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Abstract

In this paper we propose an analytical model to evaluate the end-to-end loss and delay characteris-

tics for live multicast streaming. We consider multiple-tree architectures and push based transmission.

We give an asymptotic bound on the performance of large overlays, and present a necessary condition

for the overlay to be stable. Based on the model we show how the overlay’sloss characteristics is

influenced by the number of distribution trees, the error control solutions used, the allocation of the

bandwidth resources of the peers between the trees and the number of nodes in the overlay. Based on

our results, we propose a tree structure that improves the stability of the overlay. We use the model to

show how the structure of the overlay and the available bandwidth influencethe delay characteristics

of the data distribution and the playout buffer requirements.
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1 Introduction

The success of peer-to-peer overlays for live multicast streaming will depend on their ability to maintain

acceptable perceived quality at all the peers, that is, to provide data transmission with low delay and

information loss. Since peers have to relay data to their children with low delay, the possibilities of error

recovery are limited. Consequently, the main problem to be dealt with is the propagation and thus the

accumulation of losses, which results in low perceived quality for peers far from the source.

The architectures proposed for peer-to-peer streaming generally fall into one of two categories: push

based or pull based [1]. Solutions in both categories utilize multi-path transmission to ensure graceful

quality degradation in dynamic overlays, where peers can leave during the streaming session. Multi-

path transmission offers two advantages. First, disturbances on an overlay path lead to graceful quality

degradation in the nodes. Second, the output bandwidth of the peers can be utilized more efficiently.

Several works deal with the management of such overlays: giving incentives for collaboration, peer

selection, and tree reconstruction considering peer heterogeneity and the underlying network topology ([2,

3, 4, 5, 6, 7] and references therein). There are also numerous proposals on how to improve the robustness

of the overlays to errors: In [8] the authors propose time shifting and video patching to deal with losses

and discuss related channel allocation and group management issues. In [9] robustness is achieved by

distributing packets to randomly chosen neighbors outsidethe distribution tree. In [10] retransmission of

the lost data is proposed to limit temporal error propagation. CoopNet [11] and SplitStream [12] propose

the use of multiple distribution trees and a form of multipledescription coding (MDC) based on forward

error correction (FEC). In the case of packet losses peers canstop error propagation by reconstructing the

video stream from the set of received substreams using errorcorrecting codes. Several proposed designs

were also implemented (e.g.,[13] and [2] and references therein), but the evaluation of these solutions is

mostly based on simulations and small scale measurements.

We focus on solutions that apply the push model for data distribution and FEC to deal with packet

losses due to congestion and peer departures. Our goal is to define abstract models of peer-to-peer stream-
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ing overlays in order to give an understanding of the basic characteristics of streaming over multiple

transmission trees and thus, support future system design.We consider a generalized multiple-tree-based

overlay structure that allows peers to contribute in a givennumber of trees [14]. Special cases of this

architecture are the ones proposed in [3, 6, 11, 12, 15]. and analyzed in [16, 17].

The results presented in this paper are twofold. First, we show that FEC has limited capabilities in large

overlays and propose an overlay structure wherethe spread between the layers where a node participates

in the different treesis limited in order to improve the effectiveness of FEC. Second, we give an abstract

model of end-to-end delay and identify its primary sources in the considered multiple-tree-based systems.

The rest of the paper is organized as follows. Section 2 describes the considered overlay structure and

error correction scheme. We evaluate the stability of the data distribution in Section 3. Section 4 discusses

the performance of the overlay based on the mathematical models and simulations and we conclude our

work in Section 5.

2 System description

The overlay consists of a root node andN peer nodes. The peer nodes are organized int distribution trees.

Each peer node is member of at least one tree, and in each tree it has a different parent node from which it

receives data. We say that a node that isl hops away from the root node in treee is in layerl of treee. We

denote the maximum number of children of the root node in eachtree bym, and we call it the multiplicity

of the root node.

Nodes can have children in up tod of the t trees, called the fertile trees of a node. A node is sterile

in all other trees, where it does not have any children. (d is a system parameter.) We call the number of

cogs of the node the number of children that the node is willing to forward data to. If a noder has enough

capacity to forward data toγr children then we say that the node has a total ofγr cogs in its fertile trees

and has no cogs in its sterile trees. Ford > 1 the nodes balance their cogs between trees, i.e., a node can

have up to⌈γr/d⌉ cogs in each of its fertile trees. We call an overlay well-maintained if the number of

fertile nodes is maximal in every layer of its trees. Well-maintained overlays have the smallest depth for
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givenN, t andd. For instance, in a well-maintained overlay withL layers, each node is 1≤ l ≤ L hops

away from the root node in its fertile trees, andL−1≤ l ≤ L hops away in its sterile trees.

We define thelayer spread, δr, as the difference between the uppermost layer where noder is fertile

and the lowermost layer where it is sterile. Without any restrictionsδr ≤ L−1. We define an overlay struc-

ture with layer spread limit δ as one where for each nodeδr ≤ δ. Limiting the layer spread can increase

the number of layers in the overlay, but since the fraction ofthe sterile nodes in a layer is proportional to

(t/d)−δ+1, the increase is low for reasonable values oft.

By settingd = t one gets the minimum breadth trees described in [11], and by settingd = 1 one gets

the minimum depth trees evaluated in [3, 6, 11, 12, 18]. For 1< d < t the number of layers in the overlay

is O(logN) as ford = 1. Fig. 1 and 2 show an overlay fort = 2, m = 2 andd = 1 without and with limited

layer spread respectively.

2.1 Tree management

The construction and the maintenance of the trees can be doneeither by a distributed protocol (structured,

like in [12] or unstructured, like in [10]) or by a central entity, like in [11]. The purpose of the tree

maintenance algorithm is to find eligible parents for the nodes (arriving nodes, preempted nodes and nodes

disconnected due to the departure of a parent) based on the parent selection criteria, such as closeness to

the root and the priorities of the nodes. The results presented in this paper do not depend on the particular

algorithm used, our focus is on the performance of the overlay as a function of its structure, rather than

the efficiency of the tree maintenance algorithm. In Section4 we briefly describe the tree maintenance

algorithm used for the simulations .

2.2 Data transmission and error resilience

The root splits the data stream intot stripes, with everytth packet belonging to the same stripe, and it sends

the packets at round-robin to its children in the different trees. Peer nodes relay the packets upon reception

to their respective child nodes. The root uses block based FEC, e.g., Reed-Solomon codes [19], so that
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nodes can recover from packet losses due to network congestion and node departures. To everyk packets

of information c packets of redundant information are added resulting in a block length ofn = k + c.

We denote this FEC scheme by FEC(n,k). Lost packets can be reconstructed as long as no more thanc

packets are lost out ofn packets. Once a node receives at leastk packets of a block ofn packets, it may

recover the remainingc packets. If a packet, which should have been received in the tree where the node

is fertile, is recovered, then it is sent to the respective children. Duplicate packets are discarded by the

nodes. If the root would like to increase the ratio of redundancy while maintaining its bitrate unchanged,

then it has to decrease the source rate. Ifn ≤ t then at most one packet of a block is distributed over the

same distribution tree. Using this FEC scheme one can implement UXP, PET, or the multiple description

coding (MDC) scheme considered in [11].

3 Data distribution model

The metric we use to measure the performance of the data distribution is the probabilityπ that an arbitrary

node receives or can reconstruct (i.e., possesses) an arbitrary packet. If we denote byρr the number of

packets possessed by noder in an arbitrary block of packets, thenπ can be expressed as the average ratio

of packets possessed in a block over all nodes, i.e.,π = E[∑r ρr/n/N].

The mathematical model we present describes the behavior ofthe overlay in the presence of correlated

packet losses and without node dynamics. We model the losseson the input links of the nodes and denote

the probability thata packets in a block ofj packets are lost byP(a, j). For example,P(a, j) can be

calculated using a two-state Markovian model, often referred to as the Gilbert model, given the packet

loss probabilityp and the conditional loss probability (the probability thata packet is lost given that

the previous packet was lost)pω|ω as shown in [16]. We assume that the probability that a node isin

possession of a packet is independent of whether a node in thesame layer is in possession of a packet. For

simplicity, we assume thatn = t, and thatγr ≥ t is equal for all nodes. Let us denote byL the number of

layers in the overlay. We assume that nodes are in the same layer in their fertile trees, and in their sterile

trees respectively, and we introduceLl = min(L, l + δ) the layer where a node that is fertile in layerl is
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located in its sterile trees. We will comment on the possibleeffects of our assumptions and on the possible

extensions of the model in Section 3.3.

The probability that nodes receive data from other nodes is determined by the probability that a node

that forwards data in a tree can forward the data to its children. Hence, we introduce the probabilities

π f (l) that a node that is in layerl in its fertile tree, receives or can reconstruct anarbitrary packet in its

fertile tree. The probability that a node in layerl receives a packet in a tree isπa(l) = P(0,1)π f (l−1). A

node can possess a packet in its fertile tree either if it receives the packet or if it can reconstruct it using

the packets received in the other trees. Reconstruction cantake place if the number of received packets is

at leastk out of the remainingn−1, hence we can write for 1≤ l ≤ L

π f (l) = πa(l)+(1−πa(l))
n−1

∑
j=k

min( j,d−1)

∑
u=max(0, j−n+d)

R f (l,d −1,u)Rs(Ll,n−d, j−u), (1)

where the probabilities

R f (l,d −1,u) =

(

d −1
u

)

πa(l)
u(1−πa(l))

d−1−u,

Rs(l,n−d, j−u) =
n−d

∑
h= j−u

π f (l −1)h(1−π f (l −1))n−d−hP(n−d − j +u,n−d),

are the probabilities that the node receives packets inu of its d−1 fertile trees and that it receives packets

in j − u of its n− d sterile trees respectively. The model considers loss correlations in the sterile trees

only throughRs, but as we will see later, even this approximation overestimates the effects of correlations.

Based on the probabilitiesπ f (l) we can expressπ(l) (1 ≤ l ≤ L−1), the probability that a node that is

fertile in layerl possesses an arbitrary packet. If a node receives at leastk packets in a block ofn packets

then it can use FEC to reconstruct the lost packets, and will hence possess alln packets. Otherwise, FEC

cannot be used to reconstruct the lost packets. Packets can be received in thed fertile trees and in thet−d
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sterile trees. Hence forπ(l) we get the equation

π(l) =
1
n

n−d

∑
j=1

d

∑
u=1

τ( j +u)

(

d
u

)

R f (l,d,u)Rs(Ll,n−d, j), (2)

whereτ( j + u) indicates the number of packets possessed after FEC reconstruction if j + u packets have

been received:

τ( j +u) =

{

j +u 0≤ j +u < k
n k ≤ j +u ≤ n.

We use an iterative method to calculate the probabilitiesπ f (l). Since the root node possesses every packet,

we have thatπ f (0) = 1. We initializeπ f (l)(0) = 0 for 1≤ l ≤ L. Then, in iterationi, we calculateπ f (l)(i),

1≤ l < L using theπ f (l)(i−1). The iteration can stop in two cases: whenπ f (L−1) approaches its limit,

i.e., |π f (L− 1)(i−1) − π f (L− 1)(i)| < ε, whereε > 0 andi > L, or after reaching a certain number of

iterations. We will use the second stop criterion to investigate the temporal evolution ofπ in Section 4.3.

Theπ(l) can then be calculated using (2).

We can expressπ as the sum of theπ(l) weighted by the number of nodes that are fertile in the

respective layersNl

π =
1
N

L

∑
l=1

Nlπ(l). (3)

3.1 Modeling the temporal evolution of π f (l)

There are two sources of delay in the considered overlay. First, the FEC decoding delay. For a source

with average bitrateB, average packet sizeb and block lengthn the mean block delay isE[Db] = nb/B.

Second, the time it takes for a packet to travel one hop in the overlay, the per-hop-delayDph. The

per-hop-delay itself consists of four components. First, the queuing and propagation delays between

the nodes, denoted byDp, not including the queuing delays on the access links. The tree maintenance

algorithm can aim at minimizing this delay.
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Second, the queuing delays on the input links of the nodes. The mean queuing delay on the input link

of a node with input bandwidthCin can be expressed as

E[Dtr,i] = W in +b/Cin ≥ b/Cin, (4)

whereW in is the mean waiting time of the packets in the input link’s buffer. The input link’s buffer can

be modeled by a G/D/1 queue (assuming constant packet sizes), and the delay can be negligible if the

nodes’ input capacities are much higher than the stream’s bandwidth.

Third, the queuing delays on the output links of the nodes. Wecan model the output queue as a

GIX/D/1 queue with batch arrivals of constant sizeγr/d [20]. The mean queuing delay on the output link

of a node with upload bandwidthCout is

E[Dtr,o] = W out +bγr/d/2/Cout ≥ bγr/d/2/Cout , (5)

whereW out is the mean waiting time of the first packets of the arriving batches of packets in the output

buffer of the node. If we denote byu the link’s utilization, i.e.,γr = uCout/Bt, then we have

E[Dtr,o] = W out +ubCout/Bt/d/2/Cout = W out +ubt/d/2/B. (6)

In overlays where the number of cogs of the nodes is proportional to their output bandwidth [3, 6], i.e.,u

is equal for all nodes, the second term on the right hand side of (6) is independent of the distribution of

the nodes’ output bandwidths. As bandwidth resources are usually scarce in overlay multicast [6, 15],u

has to be high to maintain the overlay feasible, and henceDtr,o cannot be neglected.

Fourth, the processing delays in the nodes. For the considered block lengths and common stream-

ing bitrates the processing delays (e.g., arithmetic operations for Reed-Solomon coding) are negligible

compared to other sources of delay, and are not considered inthis paper.

The successive iterations of the model can be interpreted asthe propagation of the packets of a FEC

block in the overlay. If we assign the average per-hop delayDph to each iteration, then the performance

predicted by the model afteri iterations can be used to approximate the performance of an overlay in
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which the nodes are equipped with a playout buffer big enoughto holdBE[D(i)] data, where

E[D(i)] = E[Db]+ iE[Dp +Dtr,i +Dtr,o]. (7)

We validate the accuracy of this approximation in Section 4.3.

3.2 Asymptotic behavior for large N

In the following we give an asymptotic bound onπ to better understand its evolution. It is clear thatπ f (l)

is a non-increasing function ofl and thatπ f (l) ≥ 0. Hence, we can give an upper estimate ofπ f (l) by

assuming that the nodes that forward data in layerl are sterile in the same layer (sinceπ f (l) ≥ π f (Ll) as

l ≤ Ll). Then, instead of (1) we get the following nonlinear recurrence equation

π f (l +1) = πa(l +1)+ (8)

(1−πa(l +1))
n−1

∑
j=n−c

min( j,d−1)

∑
u=max(0, j−n+d)

R f (l,d −1,u)Rs(l,n−d, j−u).

This equation is the same as (2) in [16], and thus the analysisshown there can be applied to describe the

evolution ofπ f (l). For brevity, we only state the main results regarding liml→∞ π f (l) = π f (∞), for P(a, j)

described by the Gilbert model. For a detailed explanation see [16].

For every(n,k) there is a loss probabilitypmax(pω|ω) below which the packet possession probability

π f (∞) > 0 and above whichπ f (∞) = 0. Furthermore, for any 0< δ < 1, p and pω|ω there is(n,k) such

thatπ f (∞) ≥ δ.

Consequently, in the considered overlay ifp > pmax(pω|ω), then limN→∞ π = 0, becauseπ f (l) ≥

π f (l) ≥ π(l), andlimN→∞π f (L) = 0. For p < pmax(pω|ω) stability depends on the number of layers in

the overlay and on the FEC block length, because of the initial conditionπ f (l)(0) = 0, 1≤ l ≤ L, but not

directly on the number of nodes. This explains why placing nodes with large outgoing bandwidths close

to the root improves the overlay’s performance [3, 6].
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For an overlay withL layers, a sufficient condition for stability is(1− p)L > r1, wherer1, 0< r1 < 1

is the unstable fixed point of (8). If the condition is satisfied thenπ can be bounded from below byπ = r2,

wherer2, 0< r1 < r2 < 1 is the asymptotically stable fixed point of (8). If the sufficient condition is not

satisfied then the lower bound is given by not considering FECreconstruction, i.e.π = (1− p)L.

3.3 Discussion of the assumptions

In the following we discuss the validity of certain assumptions made in the model. The model does not

take into account heterogeneous losses, though it can be extended by following the procedure presented in

[16] for the minimum breadth trees. The effects of nodes withheterogeneous input and output bandwidths

can be included in the model in a similar way. We decided to show equations for the homogeneous case

here to ease understanding.

Our results for block based FEC apply to PET and the MDC schemeconsidered in [11], where different

blocks (layers) of data are protected with different FEC codes. The packet possession probability for the

different layers depends on the strength of the FEC codes protecting them, and can be calculated using

the model.

The model does not explicitly take into account node departures, an important source of disturbances

in overlay multicast. Following the arguments presented in[16] node departures can be incorporated

in the model as an increase of the loss probability bypd = Nd/N × θ, whereNd is the mean number

of departing nodes per time unit andθ is the time nodes need to recover (discovery and reconnection)

from the departure of a parent node. The time for recovery candepend on the node’s priority in the tree,

and hencepd can be tree dependent. The model can be extended for such a scenario by modifying the

functionsR f andRs. The simulation results presented in [16] suggest that thisapproximation is accurate

for low values ofpd.

The results of the model apply forn < t without modifications, and a similar model can be developed

for n > t, by modifying eqs. (1-2) for non-binary random variables corresponding to the number of packets

received out of then/t packets distributed in a tree. Forn > t node departures appear as consecutive losses
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in the blocks of packets, and their effect on the performanceis more severe than forn = t.

4 Performance evaluation

We developed a packet-level event-driven simulator to validate the model. We used the GT-ITM topology

generator [21] to generate a transit-stub network with 104 nodes and average node degree 6.2. We placed

each node of the overlay at random at one of the 104 nodes of the topology and used the one-way delays

given by the generator between the nodes (mean 67 ms, standard deviation 21 ms, maximum 180 ms).

The delay between overlay nodes residing on the same node of the topology was set to 1 ms. The inter-

arrival times of nodes are exponentially distributed, thisassumption is supported by several measurement

studies [22, 23]. The session holding timesM follow the log-normal distribution, the mean holding time

is E[M] = 306 s [22].

Tree maintenance: We assume that a distributed algorithm, such as gossip basedalgorithms, is used

by the nodes to learn about other nodes, and that it provides random knowledge of the overlay such as

in [15]. When a node wants to join the overlay, it contacts the root and obtains a random list ofg = 100

members of every tree. The root tells the arriving node in which trees it should forward data: in the ones

with the least amount of forwarding capacity. The arriving node then uses the following parent selection

procedure to find a parent.

To select a parent in a tree, the node sorts theg members it is aware of into increasing order according

to their distances from the root, and looks for the first node that has available capacity or has a child

that can be preempted, i.e., which has lower priority. We limit the layer spread by allowing a noder to

preempt any node (even a fertile one) in order to maintainδr ≤ δ. Otherwise, fertile nodes can preempt

sterile nodes.

If the node has to preempt a child, but itself has available capacity, then the preempted child can

immediately become a child of the preempting node. Otherwise, the preempted child has to follow the

parent selection procedure just like the child nodes of a departed node.

Data distribution: We consider the streaming of aB = 112.8 kbps data stream, and the bandwidths
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of the nodes’ input and output links are set toC = 128 kbps, unless otherwise stated. The capacity of the

root node’s output link is 10 Mbps, and we considerm = 50 throughout the paper for easy comparison. As

m only influences the overlay’s depth, the choice ofm does not influence our conclusions. The packet size

is 1410 bytes. Unless stated otherwise, the nodes have a playout buffer capable of holding 140 packets,

which corresponds to 14 s delay with the given parameters. Every node has an input and an output buffer

of 80 packets each to absorb the bursts of incoming and outgoing packets. Apart from packet losses due

to the overflow of the input and output buffers and due to late arriving packets, we simulate packet losses

on the input links of the nodes using the Gilbert model. For stationary loss probabilityp and conditional

loss probabilitypω|ω we set the parameters of the model as described in [16].

To obtain the results for a given overlay sizeN, we start the simulation withN nodes in its steady state

as described in [24]. We setλ = N/E[M] and let nodes join and leave the overlay for 5000 s. The purpose

of this warm-up period is to introduce randomness into the tree structure. The measurements are made

after the warm-up period during 1000 s and the presented results are the averages of 10 simulation runs.

The results have less than 5 percent margin of error at a 95 percent level of confidence.

4.1 Approximating the overlay structure

It is possible to approximate the number of nodes per layer for an arbitrary distribution ofγr, but sinceγr

only influences the number of layers for givenN,t,d, we restrict ourselves to the caseγr = t for simplicity.

The number of fertile nodes in layerl of a well-maintained tree follows the recurrenceNl = t/dNl−1−(t−

d)Nl−δ with initial conditionsN1 = min(N/(t/d),m), Nl = 0 for −δ < l ≤ 0. Forδ ≥ L−1 the solution

is trivial, Nl = m(t/d)l−1. For δ < L−1 a real solution does not always exist ford > 1, in which case

the overlay is not feasible. The simulated overlay’s structure differs from this approximation due to node

dynamics, but as our results below show, the difference doesnot have a significant effect on the accuracy

of our model.
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4.2 Loss performance

In this section we show results for the limit value ofπ(l) andπ(l) for ε = 10−6. Fig. 3 showsπ(l) as a

function of l for t = n = 4, c = 1, N = 104 and independent losses. The value of the threshold for the

FEC(4,3) code ispmax = 0.129. The figure shows that both the upper and the lower bounds are tight when

the overlay is stable (p = 0.10). However, in the unstable state (p = 0.14)π(l) drops quickly and the lower

bound given is rather loose. Note the effects of the approximation of the number of layers. In the stable

state the simulation results match the analytical results,as the number of layers does not influenceπ. In

the unstable state the simulated performance is however slightly worse than the modeled performance due

to the higher number of layers in the simulations.

Fig. 4 showsπ as a function ofp obtained with the mathematical model form = 50,n = t, d = 1 and

independent losses for various block lengths, redundancy rates and overlay sizes. The figure shows that

π remains high and is unaffected byN as long as the overlay is stable. It drops however once the overlay

becomes unstable, and the drop of the packet possession probability gets worse as the number of nodes

and hence the number of layers in the overlay increases. Increasingt (and hencen) increasesπ in a stable

system, but the drop of the packet possession probability gets faster in the unstable state, since longer

FEC codes are less efficient at high loss rates. Similarly, increasing the ratio of redundancy increasesπ

and the region of stability, but the drop ofπ gets faster in the unstable state. The curves correspondingto

π(∞) show the value of the asymptotic bound calculated using (8).

By increasingn andt one can increaseπ, but at the same time the probability that the trees become dis-

connected (alternatively, the timeθ to find a parent) in the case of dynamic overlay membership increases

[14]. To avoid the trees to become disconnected, one has to increased, the number of fertile trees. The

depth of the trees does not change ift/d is kept constant. Fig. 5 evaluates this scenario and showsπ as a

function of p obtained with the mathematical model form = 50,n = t and independent losses for various

values of the number of the fertile treesd and number of treest. The figure shows that by increasingt and

d one can improve the overlay’s performance in its stable state, but decreases the stability region due to

the longer FEC block (n = t). We present simulation results to validate our simplifying assumption with
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respect to the nodes’ positions in their fertile trees, and conclude that the model is accurate. We observe

slightly worse performance at the transition between the stable and unstable states ford > 1, which is due

to the finite playout buffer in the simulations.

Next, we evaluate the effect of limiting the layer spread across the transmission trees. Figure 6 shows

π as a function of the overlay’s size fork/n = 0.75 with and without limiting the layer spread. We

observe thatt = 4 has the widest stability region, though it results in a lower value of π in the stable

state. Increasing the number of fertile trees decreases thestability region the most, as it combines long

FEC blocks with a relatively high number of layers. Limitingthe layer spread makes the stability region

wider for t = 16,d = 4 , meanwhile it does not decrease the value ofπ in the stable state despite the

slight increase of the number of layers. Among the considered ones thet = 16,d = 1 architecture provides

the most shallow trees and thus the widest stability region in terms of number of nodes. There, limiting

the layer spread toδ = 2 keeps the overlay stable for the considered range of overlay size. The number

of layers corresponding to the transition from the stable tothe unstable state (shown with the arrows) is

mainly determined byn andk, and increases if the layer spread is limited.

Figure 7 comparesπ in the case of correlated losses and independent losses (forindependent losses

pω|ω = p). The figure shows that loss correlations slightly decreasethe overlay’s performance, but not as

much as predicted by the model, even though the model only considers the correlation between packets

arriving in the sterile trees. Packets of a block do not necessarily arrive back-to-back to a node, hence

the correlation between the loss of packets of a block is lower than that between the loss of consecutive

packets on the input link of the node (denoted byP(a, j) in the model).

4.3 Delay characteristics

In this section our focus is on how the size of the playout buffer influences the probability of packet

possession. We introduce the notion of convergence, and saythat the value ofπ converges afteri iterations,

if it reaches 99.9 percent of its limit value. First, we use the model to give anunderstanding of how

the number of iterations needed to reach convergence depends on the overlay’s parameters and the loss
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probability. Then we investigate the relationship betweenthe playout buffer’s length and the overlay’s

performance.

4.3.1 Convergence speed

First we consider trees withN = 104 nodes, for which FEC is effective even without limiting the layer

spread according to Fig. 6. Fig. 8 showsπ as a function of the number of iterations for different loss

probabilities and ratios of redundancy. The minimum numberof iterations needed for the data to reach

the nodes in their sterile trees in an overlay withL layers isL. For the considered tree parametersL = 5,

hence we show results fori ≥ 5. The figure shows that with a higher ratio of redundancy the convergence

is much faster for a given loss probability. Similarly, the convergence is faster for lower loss probabilities

at a given redundancy rate. In both cases, the reason for the faster convergence is that the overlay is further

from the unstable regime. We observe slightly improved performance when limiting the layer spread.

Figure 9 shows the number of iterations needed for convergence as a function of the loss probability for

different tree structures, and it supports the conclusion that the number of iterations needed is influenced

by both the number of layers, the FEC block length and the distance from the stability threshold.

Figure 10 showsπ as a function of the number of iterations for different tree structures. Increasing

the number of trees ford = 1 decreases the number of layers, and consequently, the number of iterations

needed decreases. The convergence speed is slightly improved by the longer FEC blocks as well, as

observed fort = 16,d = 4 compared tot = 4,d = 1 (the number of layers is the same in the two overlays).

To evaluate the convergence in large overlays, Figure 11 shows π as a function of the number of

iterations for different overlay sizes. The number of iterations needed to achieve convergence increases

with the overlay’s size. Hence, if a node observes increasing convergence times but unchanged packet

possession probability after convergence, it can infer that the overlay’s size is increasing. We see that for

i ≈ L limiting the layer spread results in inferior performance due to the increased number of layers. This

region is however not of practical interest due to the low values ofπ. For higher values ofi and large

overlays limiting the layer spread leads to significantly faster convergence as shown forN = 105, and
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eventually achieves stability as forN = 106.

The overlay’s size affects the convergence speed through the number of layers of the overlay, i.e., it is

not the number of nodes, similar to the results on stability.Consequently, a tree maintenance algorithm

that cannot keep the overlay well-maintained (such as, for example, random selection [18]) can lead to

instability already for a relatively small number of nodes.(E.g., the difference in terms of number of layers

betweenN = 104 andN = 106 is only five: form = 50 andt/d = 4 we haveL104 = 5 andL106 = 10.)

4.3.2 Iteration vs. delay

In this section we evaluate the accuracy of the approximation of the playout buffer’s effects on the per-

formance described in Section 3.1. As the playout buffer’s length determines the time available forπ to

converge, we will use playout buffer requirement and convergence time as synonyms in the following.

For the analytical results we use the mean propagation delayof the simulations,E[Dp] = 44 ms. We show

results forp = 0.10 andk/n = 0.75 for easy comparison. These parameters involve data transmission

close to the stability threshold, which in turn means high number of iterations to achieve convergence.

The higher the number of iterations in the model, the more irregular the packet arrival process at the peers

in the simulations. Hence the considered scenario is a “bad”case in terms of the regularity of the arrival

processes.

Deterministic arrivals: First, we consider the model for the best case scenario, whenthe arrival

processes are deterministic both on the input and on the output links of the peers. In this caseW in = 0

andW out = 0 in (4) and (5) respectively. We consider three scenarios with different utilizations of the

input and the output links. In the first scenario (“inf.cap.”) the input and output link capacities are

Cin = Cout = 10 Mbps (the number of cogs per node is stillt), and consequently the per-hop-delay is

determined by the propagation delays (E[Dph] ≈ 48 ms). In the second scenario (“inf.incap.”) the input

link capacities areCin = 10 Mbps, the output link capacities areCout = 128 kbps, i.e., close to the stream’s

bitrate. The per-hop-delay is increased by the transmission times on the output links (E[Dph] ≈ 221ms).

In the third scenario (“fin.cap.”) both the input and the output links’ capacities areCout = Cin = 128 kbps,
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and the per-hop-delay is increased by the transmission times on both links (E[Dph] ≈ 308ms).

Figure 12 showsπ as a function of the playout buffer’s size fort = n = 4, m = 50, p = 0.1 and

N = 104. The time to convergence is to a much lower extent influenced by the propagation delays than

by the transmission delays on the output links of the nodes. This conclusion is true for any overlay

in which the output link utilizations are high (due to scarcebandwidth resources),independent of the

distribution of the output links’ capacities due to (6). For the considered input bandwidths even the

transmission delays on the input links have a bigger impact on the required size of the playout buffer than

the propagation delays. We conclude that the achievable gain in terms of decreasingthe convergence time

(i.e., playout buffer requirements) by using a tree-maintenance algorithm that chooses parents based on

minimum round-trip-timedepends very muchon the capacity resources available to the overlay and the

output links’ utilizations. Nevertheless, minimizing the round-trip-time can have indirect benefits, e.g.,

lower loss rates between nearby nodes and better network utilization.

We performed simulations to validate the accuracy of our approximations: the use of the mean prop-

agation and transmission times, the deterministic arrivalprocess and the approximation of the number

of layers of the overlay. Fig. 13 shows the results. We observe that the the main characteristics of the

analytical and simulation results are the same. For very small playout buffers the model underestimates,

for large playout buffer sizes it overestimates the actual performance, due to the variance of the per-hop-

delays, which is not considered in the model.

Fig. 14 compares results obtained using the model for different overlay structures. In the case of

“infinite” capacities (Cin =Cout = 10 Mbps) the results are similar to those in Fig. 10. Nevertheless, in the

case of finite capacities fort = 16 the shorter transmission delays on the output links usingd = 4 result in

lower convergence time than usingd = 1, despite the higher number of iterations needed for convergence.

Because of the increased value ofE[Dtr,o], the convergence time fort = n = 16 is higher than that for

t = n = 4 despite the lower number of layers and less iterations needed for convergence.

We show simulation results for the scenarios with finite capacities in Fig 15. Fort = 16 andd = 1

the results show a similarly good match with the model as fort = 4 andd = 1 in Fig. 13. Ford = 4
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the simulations show bigger playout buffer requirements than the model. Ford = 4 the arrival process

of the packets in the fertile trees is less regular than in thecase ofd = 1 because the nodes can be fertile

in different layers. Consequently, queues build up and the waiting times of the packets (W in andWo)

increase the convergence time.

Fig. 16 shows results for various bitrates (i.e. link utilizations),t = 16 andd = 1, and finite output

link capacityCout = 512 kbps. Increasing the bitrate decreases the convergencetime even though the link

utilizations increase. This conclusion follows directly from (7) and the assumption of the deterministic

arrival process, as in (7) onlyDb is a function ofB. Nevertheless, for small bitrates shallower trees can

be built if the tree maintenance algorithm increasesγr (and henceu) for some nodes and decreases it for

others. Doing so decreases the number of iterations needed,but increasesDtr,o, and hence the decrease of

the convergence time itself is moderate.

Poisson arrivals: To see how the waiting times influence the performance, let usconsider exponential

inter-arrival times on the input links and the output links of the nodes. Although Poisson arrivals is not a

worst case scenario, we can get some insight into the possible effects of the output links’ utilizations on

the queuing delays, and hence, the convergence time. We do not claim that the arrival process is Poisson,

and our results show that it is in fact much more regular.

For Poisson arrivals we can express the mean waiting time in the input queue (assuming the queue has

infinite buffer capacity) as [20]

W in =
(B/Cin)

2

2λi(1−B/Cin)
,

whereλi is the arrival intensity of the packets on the input linkλi = B/b. Similarly, the mean waiting time

on the output link can be given as

W out =
u2

2λo(1−u)
,

whereλo is the arrival intensity of the packets on the output linkλo = Bd/t/b.

Figure 17 showsπ for the scenarios considered in Fig. 14. The delays show a significant increase due
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to the waiting times incorporated in the model. To see which arrival model fits the actual arrival process

better, we compare Figs 14, 15 and 17. The Poisson arrival process overestimates the playout buffer

requirements by almost an order of magnitude. This implies that the actual arrival process of the packets

is rather regular, close to deterministic. Hence the mean waiting time does not increase significantly even

if nodes have nearly as many cogs as the bandwidth of their output links allows it, and the convergence

time is approximately a linear function of the utilizationsof the output links.

5 Conclusion

In this paper, we analyzed a peer-to-peer live streaming solution based on multiple transmission trees and

FEC. We presented a mathematical model to express the packet possession probability in the overlay for

the case of correlated losses. We evaluated the overlay’s performance as a function of the loss probability

between the peers and analyzed the asymptotic behavior of the overlay.

Based on the model and simulations, we concluded that the number of fertile trees does not influence

the performance of the data transmission in the stable region of the overlay, even though the trees get

deeper than optimal due to node dynamics. It influences however the stability region of the overlay

and decreases the packet possession probability in the overlay in the unstable region due to the longer

transmission paths. We showed that our proposal, limiting the layer spread, helps to improve the stability

of the overlay, and in general, leads to improved performance.

We investigated the delay characteristics of the overlay, and concluded that the number of iterations

needed for convergence is low for high packet possession probabilities, and increases as the overlay gets

close to the stability threshold. We developed a model of theper-hop-delay to evaluate the effects of

the playout buffer size on the data distribution performance. We showed that the delay introduced on the

nodes’ output links is likely to be the most important sourceof delay in practice, as it is proportional to the

links’ utilizations, and overlays tend to operate in bandwidth resource scarce environments. Our results

show that FEC is the key to the stability and good performanceof multi-tree-based overlay multicast.

How to adjust the FEC parameters based on feedback from the peers will be subject of future research.
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Figure 12:π vs. delay forp = 0.1, t = 4, d = 1,
n = 4, m = 50,N = 104. Deterministic arrivals.
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Figure 13: π vs. delay forp = 0.1, m = 50,
k = 0.75n, N = 104. Simulations.
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Figure 14: π vs. delay forp = 0.1, m = 50,
k = 0.75n, N = 104. Deterministic arrivals.
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Figure 15: π vs. delay forp = 0.1, m = 50,
k = 0.75n, N = 104. Simulations.
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Figure 16:π vs. delay forp = 0.1, m = 50, t =
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arrivals.
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Figure 17: π vs. delay forp = 0.1, m = 50,
k = 0.75n, N = 104. Poisson arrivals.
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