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Abstract—Tracker-based peer-discovery is used in most com-
mercial peer-to-peer content distribution systems, as it provides
performance benefits compared to distributed solutions, and
facilitates the control and monitoring of the overlay. But a tracker
is a central point of failure, and its deployment and maintenance
incur costs; hence an important question is howhigh tracker avail-
ability can be achieved atlow cost. We investigate highly available,
low overhead peer discovery, usingindependent trackers and a
simple gossip protocol. This work is a step towards understanding
the trade-off between the overhead and the achievable peer
connectivity in highly available distributed overlay-management
systems for peer-to-peer content distribution.

We propose two protocols that connect peers in different
swarms efficiently with a constant, but tunable, overhead. The
two protocols, Random Peer Migration (RPM) and Random
Multi-Tracking (RMT), employ a small fraction of peers in a
torrent to virtually increase the size of swarms. We develop
analytical models of the protocols based on renewal theory,
and validate the models using both extensive simulations and
controlled experiments. We illustrate the potential value of the
protocols using large-scale measurement data that contains hun-
dreds of thousands of public torrents with several small swarms,
with limited peer connectivity. We estimate the achievable gains
to be up to 40% on average for small torrents.

I. I NTRODUCTION

Efficient overlay-membership management and peer discov-
ery are crucial components of large-scale peer-to-peer (P2P)
content distribution systems. Peer discovery provides theset
of potential neighbors with which a peer can exchange data
and, in general, the efficiency of content distribution improves
as the set of potential neighbors increases. Without peer
discovery, a P2P system is not able to operate, and hence
high system availability is a key requirement. Furthermore, as
large-scale P2P systems can have up to tens of millions of
peers simultaneously exchanging millions of distinct objects,
efficiency and low-overhead are key requirements as well.

Fully distributed peer-discovery mechanisms, such as dis-
tributed hash tables (DHTs) used in BitTorrent [1], and un-
structured overlays used in Gnutella, provide high availability.
Maintaining consistency and avoiding stale routing tables
under node churn at a low overhead is, however, challenging
and affects the performance of DHT-based peer discovery in
practice [1], [2]. In unstructured overlays, traffic overhead has
to be traded for good peer discovery [3]. Furthermore, fully
distributed overlay management and peer discovery render
it more difficult for P2P content providers to monitor peer
participation (e.g., for charging purposes), and to enforce
content access control.

At the opposite end of the availability spectrum is central-
ized peer discovery using a single tracker. A tracker makes it
easy to monitor peer participation, to enforce access control,
and it is also efficient in terms of overhead. Many successful
open-source and proprietary P2P content distribution systems
rely on trackers for peer discovery (e.g., BitTorrent, PPLive [4]
and Akamai Netsession [5], a hybrid P2P content delivery
platform). Nevertheless, the tracker is a central point of failure
and its traffic load is proportional to the number of peers.

While tracker availability can be improved by investing in
reliable network connectivity, hardware and software (e.g.,
a reliable database), it is often cheaper to deploy multiple
trackers based on commodity hardware and network access,
and to ensure that failures would be independent (through
geographic, topographic and vendor diversity). BitTorrent, for
example, allows the use of multiple trackers through the Multi-
tracker Metadata Extension (BEP-0012 [6]). However, using
multiple trackers can have some adverse effects. On the one
hand, if all peers communicate to all trackers, then the traffic
costs increase proportionally to the number of trackers, leading
to overhead. On the other hand, if every peer communicates
with one tracker only, then the overlay is split into a number
of disjoint sets of connected peers, even if gossip protocols
are used within the disjoint sets of peers to reduce the tracker
load; e.g., as in BitTorrent (the Peer Exchange Protocol [6],
[7]) and in PPLive [4].

The focus of our work is to develop and demonstrate a
hybrid approach, which has the advantages of the centralized
and decentralized peer-discovery mechanisms, but avoids their
respective disadvantages. In particular, the question we address
in this paper is whether it is possible to achievehighly avail-
able and efficientpeer-discovery, which avoids the formation
of disjoint swarms, atlow overheadby employingindependent
trackers and relying only on agossip protocol. Our main
contributions in this paper are the following:

1) We propose two novel distributed algorithms that rely
on a gossip protocol only, and mix otherwise disjoint
sets of peers into a single overlay. The overhead of both
protocols is independent of the number of peers.

2) We develop an analytical model based on the theory of
renewal-reward processes and show that, under certain
conditions, the mixing performance of the algorithms is
independent of the rate of peer churn and of the overlay
size. We validate the analytical results using simulations
and controlled experiments with BitTorrent clients.



3) Based on a large-scale measurement study of BitTorrent
content popularity, we estimate the potential throughput
performance improvement in today’s BitTorrent.

The remainder of the paper is organized as follows. Sec-
tion II describes our terminology and system model. Sec-
tion III explains our proposed overlay management protocols.
Section IV provides analytic models of the protocols. Sec-
tion V shows simulation and experimental results to validate
the models. Section VI shows performance results based on
measurements data. Related work is discussed in Section VII.
Section VIII concludes the paper.

II. SYSTEM MODEL

Whereas our protocols and analysis are applicable to
tracker-based P2P content distribution in general, throughout
the paper we use BitTorrent terminology to refer to compo-
nents of the P2P content distribution system and protocol.
Since our focus is on the control plane, we do not discuss
any aspects of data forwarding.

The P2P system consists of peers that are interested in a
number of contents (e.g., they share a set of files or they
distribute live or on-demand streaming content). The set of
peers that share a particular content is called atorrent. We
denote the set of torrents byT . The number of peers in
torrent t ∈ T is denoted byxt . For the case of file sharing,
we distinguish between peers that have the entire content and
only upload content, calledseeds, and peers that only have
parts of the file and are downloading, calledleechers.

Trackersare used to maintain state information about the
peers currently having pieces of a particular file. We denote
the set of trackers byR, and byR(t) the set of trackers that
track torrentt ∈ T . T (r) denotes the set of torrents that are
tracked by trackerr ∈ R. The number of trackers|R(t)| ≥ 1
is a function of the target torrent availability, and is a system
parameter. Our focus is on the case when|R(t)|> 1.

A peer that wants to join a torrent has to obtain thetorrent
meta-data, which contains the set of available trackers for the
torrent,R(t). The peer then chooses a subset of the available
trackers, registers with those trackers, and periodically, once
every announceperiod of timeTA, provides them with infor-
mation about its state, e.g., when it completes download and
when it leaves. Uponannounce request, the tracker can also
provide the peer with a subset of the registered peers. The
term swarm is used to denote the set of peers that share the
same file and are tracked by the same tracker. We denote the
number of peers tracked by trackerr for torrent t, i.e., the
swarm size, byxt,r .

Apart from a tracker, a peer can also obtain peer information
from other peers using agossip protocol. Peers use the gossip
protocol to periodically exchange addresses of known peers
with their neighbors. Ideally, a peer would remember all
addresses ever learned, and would gossip all known addresses
to randomly chosen peers. In practice, however, gossiping is
often limited to a slowly changing set of neighbors, and only
the addresses of connected peers are distributed. To reflectthis
limitation we denote byp the peer list, i.e., the maximum

Symbol Definition
R Set of trackers
T Set of torrents
R(t) Set of trackers that track torrentt
T (r) Set of torrents that are tracked by trackerr
xt Number of peers associated with torrentt
xt,r Number of peers of torrentt that are tracked

by trackerr
η Fraction of peers implementingRPM or RMT
β RPM or RMT protocol parameter (willingness)
p Peer list length for the gossip protocol

TABLE I
FREQUENTLY USED NOTATION

number of peers that a peer is connected to in a swarm,
p≤ xt,r . Table I summarizes our notation.

III. OVERLAY MANAGEMENT PROTOCOLS

Efficient peer-discovery mechanisms are an important com-
ponent in achieving high content-distribution efficiency in
P2P systems. If every peer registers with one tracker chosen
at random, then the tracker load is minimal both in terms
of traffic and the amount of system state to be maintained.
Nevertheless, the different swarms of the same torrent willbe
pairwise disjoint, and peers will not be aware of peers in other
swarms. We refer to this scheme aspick-one. Alternatively, if
every peer registers with all trackers, then the trackers’ load
increases proportional to the number of swarms per torrent
weighted by the torrent sizes. As an advantage, all peers can
potentially discover all other peers; however, this may require
much higher traffic overhead. We refer to this scheme aspick-
all. These two schemes are the two extremes in terms of
overhead and overlay connectivity.

In the following we propose two protocols, Random Peer
Migration (RPM) and Random Multi-Tracking (RMT), that
provide good overlay connectivity at the price of low overhead
(compared topick-one), based on independent trackers and a
gossip protocol. We analyze the protocols in Section IV.

A. Random Peer Migration (RPM)

Peers that follow theRPM protocol migrate between the
swarms of the torrent at random, and whenever they arrive
to a new swarm they distribute the addresses of the peers in
the previous swarm using the gossip protocol. Letting peers
migrate between swarms is a novel but simple way to increase
the number of peers that know about each other (i.e., the virtual
size of the swarms). What is particularly novel, and what
makesRPM non-trivial, is that the migration rule is defined
such as to ensure that the protocol has a constant, but tunable,
tracker overhead independent of the torrent’s size. At the same
time it provides good performance for a wide range of swarm
sizes, peer arrival rates and holding times.

TheRPM protocol that we propose works as follows. Upon
arrival a peer registers with a trackerr ∈R(t) chosen uniform
at random. Every time a peer downloading torrentt tracked
by tracker r finishes uploading or downloading data worth
1/(β (|R(t)| − 1)) portion of the shared content’s size, it
chooses to migrate to another swarm of the same torrent
with probability 1/xt,r . We call the protocol parameterβ the
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willingness to migrate. If a peer chooses to migrate, the peer
chooses uniformly at random a trackerr ′ other than tracker
r (i.e., r ′ ∈ R(t) \ {r}), and scrapes the chosen tracker. If
xt,r ′ = 0, the peer stays in swarmr; otherwise, it migrates
to swarm r ′. In order to migrate, the peer unregisters from
tracker r, registers with trackerr ′, obtains a list of known
peers from trackerr ′, and uses the gossip protocol to distribute
the addresses of the peers it knows about from the previous
swarmr to the peers it now knows in swarmr ′. We refer to
the peers whose addresses get to be known in swarmr ′ this
way as external peers, as they are not tracked by trackerr ′.

B. Random Multi-Tracking (RMT)

Peers that follow theRMT protocol associate with several
trackers at random upon arrival, which is a rather natural way
to achieve mixing between swarms, inspired by thepick-all
scheme. The novelty lies in the choice of the number of multi-
tracked peers.RMT provides good mixing between the swarms
for a wide range of swarm sizes, peer arrival intensities and
content sizes. At the same time it leads to constant, but tunable,
tracker announce overhead.

The proposedRMT protocol works as follows. When a peer
joins torrent t it scrapes all trackersr ∈ R(t) to obtain the
number of peersxt . If xt = 0, then the peer registers with
one tracker chosen uniform at random. Ifxt > 0, then with
probability min(1, |R(t)|β

kxt
) it registers withk trackers chosen

uniform at random, otherwise it registers with one tracker
chosen uniform at random. We call the protocol parameterβ
the willingness to multi-track. Peers that are registered with k
trackers maintain an equal number of connections with peers
in the different swarms, on averagep peers per swarm. To
provide mixing they use the gossip protocol to distribute the
addresses of the peers they are connected to.

IV. PROTOCOLPERFORMANCE

In the following we develop analytical models that provide
insight into the effect of the protocol parameters on the
protocol performance. Our focus is on a single torrent, and
for simplicity we omit the subscriptt in this section.

A. Performance Metrics

In order to evaluate the performance of the protocols we
define thevirtual swarm sizeas the average number of internal
and external peers known in swarmr normalized with the total
number of peers in the torrent

Mr =
xr +∑r ′∈R(t)\{r} yr,r ′

x
, (1)

whereyr,r ′ is the average number of external peers known in
swarm r tracked in swarmr ′, and x is the number of peers
in the torrent. WithoutRPM and RMT yr,r ′ = 0. In general,
yr,r ′ = limτ→∞

1
τ
∫ τ

0 yr,r ′(h)dh, whereyr,r ′(h) is the number of
external peers in swarmr tracked in swarmr ′ at timeh.

The average virtual swarm sizefor torrent t can be ex-
pressed as the weighted averageM = 1

x ∑r∈R(t) xrMr . This
metric corresponds to the average effective swarm size ob-
served by a peer and is upper bounded,M ≤ 1. Without mixing

M = ∑r∈R(t) (xr/x)2, which is minimal for uniform swarm
sizes (M = 1/|R(t)|). The gain of swarm management is then
the increase of the virtual swarm size due to mixing

dM = M− ∑
r∈R(t)

(xr/x)2. (2)

We quantify the overhead of the proposed protocols primar-
ily in terms of thetracker overheadcompared to thepick-one
scheme. The overhead is due to the redundant state information
maintained in the trackers and to the tracker scrapes and
announce requests performed by the peers. We do not provide
an analysis of the peers’ overhead due to gossiping for two
reasons. First, the overhead is no greater than if all peers were
in a single swarm. Second, the amount of gossiping traffic is
negligible compared to the amount of data traffic, as shown
by our experiments with BitTorrent clients in Section V-B.

B. Virtual Swarm Size

In the following we describe our modeling assumptions and
then derive closed form expressions for the average number
of external peersyr,r ′ and discuss its impact on the average
mixing efficiency of each of the protocols.

Consider a torrentt and two of its swarmsr andr ′. Assume
peers arrive to swarmr of the torrent according to a Poisson
process with rateλr . A shareη of the arriving peers follows
the RPM or theRMT protocol. The holding time of the peers
is exponentially distributed with mean 1/µr . The time it takes
a peer to download the content in torrentt is exponentially
distributed with mean 1/νr . In such a system peers depart with
probability µr/(µr +νr) without finishing the download of the
content. Using the above notation, the average number of peers
tracked by trackerr is λr/µr , independent of the peers’ holding
time distribution. We do not incorporate the effect ofβ onνr in
this model. This simplification is pessimistic forRPM: if peer
migration increases the torrent throughput, then it increases
νr , so that migration would become more frequent and swarm
mixing would be more efficient.

In order to develop a lower bound on the average number
of external peers from swarmr ′ known in swarm r, i.e.,
yr,r ′ , we model the protocols with a renewal reward process
{(Ji ,Ri) : i ≥ 0} [8]. The jump timesJi of the renewal process
are the migration events in case ofRPM, and the arrival
epochs of a multi-tracked peer and the time instances of the
announces made by the last arriving multi-tracked peer for
RMT. The rewardsRi are the cumulative number of external
peers during a renewal period. The reward over theith renewal
period [Ji ,Ji+1] can be defined asRi =

∫ Ji+1
Ji

yr,r ′(τ)dτ. The
average number of external peers equals the average reward,
yr,r ′ = limτ→∞

1
τ ∑N(τ)

i=1 Ri , whereN(τ) is the counting process
for the renewal process (i.e., the number of renewal epochs
until time t). In the following we give lower bounds onyr,r ′

using the above modeling assumptions forRPM andRMT.
1) Random Peer Migration (RPM):Consider a swarmr, to

which peers migrate from swarmr ′. The migrating peers know
about p peers of swarmr ′, and spread the addresses of these
peers upon their arrival to swarmr. Pessimistically, we assume
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Time

yr,r’

J2
J

0 J
3

J4J1

Migration Migration Migration Migration Departure Migration

(ηβν)exp (ηβν)exp (ηβν)exp (ηβν)exp

Fig. 1. Jump times and renewal periods in the renewal process for RPM.
Jump timesJ0, . . . ,J4 correspond to the migration of peeri = 0, . . . ,4 to the
swarm. Peer 3 departs some time beforeJ4. The renewal period length is
exponentially distributed.

that the peers in swarmr forget about the external peers they
learnt about from the previous migrating peer every time a peer
migrates to swarmr from swarmr ′. This assumption implies
that all external peers from swarmr ′ known in swarmr are
known due to the last migrating peer. Using this assumption
we underestimate the number of external peers from swarmr ′

known in swarmr. Peers depart with intensityµ , so that time
z after the last migration event the average number of external
peers that remain from the originalp peers isyr,r ′(z) = pe−µz.

Figure 1 illustrates the renewal process; the jump timesJi

and the instantaneous reward, which is equal to the average
number of external peersyr,r ′(τ) at timeτ. The time between
migration events is exponentially distributed with intensity
ηβν , so the average renewal period length is

E[Ji+1−Ji ] = (ηβν)−1, (3)

and the average reward over a renewal period is

E[Ri ] =
∫ ∞

0
(
∫ h

0
pe−µzdz)ηβνe−ηβνhdh= p(ηβν +µ)−1.

(4)
We can calculate the average reward over time as

yr,r ′ = lim
τ→∞

1
τ

∫ τ

0
yr,r ′(τ) =

E[Ri ]

E[Ji+1−Ji ]
= p

ηβν
ηβν +µ

, (5)

where the second equality holds with probability one accord-
ing to the renewal reward theorem [8], and the third equality
is obtained by substituting (3) and (4). We can make three
important observations based on (5).

First, the average number of external peers increases in
the willingness to migrateβ , but with a decreasing marginal
gain. Since the scraping overhead increases linearly inβ (see
Section IV-C1),β should not be chosen too high.

Second, if one only considers torrents in which the average
peer holding time is at least equal to the average time to
download (i.e.,ν ≥ µ) then ν = µ is a worst case scenario,
and the number of external peers is lower bounded byp ηβ

1+ηβ .
Third, the bound is a function of the productηβ , hence it

is enough to focus on the effect of the parameterβ for fixed
η to understand the mixing efficiency. For simplicity, we can
assume thatη = 1 and varyηβ by varyingβ . This result also
shows thatRPM can be highly beneficial even if only a small
fraction η of peers implements the protocol.

2) Random Multi-Tracking (RMT):Consider the number
of multi-tracked peers that are registered with trackerr and
r ′. These are the peers that contribute to the mixing between
the two swarms. A multi-tracked peer that registers withk
trackers transfers peer information betweenk(k− 1)/2 pairs

Time

yr,r’

J2
J

0 J
3

J4J1

Arrival Announce Announce Arrival Departure Arrival

TA TA <TA >TA

Fig. 2. Jump times and renewal periods in the renewal process for RMT. At
J0 peer 1 arrives, atJ1 peer 1 performs an announce, atJ2 peer 1 performs
another announce, atJ3 peer 2 arrives and atJ4 peer 3 arrives. Peer 2 departs
some time beforeJ4.

of swarms out of the|R(t)|(|R(t)|−1)/2 pairs of swarms, so
that an arbitrary multi-tracked peer is registered with trackers
r andr ′ with probability k(k−1)

|R(t)|(|R(t)|−1) . Hence, the arrival rate
of multi-tracked peers registered with trackersr and r ′ is

λr,r ′ = ηλ
nβ
kx

k(k−1)
|R(t)|(|R(t)|−1)

= ηβ
k−1

|R(t)|−1
µ , (6)

where we used thatx= λ/µ in steady state.
Every multi-tracked peer is connected top peers per swarm.

Whenever a multi-tracked peer arrives or announces to tracker
r, it obtains a list ofp peers from trackerr and disseminates the
information among peers in swarmr ′. But since peers depart
with intensity µ , time z after the last announce the average
number of external peers that remain from the originalp peers
is yr,r ′(z) = pe−µz. Pessimistically, we assume that every time
a new multi-tracked peer arrives to swarmsr andr ′, the peers
in swarmr forget about the external peers from swarmr ′ that
they learnt about previously (and vice-versa). After the last
multi-tracked peer departs, the number of known external peers
keeps decaying until a new multi-tracked peer arrives. These
assumptions are similar to the ones made for the analysis of
RPM, and provide us with a lower bound on the number of
external peers from swarmr ′ known in swarmr.

In the following we calculate the average renewal period
length and the average reward during a renewal period. Fig-
ure 2 illustrates the three kinds of renewal periods; the jump
times Ji and the instantaneous reward, which is equal to the
average number of external peersyr,r ′(τ) at timeτ.

The first kind of renewal period is between two announces
performed by a multi-tracked peer. The multi-tracked peer per-
forms the first announce upon arrival, and performs announces
periodically everyTA time. The corresponding renewal periods
in Figure 2 are[J0,J1] and [J1,J2]. Such renewal periods
happen if the last multi-tracked peer does not depart duringan
announce interval and no new multi-tracked peer arrives. This
happens with probabilityp1 = e−µTAeλr,r′TA. The distribution
of the length of this renewal period is deterministic, with
probability density functionf1(h) = δTA(h).

The second kind of renewal period is between an announce
performed by a multi-tracked peer and the arrival of a new
multi-tracked peer before the next announce period. The
corresponding renewal period in Figure 2 is[J2,J3]. Such a
renewal period happens if a new multi-tracked peer arrives
before timeTA after the last announce. This happens with
probability p2 = 1−e−λr,r′TA. The length of this renewal period
follows a truncated exponential distribution on the interval
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(0,TA], with probability density functionf2(h) =
λr,r′e

−λr,r′h

1−e
−λr,r′TA

.

The third kind of renewal period is between an announce
performed by a multi-tracked peer and the arrival of a new
multi-tracked peer, if the last multi-tracked peer departed
before the arrival of the next one. The corresponding renewal
period in Figure 2 is[J3,J4]. Such a renewal period happens
if the last multi-tracked peer departs and the next multi-
tracked peer arrives more than timeTA after the last announce.
This happens with probabilityp3 = eλr,r′TA(1− eµTA). The
length of the renewal period follows a shifted exponential
distribution on the interval(TA,∞) with probability density
function f3(h) = λr,r ′e

λr,r′ (h−TA).
The average renewal period length is the weighted average

E[Ji+1−Ji ] = p1TA+ p2

∫ TA

0
h f2(h)dh+ p3

∫ ∞

TA

h f3(h)dh

=
1

λr,r ′
(1−e−(µ+λr,r′ )TA), (7)

and the average reward over a renewal period is

E[Ri ] = p1

∫ TA

0
yr,r ′(τ)dτ + p2

∫ TA

0

∫ τ

0
yr,r ′(h) f2(h)dhdτ

+p3

∫ ∞

TA

∫ τ

0
yr,r ′(h) f3(h)dhdτ = p

(1−e−(2µ+λr,r′ )TA)

(µ +λr,r ′)
.(8)

We can calculate the average reward over time as

yr,r ′ = lim
τ→∞

1
τ

∫ τ

0
yr,r ′(h)dh=

E[Ri ]

E[Ji+1−Ji ]
(9)

= p
λr,r ′(1−e−(2µ+λr,r′ )TA)

(λr,r ′ +µ)(1−e−(µ+λr,r′ )TA)
(10)

= p
ηβ k−1

|R(t)|−1(1−e
−(2+ηβ k−1

|R(t)|−1)µTA)

(1+ηβ k−1
|R(t)|−1)(1−e

−(1+ηβ k−1
|R(t)|−1)µTA)

,(11)

where (9) holds with probability one according to the renewal
reward theorem [8], and (10) is obtained by substituting (7)
and (8) into (9). We substitute (6) into (10) to obtain the
relationship between the protocol parametersβ and k and
the average number of external peers. We can make three
important observations based on (11).

First, (11) is a monotonically increasing concave functionin
β ; i.e., the number of external peers increases in the willing-
ness to multi-track with a decreasing marginal gain. Since the
tracker overhead increases linearly inβ (see Section IV-C2),
β should not be chosen too high, like forRPM.

Second, similar toRPM, the bound is a function of the
productηβ , hence it is enough to focus on the effect of the
parameterβ for fixed η , as forRPM.

Third, (11) is a monotonically increasing concave function
of k; hence choosingk= |R(t)| maximizes (11) for the same
overhead. Whenk = |R(t)| and the peer departure rateµ
increases, the average number of external peers converges to

lim
µ→∞

yr,r ′ = p
(k−1)ηβ

(k−1)ηβ +(|R(t)|−1)
= p

ηβ
ηβ +1

, (12)

which is equal to the lower bound obtained forRPM for ν = µ
in (5). Furthermore,yr,r ′ is a monotonically decreasing, convex
function of µ ; hence, (12) is a lower bound forRMT. This
seems counterintuitive at first, but can be explained by that
a high peer arrival rate is needed to maintain a given torrent
size under a high peer departure rate. A fraction of the arriving
peers becomes multi-tracked, and hence provides good mixing.

C. Tracker Overhead

In the following we quantify the tracker overhead for the
two protocols using the same notation as in Section IV-B. We
show that the tracker overhead ofRPM andRMT is constant
independent of the number of peers.

1) Random Peer Migration (RPM):Let us consider the
rate of migration in swarmr, with xr peers and a download
completion rate ofνr . For this swarm, the instantaneous rate
of peers migrating away from the swarm is

xrβ (|R(t)|−1)
νr

xr
= β (|R(t)|−1)νr . (13)

Since a migrating peer chooses the destination swarm uniform
at random, the migration rate from swarmr to r ′ is βνr .
Similarly, the instantaneous migration rate to swarmr is

1
|R(t)|−1 ∑

r ′∈R(t)\{r}

β (|R(t)|−1)νr ′ = ∑
r ′∈R(t)\{r}

βνr ′ . (14)

We note that the two rates are equal if the per peer normalized
throughput in the different swarms (νr ) is equal.

With RPM, a peer only performs a tracker scrape if it
chooses to migrate between swarms, and in this case it also
performs a tracker announce. Therefore, the overhead ofRPM
is directly proportional to the willingness to migrate. The
scrape rate and the announce rate per tracker and torrent is
βν(|R(t)|−1) due to migration. For example, if it takes on
average one hour to download the content and there are two
swarms, then the number of tracker announces and scrapes
is β per hour. Per design, the announce and scrape rates per
tracker and torrent are independent of the swarm sizesxr .

2) Random Multi-Tracking (RMT):Let us consider the
number of peers registered withk trackers. For an arrival rate
of λ to the torrent whenx≥ |R(t)|β

k the arrival rate of multi-
tracked peers is

λ
|R(t)|β

kx
. (15)

The average peer holding time is 1/µ , and in steady state
x= λ/µ , so that the average number of peers registered with
k trackers becomes

λ
|R(t)|β

kx
1
µ

=
|R(t)|

k
β (16)

Every multi-tracked peer is registered withk trackers. Hence,
the total tracker announce overhead is|R(t)|β , and the an-
nounce overhead per tracker isβ ; i.e., directly proportional
to the protocol parameterβ . The announce overhead is in-
dependent ofk by design as a consequence of the way the
probability that a peer joinsk trackers is selected. Unlike for
RPM, for RMT the scrape overhead isλ , as all peers scrape
all trackersonce, upon arrival.
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peer list, andµ = ν.
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V. NUMERICAL RESULTS

In the following we show numerical results based on the
models, and validate the analytical results via simulations and
controlled experiments.

A. Analytical and Simulation Results

We start with an evaluation of the protocol parameters on
the performance. To keep the number of variables low, we
consider a torrent tracked by two trackersr1 and r2. This
simplification does not affect the results significantly: for RPM
the migration intensity between any pair of swarms of a torrent
is independent of the number and size of the rest of the
swarms, and forRMT for k= |R(t)| mixing is independent of
|R(t)|. Without loss of generality we setµ = 1, and regulate
the swarm sizes by choosingλr . We denote the imbalance of
the swarm sizes byρ = λr1/(λr1 +λr2), e.g., forρ = 0.5 the
two swarms have equal number of peers on average.

1) Unlimited Peer List: Ideally, peers perform gossiping
with all peers in a swarm. In this case, forRPM, a peer
migrating from swarmr ′ to swarm r can gossip about all
the peers in swarmr ′, such thatp = xr ′ . Consequently, the
average virtual swarm size is independent of the torrent size
x, and can be expressed as a function of the swarm imbalance
ρ by substituting (5) into (1) for both swarms and taking
the weighted average. In this ideal caseM is a quadratic
function of ρ , and is convex becaused2M/dρ2 ≥ 0 constant.
Furthermore,M attains its minimum atρ = 0.5 independent of
the value of the other parameters. Figure 3 shows the average
virtual swarm size as a function of the swarm imbalance for
various values ofβ (ηβ = β for η = 1). β = 0 corresponds
to no RPM, and shows that the increase of the average virtual
swarm sizedM is highest forρ = 0.5; i.e., when the average
virtual swarm size is smallest.

Figure 4 shows the virtual swarm size as a function of
the shareη of the peers usingRPM and RMT. We observe
that RMT outperformsRPM, which is in accordance with the
asymptotic result forµ →∞ in (12), but the difference in terms
of mixing performance is minor.

2) Limited Peer List:In practice, peers are connected to a
subset of the swarm they belong to. For example, BitTorrent
peers are typically not connected to more than 50 to 100
peers depending on the implementation [9]. Furthermore, peers
only advertise connected peers, even if they might know the
addresses of significantly more peers. In the following we

show analytical and simulation results to evaluate the impact
of the peer list on the virtual swarm size.

For the simulations we consider two distributions for the
peer holding times. We use the exponential distribution to eval-
uate the tightness of the bounds in (5) and (11). Furthermore,
we use the shifted Pareto distribution with distribution function
F(x) = 1− (1+ x/b)−a, b > 0 and a > 1 [10] to evaluate
the sensitivity of the results to the holding time distribution.
For a > 1 the distribution is heavy-tailed; we usea = 4
and we choose the value ofb such that the average holding
time 1/µ is matched. We are not aware of any measurement
results that would provide an analytical distribution for the
download times of BitTorrent peers. Hence, forRPM we use
two distributions for the download time of the content, the
exponential distribution and a normal distribution truncated at
0 with the same mean but a coefficient of variation of 0.7. The
normal distribution of the download times was motivated by
our experiments presented in Section V-B: using the Lilliefors
test at 5-percent significance level we could not reject the
hypothesis that the peers’ download times came from a normal
distribution. Inspection of the QQ-plots (not shown for brevity)
of the download times also supported the hypothesis.

Figure 5 shows the average virtual swarm size as a function
of the swarm imbalance forRPM for a peer list of at most
50 peers; i.e.,p= min(50,xr ′). Since in this case the virtual
swarm size is not independent of the torrent size, we show
results for four torrent sizes (x= 50,100,150,200) andβ = 4.
With limited peer list perfect load balancing (ρ = 0.5) is not
always the worst case scenario, but the lowest average virtual
swarm size is only slightly lower than the one attained forρ =
0.5. The simulation results with exponential holding time and
download time distributions are better than the lower bound,
as expected, but they show similar characteristics.

Thoughρ = 0.5 is not always the worst case, the decrease of
the virtual swarm size is biggest forρ = 0.5 as the torrent size
increases. Furthermore, if peers upon arrival choose a tracker
uniform at random thenρ = 1/|R(t)|. Figure 6(a) shows the
average virtual swarm size forρ = 0.5 as a function of the
torrent population. The virtual swarm size starts to drop above
xr = 50 (i.e., x = 100), as the migrating peers cannot carry
the addresses of all the peers of a swarm. The drop around
xr = 50= p is rather intuitive, and in general we can conclude
that mixing is most efficient as long asxr ≤ p. Naturally, by
increasing the peer listp of the clients,RPM can effectively
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Fig. 6. Virtual swarm size vs. torrent population, when using limited peer list (p= 50), and various
lifetime and download time distributions. Solid linesηβ = β = 1; dashed linesηβ = β = 8.
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Fig. 7. Virtual swarm size vs. torrent popula-
tion for RPM(p,ηβ ,µ/ν) and RMT(p,ηβ ,TAµ).
Experimental results, 2 swarms, peer list (p= 20).

mix bigger swarms. The simulation results are insensitive to
the holding time distribution, and forβ = 8 the results are
fairly insensitive to the download time distribution. However,
the download time distribution seems to affect the results for
β = 1; the smaller variance of the truncated normal distribution
leads to a lower mixing efficiency for small torrents than the
exponential distribution. Figure 6(b) shows the corresponding
results forRMT, and allows us to draw similar conclusions.

B. Experimental Validation

As a proof of concept we implementedRPM and RMT
in rTorrent [11], an open source C++ BitTorrent client. We
changed the standard BitTorrent peer behavior [6], which isto
pick a tracker uniform at random (pick-one) to our protocols.
For the gossip protocol we relied on the Peer Exchange
Protocol (PEX) [6], which is supported by the most recent
versions of almost all popular BitTorrent clients [7]. Since
the implementation ofRPM and RMT is transparent to the
trackers, we could use Opentracker [12] as tracker software.

We performed controlled experiments on a cluster of 5 hosts
to validate the model. In our experiments peers arrived accord-
ing to a Poisson process to a torrent, downloaded a content
of 50MB (file size for a shorter TV episode), and departed
upon download completion (i.e.,ν/µ = 1). We limited the
upload rates of the peers to 80KB/s, and the peer list was
p = 20. The announce period was set toTA = 60s, so that
every peer performed approximately 10 announces on average.
Every experiment lasted for two hours, and the results shown
are the averages of three to six experiments. We monitored
the peers’ neighbor lists to calculate the average virtual swarm
size. Furthermore, we measured the amount of PEX traffic sent
by every peer, and the amount of tracker traffic.

Figure 7 shows the average virtual swarm size as a function
of the torrent size for the case of two swarms. The results
for the two protocols closely resemble the analytical and
simulation results, and show that the models capture the
mixing of the swarms rather well. Figure 8 shows the number
of announce requests sent to the tracker when usingRPM
or RMT divided by the number of requests sent when using
pick-one (lines w/o marker). Surprisingly, for small torrents
the number of announce requests is less than usingpick-one.
This is because peers finish downloading the content faster
as an effect of mixing the small swarms. For larger torrents
the announce overhead approaches 1, and is slightly higher
for RMT than for RPM. The figure also shows the number

of scrape requests sent per peer and tracker (lines w. marker).
The scrape overhead forRMT is 1 (1 scrape upon peer arrival),
while for RPM it converges to 0 as the torrent size increases.
The higher overhead ofRMT is the price of the better mixing
performance compared toRPM.

Figure 9 shows the average virtual swarm size and the
normalized PEX traffic as a function of the torrent size for the
case of three swarms. Comparing Figures 7 and 9 we observe
that the increase of the virtual swarm size (dMt) due to mixing
is nearly constant if we compare the results for equal swarm
sizesxt/|R(t)|. The amount of PEX traffic increases with a
decreasing marginal gain as a function of the torrent size,
which is a sign thatp= 20 limits the mixing of the swarms as
the torrent size increases. Unlike the tracker overhead, the PEX
traffic is not directly proportional to the protocol parameter β .

Figure 10 shows the average virtual swarm size and the
normalized PEX traffic for a torrent ofxt = 100 peers tracked
by 1 to 8 trackers. The virtual swarm size for bothRPM
and RMT decreases with a decreasing marginal rate, but is
relatively high even for 8 swarms: an average peer knows more
than 50% of all peers in the torrent (as opposed to 12.5% if
all peers follow thepick-onescheme).

The figure also shows that the amount of PEX traffic
decreases as the number of swarms increases. In general,
the amount of PEX traffic is negligiblecompared to the peer
upload capacities; this is the reason why we did not analyze
the gossip protocol’s overhead in Section IV. Figure 11 shows
the frequency of announce and scrape requests sent to the
trackers (in total) for the same experiment. The figure validates
the analytical model: the request rate increases linearly in the
number of swarms|R(t)| for given torrent size. However, the
rate of increase is much smaller than forpick-all, which would
correspond to a curve of unit slope.

VI. B ITTORRENTCASE STUDY

RPM andRMT could be deployed incrementally in BitTor-
rent without any changes to the existing tracker infrastruc-
ture. In the following we estimate the performance improve-
ment that the proposed overlay management protocols could
achieve, if deployed, based on BitTorrent measurements.

A. Empirical Data Set

We used two kinds of measurements to obtain our data
set. First, we performed a screen-scrape of the torrent search
enginewww.mininova.org. In addition to claiming to be the
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largest torrent search engine,mininovawas the most popular
torrent search engine according towww.alexa.comduring our
measurement period (Alexa-rank of 75, August 1, 2008). From
the screen-scrapes we obtained the sizes of about 330,000 files
shared using BitTorrent, and the addresses of 1,690 trackers.
Second, we scraped the 1,690 trackers to obtain the number
of leechers, seeds, and completed downloads for the torrents
they track.

We performed the tracker-scrapes daily from October 10,
2008, to October 17, 2008 as part of an 11 months long mea-
surement campaign [13]. All scrapes were performed at 8pm
GMT. We performed correlation tests to identify and remove
redundant tracker-scrapes (for example, from trackers with
multiple hostnames) [14]. This way we removed redundant
information about the same swarms of peers, and identified
721 independent trackers.

During the measurements we observed 40− 60 million
active peers on a weekly basis. These peers downloaded more
than 8 billion copies of over 10 million torrents in 48 weeks.
Our measurement data shows that there is a substantial number
of torrents with moderate popularity [13]. For example, about
2.84 million of the 2.86 million torrents observed on October
10, 2008 have less than 200 peers, and about 50% of the
peers are in these torrents. Figure 12 shows the number of
torrents with a given number of unique swarms (after removing
duplicates). There are a substantial number of torrents that
are served independently by multiple trackers. Out of these, a
significant portion was shown to benefit from merging [14].

B. Mixing Efficiency

To evaluate the performance ofRPM and RMT, we used
the lower bound in (5) and (11), respectively, to estimate the

average virtual swarm sizeMt based on the number of peers
in each swarm, for all multi-tracked torrents in the data set.

Figure 13 shows the average virtual swarm size as a function
of the number of peers in the torrent for October 10, 2008
for RPM and RMT. The figure shows results for the original
peer allocation and for various values ofβ (we setη = 1, so
ηβ = β as discussed in Section III). Peer lists withp = 50
peers are assumed. We note that bothRPM andRMT increase
the virtual swarm size significantly even forβ = 1, and the
marginal gain of increasingβ decreases. While forβ = 1
RMT slightly outperformsRPM, for β = 8 the results are
indistinguishable. As expected from Figure 6, the effect on
the virtual swarm size is negligible above torrent sizes of a
few hundred peers. However, for torrent sizes smaller than
100 peers, the proposed protocols consistently achieve at least
85% virtual swarm size whenβ = 1 (≥ 95% whenβ = 8).

C. Swarm Throughput

In the following we estimate the throughput of different
sized swarms based on the large-scale data set. Then we use
the throughput estimates to estimate the potential performance
gains small torrents can obtain using our protocols.

1) Throughput Estimation:To estimate the throughput of
any particular swarm we measured the number of seeds (S) and
leechers (L) in the torrents, as well as the cumulative number
of downloads (D) between two consecutive measurement times
T1 and T2, separated by one day. Using these values we
estimated the average throughput per leecher as the file size
B divided by the estimated download (service) time 1/ν .
Using Little’s law 1/ν = L/λ , whereL is the average number
of leechers currently being served in the system and the
arrival rateλ can be estimated as the number of download
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Fig. 14. Throughput estimates for three classes of swarms based on 24 hours of measurement data.
The throughput increases with the swarm size.
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Fig. 15. Estimated speedup vs. torrent size after
applyingRPM(p,ηβ ,µ/ν) andRMT(p,ηβ ,TAµ).

completionsD divided by the time(T2 − T1) between the
two consecutive measurements. To summarize, we have an
estimated throughput of BD

L(T2−T1)
. Finally, throughput estimates

for any particular swarm type were obtained by taking the
average over all swarms of that particular size.

Figures 14(a) and 14(b) show throughput estimation results
based on a 24 hour interval starting at 8pm GMT on October
10, 2008 and at 8am GMT on October 11, 2008, respectively.
Swarms are classified based on the total number of peers in the
swarm (S+L) and the seed-to-leecher ratioS

L ; 60 bins are used
for the swarm sizes and three curves are used for the different
seed-to-leecher ratios. We note that the results for swarmsup
to just over 1,000 peers are similar in both figures and are
consistent with intuition and previous studies [15], [16].

For larger swarm sizes, however, the results in Figure 14(a)
are surprising. We attribute the seemingly decreasing through-
put to two factors. First, the estimation for large swarms isless
accurate due to fewer samples. For example, while the number
of swarms smaller than 1,000 peers for which we could obtain
content size information frommininova.orgis 282,827, there
are only 861 swarms that are larger than 1,000 peers. The lack
of statistical significance for swarm sizes above 1,000 peers is
illustrated by the large fluctuation of the curves in the figures.
Second, estimation errors may be due to inaccurate estimation
of the average number of leechersL over the 24 hour mea-
surement period. The popularity of these types of workloads
typically follows a diurnal pattern. The measurement at 8pm
GMT was done at peak hours, consequently the throughput
estimate is pessimistic. The measurement at 8am GMT was
done when swarms are smallest, and the estimate is hence
optimistic. (This effect is captured by the almost consistently
higher throughput estimates in Figure 14(b), relative to those
in Figure 14(a).) The difference between the two throughput
estimates for large swarms suggests that the popularity of large
swarms may show heavier diurnal fluctuation than that of small
swarms.

2) Estimated Throughput Improvements:For swarms below
1,000 peers the two estimates coincide well, and we use the
throughput estimates from 8pm GMT to estimate the speedup
achieved by the proposed algorithms. Theupper boundshown
in the figures corresponds to perfect mixing (i.e.,Mt = 1),
which is the case if all peers follow thepick-all scheme.

Figure 15 shows the throughput improvement for leechers
as a function of the torrent size forRPMandRMT for different
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Fig. 16. Estimated speedup for torrents smaller than 300 peersvs. time.

values of the migration willingnessβ (againη = 1). The figure
shows a pessimistic estimate of the throughput improvement
for three reasons: (i) we used the analytical model to estimate
the average virtual swarm size given the swarm sizesxt,r , (ii)
the peer list was limited to 50 peers, and (iii) the mixing
model assumed that peers on average depart upon finishing
the download of the content (i.e.,µ = ν). In accordance with
Figure 13, forβ = 1 RMT slightly outperformsRPM, but for
β = 8 they achieve the same gain. The gain forβ = 8 is
close to the upper bound, hence we conclude that a relatively
low intensity of peer migration can lead to close to maximal
gains. This observation coincides with the observations made
in Section III-A about the effect ofβ . The results also indicate
that the peer list limit ofp= 50 does not significantly decrease
the benefits ofRPM for small torrents. With bothRPM and
RMT the throughput is typically increased by 40% (30%) or
more on average when torrents have less than 10 peers, and
by 10% (5%) or more on average when torrents have less
than 200 peers. Torrents above approximately 200 peers are
not affected by the protocols, but by increasingp one could
increase the virtual swarm size for larger torrents as well.

Figure 16 shows the relative estimated throughput improve-
ment for leechers in torrents smaller than 300 peers over a
week. The curves marked with× show the non-weighted
gain; the curves without markers show the gain weighted with
the torrent sizes. The throughput gains are rather steady. For
example, the average torrent with less than 300 peers sees an
increase in throughput by 25% on average (and the average
peer in such a torrent sees a throughput increase by 12%).

VII. R ELATED WORK

The efficiency of P2P content distribution typically im-
proves with the number of peers in the swarm that can
share data with others [14]–[17]. Sharing opportunities can
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be improved by using efficient peer discovery techniques; e.g.,
by retrieving peer information from trackers, and by gossiping
with other peers, as discussed in the paper. Distributed hash
tables (DHTs) [1] and unstructured overlays [3] were proposed
for the purpose of highly available peer-discovery. However,
it has proven challenging for DHTs to maintain consistency
and avoid stale routing tables under node churn at a low
overhead, ultimately affecting the performance of DHT-based
peer-discovery in practice [1], [2], [18]. With unstructured
overlays, good peer discovery typically comes at the cost of
high overhead [3], [18].

Peer-discovery in BitTorrent was the focus of [2], [7].
Neglia et al. [2] found that multiple trackers significantly
improve the system availability, but at the same time can
reduce the connectivity of the overlay. Wuet al. [7] found
that using PEX provided good peer-discovery in BitTorrent and
could lead to decreased download times. The authors in [14]
proposed a tracker-based protocol to manage the swarms of
a torrent dynamically, and showed its potential benefits based
on measurements of BitTorrent content popularity.

A number of papers have considered improving content
availability [16], [19]–[22] through cooperation across torrents
(each with different content). Menascheet al. [16] showed
that “bundling” multiple files into a larger file can improve
the content availability. Other works assign a “helper” file
to clients to assist [19]–[21]. Yanget al. [22] proposed rate-
based incentives that motivate clients to act as seeds for other
torrents than they currently are downloading. The goal of these
works was to improve content availability through increased
cooperation between peers sharing different contents.

Our work is complementary to the above works. Our
focus is on exploring the potential of hybrid peer-discovery
mechanisms, which provide highly available and efficient peer-
discovery, based on multiple trackers and a gossip protocol.
The distributed protocols we propose aim to mix otherwise
disjoint swarms of the same torrent at a very low overhead.
Their simplicity makes the proposed protocols easy to deploy
both in systems with distributed trackers, such as BitTorrent
and other managed P2P content distribution systems.

VIII. C ONCLUSION

In this work we considered a hybrid approach to peer-
discovery for P2P systems, which combines the advantages
of centralized and distributed peer-discovery mechanisms. We
proposed two novel protocols,RPM and RMT, that rely on
independent trackers and a gossip protocol only and have a
constant communication overhead independent of the torrent
size. Both protocols employ a small portion of the peers to
provide mixing between the swarms, and are very simple to
implement in existing systems, such as BitTorrent.

We developed analytical models of the protocols based on
the theory of renewal-reward processes and used them to give
a fundamental understanding of the protocol performance. We
validated the analytical model via extensive simulations and
controlled experiments. Our results show that independent
trackers and a gossip protocol are sufficient to provide highly

available and efficient peer-discovery at low overhead. As
an example of the potential value of these protocols, we
performed a measurement-based protocol evaluation. Using
large-scale measurement data from a large set of BitTorrent
trackers, we showed that the proposed protocols could lead to
a significant improvement in terms of peer throughput at a very
low overhead. While our experimental protocol evaluation is
done in the context of BitTorrent, the protocols are in general
applicable to tracker-based overlay management systems.
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