

Computational Game Theory

Lecture 4

P2/2025

György Dán

Division of Network and Systems Engineering

Today's Topics

- Approximate equilibria
- Refinements of the Nash Equilibrium
- Correlated equilibrium
- Games with incomplete information (Bayesian)

Equilibria cont'd

- Find the pure NE of the game.

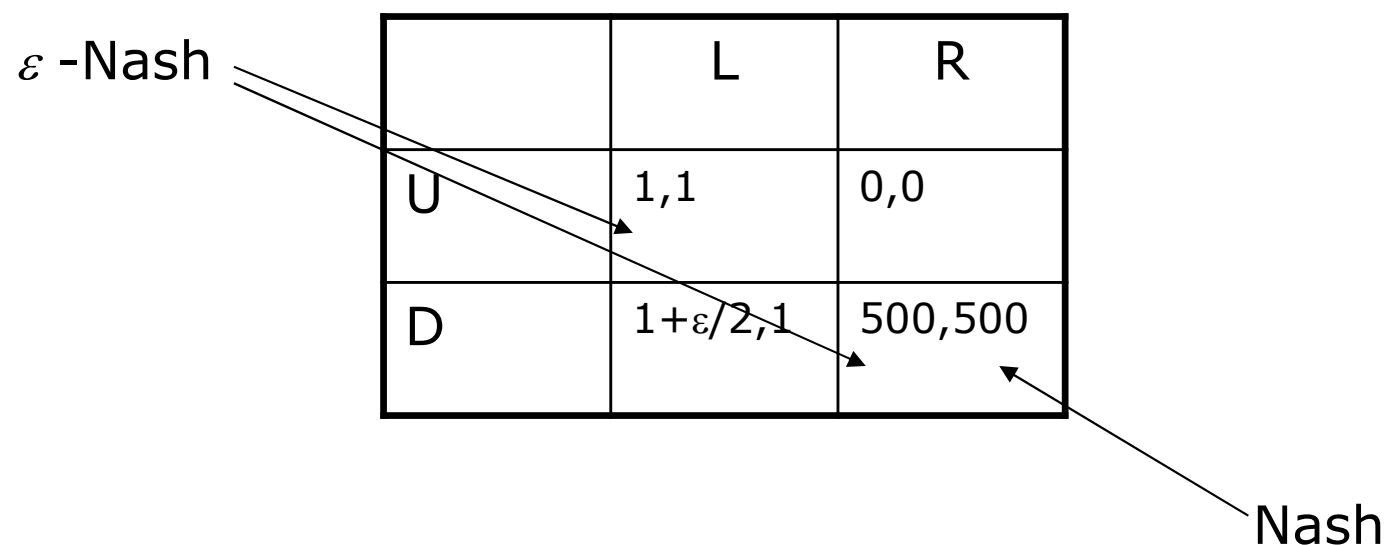
	L	R
T	$-\varepsilon/2, \varepsilon/2$	0,0
B	0,0	-1,1

ε -Nash equilibrium

- In a strategic game $G = \langle N, (A_i), (u_i) \rangle$ a mixed strategy α is an ε -Nash equilibrium ($\varepsilon > 0$) if
 - $u_i(\alpha_{-i}, \alpha_i) \geq u_i(\alpha_{-i}, \alpha'_i) - \varepsilon$ for $i \in N$, $\alpha'_i \in \Delta(A_i)$
- Every finite strategic game has an ε -Nash equilibrium
 - Every NE is surrounded by ε -Nash equilibria for $\varepsilon > 0$
 - The contrary is not true!
- Convenient from a computational point of view
 - Floating point precision limits numerical accuracy

Example

- Find the Nash equilibria and the ε -Nash equilibria



- Payoff can be far from the NE payoff
- Can be unlikely to arise in play

Wilson's theorem

- Let G be a *regular* and *quasi-strong* finite strategic game. Then the number of its equilibria is finite and odd.
 - Based on the topology of the solution graph for the logarithmic game
- Almost all finite games are quasi-strong.
 - The set of extra-weak games is a set of measure zero in the set of strategic games of a particular size.
 - within the set of games that have at least one NE with the same support
- Almost all finite games are regular.

- *Theorem:* In "almost all" finite strategic games, the number of equilibrium points is *finite* and *odd*.

- R. Wilson, "Computing Equilibria in N-person Games," SIAM Journal of Applied Mathematics, 21(1), pp. 80-87, 1971
- J.C. Harsányi, "Oddness of the number of equilibrium points: A new proof", International Journal of Game Theory, 2(1), pp. 235-250, 1973

Slightly modified example

- Consider the following games

	L	R
T	1,1	0,0
B	0,0	0,0

	L	R
T	1,1	0,0
B	0,0	$-\eta, -\eta$

- What happens with the NE?

Robustness

- Consider a game $G = \langle N, (A_i), (u_i) \rangle$
 - Assume that it has some NE
- What if u_i is inaccurate?
 - Inaccurate modeling assumption
 - The payoffs are not common knowledge
- How and when does inaccuracy influence the equilibria?

Proximity of Games

- Distance between payoff vectors (u_i) and (\tilde{u}_i)

$$D(u, \tilde{u}) = \max_{i \in N, a \in A} |u_i(a) - \tilde{u}_i(a)|$$

- Distance between mixed strategy profiles (α_i) and $(\tilde{\alpha}_i)$

$$d(\alpha, \tilde{\alpha}) = \max_{i \in N, a \in A} |\alpha_i(a) - \tilde{\alpha}_i(a)|$$

Essential (Robust) Games

- Let G be strategic game $\langle N, (A_i), (u_i) \rangle$. A Nash equilibrium (α_i) of G is **essential** (or robust) if

$$\forall \varepsilon > 0 \exists \eta > 0 \text{ s.t. if } D(u, \tilde{u}) < \eta \rightarrow d(\alpha, \tilde{\alpha}) < \varepsilon$$

where $(\tilde{\alpha}_i)$ is a NE of the strategic game $\tilde{G} = \langle N, (A_i), (\tilde{u}_i) \rangle$

- Intuition
There is a nearby Nash equilibrium for nearby games

Example revisited

- Is this game essential?

	L	R
T	1,1	0,0
B	0,0	0,0

$$\text{NE} = (T, L), (R, B)$$

	L	R
T	1,1	0,0
B	0,0	$-\eta, -\eta$

- Are all games essential?

Essential Games

- Almost all finite strategic games are essential
- Proof idea
 - Essential fixed point theorem (Fort)
 - Compact metric space Σ with distance d
 - Continuous mapping $f: \Sigma \rightarrow \Sigma$
 - σ^* essential fixed point of f if $\forall \varepsilon > 0 \exists \eta > 0$ s.t.
$$d(f, \tilde{f}) = \max_{\sigma \in \Sigma} d(f(\sigma), \tilde{f}(\sigma)) < \eta \rightarrow \exists \tilde{\sigma}^* \text{ s.t. } d(\sigma^*, \tilde{\sigma}^*) < \varepsilon$$
 - Essential mapping: all fixed points essential
 - Set of essential mappings is dense on the set of continuous mappings
 - Identify every game with a corresponding mapping
 - Nash mapping
 - Apply Fort's theorem

M. K. Fort, "Essential and non essential fixed points", Amer. J. Math. vol. 72, pp. 315-322, 1950

W.T. Wu and J.H. Jiang, "Essential equilibrium points of n-person non-cooperative games", Scientia Sinica vol. 11, pp. 1307-1322, 1962

(Trembling hand) Perfect equilibrium

- Find the Nash equilibria

	L	C	R
T	0,0	0,0	0,0
M	0,0	1,1	2,0
B	0,0	0,2	2,2

Nash eq.

- Some NE are “illogical”

R. Selten, “Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games”, International Journal of Game Theory, 4(1), pp. 25-55, 1975

Perfect equilibrium

- A totally mixed strategy in a strategic game $\langle N, (A_i), (u_i) \rangle$ is a mixed strategy α such that $\alpha_i(a_i) > 0$ for $a_i \in A_i$
- ε -perfect equilibrium of a strategic game $\langle N, (A_i), (u_i) \rangle$ is a totally mixed strategy α such that
 - if $U_i(\alpha_{-i}, e(a'_i)) < U_i(\alpha_{-i}, e(a_i))$ then $\alpha_i(a'_i) < \varepsilon$ for all $a_i \in A_i, a'_i \in A_i$

- A perfect equilibrium of a strategic game $\langle N, (A_i), (u_i) \rangle$ is a mixed strategy α iff there exist sequences $(\varepsilon_k)_{k=1}^{\infty}$ and $(\alpha^k)_{k=1}^{\infty}$ s.t.

$$\varepsilon_k > 0 \quad \text{and} \quad \lim_{k \rightarrow \infty} \varepsilon_k = 0$$

α^k are ε - perfect equilibria

$$\lim_{k \rightarrow \infty} \alpha_i^k(a_i) = \alpha_i(a_i) \quad \forall i, \forall a_i \in A_i$$

→ α_i is a best response to α_{-i}^k

Example

- Find the Nash equilibria and the perfect equilibria

	L	C	R
T	0,0	0,0	0,0
M	0,0	1,1	2,0
B	0,0	0,2	2,2

Perfect NE

Properties of perfect equilibria

- Every perfect equilibrium is a Nash equilibrium
 - Follows from the continuity of $u_i(\alpha)$ in α
- A strategy profile in a finite two-player strategic game is a perfect equilibrium iff it is a mixed strategy NE and the strategy of neither player is weakly dominated.
 - Not true for $|N| > 2$
- Every finite strategic game has a perfect equilibrium
 - Every game has an ε -perfect equilibrium
 - The NE are in a compact subset of a Euclidean space
 - Sequence of NE has convergent subsequence
 - Bolzano-Weierstrass theorem
 - Limit of suitable subsequence is a perfect equilibrium

Perfect equilibrium example

- Find the Nash equilibria and the perfect equilibria

	L	C	R
T	1,1	0,0	-9,-9
M	0,0	0,0	-7,-7
B	-9,-9	-7,-7	-7,-7

Perfect NE

Nash eq.

$$\alpha_1^\varepsilon(T) = \varepsilon, \alpha_1^\varepsilon(M) = 1 - 2\varepsilon, \alpha_1^\varepsilon(B) = \varepsilon$$

$$\alpha_2^\varepsilon(L) = \varepsilon, \alpha_2^\varepsilon(C) = 1 - 2\varepsilon, \alpha_2^\varepsilon(R) = \varepsilon$$

$$U_1(\alpha_2^\varepsilon, T) = -8\varepsilon, U_1(\alpha_2^\varepsilon, M) = -7\varepsilon, U_1(\alpha_2^\varepsilon, B) = -7 - 2\varepsilon$$

R. B. Myerson, "Refinements of the Nash equilibrium concept," International Journal of Game Theory, 7(2) pp. 133-154, 1978.

Proper equilibrium

- ε -proper equilibrium of a strategic game $\langle N, (A_i), (u_i) \rangle$ is a totally mixed strategy α such that
 - if $u_i(\alpha_{-i}, e(a'_i)) < u_i(\alpha_{-i}, e(a_i))$ then $\alpha_i(a'_i) < \varepsilon \alpha_i(a_i)$ for all $a_i \in A_i, a'_i \in A_i$
- A proper equilibrium of a strategic game $\langle N, (A_i), (u_i) \rangle$ is a mixed strategy α iff there exist sequences $(\varepsilon_k)_{k=1}^{\infty}$ and $(\alpha^k)_{k=1}^{\infty}$ such that

$$\varepsilon_k > 0 \quad \text{and} \quad \lim_{k \rightarrow \infty} \varepsilon_k = 0$$

α^k are ε_k – proper equilibria

$$\lim_{k \rightarrow \infty} \alpha_i^k(a_i) = \alpha_i(a_i) \quad \forall i, \forall a_i \in A_i$$

➡ α_i is a best response to α_{-i}^k

Example revisited

- Find the proper equilibria

Proper NE

	L	C	R
T	1,1	0,0	-9,-9
M	0,0	0,0	-7,-7
B	-9,-9	-7,-7	-7,-7

Perfect NE

Properties of proper equilibria

- Every proper equilibrium is a perfect equilibrium
 - ε -proper equilibrium is ε -perfect
 - Follows from the continuity of $u_i(\alpha)$ in α
- Every finite strategic game has a proper equilibrium
 - There is always a mixed strategy NE that is a proper equilibrium
 - Proof by Kakutani's theorem
 - Same convergence argument as for perfect equilibrium
- Proper equilibria \subseteq Perfect equilibria \subseteq Nash equilibria
 - the inclusion can be strict

R. B. Myerson, "Refinements of the Nash equilibrium concept," International Journal of Game Theory, 7(2) pp. 133-154, 1978.

Correlated equilibria

- Recall the Nash equilibria of BoS

	Sports	Theatre
Sports	3,2	0,0
Theatre	0,0	2,3

- Payoff profiles are: (3,2),(2,3),(1.2,1.2)
- Assume that there is additional information available
 - r.v. $\Omega \in \{0,1\}$, $\pi(0)=\pi(1)=1/2$
 - Players 1 and 2 observe ω
 - choose action depending on the realization of the r.v.
 - Payoff profile (2.5,2.5) is possible

Another example

- Consider a finite strategic game
 $\langle \{1,2\}, (\{a_1, b_1\}, \{a_2, b_2\}), (u_i) \rangle$
 - r.v. $\omega \in \{0,1,2\}$, $\pi(0) = 1 - \zeta - \eta$, $\pi(1) = \eta$, $\pi(2) = \zeta$
 - Player 1 observes whether $\omega = 0$ or $\omega \in \{1,2\}$
 - Player 2 observes whether $\omega \in \{0,1\}$ or $\omega = 2$
- Assume player 2's strategy is
 - a_2 if $\omega \in \{0,1\}$
 - b_2 if $\omega = 2$
- What is player 1's optimal strategy?
 - If $\omega = 0$
 - chose action optimal for a_2
 - If $\omega \in \{1,2\}$
 - chose action optimal for a_2 with probability $\eta/(\eta + \zeta)$
 - chose action optimal for b_2 with probability $\zeta/(\eta + \zeta)$

Correlated equilibrium

- Correlated equilibrium of a strategic game $\langle N, (A_i), (u_i) \rangle$ consists of
 - a finite probability space (Ω, π)
 - for each player $i \in N$ a partition P_i of Ω (information partition)
 - for each player $i \in N$ a function $\sigma_i: \Omega \rightarrow A_i$ for which $\sigma_i(\omega) = \sigma_i(\omega')$ whenever $\omega \in P_i$ and $\omega' \in P_i$ for some $P_i \in P_i$ (strategy)such that
 - for every $i \in N$ and every function $\tau_i: \Omega \rightarrow A_i$ for which $\tau_i(\omega) = \tau_i(\omega')$ whenever $\omega \in P_i$ and $\omega' \in P_i$ for some $P_i \in P_i$ we have
$$\sum_{\omega \in \Omega} \pi(\omega) u_i(\sigma_{-i}(\omega), \sigma_i(\omega)) \geq \sum_{\omega \in \Omega} \pi(\omega) u_i(\sigma_{-i}(\omega), \tau_i(\omega))$$
- Player i 's strategy is optimal given the other players' strategies and player i 's knowledge about ω
- Can be extended to asymmetric beliefs (π_i)

R.J. Aumann, "Subjectivity and Correlation in Randomized Strategies",
in Journal of Math. Econ, vol 1 pp.67-96, 1974

Example revisited

- Correlated equilibrium for BoS
 - Set of states
 - r.v. $\Omega \in \{0,1\}$, $\pi(0)=\pi(1)=1/2$
 - Information partitions
 - $P_1=P_2=\{\{0\},\{1\}\}$
 - Strategies
 - $\sigma_i(0)='Theatre'$
 - $\sigma_i(1)='Sports'$
 - Payoff profile (2.5,2.5) is possible
- Needs some interpretation
 - Tossing coins?

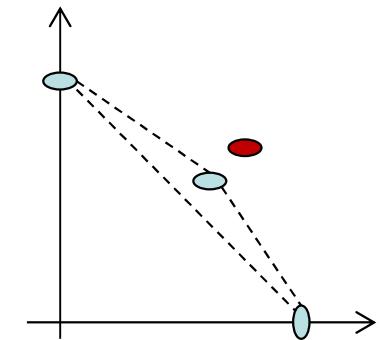
	Sports	Theatre
Sports	3,2	0,0
Theatre	0,0	2,3

Properties of correlated equilibria

- For every mixed strategy NE of a finite strategic game $\langle N, (A_i), (u_i) \rangle$ there is a correlated equilibrium $\langle (\Omega, \pi), (P_i), (\sigma_i) \rangle$ in which for each player $i \in N$ the distribution on A_i induced by σ_i is α_i .
 - take $\Omega = A$, $\pi(a) = \alpha(a)$, $P_i(b_i) = \{a \in A \mid a_i = b_i\}$
 - $\sigma_i(a) = a_i$
- Let $G = \langle N, (A_i), (u_i) \rangle$ be a strategic game. Any convex combination of correlated equilibrium payoff profiles of G is a correlated equilibrium payoff profile of G .
 - $\Omega = U_k \Omega^k$, $P_i = U_k P_i^k$
 - for $\omega \in \Omega^k$ let $\pi(\omega) = \lambda^k \pi^k(\omega)$ and $\sigma_i(\omega) = \sigma_i^k(\omega)$
 - then
$$u_i = \sum_{k=1}^K \lambda^k u_i^k$$
 - Play the k^{th} correlated equilibrium with probability λ^k

Example

	L	R
T	6,6	2,7
B	7,2	0,0



- NE payoff profiles $(7,2), (2,7), (14/3, 14/3)$
- Payoff outside of the convex hull of these payoffs
 - Set of states
 - r.v. $\Omega \in \{x, y, z\}$, $\pi(x) = \pi(y) = \pi(z) = 1/3$
 - Information partitions
 - $P_1 = \{\{x\}, \{y, z\}\}$, $P_2 = \{\{x, y\}, \{z\}\}$
 - Strategies
 - $\sigma_1(x) = B, \sigma_1(y) = \sigma_1(z) = T$
 - $\sigma_2(x) = \sigma_2(y) = L, \sigma_2(z) = R$
- The strategies are optimal with respect to each other
 - payoff profile $(5,5)$

	L	R
T	y	z
B	x	-

Construction of correlated equilibria

- Let $G = \langle N, (A_i), (u_i) \rangle$ be a finite strategic game. Every probability distribution over outcomes that can be obtained in a correlated equilibrium of G can be obtained in a correlated equilibrium in which
 - the set of states is A and
 - for each $i \in N$ player i 's information partition $P_i(b_i)$ consists of all sets of the form $\{a \in A \mid a_i = b_i\}$ for some action $b_i \in A_i$.
- It is enough to consider correlated equilibria in which $\Omega = A$.

Games with incomplete information (Bayesian games)

- Strategic game with complete information
 - Players know each others' preferences
 - Players know what the others know
 - Rationalizability
- Strategic game with incomplete information
 - Players are not certain of the properties of other players
 - Players do not have to know what the others know
 - Uncertainty modeled by the "state of nature"
 - Prior belief of each player
 - Each player observes a signal
 - Determines the type of the player
 - Posterior belief of each player about the state of nature
 - Calculated using Bayes' theorem

Bayesian game

- A Bayesian game consists of
 - a finite set N of players
 - a finite set Ω of statesand for each player i
 - a set A_i of actions
 - a finite set T_i and a function $\tau_i: \Omega \rightarrow T_i$ (set of signals and signal function)
 - a probability measure p_i on Ω such that $p_i(\tau_i^{-1}(t_i)) > 0$ for all $t_i \in T_i$ (prior belief)
 - a preference relation \succ_i on the set of probability measures over $A \times \Omega$, where $A = \prod_{j \in N} A_j$ (preference relation)
- The preference relation is taken over lotteries

John C. Harsányi "Games with incomplete information played by Bayesian players,"
Management Science, vol. 14, pp. 159-182, pp. 320-334, pp. 486-502, 1967-1968

Simple Examples

- Example 1
 - Let Ω be the set of states of nature
 - $\tau_i(\omega) = \omega$
 - Complete information
- Example 2
 - Let $\Omega = \times_{i \in N} T_i$ be the set of states of nature
 - $\tau_i(\omega) = \omega_i$
 - No information about other players

Another example

- Consider a Bayesian game
 - $N=\{1,2\}$
 - $\Omega=\{\omega_1, \omega_2, \omega_3\}$, $p_i(\omega_j)=1/3$
 - Signal functions
 - $\tau_1(\omega_1)=\tau_1(\omega_2)=t'_1$, $\tau_1(\omega_3)=t''_1$
 - $\tau_2(\omega_1)=t'_2$, $\tau_2(\omega_2)=\tau_2(\omega_3)=t''_2$
 - Preference relations
 - $(b, \omega_j) \succ_1 (c, \omega_j)$ for $j=1,2$; $(c, \omega_3) \succ_1 (b, \omega_3)$ for some b, c
 - Player 2 indifferent for all (a, ω)
- Knowledge about each other depends on the state
 - In state ω_1
 - Player 2 knows that Player 1 prefers b to c
 - Player 1 does not know
 - if player 2 knows that she prefers b to c
 - if player 2 believes that she prefers c to b
 - In state ω_2
 - Player 2 does not know if player 1 prefers b to c or c to b

BoS with uncertainty

	Sports	Theatre
Sports	2,1	0,0
Theatre	0,0	1,2

	Sports	Theatre
Sports	2,0	0,2
Theatre	0,1	1,0

- $\Omega = \{\omega_a, \omega_b\}$, $\tau_2(\omega) = \omega$, $\tau_1(\omega) = \Omega$
- $p_1(\omega) = 0.5$

Nash equilibrium of a Bayesian game (agent form)

- A Nash equilibrium of a Bayesian game $\langle N, \Omega, (A_i), (T_i), (\tau_i), (p_i), (\geq_i) \rangle$ is a Nash equilibrium of the strategic game defined as
 - The set of players is (i, t_i) for all $i \in N$, $t_i \in T_i$
 - The set of actions of each player (i, t_i) is A_i
 - The preference relation \geq_{i, t_i} of player (i, t_i) is defined as

$$a^* \geq_{i, t_i} b^* \Leftrightarrow L_i(a^*, t_i) \geq_i L_i(b^*, t_i),$$

where $L_i(a^*, t_i)$ is the lottery over $A \times \Omega$ that assigns the posterior probability given t_i to every $((a^*(j, \tau_j(\omega)))_{j \in N}, \omega)$

The posterior probability is

$$\begin{cases} p_i(\omega) / p_i(\tau^{-1}(t_i)) & \text{if } \omega \in \tau^{-1}(t_i) \\ 0 & \text{otherwise} \end{cases}$$

Bayesian Nash Equilibrium

- A simplified way of thinking of this
 - Expected utility of strategy in Bayesian game for given strategy profile $s_{-i}(t_{-i})$ of other players

$$E[u_i(s_i | s_{-i}, t_i)] = \sum_{t_{-i} \in T_{-i}} u_i(s_i, s_{-i}(t_{-i}), t_i, t_{-i}) p(t_{-i} | t_i)$$

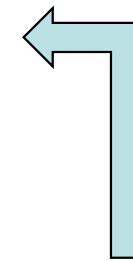
- BNE is NE of the Bayesian game

$$E[u_i(s_i | s_{-i}, t_i)] \geq E[u_i(s_i' | s_{-i}, t_i)] \quad \forall s_i(t_i), \forall t_i$$

Bayesian BoS Continued

- Induced normal form (expected payoffs)
- Strategies of Player 2
 - (S,S) , (S,T) , (T,S) , (T,T)

	SS	ST	TS	TT
Sports	2,0.5	1,1.5	1,0	0,1
Theatre	0,0.5	0.5,0	0.5,1.5	1,1



	Sports	Theatre
Sports	2,1	0,0
Theatre	0,0	1,2

	Sports	Theatre
Sports	2,0	0,2
Theatre	0,1	1,0

Literature

- M.Osborne, A Rubinstein, "A course in game theory", MIT press, 1994
- D. Fudenberg, J. Tirole, "Game Theory", MIT press, 1991
- M. K. Fort, "Essential and non essential fixed points", Amer. J. Math. vol. 72, pp. 315-322, 1950
- W.T. Wu and J.H. Jiang, "Essential equilibrium points of n-person non-cooperative games", Scientia Sinica vol. 11, pp. 1307-1322, 1962
- R. Wilson, "Computing Equilibria in N-person Games," SIAM Journal of Applied Mathematics, 21(1), pp. 80-87, 1971
- J.C. Harsányi, "Oddness of the number of equilibrium points: A new proof", International Journal of Game Theory, 2(1), pp. 235-250, 1973
- R. Selten, "Reexamination of the Perfectness Concept for Equilibrium Points in Extensive Games", International Journal of Game Theory, 4(1), pp. 25-55, 1975
- R. B. Myerson, "Refinements of the Nash equilibrium concept," International Journal of Game Theory, 7(2) pp. 133-154, 1978.

