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ABSTRACT
The two main sources of impairment in overlay multicast systems
are packet losses and node churn. Yet, little is known about their
effects on the data distribution performance. In this paper we de-
velop an analytical model of a large class of peer-to-peer stream-
ing architectures based on decomposition and non-linear recurrence
relations. We analyze the stability properties of these systems us-
ing fixed-point analysis. We derive bounds on the probability that
nodes in the overlay receive an arbitrary packet of the stream. Based
on the model, we explain the effects of the overlay’s size, node het-
erogeneity, loss correlations and node churn on the overlay’s per-
formance. We show how and under what conditions overlays can
benefit from the use of error control solutions, prioritization and
taxation schemes. Our findings lead us to the definition of an over-
lay structure with improved stability properties. Based on our re-
sults, we identify the components that are needed to achieve good
data distribution performance via overlay multicast.
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1. INTRODUCTION
The peer-to-peer paradigm has proved to be an efficient means

both for file distribution to a large population of users, and for
lookup services without the need for expensive infrastructure. Peer-
to-peer multicast streaming overlays could serve content providers
as a cheap and efficient alternative to CDNs for distributing live me-
dia to a large number of spectators. In peer-to-peer multicast, peers
are organized or organize themselves into an application layer over-
lay and distribute the data among themselves. The main advantages
are that the multicast is easy to deploy and it reduces the load of the
content provider, since the distribution cost in terms of bandwidth
and processing power is shared by the nodes of the overlay.

Successful small scale deployments of multicast overlays were
reported in the order of a few hundreds of peers [1]. But despite
a large number of proposed architectures ([2, 3, 4, 5, 6, 7, 8] and
references therein) and a number of deployed systems [8, 9, 10],
large-scale peer-to-peer multicast has not widely been used. This
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could be due to two reasons:feasibility, i.e., the lack of bandwidth
resources to construct an overlay, and the lack of data distribution
performancesimilar to that of point-to-point streaming in terms of
end-to-end delay and packet loss probability.

Nevertheless, recent results show that bandwidth resources are
not an obstacle. In [11] it was shown that the bandwidth resources
contributed by the peers tend to be enough to support large scale
systems. Even if they are not, architectures can provide different
levels of performance to peers with different bandwidth contribu-
tions [12].

Less is known about the data distribution performance, such as
the packet reception probability of the participating nodes. Most of
the results in the literature are based on simulations, and focus on
metrics like the time between tree disconnections, the depth of the
overlay, the amount of control overhead and the link stress. There
is a lack of understanding of how the parameters of the overlay
(e.g., the number of distribution trees, the error control solutions
employed) and the environmental dynamics (e.g., the number of
nodes, node churn and losses due to network failures) affect the
end-to-end delays and the packet reception probability.

The goals of this paper are twofold. First, to give an understand-
ing of how and why the above factors and the policies proposed in
the literature influence the data distribution performance of overlay
multicast. Second, to give a tool for system designers to evaluate
the performance of their proposals, and give guidelines on how to
achieve good performance.

We consider overlay multicast systems based on multiple distri-
bution trees and the push model, such as the ones in [3, 4, 5, 6,
7, 12]. Multiple trees offer two advantages: they ensure grace-
ful quality degradation in dynamic overlays, where peers can leave
during the streaming session and they enable nodes to contribute to
the overlay with fractions of the stream bandwidth. The higher the
number of trees, the smaller the fractions, so that nodes’ output ca-
pacities can be better utilized. With multi-path transmission, parts
of the stream reach the peers through independent overlay paths.
Consequently a node receives large part of the streaming data even
if some of its parent peers stop forwarding.

The contributions of the paper are the following. (i) We present
a model to describe the probability that a peer in the overlay pos-
sesses an arbitrary packet of the data stream. (ii) We show that node
churn can be treated as a form of packet losses. (iii) Based on the
model, we show how factors, such as the overlay’s size, heteroge-
neous loss probabilities, heterogeneous input and output capacities
and loss correlations influence the data distribution performance of
the overlays. (iv) We explain how the parameters of the overlay,
such as the number of distribution trees, the error control schemes
employed, the prioritization and taxation schemes affect the perfor-
mance. (v) Based on our findings we propose a tree structure that



improves the scalability of the overlay with respect to the number
of nodes.

We use simulations to validate the approximations of the model.
We did not perform measurements for two reasons. First, our aim is
to understand the effects of the various parameters on the overlays’
performance, hence we need a controlled environment to validate
the assumptions of the model. Second, we are interested in the
performance of large scale overlays, but we do not have content
that could attract thousands of viewers and we do not have access
to traces of large streaming events.

The rest of the paper is organized as follows. In Section 2 we give
a description of the considered overlays. We develop the analytical
model and derive asymptotic bounds in Section 3. We evaluate the
effects of losses in Section 4 and show how to model node churn in
Section 5. We conclude our work in Section 6.

2. SYSTEM DESCRIPTION
In this section we describe the considered general overlay struc-

ture in Section 2.1, our assumptions regarding the overlay mainte-
nance and the data distribution in Sections 2.2 and 2.3 respectively.

2.1 Overlay structure
The overlay consists of a root node andN peer nodes. The peer

nodes are organized int distribution trees. Each peer node is mem-
ber of at least one tree, and in each tree it has a different parent
node from which it receives data. We say that a node that isi hops
away from the root node in treee is in layeri of treee. We denote
the maximum number of children of the root node in each tree by
m, and we call it the multiplicity of the root node.

Nodes can have children in up tod of thet trees, called the fertile
trees of a node. A node is sterile in all other trees, that is, where it
does not have any children.d is a system parameter. If a noder has
enough capacity to forward data toγr children then we say that the
node has a total ofγr cogs in its fertile trees and has no cogs in its
sterile trees. Ford > 1 the nodes balance their cogs between trees,
i.e., a node can have up to⌈γr/d⌉ cogs in each of its fertile trees.
If we denote the maximum number of layers in the trees byL, then
in a well maintained tree each node is 1≤ i < L hops away from
the root node in its fertile trees, andL−1≤ i ≤ L hops away in its
sterile trees.

By settingd = t one gets the minimum breadth trees described in
[4], and by settingd = 1 one gets the minimum depth trees eval-
uated in [4, 3, 6, 12, 13]. For 1< d < t the number of layers in
the overlay isO(logN) as ford = 1. Fig. 1 shows an overlay for
t = 2, m= 2 andd = 1. The solid black lines show the parent-child
relations between the nodes in the overlay.

2.2 Tree management
The construction and the maintenance of the trees can be done

either by a distributed protocol (structured, like in [3] or unstruc-
tured, like in [5]) or by a central entity, like in [4]. The results
presented in this paper do not depend on the particular algorithm
used, our focus is on the performance of the overlay as a func-
tion of the overlay’s structure, rather than the efficiency of the tree
maintenance algorithm.

The purpose of the tree maintenance algorithm is to find eligible
parents for the nodes based on the parent selection criteria (e.g.,
closest to the root) and the nodes’ priorities. We consider three
aspects of the tree maintenance algorithm. First, it influences the
number of layers in the overlay and the distribution of the nodes in
the layers. Second, it influences how often a node loses its parent in
a tree depending on the node’s priority in the tree. We call this the
inter-disconnection time, and denote it byΩ. Third, it influences
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Figure 1: Overlay with N = 11, t = 2,m = 2 and d = 1 show-
ing nodes, clusters, layers, direct dependencies and imports (see
Section 3). The square indicates that the node is fertile in the
tree.

how long it takes for a node to find a parent in a tree depending
on its priority. We call this the reconnection time, and denote it by
Ξ. The reconnection time consists of the time needed for the de-
tection of the loss of the parent node, the time needed for searching
for a new eligible parent node, and the time needed for connecting
to the eligible parent. The expected value ofΞ can be up to tens
of seconds depending on the tree management and the forwarding
capacity in the tree [12].

2.3 Data transmission and error resilience
The root splits the data stream intot stripes, with everytth packet

belonging to the same stripe, and it sends the packets in round-robin
to its children in the different trees. Peer nodes relay the packets
upon reception to their respective child nodes. We consider two
means of error resilience: retransmissions and FEC.

Retransmissions
Retransmission are widely used in streaming applications to de-
crease the packet loss, even though the delay constraints limit the
number of retransmission attempts. Hence retransmissions cannot
guarantee reliable data delivery. We assume that the maximum
number of retransmission attempts is limited due to delay con-
straints, and we denote the limit byx.

FEC
The root uses block based FEC, e.g., Reed-Solomon codes [14],
so that nodes can recover from packet losses due to network con-
gestion and node departures. To everyk packets of information
c packets of redundant information are added resulting in a block
length ofn= k+c. We denote this FEC scheme by FEC(n,k). Lost
packets can be reconstructed as long as no more thanc packets are
lost out ofn packets. Once a node receives at leastk packets of
a block ofn packets, it may recover the remainingc packets. If a
packet, which should have been received in the tree where the node
is fertile, is recovered, then it is sent to the respective children. Du-
plicate packets are discarded by the nodes. If the root would like
to increase the ratio of redundancy while maintaining its bitrate un-
changed, then it has to decrease the source rate. Ifn ≤ t then at
most one packet of a block is distributed over the same distribution
tree. Using this FEC scheme one can implement UXP, PET, or the
MDC scheme considered in [4].



3. DATA DISTRIBUTION MODEL AND
PERFORMANCE METRICS

The building blocks of the overlay are the individual nodes, so
we start the description of the model by describing our model of
a single node in Section 3.1. Using the notations introduced there
we define the performance metrics we consider in Section 3.2. We
define clusters of nodes in Section 3.3, and describe the model of
the overlay in Section 3.4. We discuss the asymptotic behavior and
the stability of the overlays in Section 3.5.

3.1 Node model
The input capacity of a noder is tr , the number of trees the node

can connect to. We denote the set of trees that noder can connect
to by H r , H r ⊆ {1. . .t}, |H r | = tr . The number of cogs of the
node in treee is γr

e, its number of children isΓr
e.

We consider three sources of disturbances in the overlay. First,
a node cannot receive data in a tree where it is not connected to a
parent node. We denote the probability of being disconnected in
tree e by pr

e,p (e∈ H r ). We assume thatpr
e,p is independent of

pr
h,p (h∈ H r\{e}). The independence assumption is reasonable if

nodes do not have the same node as parent in different trees. We
will show how to calculatepr

e,p in Section 5.1.
Second, a node might experience losses on its input link. We

denote the probability thatl out of j packets are lost on the input
link of a node byPr

I (l , j). Pr
I (l , j) can be calculated using loss

models such as the Bernoulli model or the Gilbert model [15].
Third, a node might experience losses on its output link. We de-

note the probability thatl out of j packets are lost on the output
link of a node byPr

O(l , j). Pr
O(l , j) can be calculated in a similar

way asPr
I (l , j). Packets lost on the output link of a node cannot be

received by the children of the node. We model these two loss pro-
cesses separately because the correlations in the two loss processes
have different effects on the performance of the overlay, as we will
see later.

We incorporate retransmission in the model as a decrease of the
loss probability between a node and its parents. To keep the num-
ber of parameters low, we assume that the loss probabilities be-
tween two nodes are symmetrical. Given the loss probabilityp on
a path between two adjacent nodes, we estimate the probability of
unsuccessful packet delivery afterx retransmissions (x≥ 0) as

px = px+1(2− p)x. (1)

Eq. (1) is an optimistic estimate ofpx as it does not take into ac-
count the possible correlation between the loss of successive re-
transmissions and the effect of increased transmission rate.

3.2 Performance metrics
To measure the performance of the data distribution in the over-

lay we use the probabilityπ that an arbitrary node receives or can
reconstruct (i.e., possesses) an arbitrary packet. If we denote by
the random variableRr the number of packets possessed by node
r in an arbitrary block ofn packets, thenπ can be expressed as
the average ratio of packets possessed in a block over all nodes,
i.e., π = 1

N E[∑r Rr/n]. Typically, multimedia applications require
π > 0.99.

We do not consider the delay performance in this model. We
assume that delay jitters can be compensated at the playout buffers
of the nodes, and end-to-end delays are controlled by keeping the
depth of the transmission trees low.

3.3 Simplifying assumptions
The data distribution model is based on three simplifying as-

sumptions.

Var. Definition
t,m # of trees and root multiplicity respectively
n,k FEC block length and number of data pkts respectively
J( j) # of lost pkts in a block ofj pkts,P(J( j) = l) = P(l , j)

pf
e,p Prob. that a node in clusterf is disconnected in treee
H f Set of trees that nodes in clusterf connect to,|H f | = t f

C i Set of clusters that forward data in layeri

Γ f
e Average # of children of nodes of clusterf in treee

N f # of nodes in clusterf
Re(i) # of pkts successfully departing from nodes forwarding

in layer i in treee (not lost on output link)

Rf
e,a # of pkts a node in clusterf can receive from

its parent in treee

Rf
e,r # of pkts a node in clusterf receives from

its parent in treee

Rf
e # of treeepkts possessed by a node in clusterf in treee

Rf
e,d # of pkts that depart from a node in clusterf in treee

π(i) Packet possession probability of nodes fertile in layeri
π Packet possession probability of an arbitrary node

Table 1: List of notations used in the model.

Decomposition:We decompose the overlay intot nearly inde-
pendent trees [16]. Each tree can be modeled as a Bayesian net-
work, since each tree is a directed acyclic graph. The vertices of
the Bayesian network are the packet possession probabilities, and
the vertices belonging to one Bayesian network depend on one ver-
tex of the same network and of some vertices of the other networks.
We call the dependency within the tree direct dependency. The de-
pendencies of other trees are called imports. To solve the model, we
provide initial guesses for the imports and use fixed point iteration.

Independent parents:The probability that the parent of a node
in treee possesses a packet is independent of that the parent of the
same node in treeh possesses a packet of the same block. This
assumption is not true if nodes have the same parent in different
trees. One of the main goals of multiple tree based overlays is
to maintain independent paths in the different trees, i.e., different
parents in every tree, which supports our assumption.

Clusters of nodes:To decrease the number of vertices of the
Bayesian networks, we use clusters of nodes instead of individ-
ual nodes as vertices. Nodes belonging to a cluster forward data in
the same tree(s), have their parents in the same trees in the same
layers, have the same input capacities, and experience the same in-
put and output loss probabilities. Consequently, a layer of a tree
possibly consists of several clusters corresponding to sets of nodes
with different characteristics. Clustering can be thought of as a
form of quantization: more clusters give more accurate results but
increased computation time. As nodes belonging to a cluster might
have parents in different clusters (within the same layer), we as-
sume that a layer appears to be homogeneous to nodes in the next
layer. The model can be used without this assumption, at the price
of increased number of clusters.

Figure 1 shows the clusters, the layers, the direct dependencies
and the imports of the model for an overlay witht = 2 andN =
11. Our simulations show that the model is accurate despite the
simplifying assumptions.

3.4 The cluster model
Let us consider a clusterf , in which nodes join treesh ∈ H f ,
H f ⊆ {1. . .t}, |H f | = t f ≥ 1, and the parents of the nodes in tree

h are in layeri f
h (h ∈ H f ). The key to the overlay’s performance
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is the probability that a node in clusterf possesses the packets in
the trees where it has to forward data. Let us denote byC i

e the set
of clusters that forward data in treee in layer i, and by the random
variableRf

e the number of packets possessed by a node in clusterf
out of then/t packets it should forward in treee. In the following
we show how the distribution of this random variable can be cal-
culated. 1 We chose to give the relationship between the random
variables instead of the stochastic vectors representing their distri-
butions, as we believe that this formulation makes understanding
easier. Figure 2 shows a graphical representation of the calculation
of the random variables described in the following.

Let us denote by the random variableRe(i) the number of packets
out of then/t packets transmitted in treee that successfully depart
from an arbitrary node in layeri in treee of the overlay, i.e. the
packets that do not get lost on the output links of the nodes. A node
in layer i +1 in treeecan only receive a packet from its parent if it
is connected to one. Hence, givenRe(i) we can express the random

variableRf
e,a, the number of packets that nodes in clusterf ∈ C i+1

e

(i.e., i f
e = i) can receive from their parents in treee. If we denote

by D f
e,p a Bernoulli r.v. such thatP(D f

e,p = 0) = pf
e,p, then

Rf
e,a = Re(i

f
e)D f

e,p. (2)

Similarly, we can define the number of packets that can be received
in other trees based on the importsRh(i

f
h), h∈ H f \{e} andD f

h,p.
Eq. (2) is approximate ifn/t > 1, because a parent can depart and a
parent can be found during the transmission of a block. The number
of packets actually received by a node depends on the loss probabil-
ity on the input link of the node, so we define the random variable
Rf

e,r as the number of packets received by nodes of clusterf in tree
e

Rf
e,r = Rf

e,a−J f
I (Rf

e,a), (3)

whereJ f
I ( j) is the number of lost packets out ofj packets on the

input link, and it is a random variable with distributionP(J f
I ( j) =

l) = Pf
I (l , j). Similarly, we can calculate the total number of pack-

1The iterative solution we outline is in fact the application of the
belief propagation algorithm to a loopy Bayesian network parti-
tioned intot trees. The marginals are the distributions of the ran-
dom variablesRf

e [17].

ets received in the other trees

Rf
e,r = ∑

h∈H f \{e}
Rf

h,a−J f
I ( ∑

h∈H f \{e}
Rf

h,a). (4)

The relationship between the number of packets possessed in treee,
the number of packets received in treeeand the number of packets
received in the other trees is

Rf
e =

{

n/t if Rf
e,r +Rf

e,r ≥ k

Rf
e,r otherwise,

(5)

due to the reconstruction of the lost packets using FEC. Now what
remains is to show howRe(i +1) can be calculated. We express the

random variableRf
e,d, the number of packets out ofn/t packets that

do not get lost on the output link of a node of clusterf

Rf
e,d = Rf

e −J f
O(Rf

e), (6)

whereJ f
O( j) is the number of lost packets out ofj packets on the

output link, and is a random variable with distributionP(J f
O( j) =

l) = Pf
O(l , j). Based on theRf

e,d for all f ∈ C i+1 we can express
Re(i +1)

Re(i +1) =
∑ f∈C i+1

e
Rf

e,dN f Γ f
e

∑ f∈C i+1
e

N f Γ f
e

. (7)

We start the calculation of the distributions of the above random
variables by using the initial conditionP(Rroot

e = n/t) = 1, i.e., the
root node possesses all data in all trees, and the importsP(Rh(i)(0) =
0) = 1, 1≤ h≤ t. Then, in iterationl , we calculate the distribution
of Re(i)(l), (1≤ i < L and 1≤ e≤ t) using the imports from itera-
tion l −1. The iteration stops when|E[Re(L−1)(l−1)]−E[Re(L−
1)(l)]| < ε, whereε > 0. The iteration converges, sinceE[Re(i)(l)]
is monotonically increasing inl andE[Re(i)(l)] ≤ n/t.

Based on the final value ofRe(ie)(l), we can express the random

variableRf
r , the number of packets out ofn that a node belonging

to clusterf receives

Rf
r = ∑

h∈H f

Rf
h,a−J f

I ( ∑
h∈H f

Rf
h,a). (8)

Finally, we define the packet possession probabilityπ f , as the ratio
of packets in a block that a node belonging to clusterf possesses

π f =
1
n

Rf =
1
n

E[Rf
r + τ(Rf

r )], (9)

whereτ(l) is the number of reconstructed packets

τ(l) =

{

0 0≤ l < k
n− l k ≤ l ≤ n.

Finally, we define the packet possession probability of nodes that
forward data in layeri as the weighted average of theπ f for f ∈ C i

π(i) =
∑ f∈C i π f N f

∑ f∈C i N f , (10)

and the packet possession probability of an arbitrary node in the
overlay as the weighted average of theπ f

π =
∑ f π f N f

∑ f N f . (11)



3.5 Overlay stability
In the following we analyze the stability of a class of overlays.

We observe that in all overlays proposed in the literature, nodes
should be at least as close to the root in their fertile trees as they are
in their sterile trees. We consider the casen = t, so that the random
variablesRf

e are binary. We consider overlays consisting of homo-
geneous nodes in terms of loss probability and input capacity. We
restrict ourselves to the case when nodes can receive data in every
tree, thust f = t. We consider overlays with inhomogeneous incom-
ing capacities in Section 4.10. A consequence of this assumption
is that all trees are statistically identical, i.e., theRe(i), 1≤ e≤ t
are equal in distribution. We assume independent packet losses, so
that losses due to node departures, on the input links and on the
output links can be treated together as independent losses on the
input links. If we denote the loss probability on the path between
two nodes byp, then the number of lost packets in a block follows
the binomial distribution

P(l , j) =

(

j
l

)

pl (1− p) j−l . (12)

Overlays that fulfill the above conditions of loss independence and
homogeneous capacities are not likely to be found in practice, but
the results derived here give important insight into the behavior of
heterogeneous overlays as we will show it in Section 4.

3.5.1 Upper bound of the packet possession proba-
bility

Using the above simplifying assumptions, from (2)-(7) and the
initial conditionE[Rroot

e ] = n/t (1≤ e≤ t) it follows thatE[Re(i)]
is a non-increasing function ofi. Hence, we can give an upper
bound onE[Rf ] = P(Rf = 1) (Rf is a binary r.v. becauset = n) by
assuming that the parents of the nodes forwarding in a tree in layer
i are in layeri = minh∈H i f

h in all trees. Let us denote the upper
bound of the packet possession probability in layeri by π(i), then

π(i +1) = π(i)(1− p)+(1−π(i)(1− p)) (13)

n−1

∑
j=k

(

t −1
j

)

π(i) j (1−π(i))t−1− j
j−k

∑
l=0

P(l , j).

Theπ(i) can be calculated using the initial conditionπ(0) = 1, and
the upper bound of the packet possession probability for an overlay
with L layers andN(i) nodes in layeri is

π =
∑L

i=1 π(i)N(i)

N
. (14)

3.5.1.1 Asymptotic behavior.
Eq. (13) defines a non-linear recurrence relation forπ(i). π(i) is a

monotonically non-increasing function ofi, π(0) = 1 andπ(i) ≥ 0,
so thatlimi→∞π(i) = π(∞) ≥ 0 exists.π(∞) is equal to the asymp-
totically stable fixed point of (13) closest to 1 if such a fixed point
exists and is 0 otherwise. We see by substitution that (13) has a
fixed point atπ = 0 for any distribution ofP(l , j). In the follow-
ing we are interested in the fixed points of (13) on(0,1]. If there
is at least one asymptotically stable fixed point on(0,1] thenπ(i)
converges to that fixed point, and we say that the overlay is stable.
Otherwise,π(i) converges to 0, and the overlay is unstable.

THEOREM 1. For the i.i.d Bernoulli loss model the number of
fixed points of (13) is0,1 or 2. For k = 1 a fixed point exists iff
p < (n− 1)/n. For k > 1 the number of fixed points is0 if p >
(n−k+1)/n. If there are2 fixed points r1 and r2 (r1 < r2) then r2
is asymptotically stable and r1 is unstable.
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Figure 3: c vs p for various objectives for the stable fixed point.

The proof of the theorem can be found in the Appendix. A conse-
quence of the proof is that for anyp andε > 0 there is ann,k pair
for which r2 exists andr2 > 1− ε. Fig. 3 shows the number of
redundant packets needed in a block of packets in order to achieve
various objectives for the stable fixed pointr2 as a function of the
loss probabilityp.

3.5.2 Lower bound of the packet possession proba-
bility

We get the lower bound of the packet possession probability by
assuming that the parents of a node of clusterf are in layeri =

maxh∈H f i
f
h in all trees. Let us denote the lower bound of the packet

possession probability in layeri by π(i). If there is no FEC recon-
struction, thenπ(i) = (1− p)L. Using FEC in an overlay withL
layers, if(1− p)L > r1 then after successive iterations of the model
π(i) = π(L) = r2, the stable fixed point of (13). Consequently,
(1− p)L > r1 is a sufficient condition for the overlay to be stable.

4. PERFORMANCE EVALUATION:
PACKET LOSSES

We start the evaluation by considering the simplest case, homo-
geneous nodes with independent packet losses. When considering
heterogeneous systems, we follow the “ceteris paribus” principle,
i.e., we change one property at a time and keep all other properties
equal. Doing so allows us to understand and explain the effects of
different types of heterogeneity. Most figures we show are com-
posed of two sub-figures. The one on the left shows the behavior
of the overlay for a large interval of the input parameter. The one
on the right is zoomed on values ofπ of practical interest and can
show both modeling and simulation results.

4.1 Simulation methodology
We developed a packet level event-driven simulator to validate

our models. We used the GT-ITM topology generator [18] to gen-
erate a transit-stub network with 104 nodes and average node de-
gree 6.2. We placed each node of the overlay at random at one of
the 104 nodes of the topology and used the one way delays given
by the generator between the nodes. The delay between overlay
nodes residing on the same node of the topology was set to 1 ms.
We assume that the interarrival times of nodes are exponentially
distributed, this assumption is supported by several measurement
studies [19, 20]. We consider two distributions for the session hold-
ing timesM: the log-normal distribution [19] with CDFFM(x) =

0.5+ 0.5er f((ln(x)− a)/(b
√

2))), a = 4.93, b = 1.26; and the
shifted Pareto distribution [20] with CDFFM(x) = 1−(1+x/b)−a,
b = 612, a = 3. In both cases the mean lifetime isE[M] = 306s
[19].

Tree maintenance:We assume that a distributed algorithm, such
as gossip based algorithms, is used by the nodes to learn about
other nodes. We do not simulate the information dissemination,
but assume that it provides random knowledge of the overlay such
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Figure 4: π(i) vs i. N = 50000, n = t = 4,
k = 3, m= 50, homogeneous case.
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Figure 5: π vs i for n = t, m= 50, homoge-
neous case.
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Figure 6: π vs i for n = t, m= 50, homoge-
neous case. Simulation results.

as in [11]. Since our focus is not on the structure of the resulting
overlays, this assumption does not influence our conclusions.

When a node wants to join the overlay, it contacts the root and
obtains a random list ofg = 100 members of every tree. The root
tells to the arriving node in which trees it should forward data: in
the ones with the least amount of forwarding capacity. The arriving
node then uses the following parent selection procedure to find a
parent.

To select a parent in a tree, the node sorts theg members it is
aware of into increasing order according to their distances from the
root, and looks for the first node that has available capacity or has
a child that can be preempted, i.e., which has lower priority. We
describe the considered priority schemes below. If the node has
to preempt a child, but itself has available capacity, then the pre-
empted child can immediately become a child of the preempting
node. Otherwise, the preempted child has to follow the parent se-
lection procedure just like the child nodes of a departed node.

We specify the distributions used to simulate the reconnection
time (Ξ) in Section 5.2. As opposed to [11, 13], we do not force
all nodes in the subtree of a departed node to reconnect individu-
ally. We believe that forcing all nodes in a subtree to disconnect
in a large overlay creates large control overhead and can lead to
scalability issues.

Node priority: We consider two node preemption strategies. For
simplicity we represent a node’s priority as an unsigned 32 bit inte-
gerb consisting of 4 bytesb0 (MSB) tob3 (LSB). Higherb means
higher priority. In the following we specify how these bytes are set
to reflect the priority of a node, which can depend both on the tree
and on the layer where it looks for a parent.

In the non-prioritized preemption strategy the only preemption is
when fertile nodes preempt sterile nodes. This is necessary to push
fertile nodes close to the root and sterile nodes to the last layers of
the trees.b1 is 1 if the node forwards data in thetree and it is 0
otherwise. We will refer to this strategy by NP.

The second preemption strategy is specific to some performance
measure, such as the packet reception probability, the number of
cogs of a node or the input capacity of the node. We setb0 propor-
tional to the performance measure of the node in thetree, b1 is the
forwarding capacity of the node in thetree, b2 is proportional to the
performance measure of the node in theoverlay, andb3 is thetotal
forwarding capacity of the node. We will refer to this strategy byP.
For example, if we want to prioritize nodes according to the packet
loss probabilities they experience, we setb0 to ⌈255(1− p)⌉.

Data distribution: We consider the streaming of a 112.8 kbps
data stream. The particular choice of the bitrate does not affect the
validity of our conclusions, as we express the links’ capacity rel-
ative to the bitrate. The packet size is 1410 bytes. Nodes have a

playout buffer capable of holding 140 packets, which corresponds
to 14 s delay with the given parameters. Every node has an in-
put and an output buffer of 80 packets each to absorb the bursts of
incoming and outgoing packets. Apart from packet losses due to
the overflow of the input and output buffers and due to late arriv-
ing packets, we simulate packet losses on the input and the output
links of the nodes via two-state Markovian models, often referred
to as the Gilbert model [21]. For given stationary loss probabilityp
and conditional loss probability (the probability that a packet is lost
given that the previous packet was lost)pω|ω we set the parameters
of the model as described in [22].

To obtain the results for a given overlay sizeN, we start the sim-
ulation with N nodes in its steady state as described in [23]. We
setλ = N/E[M] and let nodes join and leave the overlay for 5000 s.
The purpose of this warm-up period is to introduce randomness into
the trees’ structure. The measurements are made after the warm-up
period for 1000 s and the presented results are the averages of 10
simulation runs. The results have less than 5 percent margin of
error at a 95 percent level of confidence.

4.2 Approximating the overlay’s structure
Givenm, t, d and the nodes’ parameters in a layer, one can cal-

culate the number of nodes and the number of clusters per layer.
Without prioritization, we assume that nodes with different param-
eters are distributed uniformly in the layers. With prioritization, we
assume that prioritized nodes are as close as possible to the root.
There is a difference between the calculated and the real overlay
structure due to node churn and the distributed tree maintenance,
but the simulations show that the effects of these differences are
negligible.

4.3 The minimum depth overlay
We start the evaluation with the minimum depth overlay as this is

the one most commonly used in the literature [3, 4, 11, 6, 13, 12].
We start the evaluation with a homogeneous overlay, and in the
following subsections we show how heterogeneity influences the
overlay’s performance. To keep the number of clusters low, when
calculating the trees’ structure, we assume that a node is sterile in
the same layer in all trees, i.e., the penultimate or the last layer.
Thus the fertile nodes in a layer of the tree belong to one of two
clusters depending on the layer where they are sterile. To consider
independent, homogeneous losses on the overlay links,Pf

I (l , j) fol-

lows a binomial distribution with parametersj, p, andPf
O(0, j) = 1

for all clusters. For all nodestr = t andγr = t.
Figure 4 shows the packet possession probability as a function of

the layer where nodes are fertile for two loss probabilitiesp = 0.1
and p = 0.14. Fertile nodes occupy more layers in the simulation
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Figure 7: π vs p for d > 1 and n > t, m = 50,
N = 104.
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Figure 9: π vs loss probability for FEC and
retransmissions fort = n = 16.

than they would in a well maintained tree considered for the model.
The stability threshold ispmax= 0.129, i.e., forp = 0.14 the over-
lay is unstable. The upper bound of the packet possession proba-
bility given by (13) is tight in the stable state only: in the unstable
state the poor reception in the last layer impacts the performance of
the uppermost layer. The lower bound given in Section 3.5.2 is far
below in the unstable state, which shows that FEC reconstruction
improvesπ in the unstable state as well.

Figure 5 plotsπ as a function of the loss probability. Figure 6
shows simulation results for the same scenarios. The simulations
verify that the decomposition approach gives accurate results even
for small overlays.

The overlays are unstable whereπ(∞) = 0 for the corresponding
FEC parameters and number of trees. In the unstable stateπ drops
suddenly. The drop is faster for larger overlays, hence good results
obtained with a small overlay do not necessarily hold as the number
of nodes increases. The results are however independent of the
overlay’s size in the stable state. Comparing results for different
redundancy rates (c/n) shows that a higher redundancy rate results
in a wider region of stability and higher values ofπ.

Increasing the FEC block length, in general, improves the perfor-
mance of FEC. Figure 5 shows thatπ can be increased at a given
redundancy rate by increasing the number of treest and the block
lengthn. Figure 7 shows that increasingn can improveπ without
having to increase the number of trees, as long as the overlay is
stable and losses are not correlated.

4.4 Increasing the number of fertile trees
Increasing the number of trees decreases the depth of the over-

lay and as we have seen improves the FEC performance. At the
same time it can increase the time it takes to find a parent, unless
one increases the number of trees where a node can forward data
[24]. Figure 7 showsπ as a function ofp for cases whend > 1.
To decrease the number of clusters, we assume for the model that a
node is fertile in the same layer in all trees. The simulation results
in the figure show that this approximation is accurate. As shown
in the figure, for the considered independent losses increasingd
decreases the stability region. Consequently, to improve FEC per-
formance it looks more favorable to increasen without increasing
t andd. We will see that under node churn the contrary is true in
Section 5.2.

The minimum breadth overlay.The minimum breadth over-
lay, in which nodes forward data in all trees, is thed = t special case
of d > 1 and has been studied earlier in the literature. The number
of layers and the average number of hops between the root and the
peer nodes in this overlay isO(N), so that nodes have to remain
in almost the same layer in all trees to avoid large delays between
the data arriving in different trees. If they do so, the packet posses-

sion probability of nodes in layeri of the overlay approaches the
upper bound given in (13). A detailed analysis of this overlay was
presented in [22].

4.5 Overlay size
Figure 8 shows the dependence ofπ on the number of nodes in

the overlay. Forn = 4 the overlay is stable in the whole considered
interval, forn = 16 it is however not. We can conclude that a sta-
ble overlay can become unstable for two reasons: increased packet
losses or increased number of layers. We would like to remind the
reader, that it is not the number of nodes that causes the degrada-
tion, but the number of layers needed to accommodate them. Con-
sequently, an overlay can become unstable for lower values ofN
depending on the tree maintenance algorithm used.

4.6 Limiting the layer spread
Our model reveals a significant deficiency of the minimum depth

overlay. The depth of the overlay influences the probability of re-
construction even in nodes close to the root in their fertile tree, since
reconstruction requires packet reception in the sterile trees, where
nodes are located in the last layers. Motivated by this deficiency,
we propose a tree stucture in which the spread between the layers
in the different trees is limited bydL. That is, if a node is fertile in
layer i in a tree then it is located no deeper than layeri +dL in its
sterile trees. We do not discuss here how to implement this scheme,
our goal is to show its possible benefits if it can be implemented.
Limiting the layer spread can increase the number of layers in the
overlay, but it makes FEC reconstruction more efficient. Figure
8 shows that limiting the layer spread does not decrease the per-
formance of a stable overlay, but, as expected, the overlays with
limited layer spread remain stable for larger values ofN.

4.7 Retransmissions vs. FEC
It is difficult to make a fair comparison between FEC and retrans-

missions, as the overhead introduced by retransmissions depends
on the loss probability, while the overhead of FEC is independent
of it. Fig. 9 showsπ as a function of the loss probability with
different combinations of FEC redundancy and maximum number
of retransmissions, denoted byx. We do not model the effect of
increased transmission rate, the latency introduced by retransmis-
sions, and the resulting late arrivals, hence the results shown are up-
per estimates of the performance. We show results for two overlay
sizes. Increasing the number of nodes does not affect the perfor-
mance if both FEC and retransmission is used (the corresponding
curves run together), but decreases the performance if only retrans-
mission is applied. The most efficient solution for the considered
scenarios is the combined use of FEC and retransmissions. Note,
however, that if losses are due to node departures, retransmissions
work only if nodes can request retransmissions from backup parent
nodes.
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Figure 10: π vs p for t = 4,k/n = 0.75, m =

50, N = 104, pω|ω = 0.3 correlated losses on the
input or on the output links.

0 1 2 3 4 5 6 7
0.8

0.85

0.9

0.95

1

Layer (i)

P
ac

ke
t p

os
se

ss
io

n 
pr

ob
ab

ili
ty

 (
π(

i))

 

 

H
B[0.75p,2p]
U[0,2p]
B[0,2p]

 

 

x   p=0.05 sim
o   p=0.10 sim

Figure 11: π(i) vs i for inhomoge-
neous losses.N = 104, m= 50, t = n= 4,
k = 3, d = 1. Model and simulations.
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Figure 12: π vs packet loss probability for in-
homogeneous losses and prioritization.N = 104,
m= 50, t = n = 4, k = 3, d = 1.
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Figure 13: π vs i for inhomogeneous output
capacities.N = 104,m= 50,t = n = 4,k = 3
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Figure 14: π vs i for inhomogeneous input
capacities.N = 104,m= 50,t = n = 4,k = 3
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Figure 15: π vs i for inhomogeneous input
and output capacities.N = 104,m= 50,t = n =

4,k = 3

4.8 Correlated losses
Fig 10 plotsπ for correlated losses on the input links or on the

output links of the nodes. We show results for a conditional loss
probability of pω|ω = 0.3. Correlations on the output links of the
nodes have no effect on the performance ifn= t, since the consecu-
tive packets will be received by different child nodes. Correlations
on the input links decrease the performance compared to the case
of independent losses. A longer FEC block (n > t) increases the
packet possession probability for both kinds of correlations when
the overlay is stable. Based on the model we know that for corre-
lated on the output links and forn > t the performance approaches
that of n = t as pω|ω increases. Correlated losses affect the over-
lay’s performance mostly at low loss probabilities as correlations
decrease the mean number of reconstructed packets. Consequently,
correlations decrease the stability region of the system. The sim-
ulations shown in the zoomed box show a good match with the
model for correlated losses on the output links. There is a mis-
match in the case of correlations on the input links, as packets of
the same block do not necessarily arrive successively in the simu-
lation, hence the loss correlation between packets in a block in the
simulation is lower thanpω|ω.

4.9 Inhomogeneous losses
Figure 11 compares the performance of an overlay withN = 104

for four distributions of the loss probability experienced by nodes
and with the Bernoulli loss model. We use homogeneous (H) losses
with probability p as the reference, and compare that to the follow-
ing scenarios: 80 percent of the nodes experience 0.75p while the
rest 2p; uniform distribution on[0,2p]; 50 percent of the nodes
experience 0 while the rest 2p. We used 100 clusters per layer to
approximate the uniform distribution in the model. Both the model
and the simulations show thatπ(i) decreases as the variance of the
losses increases.

To see whether prioritization could help to alleviate the nega-

tive effects of loss inhomogeneity, Fig. 12 compares the average
packet possession probability in the overlay for four cases: ho-
mogeneous losses, for inhomogeneous losses without any priority
scheme (Inhom-NP), for inhomogeneous losses prioritizing nodes
with low packet loss probability (Inhom-P) and for inhomogeneous
losses and prioritization, also limiting the layer spread (Inhom-PL)
with dL = 2. We considert = 4, andN = 104 of which 50 percent
experience 2p and 50 percent experience no losses. Prioritizing
nodes based on the packet losses they experience can be difficult in
practice, but it is still interesting if one could improve the system by
such a scheme at all. Surprisingly, prioritization does not improve
π in the stable region of the system. Nevertheless, nodes with no
losses experience better performance thanks to prioritization, lim-
iting the layer spread giving slightly larger gain. In the unstable
region, prioritization pays off as the decrease ofπ becomes much
slower.

4.10 Inhomogeneous capacities
We start by showing the effects of inhomogeneous output capac-

ities. We consider prioritization based on the output capacities of
the nodes. A practical alternative would be to consider the num-
ber of children of a node [12], as that is easier to estimate, but it
would not help high contributor nodes joining the overlay for the
first time.

Fig 13 considers an overlay witht = 4, andN = 104, of which
65 percent are low contributors withγr = 2 and 35 percent are high
contributors withγr = 8. This ratio of high and low contributors is
similar to that considered in [12] based on a measured trace. The
figure shows a scenario with homogeneous output capacities as ref-
erence, the inhomogeneous case without priority, with priority, and
also limiting the layer spread withdL = 2. Prioritization does not
make any difference for a stable overlay, as the number of layers
does not influence the performance of the overlay in the stable re-
gion. High and low contributors experience the same performance
too. We note that as the number of layers decreases due to prior-



itization based on the output capacities, the stability region might
increase. For the same reason, prioritization gives superior perfor-
mance in the unstable state of the overlay. The simulations show
a good match with the model, though for high losses the model
somewhat overestimatesπ which is due to the difference between
the number of layers in the simulation and the one we calculated
with.

Next, we consider inhomogeneous input capacities fort = 4 and
N = 104 in Fig. 14. 65 percent of the nodes havetr = 2 and the rest
tr = 4. Prioritization is based on the input capacities of the nodes.
Prioritization does not improve the performance of the overlay in
the stable state, though it proves to be beneficial in the unstable
regime. Nevertheless, using prioritization, nodes with high input
capacity experience significantly better performance.

As a next step, we combine the previous two scenarios in Fig.
15. The input capacity of the low contributors istr = 2, and that of
the high contributors istr = 4. The results show that the effects of
prioritization are similar to those in Fig. 14, i.e., prioritization can
give incentives to high contributors but does not improve the overall
performance in the stable state. Limiting the layer spread slightly
improves the performance seen by high contributors as expected.

5. MODELING NODE CHURN
In the following section we calculate the probability that a node

in cluster f does not have a parent in treee, i.e., parameterpf
e,p of

the data distribution model in Section 3. We first develop a general
model of the ratio of disconnected parents of a node, then we show
how to use it to model the effects of node departures and preemptive
parent selection schemes.

5.1 Random observer model
The probability that a node is disconnected in a tree is influenced

by how often it loses its parent in the tree, and for how long it
has to look for a new one. These two measures are influenced by
the priority of the node in the tree. Consequently, we consider a
set of trees where nodes of clusterf have the same priorityH f

b ,

|H f
b |= tb (e.g., for theNPscheme andd = 1 there are two sets, the

trees where the nodes are sterileH f
S , and the tree where they are

fertileH f
F ).

For the model we assume that the distribution of the nodes’ life-
timesM is exponential with parameterµ, E[M] = 1/µ. Let us de-
note the inter-disconnection time of the nodes in the cluster by
Ωb and model it with an exponential distributed r.v. with mean
E[Ωb] = 1/ωb. Without preemptions and if preemptions are grace-
ful Ωb andM are equal in distribution due to the exponential as-
sumption. If preemptions are ungraceful, then the disconnection
intensityωb of a node is the sum of the preemption intensity and
the death intensity of the parents of the node. Let us assume that
the reconnection timesΞb in the considered trees fit an exponential
distribution with parameterξb, i.e., E[Ξb] = 1/ξb. We will eval-
uate the accuracy of the exponential modeling assumptions in the
following section.

The probabilitypf
e,p can be expressed as the average ratio of dis-

connected parents in treese∈H f
b of a node of clusterf as seen by

a random observer. Without loss of generality we can denote the
arrival time of the observer by 0.

We model the evolution of the number of disconnected parents
with a continuous time discrete state space Markov processX(h) ∈
S, S= [0. . .tb]. The ratio of disconnected parents isr i = i/tb in
statei (0≤ i ≤ tb). The transition intensities of the Markov process

are

qi,i+1 = (tb− i)ωb 0≤ i ≤ tb−1 (15)

qi,i−1 = iξb 1≤ i ≤ tb. (16)

The above model is an Engset system [25], and we are interested
in the probabilityP(X(0) = j|u) that a random observer finds an
arbitrary node in statej, given that the node was started with initial
state distributionu = {u0, ...,utb}. Let us denote byh the age of the
node when the random observer arrives and byA(h) its distribution
function, then

P(X(0) = j|u) =
Z ∞

0

tb

∑
i=0

ui pi, j (h)dA(h). (17)

pi, j (h) is given bypi, j (h) = P(X(0) = j|X(−h) = i) = eQh
{i, j}, where

Q is the intensity matrixQ = {qi, j}. We use zero-based indexing
for the rows and columns of the matrices. The age of an arbitrary
node as seen by a random observer is the backward recurrence time
of a renewal process with exponentially distributed inter-renewal
times. Hence, the distribution ofh is exponential with parameter
µ. Based onP(X(0) = j|u) we calculate the mean of the ratio of
disconnected parents of the node as

E[∆b|u] =
tb

∑
j=0

j
tb

P(X(0) = j|u), (18)

In the following we give a closed form expression for initial state
distributionui ,uk = δi(k).

THEOREM 2. For initial state distributionui the mean of the
ratio of disconnected parents is

E[∆b|ui ] =
tb + iαb

tb(κb +αb +1)
, (19)

whereκb = ξb/ωb andαb = µb/ωb.

PROOF. Let us substitute (17) into (18)

E[∆|ui ] =
tb

∑
j=0

j
tb

{

Z ∞

0
pi, j (h)µe−µhdh

}

(20)

=
Z ∞

0

{

tb

∑
j=0

j
tb

pi, j (h)

}

µe−µhdh. (21)

E[∆|ui ] is determined by the elements{pi, j (h)} of the ith row of
the matrixP(h) = e−Qh, which can be given in closed form due to
the special structure of theQ matrix. The number of disconnected
parents is governed by the differential-difference equations

p′i,0(h) = −tbωbpi,0(h)+ξbpi,1(t)

p′i, j (h) = −((tb− j)ωb + jξb)pi, j (h)+

(tb− j)ωbpi, j−1(h)+( j +1)ξbpi, j+1(h)

p′i,tb(h) = −tbξbpi,tb(h)+ωbpi,tb−1(h).

The generating function of the probabilities{pi, j (h)} is

Pi(z,h) =
tb

∑
j=0

pi, j (h)zj =
1

(1+κ)tb
(B+Az)tb−i(D+Cz)i , (22)

whereA= 1−M(h), B= M(h)+κb, C = κbM(h)+1, D = κb(1−
M(h)), andM(h) = e−ωb(1+κb)h. For utb and u0 evaluating (22)
leads to the well known product form solution [25], but we are not
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Figure 16: E[∆] vs 1/κ for log-
normal lifetime and deterministic
reconnection time distribution.
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Figure 17: E[∆] vs1/κ for Pareto
lifetime and normal reconnection
time distribution.
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time distribution.
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aware of any results for the general case described here. Let us
substitute (22) into the sum in (21)

tb

∑
j=0

j
tb

pi, j (h) =
(tb− i)(1−M(h))+ i(κbM(h)+1)

tb(1+κb)
. (23)

We substitute (23) into (21) and get

E[∆b|ui ] =
tb + iαb

tb(κb +αb +1)
.

For α → ∞ (19) reduces to the initial statei, while for α → 0 it
converges to the steady state solution of the mean number of jobs
in an Engset system [25]. Based on (19) one can calculate the mean
number of the children of a node as well, if one substitutesω by
the arrival rate of the children as seen by the node, andξ by the
departure rate of the children of the node.

5.2 Performance evaluation
We start by evaluating the sensitivity of the mean ratio of dis-

connected parents,E[∆] to the node lifetime and the reconnection
time distributions. We consider the scenarioE[ΞF ] = E[ΞS], which
means, the reconnection times are the same in the sterile and the
fertile trees, and homogeneous input and output capacities. The
scenario is not realistic, but its simplicity allows us to focus on
the sensitivity of the results to the distributions. We simulated
two node lifetime and three reconnection time distributions, and
for each combination we considered two scenarios, corresponding
to u0 andut with graceful preemptions (α = 1). We setN = 104,
m = 50. Figs. 16-18 show that the exponential approximation is
accurate, and gives a lower bound for other distributions. Using a
heavy-tailed distribution the proportion of short lived nodes is high,
but they have fewer children upon their departure, hence their im-
pact is lower onE[∆].

Next we apply the data distribution model to calculateπ in the
presence of node churn: for givenκ we setpf

e,p = E[∆]. The sim-
ulation results shown foru0 for the data distribution performance
show a similarly good match in Fig. 19.

Increasing the block length:For packet losses due to network
failures increasing the block length without increasing the number
of trees does improve the performance in a stable overlay. Fig. 20
shows that in the case of node departures this is not necessarily
true. Fort = 4, n = 16 the performance is equal to that oft = 4,
n = 8, and in fact is equal to that oft = n = 4. Increased block
length gives however increased performance if the number of trees
and the number of fertile trees increase as well, as shown in the
figure ford > 1. The simulations were performed using the Pareto
lifetime and normal reconnection time distributions and show that
the approximation forn > t is accurate.

Why does preemption improve the performance?
We showed in Section 4 that not even the ideal preemption strate-
gies can significantly improve the average performance of an over-
lay in its stable state in the case of packet losses. Nevertheless,
simulation and measurement studies [6, 12] show that preemption
does improve the overlay’s stability. The two are not contradictory.

Fig. 21 showsπ as a function of the ratio of the mean recon-
nection times of nodes in their fertile trees (E[ΞF ]) and in their
sterile trees (E[ΞS]). For givenE[Ξ] we setE[ΞF ]+(t−1)E[ΞS] =
E[Ξ] and consider two cases. The best case, graceful preemptions
(E[ΩS] = E[M],α = 1), and the worst case, non-graceful preemp-
tions occurring after the departure of every fertile node (E[ΩS] =
(t −1)/tE[M],α = 0). The performance significantly improves as
E[ΞS]/E[ΞF ] increases in both scenarios with a decreasing marginal
gain, i.e., any preemption scheme that decreasesE[ΞF ] without in-
creasingE[Ξ] is beneficial.

Finally we look at the effects of taxation and contribution aware
parent allocation [12] in Fig. 22. We consider an overlay with
t = n = 8, k = 6, andN = 104. 75% of the nodes are low contribu-
tors (LC) with 4 cogs and the rest are high contributors (HC) with
16 cogs. The offered cogs are not enough for all nodes to connect
to all trees. Hence, we consider four scenarios. In scenarioNP
25% of the nodes connect tot trees, 50% of them connect tot −1
trees, and the rest tot−2 trees independent of their contribution. In
scenariosP, Tax−P andCA−P nodes are prioritized based on the
number of their cogs. In scenarioP the number of trees they can
join is still random as inNP. In scenarioTax−P every node con-
nects tot−1 trees (taxation). In scenarioCA−P HC nodes connect
to t trees, 67% of LC nodes connect tot −1 trees, the remaining
33% connect tot −2 trees (contribution-aware parent allocation).
We useE[ΞS]/E[ΞF ] = 11 for all scenarios, that is, the reconnec-
tion time is shorter in the fertile trees, but prioritizing HC nodes
does not decrease their reconnection times. Based on Fig. 21 a
further increase ofE[ΞS]/E[ΞF ] would not significantly influence
the results. We do not model the decrease ofE[ΞHC

F ] andE[ΞHC
S ],

neither the possible increase ofE[ΞLC
F ] andE[ΞLC

S ]. The effect of
such inhomogeneity is like that of decreasing the loss probability
seen by HC nodes and increasing that seen by LC nodes. Hence,
it is equivalent to the case of inhomogeneous losses, for which we
showed earlier that prioritization does not improve the overall per-
formance in the stable state of the system (Fig. 12).

The best average performance is achieved by theTax−P scheme,
theCA−P scheme performs slightly better than theNP scheme.
CA−P achieves the best performance for HC nodes, but the worst
for LC nodes. Consequently, giving incentives to HC nodes can
contradict to the goal of improving the average performance of the
overlay.
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6. CONCLUSION AND PRACTICAL
CONSEQUENCES

In this paper, we present an analytical model of the data distri-
bution performance of multiple-tree-based overlay multicast archi-
tectures. We develop lower and upper bounds for a simple class of
overlays, and show that the overlay is either in a stable or an un-
stable state depending on the packet loss probabilities and the size
of the overlay. Our findings lead us to the definition of an over-
lay architecture with limited layer spread with improved stability
and scalability properties. Using the model, we evaluate the effects
of inhomogeneous and correlated losses, heterogeneous input and
output capacities, and investigate how prioritization can improve
the overlay’s performance. We show that the effects of node churn
are determined by the ratio of the reconnection time and parent
disconnection intensity, and are similar in nature to those of packet
losses. Based on our results we can draw a number of practical con-
sequences that can serve as design guidelines for future systems.

FEC is the key to the scalability and good performance of multiple-
tree-based overlay multicast. The FEC block length and the ratio
of redundancy determine the performance of the overlay. Never-
theless, longer FEC codes do not necessarily improve the perfor-
mance: they can make the overlay unstable if the number of trees
is not increased. There is a need for an adaptive control algorithm
to adjust the FEC block length and the ratio of redundancy, as node
churn and the packet loss rates change dynamically.

Retransmissions and FECare both needed to define an efficient
and scalable overlay architecture. FEC gives scalability in terms
of number of nodes and retransmissions decrease the ratio of re-
dundancy needed. If the retransmission requests are limited to
the parent within the tree, then retransmissions do not decrease
the loss probability caused by the disconnections after node depar-
tures. Hence, in order to achieve high packet possession probability
without having to introduce much redundancy, every node should
maintain a list of backup parents. Backup parents can be asked oc-
casionally to retransmit a piece of data, and should be located no
deeper in the tree than the parents of the node.

Prioritization: The primary benefit of prioritization is the de-
crease of disturbances in the trees where a node forwards data. We
show that prioritization does not necessarily improve the overall
system performance, but it gives incentives to nodes with good per-
formance.

Stability: If the overlay is stable, the number of layers does not
influence the performance. The number of layers influences how-
ever the region of stability, so that the number of layers has to be
kept low, e.g., by prioritizing high contributor nodes. The stability
region can be increased by using shorter FEC codes, though shorter
FEC codes give inferior performance in the case of stability.

Limited layer spread:It is possible to increase the stability region
of large overlays by limiting the spread between the layers where

nodes receive data. Limiting the layer spread also helps to decrease
the effects of nodes with poor connections on the performance of
high contributors. While one can argue about the fairness of this
solution, it definitely gives incentives to nodes to contribute.

The model we propose can easily be extended, and can be a useful
tool for future system designers. As a first step, we will incorporate
the effects of per hop delay characteristics, and evaluate solutions to
manage end-to-end delays in overlay multicast. It is an open ques-
tion how the model can be applied to pull-based (a.k.a swarming)
overlay multicast systems. We believe that there are many similar-
ities between the two approaches, but we leave this as an area of
future work.
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APPENDIX
Proof of Theorem 1:At the fixed point of the discrete dynamic sys-
tem the mean number of lost packets has to equal the mean number
of reconstructed packets. The mean number of packets that a node
can reconstruct is given by

r(π, p,n,k) = (24)

n

∑
j=k

(

n
j

)

π j (1−π)n− j
j−k

∑
l=0

(n− j + l)

(

j
l

)

pl (1− p) j−l .

The mean number of lost packets isnπp, so that

nπp = r(π, p,n,k). (25)

Our goal is to show that the number of intersections of the lines
nπp andr(π, p,n,k) on (0,1] is no more than two, i.e. there are at
most two fixed points.

First, we show thatr(1, p,n,k) < np. We substituteπ = 1 into
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Figure 23: Number of lost and reconstructed packets vs.π for inde-
pendent losses.

(25)

np=
n

∑
l=0

lP(l ,n) >
n−k

∑
l=0

lP(l ,n) = r(1, p,n,k) (26)

for any loss distribution that satisfies∑n
l=n−k+1P(l ,n) > 0, e.g., the

Bernoulli loss model withp > 0.
For k = 1 we know thatr(π, p,n,1) is concave on(0,1], as

r(1)(π, p,n,1)|π=0 = n(n−1)(1− p) > 0,

r(2)(π, p,n,1)|π=0 = −n2(n−1)(1− p)2 < 0,

and the second derivative has one nonzero root at 1/(1− p) > 1, so
that there can be no inflection point on(0,1]. Due to the concavity
on (0,1], the two curves intersect in one point iffr(1)(0, p,n,1) >
np, i.e. p < (n−1)/n, otherwise they do not intersect.

For 1< k < n we start by showing that there is aπ∗∗ for which
r(π, p,n,k) is convex for 0< π < π∗∗. We know thatr(0, p,n,k) =

0, r(1)(0, p,n,k) = 0, and that there isπ for which r(π, p,n,k) > 0.
Sincer(π, p,n,k) is a continuous function,r(1)(π, p,n,k) > 0 for
someπ > 0 and hencer(2)(π, p,n,k) > 0 as well. Thus,π∗∗ exists
and is the smallest positive inflection point.

Now it is enough to show thatr(π, p,n,k) has at most one in-
flection point on(0,1], and hence it is either a convex curve or the
combination of a convex and a concave curve.

For anyk > 1 r(2)(π, p,n,k) hasn− k nonzero real roots,π∗∗
1 =

1
1−p of multiplicity n− k−1 andπ∗∗

2 = k−1
n(1−p)

. Both π∗∗
1 andπ∗∗

2

are inflection points asr(3)(π∗∗
1 , p,n,k) > 0 andr(3)(π∗∗

2 , p,n,k) <
0 (i.e., the second derivatives change sign). 1/(1− p) > 1, so that
r(π, p,n,k) has an inflection point on(0,1] iff p ≤ (n− k+ 1)/n,
and the inflection point isπ∗∗

2 .
If r(π, p,n,k) has no inflection point (it is convex on(0,1]) then

the number of intersection points is 0, because of (26) andr(0, p,n,k)=
0. If r(π, p,n,k) has one inflection point then the number of fixed
points can be 0, 1 or 2.

If there is 1 fixed pointr1 thenr(1)(r1, p,n,k) = np, and the fixed
point is unstable. If there are two fixed pointsr1 andr2 (r1 < r2),
thenr2 is asymptotically stable (r(π, p,n,k) > nπp for π ∈ (r1, r2),
andr(π, p,n,k) < nπp for π > r2). Forr1 the contrary is true, hence
it is unstable.


