

Computational Game Theory

Lecture 2

P2/2025

György Dán

Division of Network and Systems Engineering

Today's Topics

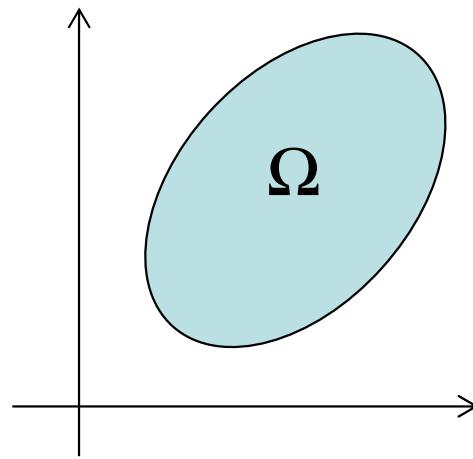
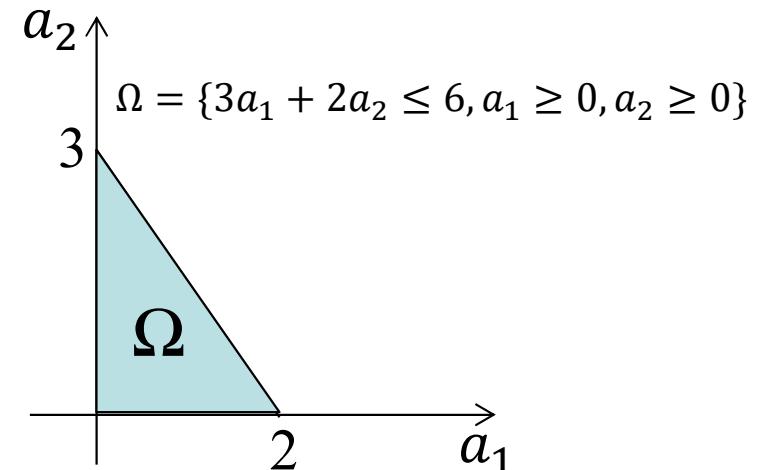
- Pure NE existence proof(s)
- Mixed strategies
 - Actions of equal values
 - Nash's theorem
- Zero-sum games
 - Maxminimization

Existence of Nash equilibria

- The strategic game $\langle N, (A_i), (\geq_i) \rangle$ has a Nash equilibrium if for all $i \in N$
 - the set A_i of actions of player i is a nonempty compact convex subset of a Euclidean space
- and the preference relation \geq_i is
 - continuous
 - convex on A_i .
- Proof
 - based on Kakutani's fixed point theorem
(*Debreu '52, Glicksberg '52, Fan '52*)

Existence for coupled constraints

- Let Ω be a coupled constraint set, convex, closed, bounded. Let $u_i(a_i, a_{-i})$ be concave in a_i for each a_{-i} and continuous in a . Then there exists a pure NE.



J.B. Rosen, “Existence and uniqueness of equilibrium points for concave N-person games“, *Econometrica*, 33(3), Jul. 1965

More existence results

- The strategic game $\langle N, (A_i), (u_i) \rangle$ has a Nash equilibrium if for all $i \in N$
 - the set A_i of actions of player i is a nonempty compact convex subset of a finite dimensional Euclidean space and every payoff function u_i
 - is quasi-concave in a_i .
 - is upper semi-continuous in $a \in A$
$$\limsup_{n \rightarrow \infty} \sum_{i=1}^N u_i(a^n) \leq \sum_{i=1}^N u_i(a), \quad a^n \rightarrow a$$
 - has a continuous maximum

P. Dasgupta and E. Maskin, "The Existence of Equilibrium in Discontinuous Economic Games, I: Theory," *Review of Economic Studies*, 53(1), pp. 1-26, 1986

Notes on the existence results

- The equilibrium is not necessarily unique
 - Which equilibrium is an appropriate solution?
- The existence is not guaranteed for finite games!
 - For none of the examples considered so far...
- Best response functions could be used to find equilibria
 - Not very efficient

What if no pure NE?

- Matching pennies

	Head	Tail
Head	1,-1	-1,1
Tail	-1,1	1,-1

Games with mixed strategies

- Pure strategy Nash equilibria do not always exist
 - Certain classes of games (later)
 - special structure
 - specific utility function
- Extension of the model of a game
 - Allow players to randomize between actions
- Von Neumann – Morgenstern assumption
 - Utility of a randomized strategy = expected value of the utilities of the action profiles

Axioms of preference

Let $A \subseteq \mathbb{R}^n$, and $\Delta(A)$ the set of probability distributions over A .

The binary relation \succ is a VNM *rational* preference relation over $\Delta(A)$

- (i) Complete
 $\alpha, \beta \in \Delta(A)$ then $\alpha \succ \beta$ or $\beta \succ \alpha$ or $\alpha \sim \beta$
- (ii) Transitive
 $\alpha, \beta, \gamma \in \Delta(A)$ then if $\alpha \succ \beta$ and $\beta \succ \gamma$ then $\alpha \succ \gamma$
- (iii) Continuous
 $\alpha, \beta, \gamma \in \Delta(A)$ s.t. $\alpha \succ \beta \succ \gamma$, then $\exists a \in [0,1]$ s.t.
 $a\alpha + (1-a)\gamma \sim \beta$
- (iv) Independent
 $\alpha, \beta, \gamma \in \Delta(A)$ and $a \in (0,1]$ then
 $\alpha \succ \beta \Leftrightarrow a\alpha + (1-a)\gamma \succ a\beta + (1-a)\gamma$

J. von Neumann, O. Morgenstern, "Theory of Games and Economic Behavior," Princeton University Press, 1944

von Neumann-Morgenstern theorem

- Let $\Delta(A)$ be a convex subset of a linear space. Let \succ be a binary relation on $\Delta(A)$. Then \succ satisfies axioms (1),(2),(3),(4) iff. $\exists U: \Delta(A) \rightarrow \mathbb{R}$ such that

- U represents \succ
 $\alpha, \beta \in \Delta(A)$ $U(\alpha) > U(\beta) \Leftrightarrow \alpha \succ \beta$
 - Utility is in expected value (VNM utility)

$$U(\alpha) = \sum_{a \in A} \alpha(a)U(a) \quad \alpha \in \Delta(A)$$

- Moreover, if $V: \Delta(A) \rightarrow \mathbb{R}$ also represents preferences, then
 $\exists b > 0, c \in \mathbb{R}$ s.t. $V = bU + c$
(U is unique up to a positive linear transformation)

J. von Neumann, O. Morgenstern, "Theory of Games and Economic Behavior," Princeton University Press, 1944

Randomizing actions

- A_i finite set
- Let $\Delta(A_i)$ be the set of probability distributions over A_i
- Let $\alpha_i \in \Delta(A_i)$,
 - α_i is a mixed strategy
 - Support of α_i : $\{a_i \in A_i : \alpha_i(a_i) > 0\}$
- Evaluation of a profile of mixed strategies
 - $(\alpha_j)_{j \in N}$ profile of mixed strategies
 - Probability of action profile $a = (a_j)_{j \in N}$
$$\prod_{j \in N} \alpha_j(a_j)$$
 - Utility of the strategy profile $\alpha = (\alpha_j)_{j \in N}$ for player $i \in N$
$$U_i(\alpha) = \sum_{a \in A} u_i(a) \prod_{j \in N} \alpha_j(a_j)$$
- Looks trivial but is not necessarily reasonable
 - e.g., risk aversion

Mixed extension of a strategic game

- Mixed extension of a strategic game $\langle N, (A_i), (u_i) \rangle$ is the strategic game $\langle N, (\Delta(A_i)), (U_i) \rangle$
 - $\Delta(A_i)$ set of probability distributions over A_i
 - $U_i: \times_{j \in N} \Delta(A_j) \rightarrow \mathbb{R}$ expected value under u_i of the lottery over A induced by $\alpha \in \times_{j \in N} \Delta(A_j)$

$$U_i(\alpha) = \sum_{a \in A} u_i(a) \prod_{j \in N} \alpha_j(a_j)$$

- Alternative using degenerate distribution $\alpha_i(e(a_i))$

$$U_i(\alpha) = \sum_{a_i \in A_i} \alpha_i(a_i) U_i(\alpha_{-i}, e(a_i))$$

- Utility is multilinear

- for mixed strategies β_i and γ_i

$$U_i(\alpha_{-i}, \lambda \beta_i + (1 - \lambda) \gamma_i) = \lambda U_i(\alpha_{-i}, \beta_i) + (1 - \lambda) U_i(\alpha_{-i}, \gamma_i)$$

Mixed strategy Nash equilibrium

- Definition: Mixed strategy Nash equilibrium of a strategic game is the Nash equilibrium of its mixed extension
- Consequence: The set of Nash equilibria of a strategic game is a subset of the Nash equilibria of its mixed extension
 - degenerate $\alpha_i (e(a_i))$

Example

- Matching pennies

	Head	Tail
Head	1,-1	-1,1
Tail	-1,1	1,-1

- No pure strategy equilibria
- Are there mixed strategy equilibria?

Existence of equilibria

- Every finite strategic game has a mixed strategy Nash equilibrium.

Proof. The mixed extension of the strategic game has a pure strategy Nash equilibrium.

Nash (1950, 1951)

- The result applies if $A_i \subseteq \mathbb{R}^n$ compact non-empty and the payoff functions are continuous.
 - Holds for coupled action sets as well
 - Idea: (i) discretize the action set \rightarrow mixed NE exists
(ii) as discretization gets finer show that mixed NE converges to a NE of the original game

Glicksberg (1952)

Owen (1974)

More existence results

- Let A_i be a closed interval of \mathbb{R} . Suppose that
 - u_i is continuous except on a subset $A^{**}(i)$ of $A^*(i)$, where $A^*(i)$ is defined as
$$A^{**}(i) \subseteq A^*(i) = \{a \in A \mid \exists j \neq i, \exists d \text{ such that } a_j = f_{ij}^d(a_i)\}$$
$$(f_{ij}^d : A_i \rightarrow A_j \text{ are one-to-one, continuous functions})$$
 - $\sum_{i=1}^N u_i(a)$ is upper semi-continuous
$$\limsup_{n \rightarrow \infty} \sum_{i=1}^N u_i(a^n) \leq \sum_{i=1}^N u_i(a)$$
 - $u_i(a_{-i}, a_i)$ is bounded and weakly lower semi-continuous in a_i for all $a_{-i} \in A_{-i}^{**}(a)$
$$\lambda \liminf_{a' \uparrow a_i} u_i(a_{-i}, a'_i) + \lambda \liminf_{a' \downarrow a_i} u_i(a_{-i}, a'_i) \geq u_i(a_{-i}, a_i) \text{ for some } \lambda \in [0,1]$$

Then the game has a mixed strategy Nash equilibrium

P. Dasgupta and E. Maskin, "The Existence of Equilibrium in Discontinuous Economic Games, I: Theory," *Review of Economic Studies*, 53(1), pp. 1-26, 1986

Example

- Matching pennies

	Head	Tail
Head	1,-1	-1,1
Tail	-1,1	1,-1

- No pure strategy equilibria
- Are there mixed strategy equilibria?
- What is the best action in equilibrium?

Mixed strategy of best responses

- Let $G = \langle N, (A_i), (u_i) \rangle$ finite strategic game

$\alpha^* \in \times_{j \in N} \Delta(A_j)$ is a mixed strategy equilibrium of G
 \Leftrightarrow for all $i \in N$ $\{a_i \in A_i : \alpha_i^*(a_i) > 0\}$ are best responses to α^*_{-i}

- The actions used by a player in a mixed strategy are best responses to the equilibrium mixed strategy profile
 - but: not all best responses have to have $\alpha_i^*(a_i) > 0$

Actions of equal values

- Let $G = \langle N, (A_i), (u_i) \rangle$ finite strategic game
 - $\alpha^* \in \Delta(A_i)$ is a mixed strategy equilibrium of $G \rightarrow \alpha_i^*(a_i) > 0 \Rightarrow U_i(\alpha_{-i}^*, a_i) = U_i(\alpha^*)$
 - If for an $\alpha^* \in \Delta(A)$ and for every player i there is a constant c_i such that we have

$$\begin{cases} \alpha_i^*(a_i) > 0 \Rightarrow U_i(\alpha_{-i}^*, a_i) = c_i \\ \alpha_i^*(a_i) = 0 \Rightarrow U_i(\alpha_{-i}^*, a_i) \leq c_i \end{cases}$$

then α^* is a mixed strategy equilibrium

Example

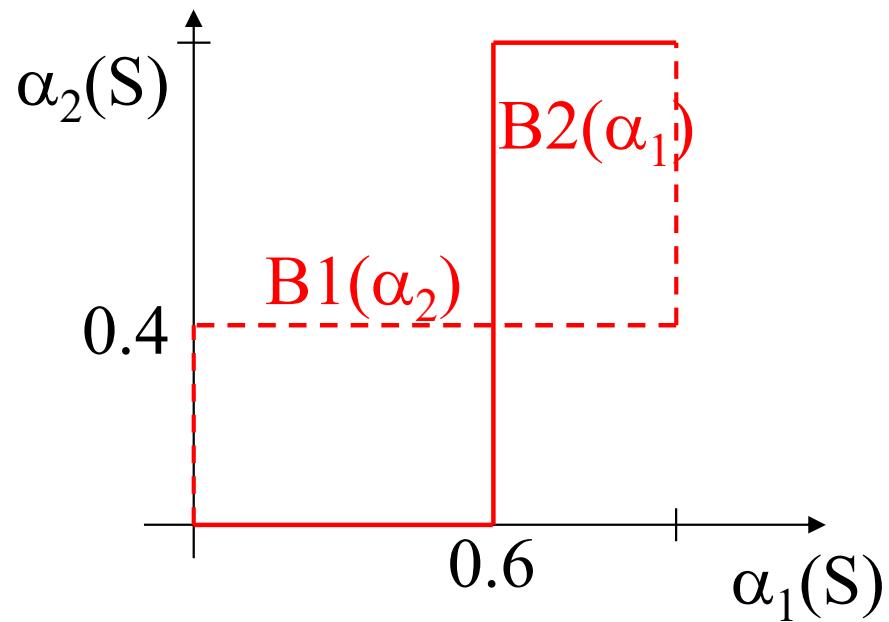
- Battle of the Sexes

	Sports	Theatre
Sports	3,2	0,0
Theatre	0,0	2,3

- How many NE are there?
 - Pure NE
 - Mixed NE

Example continued

- Mixed strategy NE
 - $(0.6, 0.4)$ $(0.4, 0.6)$
- Best response functions of players 1 and 2



Why mixed strategies?

- Drawn from a large population
 - Individuals meet at random
 - Pick actions according to a distribution
- Harsányi's model of a disturbed game
 - small perturbation in players' payoffs u_i
 - uncertainty or ignorance
 - perturbation is a r.v. $\varepsilon_i \in [-\varepsilon, \varepsilon]$
 - ε_i known to player i only
 - pure NE of the disturbed game converge to mixed NE of the ordinary game as $\varepsilon \rightarrow 0$

J. C. Harsányi, "Games with Randomly Disturbed Payoffs: A New Rationale for Mixed Strategy Equilibrium Points," International Journal of Game Theory, vol. 2, pp.1–23, 1973

Strictly competitive games

- The strategic game $\langle \{1,2\}, (A_i), (\geq_i) \rangle$ is strictly competitive if for any $a \in A$ and $b \in A$ we have
 - $a \geq_2 b \Leftrightarrow b \geq_1 a$
- Equivalent definitions
 - Zero-sum game
 - $u_1(a) = -u_2(b)$
 - Constant-sum game
 - $u_1(a) + u_2(b) = c$

An example

	L	M	R
T	7,-7	-3,3	-5,5
M	2,-2	-1,1	4,-4
B	-5,5	-2,2	9,-9

- The paranoid's approach
 - Take the highest payoff that you can guarantee

Maxminimization

- Let $\langle \{1,2\}, (A_i), (u_i) \rangle$ be a strictly competitive strategic game

- The action $x^* \in A_1$ is called a maxminimizer for player 1 if

$$\min_{y \in A_2} u_1(x^*, y) \geq \min_{y \in A_2} u_1(x, y) \quad \text{for all } x \in A_1$$

- The action $y^* \in A_2$ is called a maxminimizer for player 2 if

$$\min_{x \in A_1} u_2(x, y^*) \geq \min_{x \in A_1} u_2(x, y) \quad \text{for all } y \in A_2$$

	L	M	R
T	7, -7	-3, 3	-5, 5
M	2, -2	-1, 1	4, -4
B	-5, 5	-2, 2	9, -9

NE and Maxminimization

- Let $G = \langle \{1, 2\}, (A_i), (u_i) \rangle$ be a strictly competitive strategic game
 - If (x^*, y^*) is a NE of G then x^* is a maxminimizer for player 1 and y^* for player 2
 - If (x^*, y^*) is a NE of G then
$$\max_{x \in A_1} \min_{y \in A_2} u_1(x, y) = \min_{y \in A_2} \max_{x \in A_1} u_1(x, y) = u_1(x^*, y^*)$$
and thus all NE of G yield the same payoff
 - If $\max_{x \in A_1} \min_{y \in A_2} u_1(x, y) = \min_{y \in A_2} \max_{x \in A_1} u_1(x, y)$ and x^* is a maxminimizer for player 1 and y^* is a maxminimizer for player 2, then (x^*, y^*) is a Nash equilibrium of G

*J. von Neumann, "Zur Theorie der Gesellschaftsspiele",
Mathematische Annalen, 100, pp. 295–300, 1928*

Consequences

- In strictly competitive games
 - Can use maxminimization to find Nash equilibria (pure or mixed)
 - Nash equilibria are interchangeable
 - if (x, y) and (x', y') are NE
then so are (x, y') and (x', y)
- If $\max_{x \in A_1} \min_{y \in A_2} u_1(x, y) = \min_{y \in A_2} \max_{x \in A_1} u_1(x, y)$
then this is the value v^* of the game
 - v^* is the minimum payoff of player 1
 - $-v^*$ is the minimum payoff of player 2

The example again

	L	M	R
T	7, -7	-3, 3	-5, 5
M	2, -2	-1, 1	4, -4
B	-5, 5	-2, 2	9, -9

- Find the Nash equilibrium using maxminimization
- What is the value of the game?

Literature

- M.Osborne, A Rubinstein, "A course in game theory", MIT press, 1994
- D. Fudenberg, J. Tirole, "Game Theory", MIT press, 1991
- L-Å. Lindahl, "Spelteori", Uppsala Universitet, 2007
- J. von Neumann, "Zur Theorie der Gesellschaftsspiele", Mathematische Annalen, 100, pp. 295–300, 1928
- J. von Neumann, O. Morgenstern, "Theory of Games and Economic Behavior," Princeton University Press, 1944
- J. C. Harsányi, "Games with Randomly Disturbed Payoffs: A New Rationale for Mixed Strategy Equilibrium Points," International Journal of Game Theory, vol. 2, pp.1–23, 1973

