
1

Cache-to-Cache: Could ISPs Cooperate to Decrease

Peer-to-peer Content Distribution Costs?
György Dán

ACCESS Linnaeus Center, School of Electrical Engineering

KTH, Royal Institute of Technology, Stockholm, Sweden

E-mail: gyuri@ee.kth.se

Abstract—We consider whether cooperative caching may re-
duce the transit traffic costs of Internet service providers (ISPs)
due to peer-to-peer (P2P) content distribution systems. We
formulate two game theoretic models for cooperative caching, one
in which ISPs follow their selfish interests, and one in which they
act altruistically. We show the existence of pure strategy Nash
equilibria for both games, and evaluate the gains of cooperation
on various network topologies, among them the AS level map
of Northern Europe, using measured traces of P2P content
popularity. We find that cooperation can lead to significant
improvements of the cache efficiency with little communication
overhead even if ISPs follow their selfish interests.

I. INTRODUCTION

A large share of the Internet’s traffic is generated by peer-

to-peer (P2P) content distribution systems: an estimated 50 to

80 percent of the total traffic depending on geographic location

[16]. For end users, these systems provide quick access to a

large variety of content. For content providers, P2P systems

provide a means to deliver data to a large population of

users without big investments in server capacity and network

capacity. The costs of the data delivery are shared among

the consumers - the end nodes - and their Internet service

providers (ISPs).

The application layer protocols of most P2P systems were

not designed to be network aware. Improved network effi-

ciency and the business interests of ISPs are however both

strong drivers towards a cross-layer approach in peer-to-peer

protocol design: solutions that would decrease operator costs

by decreasing the inter-ISP traffic without deteriorating the

systems’ performance [9].

Proximity aware peer-selection algorithms have been pro-

posed to prioritize nearby peers when up and downloading

data [3], [6]. They have been shown to lead to transmission

paths with lower round trip times and to reduce cross-ISP

traffic, especially for popular contents for which there is

a substantial number of peers to choose from. Proximity

awareness without ISP support relies on reverse engineering

the network topology, e.g., using CDN name resolution [6].

ISP provided application interfaces have been proposed to

help proximity aware peer-selection [1], [34]. The application

interfaces provide information about the network topology and

the network state to the P2P applications, so that the applica-

tions can choose more efficient communication patterns than

those based on reverse engineered topology information. The

proposed systems were shown to increase network efficiency

and to decrease ISP costs while not affecting significantly the

applications’ performance [1], [34].

Proximity awareness can decrease the traffic costs of popu-

lar contents, but it cannot decrease the amount of transit traffic

if peers cannot be found within the same ISP or a neighboring

ISP. P2P caches can decrease the transit traffic costs, and

hence, they are complementary to proximity aware neighbor

selection [3], [6], [34]. Caches decrease the ISPs’ traffic costs

by storing local copies of contents, so that data need not to

be downloaded from far away peers. P2P caches are available

from several vendors, like PeerCache [27], CacheLogic [5]

or Oversi [26], and were deployed by many ISPs in recent

years. Trace driven simulations [13], [32] and measurements

[21] have shown that P2P traffic can be cached efficiently

using simple cache eviction policies. Nevertheless, the cache

capacity required to achieve high hit rates is considerable, in

the order of tens or hundreds of terabytes, because of the

heavy tail of the content popularity distribution in P2P systems

[13]. Furthermore, the maintenance of P2P caches incurs costs,

and hence ISPs are interested in making efficient use of these

resources.

Given a number of P2P caches deployed by ISPs, and each

ISP following its selfish interest to minimize its transit traffic,

we are interested in whether cooperation between the installed

caches could lead to benefits for the individual ISPs in terms

of decreased transit traffic. The cooperation that we consider

consists of collaborating P2P caches deployed by peering

ISPs: the caches of the ISPs cooperate to serve each others’

subscribers and may hence decrease the amount of IP transit

traffic. Given the possibly large number of ISPs and caches,

the self-interests of ISPs, and the complex AS level peering

topology of the Internet, it is not obvious whether cooperation

would lead to a reasonably stable allocation of cache resources.

It is not clear either how much the ISPs could benefit from

cooperation, and how efficient the cooperation between selfish

ISPs would be compared to other solutions.

We follow a game-theoretic approach to answer these ques-

tions. We model the network of cooperating caches as an n-

person non-cooperative game. We consider two models for

the caching policies of the ISPs: in the first model the ISPs

follow a pure selfish strategy; in the second model ISPs are

altruistic, and also consider the interests of neighboring ISPs.

Using results from game theory we show that in a system of

cooperative caches, both selfish and altruistic, there is always

an equilibrium state, a pure strategy Nash equilibrium in game

Draft to appear in IEEE Trans. Parallel Distrib. Syst. 2

ISP A ISP B

Client A3 Client A1

Client B1

Client B4

IP transit
IP transit

Cache A
Cache B

Rest of the Internet

ISP C

Client C1

Client C3

IP transit

Cache C

Client A5

Fig. 1. Cooperative caching and proximity awareness. Three ISPs
(A-C), seven clients and five contents (1-5) (Client XY is in ISP X
and downloads content Y). P2P clients A3 and C3 use the cache of
ISP B to download content 3. Clients A1, B1 and C1 use a proximity
aware P2P system to exchange content 1, and do not access the cache.
The client B4 uses the cache of ISP C to download content 4. All
three ISPs save on IP transit traffic.

theoretic terms, from which no ISP has an interest to deviate.

We propose two distributed algorithms to solve the cooperative

caching game, and use extensive simulations to verify that

the algorithms converge to an equilibrium and to evaluate the

sensitivity of the potential benefits of cooperation to various

parameters. We use trace-driven simulations to quantify the

potential benefits of cooperation in terms of the decrease of

the ISPs’ transit traffic.

The rest of the paper is organized as follows. In Section

II we describe the considered cooperative caching scheme

and the rationale behind it. Section III presents the game

theoretic model of cooperative caching and contains the main

analytic results. We describe the distributed algorithms that

model cooperative caching in Section IV. We introduce our

performance metrics and give bounds on the gains achievable

by cooperative caching in Section V, and evaluate the per-

formance gains of cooperative caching in Section VI. Section

VII presents the related work, and Section VIII concludes the

paper.

II. BACKGROUND

ISPs ensure global reachability through buying IP tran-

sit services and through maintaining bilateral or multilateral

settlement-free peering agreements. Settlement-free peering

agreements enable ISPs of similar size and geographic cov-

erage to exchange peering traffic freely for mutual benefit as

long as the traffic balance satisfies some criteria agreed upon

by the parties. Hence, the cost of peering is insensitive to short

term fluctuations of the amount of peering traffic (as long as

the traffic does not cause congestion).

Transit traffic is, on the contrary to peering traffic, usually

charged according to the 95 percent rule (i.e., the client pays

for the 95 percentile traffic calculated over a month), and hence

increased traffic leads to increased costs. Consequently, ISPs

could cut costs through decreasing transit traffic by increasing

peering traffic, as long as the peering traffic is kept balanced.

This is the rationale of the cooperative caching scheme we

consider. Typically, contents have similar popularity at nearby

ISPs, so that without cooperative caching the caches of peering

ISPs would possibly cache the same contents. Cooperative

caching makes use of the correlation of content popular-

ities among ISPs to improve the caching efficiency, even

though each ISP aims to minimize its transit traffic with its

cache. Cooperation involves exchanging information between

the caches, but in contrast to hierarchical caching, there is

no authority to coordinate the operation. Message exchange

between the caches can be based, e.g., on an extension of the

Internet Cache Protocol [15].

Cooperative caching allows P2P clients in an ISP to use

the cache resources of neighboring ISPs if there is a bilateral

peering agreement between the ISPs, as shown in Fig. 1. We

will use the term client for peers in the P2P overlays to avoid

confusion, and use the term relay for a cache of an ISP serving

clients in a peering ISP. We consider the following scheme

for the use of P2P caches. Clients follow their (proximity

aware or unaware) P2P protocol to exchange data. Whenever

a client would download data through a transit link from an

external client, it first contacts the available caches and tries

to download the data from one of the available caches. If

the data are not available in any of the caches, they will be

downloaded from the external client and hence generate transit

traffic. Ideally, as an effect of cooperation the sets of contents

stored in neighboring caches will be disjoint.

Cooperative caching increases the peering traffic between

two peering ISPs, but the increase is not more than the

sum of the decrease of the transit traffic of the two ISPs.

Increased peering traffic might require higher port speeds at

peering points, but the upgrade is typically much cheaper than

buying transit capacity, hence the decrease of transit costs

compensates for the increase of the peering costs. Cooperative

caching also increases the load of the cooperating caches,

but as we show at the end of this paper, the increase of the

cache load is kept moderate if caching is used together with

proximity aware P2P systems, while the gains of cooperation

are almost unaffected.

We do not discuss the issue of cache discovery in this paper.

Neither do we discuss the compatibility of caches with P2P

protocols, e.g., with BitTorrent’s optimistic unchoking mecha-

nism. There is ongoing standardization work in the Application

Layer Traffic Optimization (ALTO) working group of the IETF

[14] on service discovery for P2P systems, P2P caches being

one kind of service. BEP-022 specifies an extension of the

BitTorrent protocol for service discovery [4]. The architecture

proposed in [34] is another example as to how ISP supplied

entities can be used to provide information to P2P applications.

III. COOPERATIVE CACHING AS A GAME

In this section we introduce the notations used throughout

the paper, describe a game theoretic interpretation of cooper-

ative caching strategies, and provide the main analytic results

of the paper.

A. System model

We model the network of ISPs with a graph G = {I ,E}.

Each vertex of G corresponds to an ISP and there is an edge

{i, i′} between vertexes i and i′ if the corresponding ISPs have

a settlement-free peering agreement. We denote the degree of

node i ∈ I by δi, the minimum node degree in G by δ, and

use the notation P (i) for the set of neighbors of i. We do

not model multiple links connecting two ISPs and we assume

Draft to appear in IEEE Trans. Parallel Distrib. Syst. 3

I Set of ISPs

P (i) Set of peering ISPs of ISP i (neighborhood set)

Ki Cache capacity installed at ISP i

H Set of contents

Sh Size of content h

Nh
i (t) # of peers interested in content h in ISP i at time t

Bh
i (t) Transit traffic related to content h in ISP i at time t

without caching

Ti(t) Transit traffic in ISP i at time t with caching

rh
i,i′ (t) Relaying ratio of ISP i to i′ for content h at time t

dr− Min. speed of change of rhi,i(t)

dr+ Max. speed of change of rhi,i(t)

TABLE I
LIST OF FREQUENTLY USED NOTATIONS.

that peering capacities are sufficient to carry all relayed traffic,

hence we do not consider link capacity constraints.

Let us denote the set of available P2P content (e.g., torrents,

or files) by H . The size of content h ∈H will be denoted by

Sh. We denote by Nh(t) the number of peers that are interested

in content h globally, and by Nh
i (t) their number in ISP i.

We denote the IP transit traffic generated by content h in ISP

i at time t without caching by Bh
i (t) = f (Nh

i (t),N
h(t)). We

describe our approximation of the transit traffic in Section

VI-B2, but the exact form of Bh
i (t) does not affect the

analytical results presented in this section.

Let us denote the cache capacity installed at ISP i by Ki. We

describe the relaying strategy of ISP i with respect to content

h at time t by the real-valued function rh
i,i′(t) : H × I 2 ×R →

[0,1]. Then rhi,i(t) = 1 if content h is cached in ISP i at time t,

and rhi,i(t) = 0 if it is not; 0 < rhi,i(t) < 1 means that the content

is partially cached. Similarly, rh
i,i′(t) = 1 corresponds to content

h being cached in i and being relayed to i′ at time t; rh
i,i′(t) = 0

means that the content is not relayed, and 0 < rh
i,i′(t) < 1 means

that the content is partially relayed. By definition rh
i,i′(t) = 0

for all i′ 6∈P (i) (i∈ I , h∈H), and rh
i,i′(t)≤ rhi,i(t). The relaying

strategy of every ISP has to satisfy cache capacity constraints,

i.e.,

∑
h∈H

Shrhi,i(t) ≤ Ki i ∈ I . (1)

The speed at which contents can be cached depends on

the speed at which the contents can be obtained (e.g., from

clients in the ISP and its peering ISPs). We will denote the

maximum speed (in terms of MB per time unit) at which the

caching ratio of contents can be increased and decreased by

dr+ and dr− respectively (dr− can be assumed to be −∞ as

it corresponds to data being deleted from the cache). Without

loss of generality we use t = 0 to denote the time instance

when a relaying decision has to be made, and will omit the

time dimension whenever the context allows it.

Popular second generation P2P file sharing protocols, like

Gnutella, FastTrack and BitTorrent divide contents into many

small parts and typically obtain the different parts from a

number of different clients. The small parts are called pieces in

BitTorrent terminology, chunks in FastTrack and segments in

Gnutella terminology. We will use the terms piece and chunk

interchangibly to refer to parts of contents. The size of the

pieces varies depending on the P2P protocol: for BitTorrent

the piece size in bytes is a power of two, usually between

16kB and 2048kB; in Gnutella the piece size can be specified

as a percentage of the content size or can be dynamically

adjusted depending on the connection speed. The piece size is

typically small compared to the content’s size in order to make

the content distribution efficient. For example, results shown

in [22] indicate that for BitTorrent the best performance is

achieved with about thousand pieces per content item.

Consequently, a P2P cache will have to serve requests for

pieces anywhere in the file [13], [32]. If the cache contains

a share rhi,i(t) of content h, then the probability that a request

cannot be served from the cache can be expressed as 1−rhi,i(t).

B. Caching games

In the following we define three caching games: non-

cooperative, cooperative with selfish ISPs and cooperative with

altruistic ISPs.

Non-cooperative caching: In the case of non-

cooperative caching the pieces that are to be downloaded over

a transit connection can only be served from the cache installed

by the ISP. The remaining transit traffic is the sum of the traffic

that cannot be served from the cache over all contents

TC
i (t) = ∑

h∈H

(1− rhi,i(t))C
h
i (t) = ∑

h∈H

(1− rhi,i(t))B
h
i (t), (2)

where the cost function Ch
i (t) equals to the transit traffic

without caching Bh
i (t). The goal of ISP i is to minimize TC

i (t)
by adjusting rhi,i(t). Cache eviction policies that perform this

minimization were proposed and evaluated in [13], [32] based

on measured traces of FastTrack and Gnutella traffic.

The local cost game (LC): In the local cost game every

ISP follows its self-interest, but cooperates with its peering

ISPs to minimize its own transit traffic. Consequently, the

requests for pieces of the contents can be served from the

caches of peering ISPs as well. In our model we assume that

the content is the smallest unit at which neighboring caches

can coordinate: a cache can know what portion of a content a

neighboring cache stores but not which parts its stores. This

is a pessimistic assumption, but a reasonable one: given the

high amount of content available in P2P networks and the

large content sizes, sub-content level coordination would lead

to tremendous communication overhead between the caches.

As an example, if the caches of two neighboring ISPs i and i′

cache 50 percent of content h each, i.e., rhi,i(t) = rh
i′,i′(t) = 0.5,

then the probability that a request for content h can not

be served is (1− rhi,i(t))× (1− rh
i′,i′(t)) = 0.25. If the caches

were coordinated on a sub-content level (e.g., byte or block

level) then the corresponding probability could be as low as

1− rhi,i(t)− rh
i′,i′(t) = 0.

Given our assumption, the probability that a client in ISP

i can not download a requested piece of content h from a

cache in ISP i or a peering ISP i′ ∈ P (i) can be expressed

as ∏i′∈{i∪P (i)} (1− rh
i′,i(t)). The transit traffic is then the traffic

that cannot be served from any of the available caches

T LC
i (t) = ∑

h∈H

(1− rhi,i(t))C
h
i (t), (3)

where the cost function Ch
i (t) is

Ch
i (t) = Bh

i (t) ∏
i′∈P (i)

(1− rhi′,i(t)), (4)

Draft to appear in IEEE Trans. Parallel Distrib. Syst. 4

i.e., the requests that originate in ISP i and can not be served

from the caches of the neighboring ISPs of ISP i.

The goal of ISP i is to minimize T LC
i (t) by adjusting rhi,i(t)

as a function of the relaying strategies rh
i′,i(t) of the peering

ISPs. We refer to this game as the local cost game (LC).

The neighborhood cost game (NC): Without any incen-

tives for altruism, selfish behavior is expected from the ISPs.

Given the right incentives, ISPs could however show altruistic

behavior. Our goal here is to understand how much the ISPs

could gain in a system built on altruistic behavior.

In the NC game the clients of ISP i are allowed to download

from the caches of the peering ISPs just like in the LC game.

The altruism is introduced by letting every ISP minimize the

sum of its own transit traffic and that of its peering ISPs. The

amount of transit traffic to be minimized can be expressed as

TNC
i (t) = ∑

h∈H

(1− rhi,i(t))C
h
i (t), (5)

where the cost function Ch
i (t) is

Ch
i (t)=Bh

i (t) ∏
i′∈P (i)

(1− rhi′,i)+ ∑
i′∈P (i)

Bh
i′(t) ∏

i′′∈{P (i′)\i}

(1− rhi′′,i′),

(6)

i.e., the requests that originate in ISP i or any of its neighboring

ISPs, and can not be served from the caches of the respective

neighboring ISPs excluding ISP i.

The goal of ISP i is to minimize TNC
i (t) by adjusting

rhi,i(t) as a function of the relaying strategies rh
i′,i(t) of the

peering ISPs, and implicitly the peering ISPs of those ISPs.

The difference between the cost functions in (4) and (6) is the

second term, which corresponds to the sum of the traffic of the

peering ISPs i′ that cannot be served from any of the caches

that are available to them, except for the cache of ISP i. We

refer to this game as the neighborhood cost game (NC). We

note that this game can not be transformed into a LC game of

neighborhoods each controlling their own resources, because

the neighborhoods are overlapping.

C. Nash equilibria in cooperative caching

Given the expressions for the traffic to be minimized, it

is not obvious whether a network of cooperative caches can

reach a stable cache allocation given a stable distribution of

the traffic arriving to the caches in the individual ISPs (Bh
i (t)).

In the following we show that independent of whether the ISPs

are selfish or altruistic, i.e., for both the LC and the NC game,

there is a stable allocation of the caches.

In game theoretic terms we are interested in whether the

games defined above have a pure strategy Nash equilibrium:

an allocation of cache resources from which no ISP has an

interest to deviate given the allocations of the other ISPs. Let

us define the relaying vector of ISP i as ri = (r1
i,i, . . . ,r

|H |
i,i). The

relaying vector of ISP i lies within the closed ball Bi ⊂ R
|H |

defined by ∑h∈H Shrhi,i(t)≤Ki (i.e., all solutions have to satisfy

the cache capacity constraint (1)). Furthermore, we define the

relaying vector r−i of all ISPs except ISP i as the Cartesian

product of their relaying vectors. The set of feasible relaying

vectors ri is partially ordered in a componentwise sense, but

it is not a lattice because of the cache capacity constraints.

For each ISP i we can define the payoff function, which it

aims to maximize

fi(ri,r−i) = − ∑
h∈H

(1− rhi,i)C
h
i ,

where Ch
i was defined in (4) and (6) for LC and NC re-

spectively. Using these definitions we formulate the following

theorem, which shows the existence of a Nash-equilibrium.

Theorem 1: For both the LC and the NC strategies, and for

a mixture thereof, there exists at least one pure strategy Nash

equilibrium, i.e., a set of relaying vectors ri such that

fi(ri,r−i) ≥ fi(ri,r−i) for i ∈ I ,ri ∈ Bi.

Proof: The proof of the theorem is based on Kakutani’s

fixed point theorem and is shown in the Appendix.

D. Optimal cache allocation

We define the optimal cache allocation as the one that mini-

mizes the sum of the transit traffic of the individual ISPs. The

corresponding constraint optimization problem is to minimize

the total transit traffic of all ISPs subject to the constraints on

cache capacity (8) and the maximum and minimum speed of

reconfiguration (9). We refer to the optimization problem as

the globally optimal cooperative caching problem (GCCP).

min. ∑
i∈I

∑
h∈H

Z ∞

0
Bh
i (t) ∏

i′∈{i∪P (i)}

(1− rhi′,i(t))dt (7)

s.t. : ∑
h∈H

Shrhi,i(t) ≤ Ki i ∈ I (8)

dr− < Sh(t)
∂

∂t
rhi,i′(t) < dr+ i, i′ ∈ I , h ∈H (9)

rhi,i(t) ≥ rhi,i′(t) i ∈ I , i′ ∈ P (i), h ∈H (10)

The future relaying strategies have to be chosen based on the

current relaying strategies rh
i,i′(0), and the future traffic load of

the caches Bh
i (t). Let us call the solution to GCCP the globally

optimal cooperative caching and relaying strategy (OCR). In

practice, calculating and enforcing the OCR strategy in the

context of the considered cooperative caching scheme is not

feasible because it would require a trusted central authority,

nevertheless OCR serves as a comparison to evaluate the

efficiency of the Nash equilibria.

IV. COOPERATIVE CACHING ALGORITHMS

Caching algorithms considered for P2P traffic gradually

replace the least popular contents by the contents that are

becoming popular. The popularity of contents is usually esti-

mated based on their request rate. Cache eviction policies that

follow this approach for P2P systems were described, e.g.,

in [13], [32]. The extension of these eviction algorithms to

cooperative caching is simple by choosing a suitable definition

of the request rate.

In the case of the local cost game (LC) the request rate is

the rate of requests that originate in the local ISP and cannot

be served from the caches of peering ISPs. Every cache can

measure its own request rate, there is no need for information

exchange between the cooperating caches. The cooperation

Draft to appear in IEEE Trans. Parallel Distrib. Syst. 5

can, however, be made more efficient if the neighboring caches

exchange information about the contents they cache (i.e., rh
i,i′),

as it becomes easier for a cache to locate a suitable neighboring

cache for the local requests.

In the case of the neighborhood cost game (NC) the request

rate is the sum of (i) the rate of requests that originate in the

local ISP and cannot be served from the caches of the peering

ISPs and (ii) the rate of requests that originate in peering ISPs

and cannot be served from any of the caches available to them.

In order to implement this algorithm the neighboring caches

would have to exchange information about the rate of requests

that originate locally and cannot be served from the caches

of the peering ISPs. Similar to the LC game, the neighboring

caches can exchange information about the contents they cache

(i.e., rh
i,i′) in order to make it easier for a cache to locate a

neighboring cache that can potentially serve its local requests.

A. Algorithms for cooperation

The distributed algorithms we use implement the behavior

described above. The algorithms can be used in on-line and

off-line mode. In the on-line mode contents are cached during

the iterations of the algorithm according to changing relaying

decisions; in the off-line mode contents are cached once the

algorithm converges to a solution. We will show results using

both modes in Section VI.

The pseudo-code of the NC algorithm is shown in Table II.

In step (1) the ISP calculates the cost of every content h based

on the local requests (Bh
i) not served by neighboring ISPs’

caches and based on the costs reported by the neighboring

ISPs. In step (2) the ISP finds the content that has the highest

cost normalized by its size (h+) and is not entirely cached.

In step (3) the ISP finds the content that has the lowest cost

normalized by its size (h−) and is at least partially cached. If

h− = h+ then the iteration is finished in step (4), otherwise the

algorithm has to evict part of content h− to be able to store

more of content h+.

The rate of change is calculated in step (5) and is limited by

two factors: by dr+ in the on-line mode of operation, and by

the reciprocal of the node degree (scaled by a factor ε) in the

case of off-line operation. The scaling factor ε influences the

communication overhead between caches and the convergence

speed. The higher the value of ε, the slower the convergence

and the higher the communication overhead, but a high value

of ε helps to damp oscillations around an equilibrium state.

The rationale for assigning a lower rate of change to nodes

with a high degree in off-line mode is to avoid potential

instabilities that could be caused by changes made by high

degree nodes.

To illustrate the necessity of limiting the rate of change

consider an example with two ISPs (I = {1,2}) with unit

cache capacity (Ki = 1), and two contents (H = {1,2}) of

unit size (Sh = 1) and B1
i > B2

i . Let the relaying vectors be

initially ri = (1,0). If the two ISPs update their relaying

vectors simultaneously to minimize their costs given the other

ISP’s relaying vector then both will change to ri = (0,1). A

subsequent update will result in ri = (1,0), etc. By limiting

the rate of change we do not avoid such cycles around the

Nash equilibria, but we can decrease their amplitude.

ISP i executes every τ time

1. Calculate for h ∈H
Ch
i = Bh

i ∏i′∈P (i) (1− rh
i′,i)+∑i′∈P (i)C(i′, i,h)

2. Pick h+ for which rh
+

i,i < 1 and Ci(h
+)/Sh

+
is maximal.

3. Pick h− for which rh
−

i,i > 0 and Ci(h
−)/Sh

−
is minimal.

4. If h+ = h− then finish iteration.
5. Calculate β, the allowed rate of change

β = min(dr+τ/Sh
+
,1/(|P (i)|+1)/ε,1− rh

+

i,i ,rh
−

i,i S
h−/Sh

+
).

6. Set rh
+

i,i = rh
+

i,i +β.

7. Set rh
−

i,i = rh
−

i,i −βSh
+
/Sh

−
.

8. For every i′ ∈ P (i) recalculate

C(i, i′,h+) = Bh
i ∏i′′∈{i∪P (i)\i′} (1− rh

+

i′′,i) and

C(i, i′,h−) = Bh
i ∏i′′∈{i∪P (i)\i′} (1− rh

−

i′′,i).

9. Send rh
+

i,i′ , C(i, i′,h+), rh
−

i,i′ , C(i, i′,h−) to ISP i′ ∈ P (i).

TABLE II
PSEUDO CODE OF THE DISTRIBUTED CACHING ALGORITHM FOR THE NC

GAME.

In steps (6) and (7) the ISP increases the caching ratio of

the most expensive content (h+), and decreases the caching

ratio of the least expensive content (h−) according to the

allowed rate of change. In step (8) the ISP recalculates the

costs (C(i, i′,h+) and C(i, i′,h−)) of the contents that were

adjusted in steps (6) and (7) and in step (9) it sends the new

costs to the caches of the peering ISPs. These costs will be

used by the peering ISPs in step (1) of the algorithm next time

they execute it.

We do not show the pseudo code of the LC algorithm

because it differs from the NC algorithm in three points only:

(i) in Step (1) C(i′, i,h) = 0, (ii) Step (8) does not have to be

performed and (iii) in Step (9) only rh
+

i,i′ and rh
−

i,i′ have to be

sent to the neighboring caches.

B. Convergence to equilibria

The convergence of distributed algorithms to Nash equilibria

is in general hard to prove. The distributed caching algorithms

described above would converge to an equilibrium if there

were no cache capacity constraints and if the algorithms were

executed according to the Nash dynamics, that is, at each step

one ISP switches its relaying strategy to a better alternative.

Without cache capacity constraints the set of relaying vectors

is a lattice under the componentwise partial ordering, and the

convergence in this case follows from the sub-modularity of

the traffic cost functions of the LC and the NC games (eqs. (3)

and (5)) [35]. The convergence is however not guaranteed if

the algorithms are executed in parallel. Furthermore in the

presence of cache capacity constraints the set of relaying

vectors is not a lattice. Hence, we use simulations to verify

the convergence of the distributed algorithms.

V. PERFORMANCE MEASURES

AND BOUNDS

The price of anarchy and the optimistic price of anarchy [7]

are often used to evaluate the inefficiency of Nash-equilibria

compared to the optimal solution. Since a centralized solution

is not feasible for cooperative caching, we are rather interested

in the average gains that one can achieve in the equilibria.

Draft to appear in IEEE Trans. Parallel Distrib. Syst. 6

1

2

3

4 5

6

7

8

(1)

1

2

3

4 5

6

7

8

(2)

1

2

3

4 5

6

7

8

(3)

1

2

3

4 5

6

7

8

(4)

Fig. 2. Graphs (1)-(4): Graph (1): δ = 1, D1(G) = 2. Graph (2): δ = 1, D1(G) = 2. Graph (3): δ = 3, D1(G) = 4. Graph (4): δ = 3, D1(G) = 2.

Consequently, the measures we use capture the average per-

formance benefits of cooperative compared to non-cooperative

caching, both for Nash-equilibria and for the optimal solution.

We define two measures to quantify the gain of cooperation:

the peering gain and the traffic gain. We define the peering gain

for ISP i as

PGi =
1

Ki
∑
h∈H

Sh(1− ∏
i′∈{P (i)∪i}

(1− rhi′,i)), (11)

and the mean peering gain as PG= 1
|I | ∑i∈I PGi. PGi quantifies

the increase of the available amount of cached content as seen

by the clients of ISP i due to cooperation, the higher the better.

Similarly, we define the traffic gain for ISP i as the ratio

of the amount of traffic served from caches using cooperative

caching and that served from caches using non-cooperative

caching,

TGi =
∑h∈H Bh

i (1−∏i′∈{P (i)∪i}(1− rh
i′,i))

∑h∈H rhi,iB
h
i

,

and the mean traffic gain as TG = 1
|I | ∑i∈I TGi. With non-

cooperative caching ISP i should install PGiKi cache capacity

instead of Ki in order to achieve a TGi fold increase of the

traffic served from a cache.

A. Performance bounds

In the following we derive lower and upper bounds for the

peering gain. Without loss of generality we limit ourselves

to the evaluation of relaying strategies on a set of ISPs I
connected by peering agreements, i.e., G is a connected graph.

We focus on the case when the contents are equally popular

in all ISPs. We argue that this assumption is likely to be valid

for ISPs with settlement-free peering agreements as they are

typically within the same country or region.

The amount of content that is available (cached or relayed)

in any ISP can be bounded by

PGi=̂1+
1

Ki
∑

i′∈P (i)

Ki′ ≥ PGi, (12)

which is proportional to the degree of the ISP. The mean

peering gain can be bounded based on (12) by

PG=̂1+
1

|I | ∑
i∈I

∑i′∈P (i)Ki′

Ki

≥
1

|I | ∑
i∈I

PGi = PG. (13)

Both PGi and PG are only dependent on the graph topology

and the cache capacities. PGi = PGi > 1 means that there is

no overlap in the cached contents in ISP i and ISPs i′ ∈ P (i).

If the amount of cache capacity is equal in all ISPs (Ki =K)

then we can also obtain a lower bound on the efficiency of

cooperative caching for the optimal allocation OCR.

Lemma 1: For an arbitrary connected graph G and equal

cache capacities in the ISPs, in OCR the peering gain of every

ISP is bounded from below by

PGi ≥ D1(G) ≥ 2. (14)

Proof: In order to obtain a worst case lower bound on the

peering gain we make the following observation. The worst

case scenario for cooperative caching is if the traffic cost of

the kth popular content is infinitely higher than that of the

k+1st most popular content for all k. In this case all ISPs are

interested in caching only the most popular contents. Hence

finding OCR in the worst case is closely related to finding

minimum dominating subsets of I , a well-studied problem

in graph theory. For Ki = 1 (i ∈ I) finding OCR is related

to finding the domatic number D1(G) of graph G , i.e., the

maximum number of disjoint dominating subsets of I [11].

For Ki = K ≥ 1 (i ∈ I) the problem is known as finding the

r-configuration Dr(G) of graph G [11].

For any connected graph D1(G) ≥ 2. Furthermore, for the

r-configuration of a graph Dr(G) ≥ rD1(G) [11]. The proof

of the lemma then follows from the definition of PGi.

Consequently, given an optimal resource allocation, ISPs can

at least double the amount of cached contents and hence

eventually halve the IP transit traffic through cooperative

caching compared to non-cooperative caching if all of them

deploy the same amount of cache resources. Alternatively, it

is enough for them to install half as much cache capacity as

in the case of non-cooperative caching.

VI. PERFORMANCE EVALUATION

We developed a distributed simulator to evaluate the behav-

ior of the considered cooperative caching algorithms. In the

simulator the several nodes execute the cooperative caching

algorithms in parallel, as caches would update their contents

in parallel. Unless otherwise stated, we start the simulations

from the optimal non-cooperative cache allocations and run

the simulations until the results converge. The results shown

are the averages of 10 runs of the algorithms, the results are

within a 1 percent interval at a 95 percent level of confidence.

We use the bounds developed in the previous section as

a reference to evaluate the efficiency of the considered LC

and NC games. As an additional reference we use a multi-

population genetic algorithm (GA) with 20 subpopulations to

solve the GCCP. In order to help the genetic algorithm, we

Draft to appear in IEEE Trans. Parallel Distrib. Syst. 7

0 20 40 60 80
0

10

20

30

40

50

60

70

80

AS index (ordered by degree)

A
S

 i
n
d
ex

 (
o
rd

er
ed

 b
y
 d

eg
re

e)

Fig. 3. Graph ASP: Adjacency matrix of 87 ASs in Northern Europe.

place one allocation provided by the LC and the NC games in

each of the 20 populations.

We use various ISP peering topologies for the evaluation.

Toy topologies: Graphs (1)-(4) are shown in Fig. 2. The

number of ISPs is |I |= 8 in these graphs, but the graphs have

loops of different lengths and differ in their domatic numbers.

While these graphs do not represent real ISP topologies, their

simplicity makes it possible to understand the operation of the

considered strategies.

AS level peering topology: We obtained the graph of the

settlement-free peering agreements between 87 autonomous

systems (ASs) in Northern Europe (Denmark, Finland, Nor-

way and Sweden) from the BGP route advertisements of the

ASs stored in the RIPE whois database. We considered the

advertisements that correspond to bilateral peering relations

only. We identified a bilateral peering relation by both ASs

advertising only their own AS number to each other, and a

transit relation by one of the ASs advertising “any” to the

other. We refer to this graph as Graph ASP. Fig. 3 shows a

graphical representation, in which a dot stands for an edge

between two nodes, of the adjacency matrix of Graph ASP.

The minimum node degree in the graph is δ = 1, consequently,

the domatic number of the graph is D1(G) ≤ 2, but the

maximum node degree is 62 and the upper bound of the

average peering gain is PG = 19.48. The nonlinear minimum

least squares fit for a Zipf distribution to the degree-rank

statistics of the graph is 75.67k−0.42, with root mean squared

error 4.68. We observe a dense subgraph consisting of about

20-40 ASs well connected to each other (upper right corner),

and the rest of the ASs are also connected to at least some

ASs with high degree. In reality several ASs might belong to

the same ISP, but we will use AS and ISP interchangibly in

the rest of the paper for simplicity.

Random graphs: In addition to the above five topologies,

we use random graphs with different topological properties.

Details about the random graphs are given in the respective

sections.

1 2 3 4
0

1

2

3

4

Graph ID

P
ee

ri
n

g
 G

ai
n

PGLC PGNC PGGA PGOCR PG

Fig. 4. Average peering gain achieved using various algorithms and the
theoretical upper bound for Ki = 1 on graphs (1)-(4).

A. Evaluation using synthetic popularity distributions

In this subsection we show results obtained with synthetic

popularity distributions on various graph topologies. Since the

solutions given by LC and NC depend on the distribution of

Bh
i /S

h, we fix Sh = 1 for Section VI-A and will change the

distribution of Bh
i only.

We start the evaluation with Graphs (1)-(4). We set the

number of subscribers equal in all ISPs, the total client

population is 106 out of which 105 are within the considered

ISPs, distributed uniformly among ISPs, and let the traffic

generated by contents, Bh
i , follow a Zipf distribution with

exponent α = 0.7 [13]. Fig. 4 shows the achieved mean peering

gain for the LC and the NC games on Graphs (1)-(4). As a

comparison we show the mean peering gain achieved by the

multi-population genetic algorithm (GA), the optimal solution

(OCR), and the upper bound PG. The figure shows that the

gains in the NC game are always at least as high as in

the LC game, and significantly higher in the case of Graph

(3), which one would expect to be the most straightforward

topology. For Graph (3) LC does not converge to the optimal

solution, but simulations show that it does not diverge from

it, if started there. In general, both the LC and the NC

games provide however close to optimal results. The genetic

algorithm manages to find the optimal solution for all four

graphs. Since for large graphs we were not able to obtain

the optimal solution, we will use the genetic algorithm as a

benchmark for Graph ASP and the random graphs in the rest

of the paper.

In the following we present results based on Graph ASP

unless otherwise stated. We were not able to calculate the

optimal solution OCR for Graph ASP, hence we will only

use the genetic algorithm as reference. We start the evaluation

by considering the same distribution of the user populations

and the content popularities as for Fig. 4. Fig. 5 shows the

maximum peering gain achievable by the ASs, the peering

gains achieved by the LC and the NC games, and the solution

obtained by the GA algorithm. We ordered the ASs according

to their node degrees in order to make the figure easier to read.

The results obtained for the NC game and those of the GA

algorithm are quite close to each other, while those obtained

for LC lie below. The high gains in the NC game compared

to the LC game should provide an incentive for ASs to follow

this slightly altruistic strategy for cooperative caching.

The peering gains of the ASs with low node degrees achieve

their upper bounds (PGi = δi + 1), it is the nodes with node

Draft to appear in IEEE Trans. Parallel Distrib. Syst. 8

1 15 30 45 60 75 87
0

10

20

30

40

50

60

70

Nodes sorted according to their degrees

P
ee

ri
n

g
 G

ai
n

 (
P

G
i)

PG = 19.48
PGGA = 15.64
PGNC = 16.08
PGLC = 12.04

δ
i
+1

PG
i

GA

PG
i

NC

PG
i

LC

Fig. 5. Peering gains and the theoretical upper
bound for Ki = 1 on Graph ASP.

1 5 10 15 20
0

5

10

15

20

Nodes sorted according to their degrees

P
ee

ri
n

g
 G

ai
n

 (
P

G
i)

PG = 15.50
PGGA = 14.75
PGNC = 14.47
PGLC = 11.40

δ
i
+1

PG
i

GA

PG
i

NC

PG
i

LC

Fig. 6. Peering gains for the best connected
20 ASs in Graph ASP for Ki = 1.

1 10 20 30 40
0

10

20

30

40

Nodes sorted according to their degrees

P
ee

ri
n

g
 G

ai
n

 (
P

G
i)

PG = 23.00
PGGA = 20.33
PGNC = 20.26
PGLC = 14.53

δ
i
+1 PG

i

GA
PG

i

NC
PG

i

LC

Fig. 7. Peering gains for the best connected
40 ASs in Graph ASP for Ki = 1.

degrees above average whos peering gains lie well below their

upper bounds. We also note that even though the peering gain

obtained in the NC game is higher than that of GA, the traffic

gain obtained by GA is higher: the traffic gains are 4.06, 4.41

and 4.45 for LC, for NC and for GA respectively.

1) Incremental deployment: One would suspect that the

peering gains of the ASs with high node degrees are negatively

affected by the ASs with low node degrees. This is however

not true. Figs. 6 and 7 show the peering gains that the best

connected 20 and 40 ASs could achieve if they were not

peering with the worse connected ASs (i.e., the figures show

the peering gain in the dense subgraphs of Graph ASP with 20

and 40 nodes respectively). From (12) we know that the upper

bound PGi of the peering gain of an AS decreases if any of

its peers is removed. The figures show that the actual peering

gains are slightly lower as well. The top 20 ASs achieve a

lower average peering gain (PG) than when all ASs cooperate.

Comparing the average peering gains in Figs. 5 and 7 it might

seem that the top 40 ASs benefit from not cooperating with the

worse connected ASs, the comparison is however misleading.

The average peering gain for these 40 nodes would be 15.72,

22.75 and 22.1 for LC, NC and the GA algorithm if they

cooperated with the worse connected ASs (as they did in Fig.

5). The average traffic gains also show the benefits of increased

cooperation: for 20 ASs the traffic gains are 4.19, 4.50 and

4.55 for LC, NC and GA respectively (Fig. 6); for 40 ASs

the traffic gains are 4.67, 5.17 and 5.21 for LC, NC and GA

respectively (Fig. 7). Hence, there is an incentive for ASs to

establish peering relationships and cooperative caching with

as many other ASs as possible.

2) Does the AS degree distribution matter?: In general it

is difficult to discover peering relations between ASs [25],

and there is no clear understanding of the distribution of the

number of peering agreements of ASs. Hence we consider two

models to construct random graphs: the Erdős-Rényi model

(ER), and the Barabási-Albert model (BA) [2]. In graphs

generated using the ER model the degree distribution of the

ASs follows a binomial distribution. In graphs generated using

the BA model the AS degree distribution follows a power-law.

To make the results comparable to those obtained with Graph

ASP all random graphs have 87 nodes.

Fig. 8 shows the average peering gain as a function of

the average AS peering degree for the two kinds of random

graphs. Surprisingly, the LC game yields better results on

BA graphs, while the NC game yields better results on ER

graphs: node degrees are more homogeneous in ER graphs,

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

Average AS degree

A
v

er
ag

e
p

ee
ri

n
g

 g
ai

n
 (

P
G

)

PG

NC , ER

LC , ER

NC , BA

LC , BA

Fig. 8. Peering gain vs. average AS peering degree on ER and BA random
graphs, Ki = 1.

10
1

10
2

10
3

10
4

5

10

15

20

Number of ASs

A
v

er
ag

e
p

ee
ri

n
g

 g
ai

n
 (

P
G

)

PG

PGNC , ER

PGLC , ER

PGNC , BA

PGLC ,BA

Fig. 9. Peering gain vs. number of ASs on ER and BA random graphs with
average degree 18.48, Ki = 1.

and as we observed on Graph (3), selfish behavior (LC)

leads to inefficiency on homogeneous graphs with difficult

topologies. Altruistic behavior (NC) can however benefit from

homogeneity. For sparse graphs the results are rather similar

for ER and BA graphs. The peering gain for the LC game

is fairly insensitive to the degree distribution, and for the NC

game we only observe a significant difference for very dense

graphs.

The results for the LC game improve drastically as the

graphs become complete. On the complete graphs with 87

nodes the average peering gain is PG = 87 = PG for both

LC and NC, and the traffic gains are TG = 9.59 and 9.6
respectively. This shows that cooperative caching on a non-

complete graph, i.e., the problem considered in this paper,

is algorithmically more difficult and yields lower gains than

cooperative caching on a complete graph, which is generally

considered for cooperative web proxy caching, e.g., [33].

Another important question is how the peering gain scales

with the number of ASs if the average peering degree is

kept constant, i.e., how would cooperative caching scale to

a network of thousands of ASs? We generated random ER

and BA graphs of different sizes with the same average AS

peering degree as that of Graph ASP, i.e., 18.48. Hence, as the

number of ASs grows, the graphs become increasingly sparse.

Fig. 9 shows the average peering gain as a function of the

Draft to appear in IEEE Trans. Parallel Distrib. Syst. 9

0 0.1 0.4 0.7 1
0

5

10

15

20

Zipf parameterA
v
er

a
g
e

G
a
in

(P
G

a
n
d

T
G

)

PGLC PGNC PGGA TGLC TGNC TGGA

PG

Fig. 10. Sensitivity of the peering gain and the traffic gain to the popularity
distribution, Ki = 1 on Graph ASP.

number of ASs. The graphs with few nodes are complete or

nearly complete, hence the good performance of both the LC

and NC games (as observed in Fig. 8). For graphs larger than

about 100 nodes the results are however almost independent

of the graph size. This suggests that the results obtained with

Graph ASP that consists of 87 ASs with average degree 18.48

are representative for larger graphs with the same average node

degree.

3) Sensitivity to the popularity distribution: Most measure-

ments of P2P traffic report a Zipf like distribution of content

popularity [13], [32], but the exponent of the distribution

varies to some extent. In general, the lower the value of the

Zipf exponent, the heavier is the tail of the distribution, and

consequently non-cooperative caching is less efficient. Hence

it is interesting to see how the efficiency of cooperative caching

depends on the tail of the content popularity distribution.

Fig. 10 shows the average peering gain and the average

traffic gain achieved for different values of the exponent

of the Zipfian content popularity distribution. The average

peering gain for the LC game is almost insensitive to the

Zipf exponent, because LC does not lead to close to optimal

solutions when the popularity distribution is close to uniform

(low values of the Zipf exponent). The NC game leads however

to close to optimal solutions in all cases, hence the peering

gain increases as the Zipf exponent decreases. This means

that the gains of cooperative caching increase as the tail of

the population distribution becomes heavier, i.e., when non-

cooperative caching would be less efficient. The traffic gain

decreases of course for both games as the tail of the content

popularity distribution becomes lighter (i.e., the Zipf exponent

increases).

At the two extremes of the parameter space of the popularity

distribution we find two well known problems from graph

theory. For uniform popularity distribution (α = 0) GCCP is

equivalent to finding disjoint sets of contents for every neigh-

boring ISP, similar to the problem of vertex coloring, which

is NP-hard if the number of contents is small [18]. At the

other extreme (α = ∞), when every content is infinitely more

popular than the next popular one, solving GCCP involves

finding the r-configuration of the underlying graph (since the

most popular contents must be relayed to every ISP), and is

NP-complete [11].

4) Scaling of the peer population: Figure 11 shows the

sensitivity of the peering gain and the traffic gain to the

population size, the cache capacity and the number of contents

for α = 0.7. As expected, the results are insensitive to the

LC NC LC NC
0

5

10

15

20

A
v
er

ag
e

G
ai

n
 (

P
G

 a
n
d
 T

G
)

N = 106, |H | = 200,Ki = 1

N = 107, |H | = 200,Ki = 1

N = 107, |H | = 500,Ki = 1

N = 107, |H | = 500,Ki = 2

N = 107, |H | = 103,Ki = 4

PG TG

Fig. 11. Sensitivity of the peering gain and the traffic gain to the population
size, the cache capacity and the number of contents on Graph ASP.

0 200 400 600 800 1000

5

10

15

Number of iterations/node

A
v

er
ag

e
g

ai
n

 (
P

G
 a

n
d

 T
G

)

ε=1

ε=5

ε=10

Peering gain NC

Peering gain LC

Traffic gain LC

Traffic gain NC

Fig. 12. Convergence for the LC and NC games for Ki = 1 on Graph ASP,
peering gain and traffic gain.

population size: we do not observe any difference between

the results obtained for N = 106 and for N = 107. Increasing

the number of contents from |H | = 200 to |H | = 500 does

not change the results either. The average peering gain is

insensitive to doubling the cache capacity from Ki = 1 to

Ki = 2, as well as when the cache capacity is increased

proportionally to the number of the contents |H |. The traffic

gain decreases of course as the cache capacity increases,

because of the decreasing popularity of the cached contents.

5) Convergence to equilibrium: Fig. 12 shows the conver-

gence of the peering and the traffic gain for the LC and for

the NC games as a function of the number of iterations per

node for different values of ε. The convergence for the NC

game is slightly slower than that for the LC game. In both

cases, the algorithms converge without significant oscillations,

after about 70 iterations for ε = 1. The number of iterations

needed per node is proportional to ε(PG− 1)E[K]/E[S] and

is dominated by the maximum node degree. Nevertheless, it

does not depend on ε which equilibrium state is reached. The

same observations hold for the convergence of the traffic gain.

B. Evaluation based on measured traces

We use the BitTorrent traces in the Delft BitTorrent Dataset

2 (DBD2) in order to evaluate the efficiency of the cooperative

caching scheme with heterogeneous content popularities and

content sizes. The subsection starts with a description of the

DBD2 data set, followed by the description of the traffic model

we use, and it ends with results from trace driven simulations

performed with the DBD2 data set.

1) Measurement data set: The DBD2 dataset was collected

as part of the MultiProbe project [23]. The traces contain the

anonymized IP addresses of the clients that participated in

the distribution of the 1916 most popular torrents over a 96

hour period in 2005. Fig. 13 shows the number of clients as

a function of the torrent rank in terms of popularity on May

9 2005, 16:20:00 UTC, and exhibits similar characteristics to

the data reported in [12], [13]. The figure also shows the non-

linear least squares fit for the Zipf distribution to the data, with

Draft to appear in IEEE Trans. Parallel Distrib. Syst. 10

1 10 100 1000 2000
10

0

10
1

10
2

10
3

Torrent rank (k)

N
um

be
r

of
 P

2P
 c

li
en

ts

All ASs

Northern Europe only

387.45*k
−0.44

,RMSE=7.47

110.23*k
−0.49

,RMSE=2.31

Fig. 13. Number of clients vs. torrent rank for the DBD2 data set on
May 9 2005, 16:20:00 UTC.

1 10 100 1000 2000
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

C
um

ul
at

iv
e

ra
ti

o
 o

f
P

2P
 c

li
en

ts

Torrent rank

1 10 100 1000 2000
10

0

10
1

10
2

10
3

10
4

C
um

ul
at

iv
e

am
ou

nt

of
 d

at
a

[G
B

]

Cum. ratio of clients

Cum. amount of data

Fig. 14. Cumulative ratio of clients vs. torrent rank and the corresponding
amount of data for the DBD2 data set.

0 720 1440 2160 2880 3600 4320 5040 5760
0

2500

5000

7500

10000

12500

15000

Time since 07 May 2005 14:20:00 GMT [min]

N
um

be
r

of
 P

2P
 c

li
en

ts

All

Top 1000

Top 500

Top 200

Top 100

Day 0 Day 1 Day 2

Fig. 15. Number of clients in Northern Europe vs. time for various sets of
torrents.

the corresponding root mean squared errors. Fig. 14 shows the

cumulative ratio of the clients as a function of the torrent rank,

and the cumulative amount of data as a function of the torrent

rank (i.e., the amount of data that is shared in the x most

popular torrents). The correlation coefficient between torrent

popularity (Nh) and content size (Sh) is 0.12, and shows almost

no correlation. As an example, 200 GB of cache would suffice

to cache the torrents that 20 percent of the clients belong to,

but one would need 800 GB of cache capacity to cache the

torrents that 40 percent of the clients belong to. (This is in

accordance with results reported for Gnutella traffic in [13].)

We mapped the IP addresses of the clients to the IP

addresses allocated to the 87 ASs of Graph ASP in order

to obtain the popularity distribution of the 1916 torrents in

the different ASs. We identified 903212 BitTorrent clients in

the dataset, out of which 138492 are within the considered

87 ASs. Fig. 15 shows the number of concurrent clients in

the 87 ASs that participate in the top 100, 200, 500 and

1000 torrents (in terms of number of unique IP adresses) as

a function of time over the considered time interval. While

the number of clients fluctuates considerably over time, the

rankings of the torrents appear to be rather static as shown

in Figs. 16 and 17. The figures show the number of torrents

that drop out of the top x (x = 10, 100, 500 and 1000) in

Northern Europe over 1 minute and 1 hour respectively. We

found that the dropout is rather small: in the course of one

hour on average 1.63, 1.12, 0.73 and 0.28 torrents fall out

of the top 10, 100, 500 and 1000 respectively. That is, the

higher the number of torrents observed the lower the dropout.

Consequently, cooperative caching could eventually lead to a

decrease of cache replacements as it increases the amount of

cached content as seen by the individual ASs.

The DBD2 data set covers a small subset of the vast amount

0 1 2 3 4 5
0

0.5

1

Top x drop outs in 1 minute

P
ro

b
ab

il
it

y

x=10

x=100

x=500

x=1000

Fig. 16. Dropout from top X over
1 minute.

0 1 2 3 4 5
0

0.5

1

Top x drop outs in 60 minutes

P
ro

b
ab

il
it

y

x=10

x=100

x=500

x=1000

Fig. 17. Dropout from top X over
1 hour.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
um

ul
at

iv
e

ra
ti

o
 o

f
P

2P
 c

li
en

ts

Torrent rank

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

C
um

ul
at

iv
e

am
ou

nt

of
 d

at
a

[G
B

]

Cum. ratio of clients

Cum. amount of data

Fig. 18. Cumulative ratio of clients vs. torrent rank and the corresponding
amount of data on mininova.org.

of contents available on the Internet. In order to verify that

the statistical properties of the torrent popularity distribution

are representative, on 16 Apr. 2008 we performed a screen-

scrape of www.mininova.org, the biggest torrent search engine,

and collected information about the number of seeds, leechers

and the amount of data for each of the 639631 registered

torrents. Fig. 18 shows the cumulative ratio of the clients as

a function of the torrent rank, and the cumulative amount

of data as a function of the torrent rank. The non-linear

least squares fit for the Zipf distribution to the popularity-

rank statistics is 13364k−0.76 with root mean squared error

97.49, i.e., the tail of the distribution is lighter than in the

DBD2 data set. The number of torrents is almost three orders

of magnitude higher for the mininova.org data set, but the

correlation coefficient between torrent popularity (Nh) and

content size (Sh) is similarly small, 0.0135, as for DBD2.

Hence, for mininova.org, 350 GB of cache would suffice to

cache the torrents that 20 percent of the clients belong to, but

one would need 8.2 TB of cache capacity to cache the torrents

that 40 percent of the clients belong to.

2) Traffic load model: In the following we describe the

traffic load model we use to estimate the traffic arriving to

the caches based on the Nh
i (t) obtained from the DBD2 data

set. If we consider a cache and locality aware P2P system

then content would be downloaded from clients in the same

AS as first choice, as second choice from the P2P cache or

from clients in a peering AS and as a last choice from clients

in non-peering ASs. Content downloaded from clients in non-

peering ASs generates transit traffic and potentially costs. Let

us consider Nh
i (t) clients participating in the distribution of

content h in ISP i. If we assume that the cache is only used if

the content is not available at a known client in the local AS

or in a peering AS, then the request rate arriving to the cache

is proportional to

Bh
i (t) = Nh

i (t)(1− lhi (t)), (15)

Draft to appear in IEEE Trans. Parallel Distrib. Syst. 11

LC NC LC NC
0

5

10

15

20
A

v
e

ra
g

e
 G

a
in

 (
P

G
 a

n
d

 T
G

)

Day 0, Ki = 100

Day 1, Ki = 100

Day 2, Ki = 100

Day 0, Ki = 50

Day 1, Ki = 50

Day 2, Ki = 50

TG
PG

Fig. 19. Average peering gain and traffic gain for 3 days in the DBD2 dataset
on Graph ASP. Ki = 1

where lhi (t) is the proximity awareness factor, which shows

how much a client prefers to exchange data with nearby

clients. A value of lhi (t) = (Nh
i +∑i′∈P (i)N

h
i′
)/Nh corresponds

to a proximity unaware P2P system, lhi (t) = 1 corresponds to

a P2P system that only downloads data from clients in the

same or in peering ASs. This parameter corresponds to the

locality parameter used in [20], and the formula expresses the

linear relationship between the proximity awareness factor and

the amount of transit traffic shown there. Clearly, this formula

does not capture a number of properties of the peer selection

process of popular P2P systems (e.g., the optimistic unchoking

in BitTorrent) but it is a reasonable approximation of the transit

traffic load in an average sense.

3) Daily average gain: In the following we use the popular-

ity distributions Nh
i (t) obtained by mapping the IP addresses

in the DBD2 dataset to the 87 ASs of Graph ASP. We set

Sh according to the measured torrent sizes. To calculate the

daily average gain we calculate the popularity Nh
i of content h

in ISP i as the average number of concurrent peers observed

in ISP i over a 24 hour period (i.e., average of Nh
i (t) for

days 0, 1 and 2), and we consider a proximity unaware

P2P system. This definition of popularity corresponds to the

classical most frequently used eviction policy. We consider two

cache capacity sizes, Ki = 50GB and Ki = 100GB. Proportional

to the total amount of data that the DBD2 dataset represents,

these cache sizes would be equivalent to approximately 500GB

and 1TB respectively in the case of the mininova.org dataset.

Fig. 19 shows the average peering gain and the average traffic

gain achieved based on the popularity distributions for Day 0,

1 and 2 of the DBD2 dataset. We do not observe significant

difference between the gains achieved for the different days (of

course, the set of cached contents differ to some extent as we

will see later). Both the average peering gains and the average

traffic gains are comparable to those obtained with the Zipf

distribution with exponent 0.7 (for Ki = 100GB), and with

exponent 0.4 (for Ki = 50GB). The reason for the different

results for different cache capacities is the change of the slope

of the popularity-rank statistics observable above rank 20 in

Fig. 13. The high values of the peering gain indicate that the

popularity distributions in the peering ASs are rather similar

in the DBD2 trace.

The peering and the traffic gains of the various ASs depend

on the AS’s node degrees in the peering graph and the content

popularities in the ASs. In order to quantify how balanced the

gains of the different ASs are we define the relaying balance

1 10 25 40 55 70 87
−7000

−5000

−2500

0

2000

Nodes sorted according to their degrees

R
e

la
y
in

g
 b

a
la

n
c
e

σ[γLC
i

] = 819.52
σ[γNC

i
] = 946.01

γ
i

LC

γ
i

NC

Fig. 20. Relaying balance of the ASs on Day 0 of the DBD2 dataset. Ki = 1

between ASs i and i′ as

γi,i′ = ∑
h∈H

Z 0

−∞
rhi,i′(t)B

h
i′(t)− rhi′,i(t)B

h
i (t)dt. (16)

A negative relaying balance between ASs i and i′ indicates

that the peers in AS i request more traffic from the cache of

AS i′ than the peers in AS i′ from the cache in AS i, that is,

AS i is a net receiver. Fig. 20 shows the sum of the relaying

balances of every AS, i.e., ∑i′∈P (i) γi,i′ , based on the solutions

achieved in the LC and NC games for Day 0. We observe that

most ASs have a balance near 0, with the exception of a few

outliers. The ASs with negative balance are net receivers, i.e.,

ASs that receive more content relayed than what they relay to

their peers. These ASs can improve their balances by installing

more cache resources (though in this case their peering gain

would decrease due to the increase of the denominator in

(11)) or by establishing more peering relations. The standard

deviations of the balances shown in the figure indicate that

the LC game leads to a better balance of the relaying traffic

between the ISPs than the NC game.

4) Daily instantaneous gain: Finally, we evaluate the per-

formance of cooperative caching in a dynamic environment.

We are interested in how fast the two distributed algorithms

can reconfigure the caches, how much data has to be cached

(loaded in the caches) due to the reconfiguration, and how the

peering gain and the traffic gain are affected during the recon-

figuration. For the evaluation we consider the following mode

of operation. The popularity distribution in an AS is given by

the average request rate Bh
i (t) as calculated in (15) over 24

hours. Every AS updates the statistics every 24 hours, and the

updated statistics are used for the execution of the cooperative

caching strategies in the on-line mode of operation. Better

performance could be achieved by incorporating prediction

techniques, but by considering a simple way of operation we

can give a pessimistic estimate of the performance. For our

evaluation we start the caches from a solution based on the

statistics of Day 0 at 2pm on May 10th 2005. We use the

statistics from Day 1 as the updated popularity distribution

and observe how the caching strategies converge to a new

solution by the end of Day 2. The maximum rate at which

data can be loaded to the caches is dr+ = 0.5MB/s, while

data deletion is immediate, i.e., dr− = −∞. We calculate the

average traffic gain based on the concurrent number of clients

interested in the individual torrents Nh
i (t). We consider both

proximity unaware and proximity aware systems.

Proximity unaware P2P systems: Fig. 21 shows the

average peering gain and the average traffic gain as a function

of time for Ki = 50GB. The average peering gain remains

Draft to appear in IEEE Trans. Parallel Distrib. Syst. 12

0 200 400 600 800 1000 1200
0

5

10

15

20

Time since 14:00, 10 May 2005 UTC [min]

A
v

er
ag

e
g

ai
n

 (
P

G
 a

n
d

 T
G

)

PGNC PGLC TGNC TGLC

Fig. 21. Average peering gain and traffic gain vs. time for the DBD2 dataset
on Graph ASP. Ki = 50GB. Proximity unaware P2P system.

0 200 400 600 800 1000 1200
0

5

10

15

20

Time since 14:00, 10 May 2005 UTC [min]

A
v

er
ag

e
g

ai
n

 (
P

G
 a

n
d

 T
G

)

PGNC PGLC TGNC TGLC

Fig. 22. Average peering gain and traffic gain vs. time for the DBD2 dataset
on Graph ASP. Ki = 50GB. Ideal proximity aware P2P system.

almost unchanged during the observed interval, the average

traffic gain shows however modest fluctuations due to the

changing number of clients. Still it remains around the value

that we obtained for the static scenarios, and hence, indicates

that the considered cooperation strategies can cope with the

dynamics of the P2P content of the DBD2 dataset. During the

observed time interval in the LC game the caches loaded on

average 11.2GB of data per AS, while in the NC game they

loaded 16.6GB of data, which shows that the LC game leads

to less reconfigurations. Without cooperative caching 24.9GB

of data should have been loaded per AS. This result confirms

that cooperative caching can not only increase the number of

contents that are available through a cache in an ISP but it can

also decrease the amount of data that has to be loaded in the

caches. This result matches our observation in Section VI-B1

about the decrease of the dropout for large sets of torrents.

Proximity aware P2P systems: In order to show how

cooperative caching can complement proximity awareness, we

performed the same simulations as for proximity unaware

systems but assuming an ideal proximity aware P2P system,

which as much as possible, downloads contents from peers in

the same ISP or in a peering ISP. In this ideal scheme the

locality factor is

lhi (t) = min(Nh
i (t)−1+ ∑

i′∈P (i)

Nh
i′ (t),4)/4, (17)

that is, a client in ISP i does not generate transit traffic if

there are at least 4 other clients in ISP i or its neighbors.

In our simulations proximity awareness decreased the traffic

served from the caches by 30 percent on average, because the

most popular contents did not need caching. This decrease is

in accordance with the ratio of P2P clients found to be 0 or

1 AS hops away in [6].

The gains of cooperation are however not affected by

proximity awareness, as shown in Fig. 22. The gains fluctuate

significantly more over time than without proximity aware-

ness, because it is the moderately popular contents that are

cached. The number of concurrent peers Nh
i (t) varies faster

for such contents, which mainly affects the efficiency of non-

cooperative caching. We conclude that proximity awareness

and cooperative caching can complement each other. On the

one hand, proximity awareness decreases the load of the

caches. On the other hand, cooperative caching increases the

load of the individual caches because of the increased user

population.

VII. RELATED WORK

Cooperative content caching schemes were first considered

for HTTP traffic. Most of the work on caching focused on

hierarchical proxy caching strategies, e.g., [10], [28]. The term

cooperative caches was used in [31] for hierarchical caches of

metadata, but still the approach used a central repository of

metadata information.

The idea of adaptive, self-organizing caches was discussed

in [29], but the focus of the paper was on how caches

could group themselves, and how they could share content

information, not on how the caches could adaptively change

the content they cache to maximize cache efficiency. The focus

of our paper is on the latter, and is hence complementary to

[29]. In [33] the authors estimated the gains of cooperative

web proxy caching via trace-driven simulations, and a simple

analytical model. Similar to other works on cooperative web

caching, the evaluation assumes that all caches can cooperate

with each other, which would correspond to a complete AS

graph for the problem studied in our paper. As we showed in

Section VI-A the results are substantially different. Our work

differs from previous work on cooperative proxy caching in

that we consider the case of partial caching, which was not

considered before because of the typically small size of web

contents.

Closest to our work in the literature on distributed caching

are [7], [19]. In [7] the authors use game theory to study selfish

caching of content. Their model differs substantially from ours

on several points that affect the properties of the game: it

does not consider capacity constraints and allows objects to be

accessed at arbitrary distances. Furthermore, the evaluation is

based on Nash dynamics protocols, which are not realistic for

our cooperative caching problem. In [19] the authors present

a game theoretic model of replication on a complete graph

with homogeneous distances and binary replication values.

The results presented there cannot be generalized to continous

replication values and non-complete graphs. Furthermore, as

our results show, the results on a complete graph are substan-

tially different from those on sparse graphs.

Related to our work are the studies that consider the

efficiency of caching for P2P content distribution. Several

measurement studies [17], [13], [32] considered the caching of

content for P2P file sharing and showed its possible benefits

in decreasing ISP traffic costs. In [30] the authors proposed an

application layer protocol that could use existing HTTP caches

to decrease the inter-ISP P2P traffic. Finally, cooperation

between caches was considered for P2P streaming traffic in

[8], but the problem formulation and the solution approach is

different from the one considered in this paper.

Related to our work, but different in nature are recent

works on ISP friendly content distribution that involve some

Draft to appear in IEEE Trans. Parallel Distrib. Syst. 13

modification of the P2P application layer protocols. In [1]

the authors proposed the introduction of ISP managed oracle

nodes that clients can consult in order to obtain a ranking of

their neighbors with respect to proximity. Ongoing work in the

DCIA P4P working group relies on application layer trackers

that allocate bandwidth to P2P applications in order to control

traffic related costs [34]. The cooperative caching scheme

considered in this paper could be integrated with the above

proposals and could lead to improved application performance

and decreased costs for ISPs.

VIII. CONCLUSION

In this paper we have studied whether a cooperative caching

scheme could help ISPs to decrease their bandwidth costs

caused by peer-to-peer content distribution systems. We gave

a game theoretic formulation of the interaction between the

caches for two kinds of ISP behavior: selfish and altruistic.

We showed the existence of pure strategy Nash equilibria for

both games, and gave bounds on the benefits of cooperative

caching based on results from graph theory. We evaluated

the possible gains of cooperation on diverse graph topologies.

Our results show that the gains of cooperation are high even

if ISPs follow a selfish strategy (LC), but altruistic behavior

(NC) can further increase the gains of cooperation. Though it

provides less gains, the selfish strategy leads to a better balance

of relayed traffic and to less reconfigurations of the cache

contents. We found that cooperative caching gives incentives

for ISPs to establish peering relations, as the gain achievable

by an ISP increases with its degree. A major advantage of

cooperative caching is that gains are highest when efficient

caching is most difficult, i.e., when the tail of the content

popularity distribution is heaviest.

We evaluated the efficiency of cooperation on a real AS

topology based on a measured trace of BitTorrent content

popularity, and conclude that the heterogeneity of content

popularities does not affect the performance significantly.

We have shown the gains of cooperative caching as content

popularity distributions change over time. Our results show

that cooperative caching could lead to a significant increase

in cache efficiency also in the case of proximity-aware peer

selection policies, and hence to a decrease of ISP costs induced

by peer-to-peer content distribution systems.

ACKNOWLEDGMENT

The author would like to thank Paweł Garbacki for his

help in interpreting the traces in the DBD2 data set. Part of

this work was done while visiting the Swedish Institute of

Computer Science (SICS).

REFERENCES

[1] V. Aggarwal, A. Feldmann, and C. Scheideler. Can ISPs and P2P
users cooperate for improved performance? ACM SIGCOMM Computer

Communication Review, 37(3), 2007.

[2] R. Albert and A. Barabási. Statistical mechanics of complex networks.
Rev. Mod. Phys, 74(1):47–97, 2002.

[3] R. Bindal, P. Cao, W. Chan, J. Medval, G. Suwala, T. Bates, and
A. Zhang. Improving traffic locality in Bittorrent via biased neighbor
selection. In Proc. of ICDCS, July 2006.

[4] BitTorrent Local Tracker Discovery Protocol.
http://bittorrent.org/beps/bep 0022.html.

[5] CacheLogic. http://www.cachelogic.com.

[6] D. Choffnes and F. Bustamante. Taming the torrent: A practical
approach to reducing cross-ISP traffic in P2P systems. In Proc. of ACM

SIGCOMM, Aug. 2008.

[7] B. Chun, K. Chaudhuri, H. Wee, M. Barreno, C. Papadimitriou, and
J. Kubiatowicz. Selfish caching in distributed systems: a game-theoretic
approach. In Proc. of ACM Symposium on Principles of Distributed

Computing (PODC), July 2004.

[8] G. Dán. Cooperative caching and relaying strategies for peer-to-peer
content delivery. In International Workshop on Peer-to-peer Systems

(IPTPS), Feb. 2008.

[9] G. Dán, T. Hossfeld, S. Oechsner, P. Chołda, R. Stankiewicz, I. Papafili,
and G. Stamoulis. Interaction patterns between P2P content distribution
systems and ISPs. IEEE Commun. Mag., Revised Aug. 2009.

[10] S. Dykes and K. Robbins. A viability analysis of cooperative proxy
caching. In Proc. of IEEE INFOCOM, pages 1205–1214, 2001.

[11] M. Fujita, S. amd Yamashita and T. Kameda. A study on r-configurations
- a resource assignment problem on graphs. SIAM J. Discrete Math.,
13:227–254, 2000.

[12] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang. Measurements,
analysis, and modeling of bittorrent-like systems. In Proc. of ACM IMC,
pages 35–48, 2005.

[13] M. Hefeeda and O. Saleh. Traffic modeling and proportional par-
tial caching for peer-to-peer systems. IEEE/ACM Trans. Networking,
16(6):1447–1460, 2008.

[14] IETF Application Layer Traffic Optimization Working Group (ALTO).
http://www.ietf.org.

[15] Internet Cache Protocol v2, rfc2186. http://www.ietf.org/rfc/rfc2186.txt.

[16] Ipoque. Internet Studies 2007. http://www.ipoque.com, 2007.

[17] T. Karagiannis, P. Rodriguez, and K. Papagiannaki. Should internet
service providers fear peer-assisted content distribution? In Proc. of

Internet Measurement Conference, pages 63–76, 2005.

[18] S. Khot. Improved inapproximability results for MaxClique, chromatic
number and approximate graph coloring. In Proc. of IEEE Symp. on

Foundations of Computer Science, pages 600–609, Oct. 2001.

[19] N. Laoutaris, O. Telelis, V. Zissimopoulos, and I. Stavrakakis. Dis-
tributed selfish replication. IEEE Trans. Parallel Distrib. Syst.,
17(12):1401–1413, 2006.

[20] S. Le Blond, A. Legout, and W. Dabbous. Pushing bittorrent locality to
the limit, INRIA, Tech. Rep. 0034382, Dec. 2008.

[21] N. Leibowitz, A. Bergman, R. Ben-shaul, and A. Shavit. Are file
swapping networks cacheable? Characterizing P2P traffic. In Proc. of

7th Int. Workshop on Web Content Caching and Distribution (WCW’02),
Aug. 2002.

[22] P. Marciniak, N. Liogkas, A. Legout, and E. Kohler. Small is not always
beautiful. In International Workshop on Peer-to-peer Systems (IPTPS),
Feb. 2008.

[23] MultiProbe Project. http://multiprobe.ewi.tudelft.nl.

[24] J. F. Nash. Equilibrium points in n-person games. Proc. of the Nat.

Academy of Sci. (PNAS), 36(1):48–49, 1950.

[25] R. Oliveira, D. Pei, W. Willinger, B. Zhang, and L. Zhang. In search of
the elusive ground truth: the Internet’s AS-level connectivity structure.
In Proc. of ACM Sigmetrics, pages 217–228, June 2008.

[26] OverCache P2P. http://www.oversi.com.

[27] PeerCache. http://www.joltid.com/index.php/peercache.

[28] P. Rodriguez, C. Spanner, and E. Biersack. Analysis of web caching
architectures: hierarchical and distributed caching. IEEE/ACM Trans.

Networking, 9(4):404–418, 2001.

[29] G. Salaita, G. Hoflund, S. Michel, K. Nguyen, A. Rosenstein, L. Zhang,
S. Floyd, and V. Jacobson. Adaptive web caching : towards a new global
caching architecture. Computer networks and ISDN systems, 30(22-
23):2169–2177, 1998.

[30] G. Shen, Y. Wang, Y. Xiong, B. Y. Zhao, and Z. Zhang. HPTP: Relieving
the tension between ISPs and P2P. In Proc. of IPTPS, Feb. 2007.

[31] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Beyond hierarchies: Design
considerations for distributed caching on the Internet. In Proc. of

International Conference on Distributed Computing Systems, pages 273–
284, 1999.

[32] A. Wierzbicki, N. Leibowitz, M. Ripeanu, and R. Woźniak. Cache
replacement policies for P2P file sharing protocols. Euro. Trans. on

Telecomms., 15:559–569, 2004.

[33] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and
H. Levy. On the scale and performance of cooperative web proxy
caching. 34(5):16–31, 1999.

Draft to appear in IEEE Trans. Parallel Distrib. Syst. 14

[34] H. Xie, Y. Yang, A. Krishnamurthy, Y. Liu, and A. Silberschatz. P4P:
Provider portial for P2P applications. In Proc. of ACM SIGCOMM,
2008.

[35] D. D. Yao. S-modular games, with queueing applications. Queuing

Systems, 21:449–475, 1995.

APPENDIX

The proof we describe here follows the proof described in

[24]. Before proving Theorem 1 we recall Kakutani’s fixed

point theorem [24].

Lemma 2 (Kakutani): Let B ⊆ R
|H |, B compact, convex

and non-empty. Let K :B−→→B be a correspondence (non empty

valued), s.t. K (b) is convex ∀b ∈ B . Assume, moreover, that
K has closed reduced graph. Then, there is a fixed point for

K , i.e. ∃b ∈ B s.t. b ∈K (b).
The following proof of Theorem 1 consists of showing that

the conditions of Lemma 2 are satisfied.

Proof: (Theorem 1) Bi is non-empty because for Ki > 0

there is at least one feasible relaying vector. Bi is closed and

bounded, hence it is compact. Furthermore, Bi is convex due

to the linearity of the cache capacity constraints (1).

The payoff function that ISP i aims to maximize is con-

tinuous in rhi,i and in rh
i′,i both for LC and for NC, and it is

quasi-concave in rhi,i as it is linear.

We define the set valued best response function of ISP i

Ki(r−i) = {ri ∈ Bi| fi(ri,r−i) ≥ fi(r
′
i,r−i) for all ri ∈ Bi}.

The set Ki(r−i) is non-empty because fi is continuous and

Bi is compact. It is convex due to the quasi-concavity of the

payoff function. The graph of Ki is closed due to the continuity

of all pay-off functions.

Let us define B =×i∈IBi and the correspondence K :B−→→B
as K = ×i∈IKi. B is hence compact, convex and non-empty,

and K is convex, non-empty valued and has closed reduced

graph. Hence, due to Kakutani’s theorem K has a fixed point

such that ri = K (ri), which proves the existence of a Nash-

equilibrium both for LC, NC and for a mixture of the two

strategies.

György Dán received the M.Sc. de-

gree in computer engineering from the

Budapest University of Technology and

Economics, Hungary in 1999 and the

M.Sc. degree in business administration

from the Corvinus University of Bu-

dapest, Hungary in 2003. He worked as

a consultant in the field of access net-

works, streaming media and videoconfer-

encing 1999-2001. He received his Ph.D.

in Telecommunications in 2006 from KTH, Royal Institute of

Technology, Stockholm, Sweden, where he currently works

as an assistant professor. He was visiting researcher at the

Swedish Institute of Computer Science in 2008. His research

interests include the design and analysis of distributed and

peer-to-peer systems.

