

FEP3301

Computational Game Theory

Lecture 1

P2/2025

György Dán

Division of Network and Systems Engineering

Course objectives

- Upon completion you should be able to
 - Differentiate between GT models of multi-agent decision making
 - Formulate game theoretical models of problems
 - Solve decision making problems
 - Perform a critical evaluation of the literature

Course format

- Contact hours
 - 9 lectures of 2 hours each
 - 2-4 student presentation sessions
 - Starting today
- Non-contact hours
 - 3 homework assignments
 - 1 take home exam

Student presentations

- Goal
 - Peruse a research paper
 - Explain main results
 - Appropriateness of the model
 - Validity of the results
- List of papers
 - <https://people.kth.se/~gyuri/teaching/FEP3301/paperlist.shtml>
- Expression of interest via e-mail
 - Favorite topic
 - Ordered list of 3 papers you are interested in
 - pick from the list
 - or propose a paper you like (complexity welcome)
- Pairing process
 - FCFS – Greedy algorithm

Needed to pass...

- Active participation
 - at the lectures and during the presentations
- Homework and take home exam
 - To be handed in approx. every two weeks
 - Peer-reviewed
 - Worth 66 pts in total
- Good presentation
 - Worth 10 pts

- You need **55** points to pass (~72%)

8 ECTS

Course schedule - Lectures

<https://people.kth.se/~gyuri/teaching/FEP3301/schedule.shtml>

Course schedule

Student presentations

Occasion	Date	Time	Location
1	Wed. 19 Nov 2025	10.15-13.00	Ivar Herlitz
2	Mon. 8 Dec 2025	13.15-16.00	Gustaf Dahlander
3?			

Computational Game Theory

Lecture 1

György Dán

Division of Network and Systems Engineering

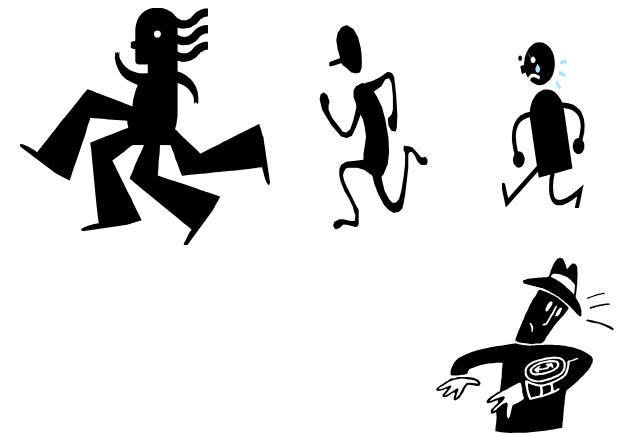
The door-opening game

Other Examples

- Resource management
 - Allocation:
 - Communication/computing system (Internet) – bandwidth, computing power – fairness?
 - Radio spectrum: allocation of spectrum so as to maximize some notion of welfare
 - Placement: Storage and caching - peering between ASs in the Internet: establishment of links
 - Transportation/routing: Given a capacitated network and traffic demands, how to choose routes
 - Scheduling: loads in smart distribution grids
- Security
 - Wireless communication: Jamming
 - Intrusion detection:
 - Passive: Investment in mitigation/detection schemes
 - Active: How to perturb system state or detector parameters so that an attack can be detected at a low cost
- Economics
 - Online advertising: design mechanism for pricing ad locations and maximize click-through rate
 - Electricity markets

What is a game?

- A set of players
- A set of actions
- Likes – preferences over outcomes
- Many assumptions
 - Around the players
 - Rationality
 - Strategic reasoning
 - Available information - uncertainty
 - Around the actions
 - Timing



What is game theory about?

- Model decision making behavior of individuals
 - Outcome depends on the behavior of other individuals
 - Individuals seek their self interests
- Questions to be answered
 - What is the solution?
 - How many are there (existence)?
 - How to reach a solution (learning)?
 - What solution will emerge?
 - Computational complexity of finding a solution?
 - Efficiency of the solution?

A Bit of History

- Origins
 - Decision theory
- Some notable works
 - A. Cournot "Recherches sur les principes mathématiques de la théorie des richesses", 1838
 - E. Borel "La théorie du jeu et les équations intégrales à noyau symétrique" 1921, (two player games)
 - J. von Neumann, "Zur Theorie der Gesellschaftsspiele", *Mathematische Annalen*, 100, pp. 295–300 (1928).
 - J. von Neumann, O. Morgenstern, "Theory of Games and Economic Behavior", 1944
 - Two person zero-sum games
 - J. Nash, "Non-cooperative Games", *The Annals of Mathematics*, Second Series, Vol. 54, No. 2, (Sep., 1951), pp. 286-295
- Nobel Prizes
 - 1995 - John Harsányi, John Nash, Reinhard Selten (Non-cooperative games)
 - 2005 - Robert Aumann, Thomas Schelling (Cooperative and NC games)
 - 2007 - Leonid Hurwicz, Eric Maskin, Roger Myerson (Mechanism design)
 - 2012 - Alvin E. Roth, Lloyd S. Shapley (Stable allocations and market design)
 - 2014 - Jean Tirole (Market power and regulation, Mech.design)

Types of games

- Possibility of binding agreements
 - Non-cooperative vs. cooperative/coalitional
- Timing and type of feedback
 - Static - Strategic
 - Dynamic - Extensive, repeated, stochastic, differential, evolutionary, ...
- Information available for decision making
 - Perfect vs. imperfect vs. incomplete information
- Cardinality of the set of actions and players
 - Finite vs. infinite
 - Discrete vs. continuous

Strategic games

Strategic games

- Players
- Players know each others' possible decisions
 - And the effects of those decisions on themselves
- Players prefer some outcomes over others
 - Goal: obtain best outcome
maximize own utility
- Each player makes a decision
 - Once
 - Simultaneously

Formal definition

- A strategic game $\langle N, (A_i), (\geq_i) \rangle$ consists of

- The set of players
 - A finite set N
- The set of actions available to player i
 - For each player a non-empty set A_i
- The preference relation of player i
 - $\forall i \in N$ a preference relation \geq_i on $A = \times_{j \in N} A_j$

Preference relation: complete, reflexive, transitive binary relation

?

Actions, consequences, payoff

- Consequences often more important than the actions
- Extend the definition with consequences
 - Define function $A \rightarrow C$
 - Preference relation over C
- The consequence can be non-deterministic
 - Probability space Ω
 - A and Ω induce a lottery on C
 - $A \times \Omega \rightarrow C$
 - Preference relation interpreted over the lottery
- Introduce payoff function
 - $u_i: A \rightarrow R$, such that $u_i(a) \geq u_i(b) \Leftrightarrow a \succsim_i b$

Example: wireless uplink power allocation

Games in Normal Form

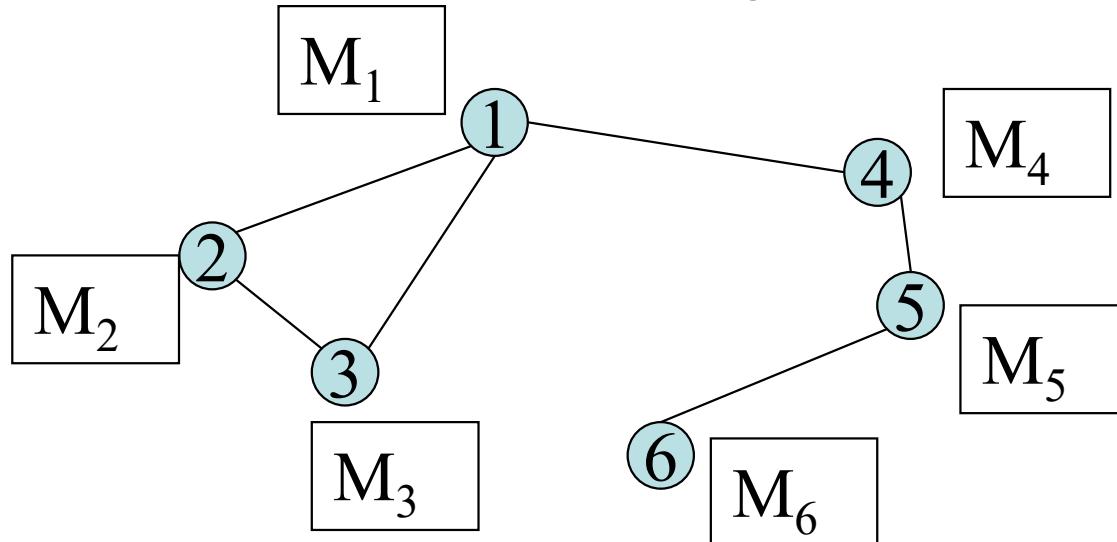
- Representation of a game $G = \langle N, (A_i), (u_i) \rangle$
 - $N = \{1, 2\}$
 - $A_1 = \{a_{11}, a_{12}, a_{13}\}, A_2 = \{a_{21}, a_{22}\}$
 - $u_1(\dots), u_2(\dots)$

		Player 2's actions	
		a_{21}	a_{22}
Player 1's actions	a_{11}	$u_1(a_{11}, a_{21}), u_2(a_{11}, a_{21})$	$u_1(a_{11}, a_{22}), u_2(a_{11}, a_{22})$
	a_{12}	$u_1(a_{12}, a_{21}), u_2(a_{12}, a_{21})$	$u_1(a_{12}, a_{22}), u_2(a_{11}, a_{22})$
	a_{13}	$u_1(a_{13}, a_{21}), u_2(a_{13}, a_{21})$	$u_1(a_{13}, a_{22}), u_2(a_{11}, a_{22})$

- Requires $O(|N|(\max|A_i|)^{|N|})$ entries

Graphical games

- Not all players influence each others' payoff directly
- Represent players as vertices of a graph G
- Payoffs in local game matrices (normal form)
 - contains only actions of neighboring players
- Requires $O(|N|(\max|A_i|)^d)$ entries
 - d is the maximum local neighborhood



An example

- Prisoner's dilemma

	Do not confess	Confess
Do not confess	3,3	0,4
Confess	4,0	1,1

Payoff = 4 - (#years in prison)

- What should they do?

Another example

- Stag hunt game by R.J. Aumann

	L	R
U	9,9	0,8
D	8,0	7,7

- What should they do?

Aumann, R.J. (1990), “Nash Equilibria are not Self-Enforcing,” in J-J Gabsewicz, J-F Richard, and L. Wolsey (eds), *Economic Decision-Making: Games, Econometrics, and Optimisation*, Amsterdam: North-Holland, 201-206.

Strong Pareto Efficiency

- For someone to win others have to lose
- An action a^* is strongly Pareto efficient if there is no action a for which
 - $a \geqslant_i a^*$ for $\forall i \in N$ and
 - $a >_i a^*$ for some $i \in N$
- Can we reach such a solution in a game?

Example revisited

- Prisoner's dilemma

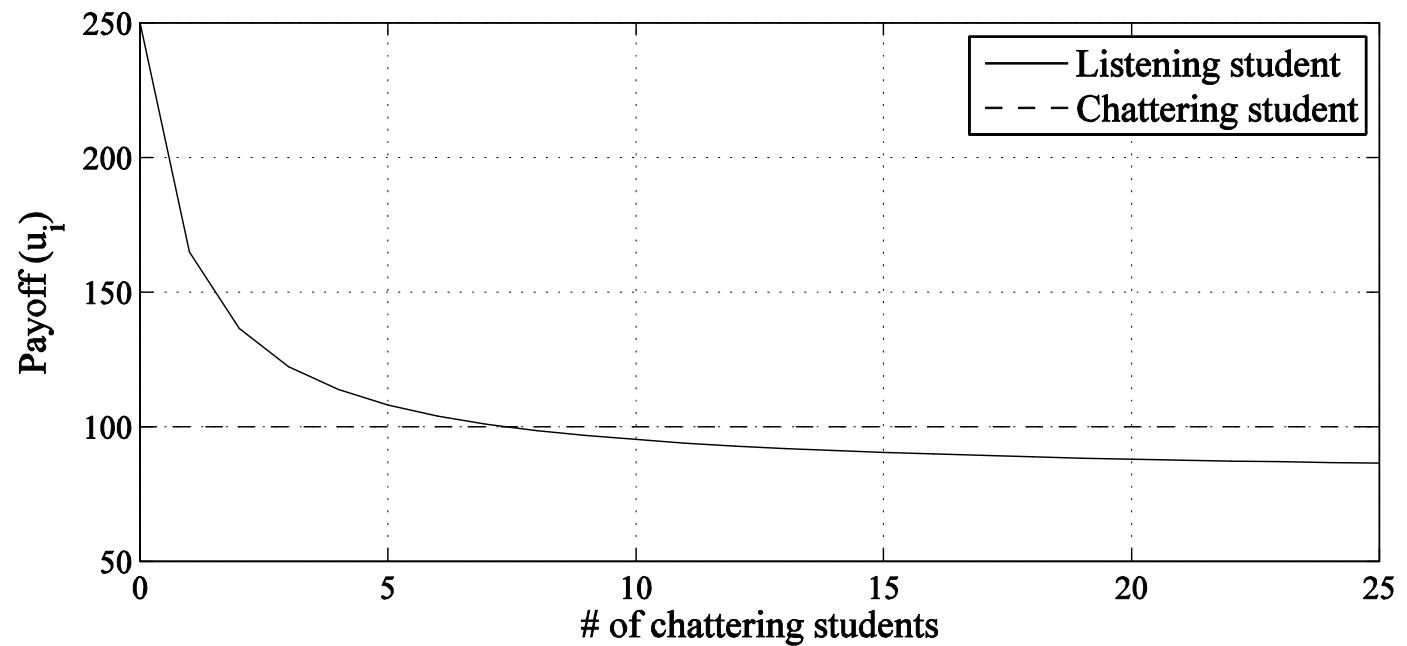
	Do not confess	Confess
Do not confess	3,3	0,4
Confess	4,0	1,1

- Which outcomes are Pareto efficient?
- Would players choose those?

An experiment

- Class of N students (you ☺)
- Student i has two options during class
 - Chatter
 - $u_i = 100$
 - Pay attention
 - $u_i = 250 - 170 \times N_C / (N-1)$
 - $N_C = \#$ of chattering students
- Would you chatter or rather pay attention?

The payoff of the experiment



2-person version

	Red (chatter)	Blue (listen)
Red (chatter)	100, 100	100, 80
Blue (listen)	80, 100	250, 250

Solution concepts of games

- What is a reasonable solution for a game?
- Variety of solution concepts
 - Equilibria
 - Dominant strategy equilibrium
 - Nash equilibrium and its refinements
 - Iterated elimination of strictly dominated strategies
 - Rationalization
- Questions regarding the solutions
 - Existence
 - Uniqueness - cardinality
 - Complexity of the calculation
 - Feasibility/convergence/emergence
 - Efficiency

Dominant Strategy

- a_i^* is a dominant strategy for player i in $G = \langle N, (A_i), (\geq_i) \rangle$ if $(a_i^*, a_{-i}) \geq_i (a_i, a_{-i}) \quad \forall a \in A$

	Do not confess	Confess
Do not confess	3,3	0,4
Confess	4,0	1,1

Dominant Strategy Equilibrium

- a_i^* is a dominant strategy for player i in $G = \langle N, (A_i), (\succeq_i) \rangle$ if $(a_i^*, a_{-i}) \succeq_i (a_i, a_{-i}) \quad \forall a \in A$

	Do not confess	Confess
Do not confess	3,3	0,4
Confess	4,0	1,1

- The profile $a^* \in A$ is a dominant strategy equilibrium if $(a_i^*, a_{-i}) \succeq_i (a_i, a_{-i}) \quad \forall a \in A, i \in N$
 - Best response to every collection of actions of the other players

	L	R
U	9,9	0,8
D	8,0	7,7

Nash equilibrium

- A profile from which no player has an interest to deviate

	Do not confess	Confess
Do not confess	3,3	0,4
Confess	4,0	1,1

- If players reach a Nash equilibrium, they will stay there

Nash equilibrium (pure)

- Nash equilibrium of a strategic game $\langle N, (A_i), (\geq_i) \rangle$ is a profile $a^* \in A$ of actions such that

$$(a^*_{-i}, a^*_i) \geq_i (a^*_{-i}, a_i) \text{ for } \forall a_i \in A_i$$

- No player can gain by deviating from a^*_i , given that the others choose a^*_{-i}

Best response function

- Set valued function
 - $B_i(a_{-i}) = \{a_i \in A_i : (a_{-i}, a_i) \geq_i (a_{-i}, a'_i)$ for $\forall a'_i \in A_i$
- Nash equilibrium is a profile a^* such that
 - $a^*_i \in B_i(a^*_{-i})$ for all $i \in N$

Example revisited

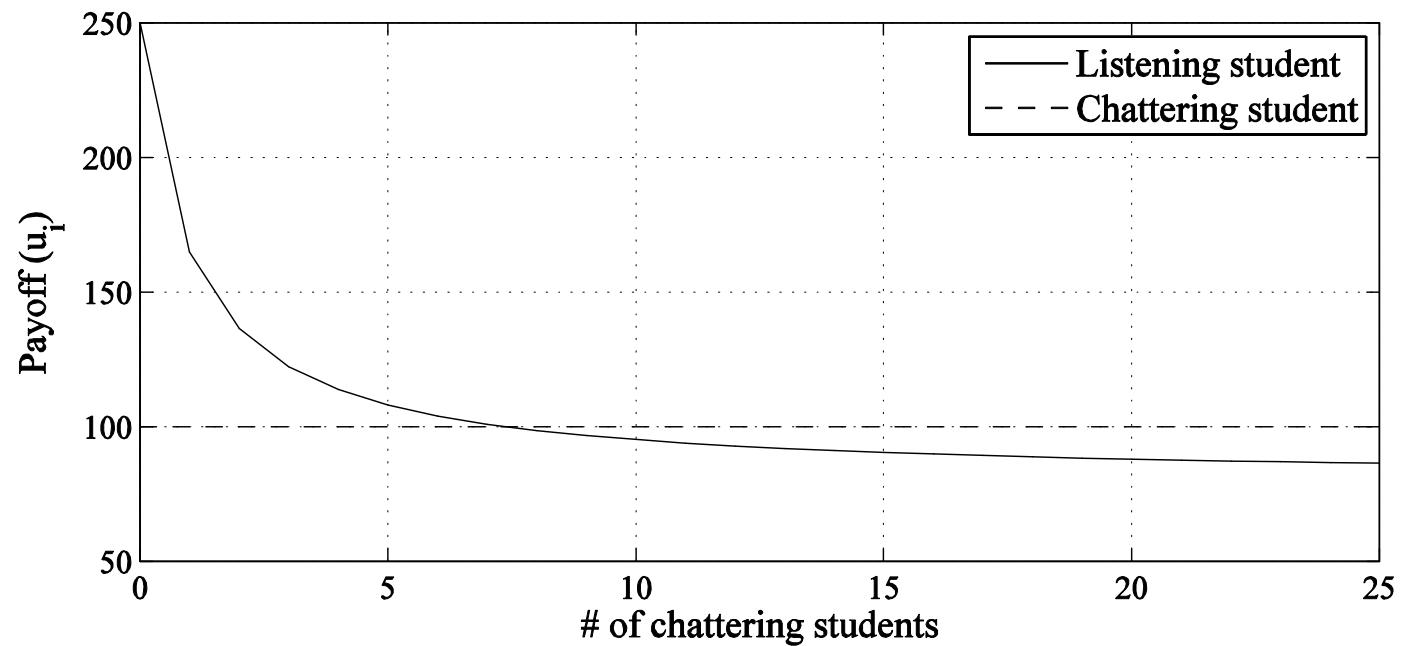
- Stag hunt game by R.J. Aumann

	L	R
U	9,9	0,8
D	8,0	7,7

- How many NE are there?
- Which NE is more likely to happen?
 - What if the players can communicate?

Aumann, R.J. (1990), “Nash Equilibria are not Self-Enforcing,” in J-J Gabzewicz, J-F Richard, and L. Wolsey (eds), *Economic Decision-Making: Games, Econometrics, and Optimisation*, Amsterdam: North-Holland, 201-206.

Experiment revisited



2-person version

N. J. Vriend, "Demonstrating the Possibility of Pareto Inferior Nash Equilibria", in Journal of Economic Education 31(4), pp. 358-362, 2000

	Red (chatter)	Blue (listen)
Red (chatter)	100, 100	100, 80
Blue (listen)	80, 100	250, 250

Example

- Battle of the Sexes (Bach or Stravinsky)

	Sports	Theatre
Sports	3,2	0,0
Theatre	0,0	2,3

- How many NE are there?

Another example

- Hawk and Dove (aka, Game of chicken)

	Dove	Hawk
Dove	3,3	1,4
Hawk	4,1	0,0

- How many NE are there?

Yet another example?

- Matching pennies

	Head	Tail
Head	1,-1	-1,1
Tail	-1,1	1,-1

- How many NE are there?

Existence of Nash equilibria

- The strategic game $\langle N, (A_i), (\succeq_i) \rangle$ has a Nash equilibrium if for all $i \in N$
 - the set A_i of actions of player i is a nonempty compact convex subset of a Euclidean space
- and the preference relation \succeq_i is
 - continuous
 - convex on A_i .
- Proof
 - based on Kakutani's fixed point theorem
(*Debreu '52, Glicksberg '52, Fan '52*)

Notes on the existence results

- The equilibrium is not necessarily unique
 - Which equilibrium is an appropriate solution?
- The existence is not guaranteed for finite games!
 - For none of the examples considered before...
- Best response functions can be used to find equilibria
 - Not very efficient

Summary

- Brief overview of game theoretic models
- Strategic games
 - Formal definition
 - Existence of Nash equilibria
- Next time
 - Strictly competitive games
 - Maxminimization vs. Nash equilibria
 - Mixed strategy equilibria
 - Rationalizability
 - IEDS, IEWS

Literature

- M. Osborne, A. Rubinstein, "A Course in Game Theory", MIT press, 1994
- D. Fudenberg, J. Tirole, "Game Theory", MIT press, 1991
- Nisan, Roughgarden, Tardos, Vazirani (eds.), "Algorithmic Game Theory", Cambridge UP, 2007
- Kakutani, "A generalization of Brouwer's fixed point theorem". Duke Mathematical Journal 8 (3) pp. 457–459, 1941