

VETENSKAP

29 OCH KONST 9%
B ot
BAEOEG

e A sublattice of a lattice L is a subset of L and
itself a lattice with respect to the same A
and v operators.

e If Ais a nonempty compact sublattice of R™,
it has a greatest and a least element.

e the sublattice A is bounded

e componentwise partial ordering
G. Birkhoff, “Lattice theory”, American




Increasing Differences

e Let X, T be posets, ScXXT, S;={x|(x,t)eS}

e u,a) has increasing differences in (a,a,) if for (a,a;) €S such
that a’2a; and a’;2a;

ui(azi?a'j)_ui(ai Da'j) 2 ui(aziaaj)_ui(ai :aj)
Let A, be poset, AcXA,

e u,(a) has increasing differences on A if it has increasing
differences in all (a;a;) for i#j and fixed a_;

VETENSKAP
9 OCH KONST 2% [

Bt

e Twice differentiable T—am]
aa gi >0 Vk,I P et il A D RSP B
a.0d QN ! : - :

e Example & )

e f:R—>R convex
N
u,(a)= f(I1Ya,)

e Strictly increasing ° 2 4 6 8 10




Supermodular Functions

e u,a_a;) is supermodular on A; (lattice)
if for a,a”. €A, and va_eA,

ul.(a_l.,al.)+ul.(a_i,a;) <u,/a_,a, Aa;)+ui(a_i,ai va:)

&

R ¢ u(a,a,) is strictly supermodular on A,
* e if for a,a”;€A; and va_eA_;

ui(a_i,ai)+ui(a_i,a;) <u,/a_,a, Aa;)+ui(a_i,ai va:)

whenever a; and a*; are not comparable w.r.t >

e u,(a)is supermodular on A (lattice) if for
a,a eA

Substitute:

a=(a_,a,),
a’=(a_, a")

u(a)+u(a)<u(ana )+u(ava)




Submodular Functions

e u,a_a;) is submodular on A; (lattice)
if for a,a”. €A, and va_eA,

ul.(a_l.,al.)+ul.(a_i,a;) >u.(a_,,a, Aa;)+ui(a_i,ai va:)

3% OCH KONST &% e Alternative definition

Vo o0 . .
X e Let f bet set function defined on S, and
XcYcS. Then f is submodular if vxeS\Y

JXOixh) - f(X)2 fYuixp) - f(Y)
e Example

e Let Q matrix with column set B. For XcB let
r(X) be the rank of matrix formed by X. r(x)
is submodular.




Why Sub/Supermodularity?

e Let f:28 - R monotone submodular set function.
max f(S)
s.t. |S| <k
SCE

VETENSKAP
9 OCH KONST 2%

Ro, o e Greedy algorithm

Q%‘X
° SG — @

« while |S¢| <k
. e = argmax,cg|f(SC Ue) — F(S9)]

. S6=SGuye
e end
G
e Theorem: s )2 1-1
f(8*) e

Cornuejols, Fisher, Nemhauser “Location of Bank Accounts to Optimize Float: An Analytic
Study of Exact and Approximate Algorithms”, Management Science, 1977




Simple examples

e Let f\R—R be a convex function and
ui(a) = f(Hﬂaz)

e u_i(a) is supermodular

KTH

LYY
% VETENSKAP

S 00H rowsT 2 e Let A and B be finite sets and f(A)=g(|A|)

"R e fsupermodular < g convex

J(D+f(B)< f(AVB)+ f(ANB)

e Example: g(x)=x2




Supermodularity =

Increasing differences

e Let A, lattice, A sublattice of XA;

e If uy(a) is supermodular on A then it has
increasing differences on A

take a’>a; and a’>a_; and x=(a_, a’;), y=(a’, a;)
w;(X) +u;(y) Su(x Ay)+u(x v y)

xvy:(a'_i,a;) x/\yz(a_l.,al.)

ui(a—iﬂai)_ui(a—iaai) 2 ui(a—iaai)_ui(a—iaai)




Partial Ordering of Sublattices

e Let X,Y be nonempty sublattices of E”

e Partial ordering <

XY if xAyeXandxvyeY VxelX,yeY

VETENSKAP

9 OCH KONST 2% X Y
Bt

Let X, be collection of nonempty sublattices of E” for
yeYcEm

e X, is ascending on Y if X <X, for y<w

Let X, be lower/upper contour set on sublattice of £
e X, is ascending in y

D.M. Topkis, “"Equilibrium points in nonzero-sum n-
person submodular games”, SIAM J. Control and




Topkis’s Theorem

e Let D be a lattice (independent of 0, or
ascending in 0). If f has increasing
differences in (x,60) and is supermodular in x
then

x =argmax f(x,0)

xeD

is increasing in the strong set order.

D.M. Topkis, “"Equilibrium points in nonzero-sum n-
person submodular games”, SIAM J. Control and
Optimization 17(6), pp.773-787, 1979.




Supermodular games

e Strategic game G=<N,(A),(u;)> is (strictly)
supermodular if
e A, is a non-empty sublattice of a Euclidean space
e u; has (strictly) increasing differences in (a_,a;)

LYY
% VETENSKAP

e e u;is (strictly) supermodular on A,

Bt




Existence of equilibria

e Let G=<N,(A,),(u)> be a supermodular game,
e A, compact, and
e U; upper-semicontinuous in a; for each a_,
then the set of pure strategy NE is nonempty and

2 OCH KoNST 8% possesses greatest and least elements.

Bt

Upper-semicontinuity:

. D.M. Topkis, “Equilibrium points in nonzero-sum n-
< /

hmsup f(x) - f(xo) person submodular games”, SIAM J. Control and

Optimization 17(6), pp.773-787, 1979.

x-)xO




Example - Min-cut game rev.

o Set of actions 4, =2" (power set of V)
e Lattice with respect to inclusion, union, intersection

e f(X) is submodular on A
SO+ M) 2f(SNT)+ f(SVT)
SO+ fT)-f(SENT)-f(SVT) =
= c(A(S:T)) +c(A(T:8)) =0
where A(X :Y)={(i,j)e E:ie X,jeY}

e fi(X) is submodular on X;

D.M. Topkis, “"Ordered optimal solutions”,
PhD thesis, U. of Stanford, 1968




Convergence to Equilibria

e Let G be a supermodular game and let
e A, compact,
e u; upper-semicontinuous on A,(a_;) Vva_eA;

VETENSKAP

uocH FonsT S¢ e (the best response correspondences B,(a.;) have the
TSwS® ascending property)

then the best response dynamic converges to
a pure Nash equilibrium (starting from least
element)

e Similar result holds for submodular games
(descending property)

D.M. Topkis, “Equilibrium points in nonzero-sum n-
person submodular games”, SIAM J. Control and




Super- and submodular games

e Supermodular games
e Strategic complements
e Minimum cut game (e.g., choosing activities)
e Facility location problem

s OCH KONST 5% e Steiner tree in a graph (minimum spanning tree)

Bt

e Submodular games
e Strategic substitutes

e Mixture of submodular and supermodular
e S-modular
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