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Abstract— A large number of peer-to-peer streaming systems
has been proposed and deployed in recent years. Yet, there is
no clear understanding of how these systems scale and how
multi-path and multihop transmission, properties of all recent
systems, affect the quality experienced by the peers. In this paper
we present an analytical study that considers the relationship
between delay and loss for general overlays: we study the trade-
off between the playback delay and the probability of missing a
packet and we derive bounds on the scalability of the systems. We
present an exact model of push-based overlays and show that the
bounds hold under diverse conditions: in the presence of errors,
under node churn, and when using forward error correction and
various retransmission schemes.

Index Terms— C.2.4.b Distributed applications, C.2.6.c Multi-
cast, C.4.e Performance attributes

I. I NTRODUCTION

In an overlay multicast system streaming content is deliv-
ered by utilizing the users’ upload capacities. Consequently,
such a system is promising for the cheap delivery of stream-
ing media to a large population of users. The architectures
proposed for overlay multicast (a.k.a. peer-to-peer streaming)
generally fall into one of two categories: multi-tree-based or
mesh-based. Solutions of both categories utilize multi-path
transmission. Multi-path transmission offers two advantages.
First, disturbances on an overlay path lead to graceful quality
degradation in the nodes. Second, the output bandwidth of the
peers can be utilized more efficiently.

Multi-tree-based overlaysfollow the traditional approach of
IP multicast: nodes are organized into multiple transmission
trees and relay the data within the trees. The streaming data
is divided into packets and packets are transmitted at round-
robin through the transmission trees, providing path diversity
for subsequent packets in this way. The transmission trees
are constructed at the beginning of the streaming session and
are maintained throughout the session by a centralized or a
distributed protocol. Node churn leads to the disconnection of
the trees and hence to data loss, which is one of the main
deficiencies of multi-tree-based overlays.

Mesh-based overlays (also called swarming)follow the
approach of batch peer-to-peer content distribution: nodes
know about a subset of all nodes (their neighbors); they both
receive data from and forward data to their neighbors. There
is no global structure maintained, hence the scheduling of data
transmissions is determined locally. Mesh-based overlaysare

resilient to node churn as forwarding decisions are taken based
on the actual neighborhood information, but their efficiency
depends on the scheduling algorithm.

Several works deal with the management of multi-tree-
based overlays ([1], [2] and references therein) and with
scheduling algorithms for mesh-based overlays ([3], [4], [5]
and references therein). There are also numerous proposalson
how to improve the robustness of the overlays to errors using
coding techniques such as forward error correction (FEC),
multiple description coding (MDC) and network coding [6].
The evaluation of the proposed solutions is mostly based
on simulations and small scale measurements; the analytical
modeling of overlay multicast has not received much attention.

There are a number of commercial deployments of overlay
multicast, e.g. [7], [8]. Commercial systems often serve hun-
dreds of thousands of peers simultaneously [9], yet little is
known how they would behave if the number of concurrent
users increased to its tenfold. We argue that there is a need
for an analytical understanding of the performance of large
systems in order to be able to design systems that can provide
controllable and predictable quality under a wide range of
operating conditions.

The most important difference between overlay multicast
systems and peer-to-peer content distribution, such as Bittor-
rent, is the delay aspect: data should be delivered to the nodes
before their playout deadline. The probability that data arrive
before their playout deadline depends on the playback delay
b: the lag between the time of the generation of a packet at
the source and the time of the playback at the peers, as shown
in Fig. 1. The necessary playback delay for providing good
streaming quality may depend on many factors: the overlay’s
architecture and size, which determine the nodes’ distances
from the source; the per-hop delay distribution, the packetloss
probability between the nodes and the error control solutions
used; the scheduling of packet transmissions in pull based
overlays; and the frequency of node departures and the time
needed to reconnect to the overlay in the case of multi-tree-
based overlays.

Our aim is to define benchmarking metrics for the perfor-
mance evaluation of overlay multicast systems. Specifically,
we consider two questions related to the playback delay. First,
how fast does the probability of missing a packet decrease
as a function of the playback delay. Second, how fast should
the playback delay be increased to maintain the probabilityof
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Fig. 1. The playback delay and the time needed to connect to theoverlay.

missing a packet unchanged as the overlay’s size increases.
Through the derived bounds we can define the factors that
influence the system scalability. The paper also presents an
exact model of the temporal evolution of the data distribution
in overlay multicast, and uses the exact model to illustratehow
the derived bounds can be interpreted.

The rest of the paper is organized as follows. Section II
gives an overview of the related work. Section III presents
bounds on the playback delay and the scalability of the
overlays based on the foundations of large deviation theory
and on results on heavy-tailed distributions. We present an
exact mathematical model of overlay multicast systems in
Section IV. Section V discusses the delay bounds and the
performance of the overlays based on the exact mathematical
model, and we conclude our work in Section VI.

II. RELATED MODELING WORK

The trade-off between the available resources and the
number of nodes that can join the overlay was studied for
overlay multicast systems utilizing a single transmissiontree
in [10]. The first models that describe the data distribution
performance of multi-tree-based overlay multicast were pro-
posed in [11], [12] and showed that these systems exhibit a
phase-transition when using FEC. The effect of the forwarding
capacity on multi-tree-based overlays was investigated in[13]
using a queuing theoretic approach, and in [14] based on
a fluid model. The delay characteristics of a mesh-based
overlay were investigated in [4], and the authors showed an
exponential relationship between the playback delay and the
packet missing probability. The analytical results presented
there are limited to a specific packet forwarding algorithm
and to complete graphs. In [15] the authors considered a
larger set of forwarding schemes, and showed the delay and
throughput optimality of a fresh-data first forwarding scheme
under certain conditions. In [16] the authors presented an
analytical model of multi-tree-based overlays, which serves as
the basis of the analytical model presented in this work. The
focus in [16] was on identifying the primary sources of delay
in overlay multicast and on comparing different prioritization
schemes. We are however not aware of analytical results
neither on the scalability of overlay multicast architectures in
terms of delay, nor on the effects of the playback delay on the
data delivery performance.

III. D ELAY BOUNDS

We model the overlay as a directed graphG = (V,E) with
N = |V| vertices. The set of vertices and edges can change over
time due to node churn and due to the overlay management.
We chose to omit the time dimension in our notation in order
to ease understanding. Let us denote bys the source of the
multicast, and byTi the spanning tree rooted at the source,
through which the copies of packeti reach the nodes inV. In
a multi-tree-based overlay withτ trees theTi are predetermined
by the overlay maintenance entity and∪Ti = E. In a pull-based
(a.k.a. mesh-based) overlay theTi are a result of local decisions
taken in the nodes, such that all edges(u,v) ∈ Ti are chosen
from E. E is maintained by the overlay maintenance entity.

Let us denote by the random variableLi(v) the length of
the simple overlay path froms to v in Ti , and the peer-to-peer
per-hop delays by the non-negative random variablesXh(v).
For example, in Fig. 1,L400(v) = 6 and L600(v) = 4. The
distribution of theXh(v) depends on many factors, e.g., the
data distribution model (time spent for coordination between
nodes), the probability of losses (due to churn and network
congestion), the nodes’ upload capacities, and the distance
from the source (many proposed architectures place nodes
with large upload capacities close to the source). Except for
Theorem 1 we assume that the peer-to-peer per-hop delays
on consecutive overlay hops are not correlated and follow the
same probability distribution, i.e., theXh(v) are i.i.d. r.v.s. The
possible reasons of correlation would be overlay optimization
based on geographic locations or per-hop-delays. According
to recent measurement studies (e.g., [9]) neighbor selection
is however locality oblivious in practice, which supports the
i.i.d. assumption.

The time it takes for packeti to reach nodev from s, given
that the length of the overlay path isl , is the sum of the per
hop delays. Let us denote this conditional end-to-end delayby
Di(v, l), Di(v, l) = ∑l

h=1Xh(v). Based on the conditional end-
to-end delays we can express the unconditioned end-to-end
delay to nodev

Di(v) =
N−1

∑
l=1

Di(v, l)P(Li(v) = l). (1)

The probability that nodev with playback delayb misses an
arbitrary packeti is P(Di(v) > b). For our analysis we assume
that every packet reaches every node after some finite amount
of time, i.e., limb→∞ P(Di(v) > b) = 0. Both multi-tree-based
overlays with retransmissions and mesh-based overlays can
fulfill this requirement.

A. Playback delay in stationary state

First, we consider an overlay in whichN is a stationary
process, that is, peers may join and leave the overlay but
the average and the variance of the overlay’s size does not
change. In this caseLi(v) is a stationary process as well. We
describe the analytical results separate for the cases whenthe
per-hop delaysXh(v) follow distributions with finite moment
generating functions (m.g.f.) and when they are heavy-tailed,
that is, their m.g.f. is infinite.
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Even though there is not much evidence of heavy-tailed end-
to-end delay distributions in the Internet, we can identifythree
possible sources of heavy-tailed per-hop delay distributions.
First, medium access control protocols used on multi-access
broadcast channels often employ an exponential back-off re-
transmission scheme, e.g., CSMA/CA and CSMA/CD, which
can lead to heavy-tailed delay distributions at the link layer
[17], [18]. Second, interactions with cross traffic at the network
layer can lead to heavy-tailed distributions in the presence
of self-similar traffic [19]. Third, retransmission schemes that
use an exponential back-off scheme at the transmission layer
or at the application layer can lead to heavy-tailed per-hop
delay distributions (e.g., long-range dependent like behavior
observed in the case of TCP on timescales of practical interest
[20]).

Nevertheless, in the case of delay sensitive applications,like
streaming, per-hop delays with finite m.g.f. have practicalsig-
nificance. If the applications use some retransmission scheme
at the transport layer or the application layer, then large delays
originating in the network layer or in the link layer trigger
retransmission requests at the transport or the application layer.
The retransmissions cut the heavy tail of the lower layer
delay distribution, and if the employed back-off scheme is
slower than exponential, e.g., uniform or polynomial, thenthe
resulting per-hop delay distribution will have a finite m.g.f.

The case of finite m.g.f.:We start the evaluation with
the case when the per-hop delaysXh(v) follow distributions
with finite moment generating functions (m.g.f), i.e., a light-
tailed distribution. First we show that if the per-hop delays
Xh(v) follow light tailed distributions then the end-to-end delay
Di(v, l) from the sources to a nodev on an overlay path has
a light-tailed distribution as well, even if the per-hop delays
are not i.i.d.

Lemma 1: Given non-negative random variables Xh (h =
1. . .n,n > 0) with marginal p.d.f fh(x) and joint p.d.f
f (x1, . . . ,xn) such that E[eθXh] < ∞, then Sn = ∑n

h=1Xh has
E[eθSn] < ∞ as well, even if they are positively correlated.

Proof: For independent r.v.s the proof is trivial,E[eθSn] =
Πn

h=1E[eθXh]. For correlated r.v.s, we prove the lemma forn=
2, induction can be used forn > 2. Let us orderX1 and X2

such that
R x

0 f1(t)dt ≤
R x

0 f2(t)dt for ∀ x > x0 (x0 > 0). Let
us denote byX∗∗

2 a random variable that is distributed asX2

but is in perfect positive dependence withX1 (see [21] for a
definition), that isx2 = g(x1) for some functiong. E[eθ(X1+X2)]
is a convex, monotonically increasing function, hence [21]

E[eθS2] = E[eθ(X1+X2)] ≤ E[eθ(X1+X∗∗
2 )]. (2)

Since there existsθ′ > 0 such thatE[eθ′X1] < ∞, for all 0 <
θ ≤ θ′/2 it holds that

E[eθS2] =
Z ∞

0

Z ∞

0
e(x1+x2)θ f (x1,x2)dx1dx2

≤
Z ∞

0
e(x1+g(x1))θ f1(x)dx1 (3)

≤ a(x0,θ)+

Z ∞

x0

e2x1θ f1(x)dx1 < ∞, (4)

where (3) holds because of (2) and (4) holds becauseg(x)≤ x
for x > x0 due to the ordering ofX1 andX2.

By Lemma 1 the distribution ofDi(v, l) has finite m.g.f. The
end-to-end delayDi(v) for an arbitrary packet and node is a
linear combination of theDi(v, l) as given by (1), so that the
following lemma applies toDi(v).

Lemma 2: Consider the non-negative random variables Sn

(n = 1. . .N−1,N ≥ 2) such that E[eθSn] < ∞ for someθ > 0.
Let the r.v. S be a linear combination of the Sn, S= ∑N−1

n=1 pnSn

such that∑ pi = 1, pi ≥ 0. Then E[eθS] < ∞ for someθ > 0,
that is, the property of finite m.g.f. is preserved through the
operation of linear combination.

Proof: Recalling one of the basic properties of m.g.f.s,
for S= ∑N−1

n=1 pnSn, the m.g.f. of the r.v.S is

E[eθS] =
N−1

∑
n=1

pnE[eθSn] ≤
N−1

∑
n=1

E[eθSn] < ∞.

By Lemma 2, the distribution ofDi(v) has finite m.g.f., that
is, the end-to-end delay as seen by an arbitrary node for an
arbitrary packet has finite m.g.f. We can prove the following
theorem based on results from large deviation theory [22].

Theorem 1: The decrease of the probability that an arbi-
trary node with playback delay b misses an arbitrary packet in
an overlay with N nodes is asymptotically at least exponential
in b if the per-hop delays have finite m.g.f.

Proof: From Lemma 1 and 2 it follows that the distri-
bution of Di(v) has finite m.g.f. In the following we show
that the decrease ofP(Di(v) ≥ b) is asymptotically at least
exponential inb.

Recall the Chernoff bound from large deviation theory. For
the average ofn i.i.d random variablesX andx > E[X]

P(
∑n

j=1Xj

n
≥ x) ≤ e−nI(x), (5)

whereI(x) is the rate function given by

I(x) = maxθ>0θx− ln(E(eXθ)).

Fig. 2 shows the rate functions for two distributions with
different parameters. The rate functionI(x) is convex for scalar
random variables, is monotonically increasing on(E[X],∞)
and I(E[X]) = 0 [22]. For non-negative r.v.sX with E[X]≥ 0,
the derivative ∂I(x)

∂x |x0 ≥ I(x0)/x0 for all x0 > E[X]. Conse-
quently, forx > E[X] anda > 1 we can write

I(ax) ≥ I(x)+(ax−x)I(x)/x = aI(x) (6)

and hence

P(
∑n

j=1Xj

n
≥ ax) ≤ e−nI(ax) ≤ e−anI(x) =

(

e−nI(x)
)a

. (7)

We can setn = 1 and apply (5) and (7) to the r.v.Di(v)

P(Di(v) ≥ b) ≤ e−I(b),

and
P(Di(v) ≥ ab) ≤ e−I(ab) ≤

(

e−I(b)
)a

. (8)

Eq. (8) holds for anya > 1, which proves the theorem.
The result is independent of the distributionP(Li(v) = l),

and holds whenever there is enough forwarding capacity in
the overlay. It is also independent of the number of packets in



4

3 6 9 12
0

0.5

1

1.5

2

2.5

3

x

I(
x)

(a)

 

 
b=1,   n=10
b=0.5,n=10
b=0.5,n=20

1 2 3 4
0

2

4

6

8

10

12

x

I(
x)

(b)

 

 
p=0.01
p=0.05
p=0.10

Fig. 2. Rate function for two distributions (a)X = a+yb wherea = 1 and
y has discrete uniform distribution on[1,n] and (b) geometric distribution
with failure probability p.

the stream and does not make any assumption on the graph’s
connectivity or the distribution scheme, in particular, itdoes
not assume a complete graph. The simulation results presented
in [4] support our analytical result for pull-based overlays, and
we show results later that support the theorem for multi-tree-
based overlays.

The case of heavy-tailed distributions:Most practical
heavy-tailed distributions, such as the Weibull, the Pareto and
the log-normal distribution, belong to the class of subex-
ponential distributions, which is a subclass of heavy-tailed
distributions. Hence, we focus on the case when the per-hop
delaysXh(v) are i.i.d. and follow a subexponential distribution.
We recall the definition of the subexponential property and its
relevant consequences from [23].

Definition 1: (Subexponential distribution function)Let Xi

(i ∈ N) be i.i.d. random variables with distribution function
F(x) < 1 for all x > 0. Let us denote byF(x) = 1−F(x) the
tail of F and byF

l∗
(x) = P(X1 + · · ·+Xl > x) the tail of the

l-fold convolution of F. The distribution F is subexponential
if

F
l∗
(x)

F(x)
∼ l . (9)

As shown in Theorem 5.2 in [23], the random sums of
subexponential distributions can be characterized as follows.
Let pl be a probability measure onN0. If

∞

∑
l=0

pl (1+ ε)l < ∞ (10)

for someε > 0 andG(x) = ∑∞
l=0 pl F l∗(x), then

G(x)

F(x)
∼

∞

∑
l=0

l pl (11)

If pl expressesP(Li(v) = l) then the condition (10) holds
becauseLi(v) < N. We can substituteG(x) by P(Di(v) > b)
andF(x) by P(Xh(v) > b) and based on (11) we can write

P(Di(v) > b) ∼ E[Li(v)]P(Xh(v) > b). (12)

Consequently, in the presence of subexponential per-hop
delays the packet missing probability is subexponential as
well, i.e., the decrease of the packet missing probability is
asymptotically slower than exponential as the playback delay
increases. If the per hop delay statistics are known, then the
packet missing probabilities can be predicted from (12).

B. Scalability

In this section we evaluate the effect of the increase of the
overlay’s size on the probability of missing a packet and on
the necessary playback delay for keeping the packet missing
probability constant. To decouple the problem of scaling in
terms of playback delay and the problem of scaling in terms
of overlay maintenance we consider the scaling of the path
length distributionLi(v) given in our analysis: it is determined
by the overlay maintenance entity.

In the following we show that, under certain conditions, if
one would like to to keep the probability of packet missing
unchanged then it is sufficient to increase the playback delay
proportional to the the increase ofE[Li(v)]. Again, we treat the
case of light-tailed and heavy-tailed per-hop delay distributions
separate.

The case of finite m.g.f:Let the Xh(v) be i.i.d. random
variables withM(θ) < ∞. We note that there are no asymptotic
results available for correlated r.v.s, but we conjecture that the
following theorem holds for correlated and for non identically
distributed r.v.s as long asE[Xh(v)] is bounded from above,
and leave the proof to be subject of future work.

Theorem 2: The increase of the playback delay b needed
to maintain the probability of missing an arbitrary packet
unchanged is at most proportional to the increase of the path
length Li(v).

Proof: To prove the theorem we look for ad ≥ 0 such
that for a≥ 0

P(Di(v)≥ b|Li(v) = l) = P(Di(v)≥ b+d|Li(v) = l +a). (13)

We use Chernoff’s bound (5) on the deviation of the average
of i.i.d. random variables [22], hence we rewrite (13)

P(
Di(v)

l
≥

b
l
|Li(v) = l) = P(

Di(v)
l +a

≥
b+d
l +a

|Li(v) = l +a)

and express the upper bounds according to (5)

e−lI ( b
l ) = e−(l+a)I( b+d

l+a ). (14)

We omit the base and rearrange the exponents to get

l

[

I(
b
l
)− I(

b+d
l +a

)

]

= aI(
b+d
l +a

). (15)

The right hand side of (15) is always positive. As the rate func-
tion is convex and monotonically increasing on(E[Xh(v)],∞)
we have the condition

b+d
l +a

≤
b
l
, (16)

that is
d
b
≤

a
l
, (17)

which proves the theorem.
The following theorem establishes a similar results but with

respect to the increase of the mean hop-count as seen by a
node.

Theorem 3: The increase of the playback delay b needed
to maintain the probability of missing an arbitrary packet
unchanged is at most proportional to the increase of the mean
path length E[Li(v)] if the standard deviation of the path length
distribution does not increase faster than E[Li(v)].
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Proof: Let us recall the Chebyshev inequality and apply
it to the end-to-end delayDi(v)

P(|Di(v)−E[Di(v)]| ≥ A) ≤
Var[Di(v)]

A2 . (18)

The end-to-end delayDi(v) is a compound random variable,
hence its mean isE[Di(v)] = E[Li(v)]E[Xh(v)] and its variance
can be calculated as

Var[Di(v)] = E[Li(v)]Var[Xh(v)]+E[Xh(v)]
2Var[Li(v)]. (19)

We can substitute (19) into (18) and introduceb = A +
E[Di(v)]. Then forb > 2E[Di(v)] we get

P(Di(v) ≥ b) ≤
E[Li(v)]Var[Xh(v)]+E[X]2Var[Li(v)]

(b−E[Li(v)]E[Xh(v)])2 . (20)

Consider now thatE[Li(v)|N = n2] = (1+ a)E[Li(v)|N = n1]
andVar[Li(v)|N = n2] ≤ (1+a)2Var[Li(v)|N = n1] then

P(Di(v) ≥ b(1+a)) ≤

≤
(1+a)E[Li(v)]Var[Xh(v)]+E[X]2(1+a)2Var[Li(v)]

(b(1+a)− (1+a)E[Li(v)]E[Xh(v)])2

≤
(1+a)2E[Li(v)]Var[Xh(v)]+E[X]2(1+a)2Var[Li(v)]

(b(1+a)− (1+a)E[Li(v)]E[Xh(v)])2

≤
E[Li(v)]Var[Xh(v)]+E[X]2Var[Li(v)]

(b−E[Li(v)]E[Xh(v)])2 , (21)

which is the same as the right hand side of (20).
In general, (17) shows that it is sufficient to increase the

playback delay at the same pace as the depth of the spanning
trees grows in order to maintain the probability of missing
a packet unchanged. Theorem 3 generalizes the result to the
growth rate of the mean hop count under certain conditions.
E.g., if the nodes’ distances from the source grow asO(logN)
then the playback delay should be increased proportionallyto
the logarithm of the growth of the overlay to keep the packet
missing probability constant. Nevertheless, if the conditions
of Theorem 3 are not satisfied then the playback delay might
have to be increased faster than proportional to the increase of
the mean hop-count. Consequently, one should not only look
at the mean of the hop-count but also at its variance.

Unfortunately, the converse of the theorem cannot be
proved: there is no upper bound on the increase of the
packet missing probability for constant playback delay as the
overlay’s size grows, because the increase depends on the
shape of the rate function itself. (For certain classes of per-
hop-delay distributions and hop-count distributions one can
derive asymptotic bounds based on the results shown in [24].)

The case of heavy-tailed distributions:For subexponen-
tial distributions, based on Theorem 5.2 in [23],

P(Di(v) > b) ∼ E[Li(v)]P(Xh(v) > b), (22)

which means that the increase of the packet missing proba-
bility is proportional to the increase of the mean path length.
This result does not give however any bound on how much
the playback delay has to be increased in order to maintain the
probability of packet missing unchanged. In the following we
show that for the class of distributions with a regularly varying
tail, which is a subclass of subexponential distributions [23],

a bound similar to Theorem 2 can be given. First we define
the class of distributions with a regularly varying tail.

Definition 2: A positive measurable function f is said to
be regularly varying with indexα, denoted as f∈ R (α), for
α ∈ R if

lim
x→∞

f (tx)
f (x)

= tα ∀t > 0. (23)

Definition 3: If a distribution function F has a regularly
varying tail with index−α, denoted asF ∈ R (−α), then

F(x) = x−αm(x), x > 0 (24)

for some m∈ R (0).
Distributions with regularly varying tail are, for example, the
Pareto and the log-gamma distributions. For distributionswith
a regularly varying tail and finite mean the following scaling
law applies, similar to Theorem 2.

Theorem 4: If the per hop delay distribution has regularly
varying tail, then the increase of the playback delay b needed
to maintain the probability of missing an arbitrary packet
unchanged is proportional to the increase of the average path
length in the overlay.

Proof: We prove the theorem by showing that the upper
bound of the playback delay increases in proportion with the
number of hops. We look for ad ≥ 0 such that fora≥ 0

P(Di(v)≥ b|E[Li(v)] = l) = P(Di(v)≥ b+d)|E[Li(v)] = l +a).
(25)

Due to the subexponentiality and (22) we can find the upper
bound on the necessary increase of the playback delay if we
find a d such that

lF(b) ≥ (l +a)F(b+d), (26)

whereF = P(Xh(v) > b). SinceF ∈ R (−α), (26) becomes

lb−αm(b) ≥ (l +a)(b+d)−αm(b+d) (27)

for someα > 1 andm. We can expressd/b as

d
b
≤ α

√

l +a
l

m(b(1+d/b))

m(b)
−1. (28)

Sincem∈ R (0), for b→ ∞ we get

d
b
≤ α

√

1+
a
l
−1≤

a
l
, (29)

which proves the theorem forα > 1.
The asymptotic results of Theorem 1 indicate thatthe

exponential decreaseof the packet missing probability as a
function of the playback delayis not a good measure of
the efficiency of a scheduling schemein overlay multicast:
all scheduling schemes that manage to distribute the data to
all nodes have this property if the per-hop delays have finite
m.g.f. Alternatively, the fact that the packet missing probability
decreases exponentially fast as a function of the playback
delay shows that the per-hop delays are light-tailed, but does
not show how the packet missing probability would change if
the overlay’s size increased (e.g., [4]). The results also show
that it is necessary to control the asymptotic behavior of the
per-hop delay at the application layer, in order to allow the
efficient control of the playout positions in the overlay.
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The scaling of the overlay path lengths with respect to the
overlay’s size is however a good measure of the scalability
of the overlay maintenance and packet scheduling algorithms.
Theorems 2 and 4 show that the playback delay does not have
to be increased faster than proportional to the increase of the
overlay path lengths to keep the packet missing probability
constant. It also means however that nodes should adjust their
playout positions (i.e., their playback delays) accordingto the
size of the overlay in order to avoid buffer underruns. At
the same time, one cannot draw conclusions on the scaling
properties of the overlay by showing how the probability
of packet missing increases for a fixed playback delay as a
function of the overlay’s size. We refer to [25] for an example
where the authors showed the scalability according to Theorem
2, and to [26] for an example where they did not.

IV. DATA DISTRIBUTION MODEL

In the following we present an analytical model of an
overlay multicast system and use the model to verify the delay
bounds discussed in Section III. The model was developed
with multi-tree-based overlays in mind (e.g., proposed in
[1], [27], [28], [29]), but it can be extended to mesh-based
overlays. We quantify the performance of the data distribution
via the probabilityπ(b) that an arbitrary node receives or can
reconstruct (i.e., possesses) an arbitrary packet in the overlay
within the playback delayb. If we denote byAv(b) the number
of packets possessed by nodev in an arbitrary block of packets,
thenπ(b) can be expressed as the average ratio of the number
of packets possessed in a block ofn packets over all nodes, i.e.,
π(b) = E[∑vAv(b)/n/N]. The probability of missing a packet
is directly related to the possession probability:P(Di(v)≥ b) =
1−π(b).

A. System description

We denote the number of trees in the overlay byτ. We
assume the existence of a tree maintenance entity (centralized
[27] or decentralized [30], [31]) that finds suitable predeces-
sors for arriving nodes and for nodes that lose their predeces-
sors due to node churn or preemption [1], [29]. We denote by
Lm(v) the level of nodev in treem. Packeti is distributed in
treem= (i modτ)+1. To simplify the notation, we introduce
the notion of stripe, and say that packeti belongs to stripem
if it is distributed in treem.

We consider two forms of error control: forward error
correction and retransmissions. When forward error correction
(FEC) is used, the source addsc redundant packets to every
k packets, resulting in a block length ofn = k+c. We denote
this FEC scheme by FEC(n,k). Once a node receives at leastk
packets of a block ofn packets, it may recover the remaining
c packets, and forwards the reconstructed packets if necessary.
Block based FEC can be used to implement PET and the MDC
scheme considered in [27], where different blocks (layers)of
data are protected with different FEC codes: the probability
of reception for the different blocks depends on the strength
of the FEC codes protecting them.

We consider three retransmission schemes. A node that
detects a packet loss in stripem requests the retransmission of

the packet by one of these three strategies:
(RP) from itspredecessorin treem. If the loss is due to node

churn then the node will have to wait until a new predecessor
is found.

(RB) from a backup predecessor node, a node that is
forwarding packets in treem in the same level as the node’s
actual predecessor. This scheme assumes that every node
maintains a list of backup nodes, but we do not model the
overhead of maintaining such a list.

(RA) from a predecessor inanother tree. A predecessor in
another tree is likely to be far away from the source in tree
m, hence the retransmission might take longer than using a
backup list.
For the RP and the RB strategies, the level of nodev in the
spanning treeTi through which packeti reaches it (Li(v)) is the
same as the level of nodev in the tree in which packeti should
be distributed (Li modτ(v)), i.e.,Li(v) =Li modτ(v). For the RA
strategyLi(v)≥ Li modτ(v), i.e., due to the retransmissions the
spanning treeTi can be deeper than the trees maintained by
the overlay maintenance entity. We will discuss other aspects
of retransmissions in Section V-C.

B. Analytical model

Let us denote byL = maxm,vLm(v) the number of levels in
the overlay. For simplicity, we assume that a node is in the
same level in the trees in which it forwards data. Similarly,we
assume that a node is the same level in the trees in which it
does not forward data, and denote the level byLl = Lm(v) for
nodes that forward data in levell . Typically, L−1≤ Ll ≤ L in
well-maintained multi-tree-based overlays. The model builds
on the simplifying assumption that the probability that a node
is in possession of a packet is independent of whether another
node in the same level is in possession of a packet. For brevity,
we show equations for the case whenn is a multiple ofτ, and
the output bandwidths are equal for all nodes and large enough
to upload at the stream’s rate. Consequently, the number of
successorsOv is equal for all nodes andOv ≥ τ. We model the
behavior of the overlay in the presence of independent packet
losses. We denote the loss probability on every overlay hop by
p to ease understanding, but hop-dependent values ofp can be
used in the model. We show equations for the homogeneous
case here to ease understanding, though in Section V we
show results for heterogeneous output bandwidths and loss
probabilities. Heterogeneous input and output bandwidths, loss
correlations and heterogeneous losses can be modeled by
following the procedure presented in [32].

We introduce random variables to model the one-way delay
(the time it takes for a packet to travel between two nodes
of the overlay if it is not lost,Tdra), the packet loss detection
times (the time it takes for a node to detect that a packet will
not arrive, Tdld, and the time it takes for a node to detect
that a retransmission request or the retransmitted packet was
lost, Trld ) and the time needed for retransmissions (the time
it takes for a retransmission request to reach its destination,
Trra , and the time it takes for a retransmitted packet to reach
the requestor,Trrb). The subscripts are mnemonics, and we
denote byfxxx the probability density function (pdf) ofTxxx in
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Node v’
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*

Time

Time

Time

Tdra Tdld

Trld

Trra Trrb

Level l

Level  l-1

Node v’’
Level  l

Pkt i Pkt i+

Fig. 3. Delivery of two packets to nodev. The first packet is
delivered directly (Xl (v) = Tdra). The second packet is received after
two retransmission requests (Xl∗+1(v) = Tdld +Trld +Trra +Trrb).

the paper. Fig. 3 shows some of the delays and their notations
used in the model. The r.v.sXh of the model used to obtain
the delay bounds in Section III can be mapped to the sums of
the Txxx depending on the retransmission scheme used.

The key to the performance of the overlay is the probability
ρ j,l (t) that a node in levell receives an arbitrary packet of
stripe j no later thant time after the first packet of the FEC
block the packet belongs to is ready to be sent out from the
source. Let us introduce the binary random variableRj,l (t),
such thatP(Rj,l (t) = 1) = ρ j,l (t). The probability that nodes
receive data from other nodes is determined by the probability
that a node that forwards data in a tree can forward the data
to its successors. Hence, we introduce the probabilitiesπ f

j,l (t)
that a node that is in levell in the tree where it forwards data
possesses an arbitrary packet in stripej no later thant. Fig.
4 illustratesρ j,l (t) andRj,l (t) in an overlay withτ = 4, n = 4
and two levels.

In the following we present a system of algebraic and
differential equations of convolution type that describesthe
evolution of this probability. One can interpret the following
equations and variables as the state equations and the state
space of a system, and the solution is the response of the
system to the input signal given by (39).

We describe the state of the nodes in levell with respect
to a packet in stripej by the following state variables. The
probability that by timet a node has received the packet
directly from its predecessor depends on the evolution of
π f

j,l−1, the probability that the predecessor (in levell −1 of
the tree) possesses the packet and on the pdf of the forward

Time

Time

Time

Source

Level 1

Level 2

1 2 5 63 4 7 8

t1

2t

t1

2t

Block 1 Block 2

Fig. 4. ρ j,l (t) and Rj,l (t) for t1 and t2 and two blocks of data.
ρ2,2(t1) = 0.5, ρ2,2(t2) = 1, ρ4,2(t1) = 0, ρ4,2(t2) = 0.5.

per-hop delay,fdra.

∂α j,l (t)

∂t
=

Z t

0

∂π f
j,l−1(t −υ)

∂t
fdra(υ)dυ, (30)

where
R ∞

0 fdra(t)dt = 1− p. If the packet is lost, the node
has to detect that it will not receive the packet from its
predecessor. The evolution of this state variable depends on
fdld (

R ∞
0 fdld(t)dt = p), the pdf of the time necessary to detect

packet loss

β j,l (t) =

Z t

0

∂π f
j,l−1(t −υ)

∂t
fdld(υ)dυ. (31)

The node triggers a retransmission request at timet in three
cases: if it detects a lost packet from its predecessor according
to β j,l , if it receives a message about unsuccessful retransmis-
sion according toφ j,l or if it detects that its retransmission
request message or the retransmitted packet had been lost
according toψ j,l

γ j,l (t) = β j,l (t)+φ j,l (t)+ψ j,l (t). (32)

The retransmission request arrives to the corresponding
predecessor (determined by the retransmission scheme used)
depending on the pdf of the one way delayfrra , (

R ∞
0 frra(t)dt =

1− p)

δ j,l (t) =
Z t

0
γ j,l (t −υ) frra(υ)dυ. (33)

Let us denote byl∗ the level of the corresponding predecessor
(e.g.,l∗ is l −1, l −1 andLl for theRP, RBandRAretransmis-
sion schemes respectively). The retransmitted packet arrives to
the node according toε j,l , depending on the probability that
the node addressed by the retransmission request possessesthe
packet,π j,l∗ , and depending on the pdf of the one way delay,
frrb (

R ∞
0 frrb(t)dt = 1− p).

∂ε j,l (t)

∂t
=

Z t

0
δ j,l (t −υ)π j,l∗(t −υ) frrb(υ)dυ. (34)

If the node addressed by the retransmission request does
not possess the requested packet, its negative acknowledgment
arrives to the node depending onfrrb ,

φ j,l (t) =
Z t

0
δ j,l (t −υ)(1−π j,l∗(t −υ)) frrb(υ)dυ. (35)

τ Number of trees in the overlay
n FEC block length
k Number of data pkts. in FEC block
L Number of levels in the overlay
Ov Outdegree of nodev
Cv Output capacity of nodev
N Number of nodes in the overlay
Nl Number of nodes in levell of the overlay
a Mean packet size
B Stream bitrate
fxxx(.) PDF of one way delay
p Pkt. loss probability on overlay hop
ρ j,l (t) Prob. of packet reception in stripej in level l at time t
π j,l (t) Prob. of packet possession in stripej in level l at time t
π(b) Prob. of packet possession with playback delayb

TABLE I

L IST OF NOTATIONS USED IN THE DATA DISTRIBUTION MODEL.
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The node detects the retransmission failure (due to a lost
retransmission request or a lost retransmission) according to

ψ j,l (t) =
Z t

0
γ j,l (t −υ) frld (υ)dυ, (36)

both φ j,l and ψ j,l being input for (32), and
R ∞

0 frld (t)dt =
1− (1− p)2).

Finally, the packet is received by the node either directly
from its predecessor or through retransmission, that is

∂ρ j,l (t)

∂t
=

∂α j,l (t)

∂t
+

∂ε j,l (t)

∂t
. (37)

The probability of packet possession at timet for stripe j
depends on the packet reception probabilityρ j,l (t) and the
possibility of reconstruction using FEC. A node possesses a
packet of stripej either if it receives it by timet or if it can
reconstruct it using the packets received in the other stripes,
i.e., it receives at leastk out of the remainingn−1 packets,

π f
j,l (t) = ρ j,l (t)+(1−ρ j,l (t))P(∑

i 6= j

Ri,l i (t) ≥ k), (38)

where l i = l for stripes in which the node is fertile andl i =
Ll for stripes in which the node is sterile. For simplicity we
assume that nodes are in the same level in the trees in which
they do not forward data.

The initial condition of the problem is given by the time
packets are ready to be sent out from the root node. If the
packets of an FEC block are sent out smoothed overna/B
time then

π f
j,0(t) = H(t − ( j −1)a/B), (39)

wherea is the mean packet size,B is the stream’s bitrate and
H(·) is the unit step function.

We solve the above system of differential-algebraic equa-
tions numerically in an iterative way. For playback delayb the
value ofρ j,l (t) has to be evaluated fort ≤ b+(n−1)a/B.

Based on the probabilitiesπ f
j,l (t) we can expressπ j,l (b)

(1≤ l ≤ L), the probability that a node that isl hops away from
the source in the tree where stripej is distributed possesses an
arbitrary packet before its playout deadline given the playback
delay b. The playout deadline for a packet in stripej is t j =
b+( j −1)a/B, so that

π j,l (b) = ρ j,l (t j)+(1−ρ j,l (t j)P(∑
i 6= j

Ri,l i (t j) ≥ k).

The probability that an arbitrary node possesses a packet is

π(b) =
1
n

n

∑
j=1

1
N

L

∑
l=1

π j,l (b)Nl , (40)

whereNl is the number of nodesl hops away from the source.
We will show how to estimateNl for multi-tree-based overlays
in Section V-B.

The computational complexity of the calculation is
O(L| fd|), where | fd| is the length of the vectors used to
approximate the pdfs of the delay distributions. AsL is
O(logN) in the considered overlays, the algorithm scales well
with the number of nodes in the overlay.

C. Modeling node churn

Following the arguments presented in [32], the effects of
node departures on a multi-tree-based overlay that employs
FEC can be incorporated in the model in the following way.
We denote byE[Ξ] the mean time it takes for a node to find a
predecessor, byE[Ω] the mean holding time of a predecessor,
and by E[M] the mean node lifetime. Measured values for
these quantities were shown in, e.g., [1], [29]. Let us denote
by κ = E[Ω]/E[Ξ] the ratio of the average time before the
departure of a predecessor node and the average time to find
a new predecessor as seen by a node. Furthermore, we denote
by α = E[Ω]/E[M] the ratio of the average time before the
departure of a predecessor node and the average node lifetime.
If nodes havei disconnected predecessors upon their arrival
then the average ratio of their disconnected predecessors as
seen by a random observer is

E[∆i ] =
τ+ iα

τ(κ+α+1)
. (41)

One can then usep= E[∆i ] in the model to estimate the over-
lay’s performance in the presence of node churn. Simulation
results in [32] verify the accuracy of this approach for FEC.

D. Applying the model to pull-based systems

The model can be applied to pull-based systems given the
distribution P(Li(v) = l) and the one way delay distributions
fxxx(t). The distributions of bothLi(v) and fxxx(t) depend on
the scheduling algorithm used in the overlay, and it is outside
of the scope of this paper to estimate them.

V. NUMERICAL RESULTS

In the following we present numerical results obtained using
the exact model derived in Section IV, and show that the
bounds derived in Section III hold in the presence of various
retransmission schemes and FEC.

A. System parameters

We model the propagation delayDp by one of two distribu-
tions. The first distribution is light-tailed, a normal distribution
truncated at 180 ms with meanE[Dp] = 67 ms and standard
deviationσDp = 21 ms extracted from a transit-stub network
of 104 nodes generated with the GT-ITM topology generator
[33]. The second distribution is heavy tailed, a shifted Pareto
distribution with CDF FM(x) = 1− (1+ x/b)−z, z = 3 and
b = 0.134 (E[Dp] = 67 ms,σDp = 116 ms). We consider the
streaming of aB = 400 kbps data stream, and the capacity
of the source node’s output link isC(s) = 100 Mbps. The
outdegree of the source,Os, is set to 50 throughout the paper
for easy comparison and to ensure that the overlay is feasible
for all considered values of the number of trees [13], though
the particular value ofOs does not affect the validity of our
conclusions. The packet size is 1410 bytes. The distribution
of the nodes’ output capacities (Cv) and outdegrees (Ov) is as
in [4] and is shown in Table II. Since the effect of the input
capacity of the nodes is small on the results [16], we consider
10 Mbps for all nodes.
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Fig. 7. Packet missing prob. vs. playback
delay for light-tailed one-way delays, differ-
ent packet loss probabilities, and packet loss
detection times,τ = 4, N = 104.

The inter-arrival times of nodes joining the overlay are
exponentially distributed, this assumption is supported by
several measurement studies, e.g., [34]. The session holding
timesM follow the log-normal distribution, the mean holding
time isE[M] = 306 s (µ= 4.93, σ = 1.26) [34]. The nodes are
prioritized according to their outdegrees as proposed in [29],
hence large contributors are closer to the source in the trees
in which they forward data and reconnect faster to the trees.

B. Approximating the nodes’ distance distribution

We approximate the number of nodes in levell in a tree via
the recurrenceNl = ∑v∈R (l−1)Ov with initial condition N1 =
min(N,Os), whereR (l −1) denotes the set of nodes for which
Lm(v) = l − 1. E.g., if the outdegrees were homogeneous,
thenNl =OsOv

l−1
. A real overlay’s structure differs from this

approximation due to node churn, but as simulation results
show [12], [16], the difference does not have a significant
effect on the accuracy of the model.

C. Per-hop delay distribution and retransmissions

For the pdf of the one-way delay (fdra) and the retrans-
mission times (frra and frrb) we use the model described and
validated in [16]. The model captures the delay distribution on
the output links of the nodes as seen by the departing packets,
the propagation delays (Dp) and the delay distribution on the
input links of the nodes as seen by the arriving packets.

We consider three retransmission timeout calculation meth-
ods. The first method (denoted byRTD) calculates the re-
transmission timeout (RTO) dynamically based on the mean
and the standard deviation of the one-way delay and the round-
trip-time (i.e., RTO= E[Xh]+4σ[Xh]), similar to the algorithm
used by most TCP implementations. We consider three back-
off schemes in combination with theRTDmethod to calculate
the distribution of the time until a retransmission requestis
actually generated (the distributions ofTdld andTrld ). For the

Ratio 15% 25% 40% 20%
Cv 10 Mbps 1 Mbps 384 kbps 128 kbps
Ov 2.5τ 2τ 0.75τ 0.25τ

TABLE II

DISTRIBUTION OF NODE OUTPUT CAPACITIES AND OUTDEGREES.

uniform back-off scheme (UB) the RTO does not increase after
successive failed retransmission requests. For the polynomial
back-off scheme (PB) afterk successive failed retransmission
requests the RTO is set tok2 times its original value. For
the exponential back-off scheme (EB) afterk successive failed
retransmission requests the RTO is set to 2k−1 times its original
value.

Methods two and three are idealized retransmission timeout
calculation methods. We denote byRTO0s the case when the
loss of a packet is detected at the instant when it should have
arrived (if it had not been lost), i.e., an ideal loss detection
algorithm, for which fdld(υ) = p/(1− p) fdra(υ). We denote
by RTO1s when a retransmission is requested 1 s after the
packet or the retransmission request has been sent out. We
denote by NR when no retransmissions are used.

D. The case of packet losses

First, we show the effect of the tail of the distribution of
the one-way delay on the playback delay distribution and how
retransmission schemes can influence it. We change the tail of
the one-way delay by choosing the distribution ofDp to be
light-tailed or heavy-tailed.

a) Tail asymptotics: Fig 5 shows the packet missing
probability as a function of the playback delay for light-
tailed and heavy-tailed one-way delays. There are no packet
losses between overlay nodes, hence retransmission requests
are sent only due to late arriving packets. For heavy tailed
one-way delays retransmissions follow theRPscheme with the
RTD method, for light-tailed one-way delays we show results
without retransmissions. The figure confirms the analytical
results presented in Section III: for light-tailed one-waydelays
(LT) the playback delay decreases at least exponentially, for
heavy-tailed one-way delays the tail of the playback delay
distribution is heavy without retransmissions, even if FEC
is used. In the presence of FEC the time until a packet is
possessed is the minimum of two random variables: the time
until the packet would be received through the corresponding

NR, RP, RB, RA Retransmissions:None, fromParent,
from Back-up parent or fromAnother tree

UB, PB, EB Back-off scheme:Uniform, Polynomial, Exponential
RTO.s Idealized loss detection schemes

TABLE III

NOTATIONS USED IN THE FIGURES
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parent and the time to FEC recovery (which is thekth order
statistic ofn−1 random variables with finite m.g.f.). Hence
the tail of the distribution of the packet missing probability
is determined by the tail of the per-hop-delay distribution.
Nevertheless, FEC effectively decreases the packet missing
probability for given playback delay, and even though it cannot
change the tail behavior, it can make the decay of the packet
missing probability exponentially fast for practical purposes.

Our conclusion is similar for the different back-off schemes:
the packet missing probability decays almost exponentially fast
for all three schemes for packet missing probabilities of prac-
tical interest. The tails of the distributions have no practical
importance in this case, and the trunks of the distributionsare
approximately light-tailed down to 10−10. (A packet missing
probability of 10−13 would lead to 1 packet missing its play-
out deadline every 158yearsassuming an HDTV streaming
channel at 20Mbps, i.e., approximately 2000pkts/sec). This
phenomenon can be explained by that single retransmissions
are sufficient to achieve very low packet missing probabilities,
hence the effect of the back-off scheme cannot be observed. An
interesting question is whether the distributions’ tails become
important as the overlay’s size increases. We will answer this
question when discussing Fig. 10.

Fig. 6 shows results for heavy-tailed one-way delays in the
presence of packet losses without retransmissions and with
retransmissions using the RP scheme, the RTD method and
the three back-off schemes. Without retransmissions (NR) the
analysis of the asymptotic behavior presented in [12] with
respect toN,p and the FEC code applies tolimb→∞π(b): the
packet reception probability converges to the asymptotically
stable fixed point of the discrete dynamic system shown in
[12], and limb→∞π(b) < 1. When using retransmissions we
see however the effect of the back-off scheme on the tail
behavior. The UB scheme leads to an exponential decay of
the packet missing probability, while the PB and EB schemes
show a slower decrease. The use of FEC does not change the
tail behavior, but it can lead to an exponential decrease of
the packet missing probability for practical values of interest.
For the PB scheme there is a difference between the tail
behavior (which is light-tailed) and the behavior for packet
missing probabilities of practical interest (which shows a
subexponential decrease): the figure suggests that PB leadsto
a heavier tail than EB, this is however only true for relatively
small playback delays, and is explained byk2 ≥ 2k−1 for k≤ 6.

Nevertheless, for small delays a PB scheme might lead to a
slower decay of the packet missing probability than an EB
scheme.

Next we evaluate the packet missing probability as a
function of the playback delay for the case of packet losses
and light-tailed one-way delays. Fig. 7 shows results for
the RP scheme with the two different idealized methods for
RTO calculation. The figure shows results forN = 104 nodes
organized inτ = 4 trees. Despite the choice of a different RTO
calculation method than the one used in Fig. 5, the curve for
p= 0 in Fig. 7 looks almost identical to the curve for the light-
tailed one-way delay distribution in Fig. 5: the decrease ofthe
packet missing probability is faster than exponential. This is
predicted by Fig. 2 (a), as the rate function for the discrete
uniform distribution grows faster than linear. The rate function
of the geometric distribution is however close to linear (Fig.
2 (b)), hence we expect that in the presence of losses the
decrease of the packet missing probability is not much faster
than exponential. This is supported by the curves that show
results for p > 0. The slope of the curves is related to the
slope of the rate function of the per-hop delay distribution,
the steeper the rate function, the faster the decrease of the
packet missing probability. Though forRTO1s the RTO is big
compared to the per-hop delays and hence the packet missing
probability decreases almost in a stepwise manner, we still
observe the exponential decay. The curves for different loss
probabilities and loss detection times show similar properties,
they only differ in the slopes of the curves.

Fig. 8 shows results without losses and with losses (p= 0.1)
for the RP and the RA retransmission schemes for light-tailed
one-way delays andRTO0s. TheN = 104 nodes are organized
in τ = 4 trees, and FEC(4,3) is used when indicated. We
observe that in the presence of losses the exponential decay
does not hold when retransmissions are not used just as in the
case of heavy-tailed one-way delays. Again, the analysis ofthe
asymptotic behavior presented in [12] with respect toN,p and
the FEC code applies tolimb→∞π(b), i.e., limb→∞π(b) < 1.
Consequently, the assumptions of Theorem 1 are not ful-
filled, because all nodes do not receive all data. When using
retransmissions, the decay is exponential, as shown by the
results for both the RP and the RA retransmission schemes,
with and without FEC. FEC decreases the necessary playback
delay to achieve a certain packet missing probability, but the
exponential decay still holds for the reason explained before.
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Consequently, an alternative of increasing the playback delay
in order to achieve a certain packet missing probability is
to introduce FEC. Nevertheless, the ratio of FEC redundancy
has to be adjusted dynamically based on feedback from the
nodes. We observe a small difference between the results
obtained with the two retransmission schemes. Using the
RA scheme, retransmission of a packet in stripem becomes
possible only once nodes that do not forward data in treem
receive the packet. These nodes are in the last level of treem,
and hence, we observe a slow decay of the packet missing
probability close to the point where the curves with and
without retransmissions separate. Surprisingly, the difference
between the results obtained with the RP and the RA schemes
is small, especially when FEC is used, in which case the
decrease of the decay close to the point where the curves with
and without retransmissions separate is significantly smaller
as well.

b) Scaling behavior:After the discussion of the behavior
of the packet missing probability as a function of the payback
delay, we turn to the problem of scaling. Through numerical
examples we demonstrate the results of Theorem 2 and 4.

Fig. 9 shows results for the RP retransmission scheme for
various overlay sizes, light-tailed one-way delays,RTO0s and
τ = 4 trees. The figure supports Theorem 2: the horizontal gap
between the curves is constant, that is, both in the presence
of losses and in the absence of losses it is enough to increase
the playback delay logarithmically in order to maintain the
packet missing probability constant. Surprisingly however, the
smaller the playback delay needed to achieve a certain packet
missing probability for a given overlay size, the more sensitive
is the overlay to the increase of the number of nodes. For
p = 0 the packet missing probability increases by orders of
magnitude if the overlay’s size increases by a factor of ten,
for p= 0.1 the increase is significantly smaller. Consequently,
even if one could achieve a low packet missing probability
with a small playback delay, the playback delay should be
over-dimensioned to ensure that the packet missing probability
does not become too high if the overlay suddenly grows.

Fig. 10 shows results for heavy-tailed one-way delays,
various overlay sizes and loss probabilities using the RP
retransmission scheme and the RTD method. For the UB
scheme the packet missing probability exhibits a light tail,
and consequently we observe the same scaling properties as
in Fig. 9 for light-tailed one-way delays. Forp = 0 and for
theEB scheme the packet missing probability exhibits a heavy
tail, but we can still observe the same scaling properties, i.e.,
an increase of the playback delay with a constant is sufficient
to compensate for the tenfold increase of the overlay’s size.
This behavior was predicted by Theorem 4. Furthermore,
as predicted by (22), the increase of the packet missing
probability at a given playback delay is proportional to the
logarithm of the ratio of the number of nodeslog(N2/N1)
as the number of nodes increases fromN1 to N2 because
E[Li(v)] ∼ O(logN). There is however no such asymptotic
result if the packet missing probability follows a light-tailed
distribution.

0 2 4 6 8 10 12
10

−8

10
−6

10
−4

10
−2

10
0

Playback delay (b) [s]

P
ac

ke
t m

is
si

ng
 p

ro
b.

 (
1−π(

b)
)

 

 

p=0
p=0.1,RB
p=0.1,RB+FEC
p=0.1,RA
p=0.1,RA+FEC
p=0.1,RP
p=0.1,RP+FEC

x

x

x

x

x x

x

o

o

o

Fig. 11. Packet missing prob. vs. playback delay forN = 104, node
churn and three retransmission schemes.

E. The case of node churn

In the following we show analytical results for the case of
node churn. For the reconnection and the disconnection times
we use values similar to the measured data presented in [1]:
E[Ξ] = 5 s andE[Ω] = 200 s in the tree where a node forwards
data, andE[Ξ] = 30 s andE[Ω] = 100 s in the trees where it
does not. (Nodes are disconnected with a higher probability
in the trees where they do not forward data.) In lack of a
measured distribution we model the reconnection timeΞ with
a normal distributionN(E[Ξ],E[Ξ]/3). Based on these values
the loss probability experienced by a node in a tree where it
forwards data (p = 0.024) and where it does not forward data
(p = 0.1968) can be calculated according to (41).

The distribution of the retransmission times depends on the
retransmission scheme used. For theRPscheme retransmission
occurs once the new predecessor is found, hencefrra is the
pdf of the forward recurrence time of a renewal process with
inter-renewal timeΞ [35]. For theRB andRA schemesfrra is
as discussed in Section V-C. For all three schemes, we assume
that retransmissions are asked from nodes that are present in
the overlay, i.e.,

R ∞
0 frra(t)dt =

R ∞
0 frrb(t)dt = 1.

Figure 11 shows results for the case of node churn and the
three retransmission schemes. As expected, the RB scheme,
which involves significant control overhead, performs best.
Surprisingly however, the RA scheme performs nearly as good
as the RB scheme, both without and with FEC. This is because
under churn nodes experience more frequent losses in the trees
in which they do not forward data, i.e., far from the source:
when these losses occur, data is already available in large
parts of the overlay, hence the additional delay introduced
by the RA scheme is small. The RP scheme, due to the
large retransmission delays, performs almost as bad as if
there were no retransmissions at all. Nevertheless, we observe
the exponential decay with a very slow decay rate. The bad
performance of the RP scheme suggests that resilience to node
churn in a multi-tree-based overlay requires retransmission
schemes that abandon the rigid structure of the trees, and
converge towards pull-based architectures, e.g., the RA and
RB schemes.

VI. CONCLUSION

In this paper we presented analytical results on the data
distribution and scaling behavior of overlay multicast systems
in terms of the playback delay and the overlay size. We derived
general bounds on the streaming efficiency and the overlay
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scalability and gave a detailed model of peer-to-peer streaming
systems to interpret the presented bounds.

Our asymptotic results show that the tail behavior of the
end-to-end delay distribution, i.e., the evolution of the packet
missing probability as a function of the playback delay, is
determined by the tail behavior of the per-hop delay dis-
tributions. If the per-hop delays are light-tailed, then the
packet missing probability shows an asymptotically at least
exponential decrease as a function of the playback delay,
while it exhibits a heavy-tailed distribution otherwise. The tail
behavior of the per-hop delays is dominated by the back-off
scheme used for retransmissions. Nevertheless as the detailed
results show, back-off schemes that lead to a heavy-tailed per-
hop delay distribution can still show an exponential decrease
of the packet missing probability in the range of practical
interest. Since the decrease of the packet missing probability
reflects the characteristics of the per-hop delays, it is nota
good measure of the efficiency of the overlay structure or of
the stream distribution algorithms.

To assess the structure of the overlay one has to look at
the scaling of the playback delay with respect to the overlay
size. We showed that in an overlay in which the distance of the
peers from the source is a logarithmic function of the overlay’s
size, the playback delay does not have to be increased faster
than the logarithm of the overlay’s size to keep the packet
missing probability constant.

We presented a detailed model of a push-based overlay,
and showed that the asymptotic scaling properties hold using
various retransmission schemes and FEC. We concluded that
even simple overlay management solutions can provide good
scaling properties.

The results presented in the paper provide metrics to assess
the scalability of peer-to-peer streaming systems and givea
basic understanding of the dependencies between streaming
performance, overlay and data transmission control.
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[15] Thomas Bonald, Laurent Massoulié, Fabien Mathieu, Diego Perino, and
Andrew Twigg, “Epidemic live streaming: optimal performance trade-
offs,” in Proc. of ACM SIGMETRICS, June 2008, pp. 325–336.

[16] Gy. Dán and V. Fodor, “An analytical study of low delay multi-tree-
based overlay multicast,” inProc. of ACM P2P-TV, Aug 2007.

[17] Yang Yang and Tak-Shing Peter Yum, “Delay distributionsof slotted
ALOHA and CSMA,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1846–
1857, 2003.

[18] Taka Sakurai and Hai L. Vu, “MAC access delay of IEEE 802.11 DCF,”
IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1702–1710, 2007.

[19] M. Lelarge, Z. Liu, and C.H. Xia, “Asyumptotic tail distribution of
end-to-end delay in networks of queues with self-similar cross traffic,”
in Proc. of IEEE INFOCOM, March 2004.

[20] Daniel R. Figueiredo, Benyuan Liu, Vishal Misra, and Don Towsley,
“On the autocorrelation structure of TCP traffic,”Computer Networks,
vol. 40, no. 3, pp. 339–361, 2002.

[21] M Denuit, C. Genest, and́E. Marceau, “Stochastic bounds of sums of
dependent risks,”Insurance: Mathematics and Economics, vol. 25, no.
1, pp. 85–104, Sept. 1999.

[22] A. Schwartz and A. Weiss,Large Deviations for Performance Evalua-
tion: Queues, communication and computing, Chapman & Hall, 1995.

[23] Charles M. Goldie and Claudia Klüppelberg, “Subexponential distri-
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