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Abstract. In this paper we compare three schemes proposed for error recovery
for real-time multimedia applications: media-dependent forward error correction
(MD-FEC) proposed for real-time audio, media-independent forward error cor-
rection (MI-FEC) proposed for real-time video and the recently re-discovered
multiple description coding (MDC). We provide a detailed queueing analysis for
these schemes considering bursty traffic sources, and combine results from in-
formation theory and queueing theory to analyze their performance bounds. We
conclude that MDC always performs better than MD-FEC, and that the average
loss probability plays a key role in the choice of the optimal parameters. We also
show that MDC outperforms MI-FEC if packet losses are highly correlated, like
in the current Internet and the available delay for error control is low.

1 Introduction

Applications that require low loss probabilities in today’s Internet have to employ some
end-to-end mechanism to recover from packet losses. For interactive applications with
strict delay constraints the delay introduced by the applied schemes has to be low as
well. Forward error correction (FEC) and the recently re-discovered multiple descrip-
tion coding (MDC) have been proposed for this purpose [1–3].

There are two main directions of FEC design to recover from packet losses. One
solution, proposed by the IETF and implemented in Internet audio tools like Rat is
to add a redundant copy of the original packet to one of the subsequent packets. The
redundant packet is heavily compressed, so that sound quality reconstructed from the
redundant packet is low, but still better than when there is nothing to play out. Proposed
ways to improve the performance of the scheme are to increase the offset between the
original packet and the redundant one [4] and to send multiple redundant copies in
subsequent packets [1]. The performance of this media-dependent FEC scheme (MD-
FEC) has been evaluated via simulations in [5] and analytically in [6]. The results show
that MD-FEC can be beneficial if the ratio of the traffic implementing it is small.

The other set of FEC solutions use block coding schemes based on algebraic cod-
ing, e.g. Reed-Solomon coding. The main idea behind these media-independent FEC
schemes (MI-FEC) is to protect a block of k packets of information with c packets of
redundancy. Thus the original k packets can be reconstructed if out of n = k + c pack-
ets at most c packets are lost. MI-FEC was mainly proposed for low-delay high-bitrate
multimedia applications, such as real-time video, and has been extensively studied both
via simulations and analytically [2, 7]. The results are similar to those of MD-FEC:



MI-FEC is efficient if only a small portion of the streams uses it and the efficiency of
MI-FEC increases as the block length, and thus the introduced delay increases.

The traditional approach to networking, the separation of source and channel cod-
ing, was motivated by Shannon’s separation theorem [8]. It says that source coding
and channel coding can be performed separately while maintaining optimality. How-
ever, Shannon’s separation theorem assumes among others that the available delay is
unlimited, which is not true for real-time applications. MDC addresses the problem
of joint source and channel coding. Originally designed for the transmission of multi-
ple descriptions of a single source over independent channels, it has been rediscovered
recently for use in packet switched networks [3]. In the case of MDC, several coded
descriptions of the same source are sent over different channels. If only one of the de-
scriptions is received, it is used for reconstruction with a certain accuracy. If more than
one descriptions are received, then the information from the other descriptions can be
used to enhance the accuracy. In a packet switched network, instead of using separate
channels, one can put the different encodings into different packets and send them in
subsequent packets, similarly to the case of MD-FEC. In general the amount of infor-
mation sent over the separate channels can be different, however in single-path packet
networks, which offer identical treatment to all packets, it can be shown that balanced
MDC, i.e. the one sending the same amount of information in all packets is optimal [3].

In this paper we compare the performance of the two FEC schemes and MDC via
combining results from information theory and queueing theory. The optimal selection
of source and redundancy rate for real-time audio was investigated before in [1] us-
ing the Gilbert channel model. A similar approach was followed in [9] with respect
to MPEG coded video. The performance of MDC was compared to that of single de-
scription coding in the context of content delivery networks via simulations in [10].
The authors considered an average packet loss rate of 5% and concluded that MDC
can reduce the distortion by up to 20 to 40%. The performance of MI-FEC and MDC
with 50% redundancy was compared in [11] using the Gilbert channel model. As the
authors used a fixed redundancy rate for FEC, the comparison gave advantage to MDC
by allowing it to adjust to the channel characteristics.

The rest of the paper is organized as follows. In Section 2 we describe the queueing
model used to calculate the conditional loss probability of packets. In Section 3 we
introduce the distortion rate bounds for FEC and MDC. In Section 4 we compare the
performance of MD-FEC and MDC to be used for low-bitrate multimedia streams. In
Section 5 we compare the performance of MI-FEC and MDC suitable for high-bitrate
multimedia streams. We conclude our work in Section 6.

2 Analysis of the packet loss process

In this section we first give an overview of past work on the modeling of the packet loss
correlation, then we turn to the calculation of the conditional packet loss probability.
We will use the conditional loss probability and the probability of j losses in a block of
n packets in the remainder of the paper to calculate the average distortion of the various
error correction schemes under different network conditions.



Schulzrinne et al. derived the consecutive loss probability for the N ∗ IPP/D/1/K
queue and showed that it can be orders of magnitude higher than the loss probability
[12]. The conditional loss probability was analyzed under the assumption of exponential
interarrival time and service time distribution in [6]. The authors considered a single
flow and a packet spacing lower than the queue length. They also presented a model
with exponential interarrival time and general service time distribution and gave simple
lower and upper bounds on the consecutive loss probability.

2.1 Model Description

We model the network with a single queue, representing the bottleneck in the trans-
mission path [13, 14], with Erlang-r distributed packet sizes having average transmis-
sion time 1/µ. Using the Erlang-r distribution makes the mathematical analysis simple,
while it can be used to get approximate results on the performance of FEC by matching
the mean and variance of the packet size distribution [15]. Packets arrive to the sys-
tem from two sources, a Markov-modulated Poisson process (MMPP) and a Poisson
process, representing the tagged source and the background traffic respectively. The
packets are stored in a buffer that can host up to K packets, and are served according to
a FIFO policy.

It is known that compressed media, e.g. VBR video, exhibits a self-similar nature
[16]. Ryu and Elwalid [17] showed, however, that short term correlations have dominant
influence on the network performance under realistic scenarios of buffer sizes for real-
time traffic. Thus the MMPP may be a practical model to derive approximate results
for the queueing behavior of compressed media, especially in the case of small buffer
sizes.

The assumption of the Poisson background traffic is partly justified by recent results
indicating that Internet traffic can be approximated by a non-stationary Poisson process
[18]. According to measurements the change free intervals are well above 150 ms, the
ITU’s G.114 recommendation for end-to-end delay for real-time applications. These
empirical results are consistent with recent theoretical results [19].

We assume that the sources feeding the system are independent. The MMPP is
described by the infinitesimal generator matrix Q with elements rlm and the arrival rate
matrix Λ = diag{λ1, . . . ,λL}, where λl is the average arrival rate while the underlying
Markov chain is in state l [20]. The Poisson process modeling the background traffic
has average arrival rate λ. The superposition of the two sources can be described by
a single MMPP with arrival rate matrix Λ̂ = Λ⊕λ = Λ + λI = diag{λ̂1, . . . , λ̂L}, and
infinitesimal generator Q̂ = Q, where⊕ is the Kronecker sum. Each packet in the queue
corresponds to r exponential stages, and the state space of the queue is {0, . . . ,rK}×
{1, . . . ,L}.

2.2 Conditional packet loss

Our purpose is to calculate the probability of the event that an arbitrary packet from the
tagged source arrives in state i of the system and the nth next packet arrives in state j of
the system Pi, j(n), n≥ 0, 0≤ i, j≤ rK. We define the probability Pm|l

j|i (n) and (Pm|l
j|i (n)),



0 ≤ i, j ≤ rK, 1 ≤ l,m ≤ L, n ≥ 0 (n ≥ 1) as the probability of the event that the nth

next packet from the tagged source is generated while the MMPP is in state m and
arrives in state j of the system, given that the remaining number of exponential stages
in the system is i just before the arrival of the first (next) packet from the tagged stream
(background traffic) and the MMPP is in state l. As the first packet is arbitrary,

Pi, j(n) =
L

∑
l=1

Π(i, l)
L

∑
m=1

Pm|l
j|i (n). (1)

Π(i, l), the steady state distribution of the exponential stages in the queue as seen by an
arriving packet can be calculated as

Π(i, l) =
π(i, l)λl

∑L
l=1 λl ∑rK

i=0 π(i, l)
, (2)

where π(i, l) is the steady state distribution of the MMPP/Er/1/K queue.
The probabilities Pm|l

j|i (n) can be derived according to the following recursion. The
recursion is initiated for n = 0 with the following relations

Pm|l
j|i (0) =

{

1 if j = i and m = l
0 otherwise . (3)

Using the notation pu = λu
λu+λ and pu = λ

λu+λ , for n≥ 1 the following equations hold.

Pm|l
j|i (n)=

L

∑
u=1

i+r

∑
k=0

Qu|l
i+r(k){puPm|u

j|i+r−k(n−1)+puP
m|u
j|i+r−k(n−1)} 0≤ i≤ r(K−1),

(4)

Pm|l
j|i (n) =

L

∑
u=1

i

∑
k=0

Qu|l
i (k){puPm|u

j|i−k(n−1)+puP
m|u
j|i−k(n−1)} r(K−1) < i, (5)

P
m|l
j|i (n) =

L

∑
u=1

i+r

∑
k=0

Qu|l
i+r(k){puPm|u

j|i+r−k(n)+puP
m|u
j|i+r−k(n)} 0≤ i≤ r(K−1), (6)

P
m|l
j|i (n) =

L

∑
u=1

i

∑
k=0

Qu|l
i (k){puPm|u

j|i−k(n)+puP
m|u
j|i−k(n)} r(K−1) < i. (7)

Qu|l
i (k) denotes the joint probability of that the next arrival will be in state u of the

MMPP and that k exponential stages out of i will be completed before the next arrival
from the joint arrival process given that the last arrival was in state l of the MMPP. A
way to calculate Qu|l

i (k) is shown in [15]. The procedure of computing Pm|l
j|i (n) follows

that of computing P( j,n) in [15].
Let us now define two sets of states, α and ω as the set of states of the queue where

arriving packets can enter the system and where arriving packets are discarded respec-
tively. Then α = {0 . . .r(K−1)} and ω = {r(K−1)+ 1 . . .rK}. Using these notations
the probability that a packet arriving to the system from the tagged source is not lost and
the nth next packet from the tagged source is lost is given as pαω(n) = ∑i∈α ∑ j∈ω Pi, j(n).
The probabilities pαα(n), pωα(n) and pωω(n) can be defined in a similar way. Through-
out the paper we use for pω|ω(n) the term consecutive loss probability for n = 1 and the
term conditional loss probability for n≥ 1.



2.3 Losses in a block

To calculate the probability of j losses in a block of n packets P( j,n), n≥ 1, 0≤ j ≤ n
for the described network model we use the method presented in [15]. Based on the
probabilities P( j,n) one can calculate the probability that a packet can not be recon-
structed by MI-FEC given the parameters n and k as Puc(n,k) = ∑n

j=n−k+1 jP( j,n)/n.

3 Distortion-rate bounds for FEC and MDC

When compressing signals, there is always a tradeoff between the size and the accuracy
of the representation. This tradeoff, the bounds on achievable rates and distortions, is
represented by the distortion-rate and the rate-distortion functions, which depend on
the source and the distortion measure. We consider a memoryless Gaussian source with
unit variance and use the squared distortion measure, which is the most common dis-
tortion measure. The distortion-rate function for a Gaussian source with unit variance
and squared distortion measure is given as

D(R) = 2−2R, (8)

where R is the code rate and D(R) is the distortion [3]. In the following we discuss the
distortion-rate characteristics of the considered three error control schemes.

In the case of MD-FEC the first and the subsequent ν−1 (redundant) descriptions
are encoded independent from each other, and thus, if any of them is received, its dis-
tortion is given by (8). We denote the rate allocated to the primary encoding with RMDF

1
and the rate allocated to the kth (redundant) copy with RMDF

k . The redundancy ratio
introduced by the MD-FEC is then β = ∑ν

k=2 RMDF
k /RMDF

1 , and the total rate of the
source is RMDF = RMDF

1 (1+β). If both the primary and some redundant encodings are
received, the redundant encodings can not be used to reduce the distortion.

In the case of MI-FEC each packet corresponds to an encoding of rate RMIF
1 . The

packets compose blocks, and redundancy is added to the block of packets. If we de-
note the ratio of redundancy with β = (n− k)/k, then the total rate is given as RMIF =
RMIF

1 (1+β). If the number of lost packets in a block is no more than c then the original
packets can be reconstructed and the distortion of the individual packets is given by (8).

In the case of MDC we denote the total source rate with RMDC and consider the
balanced two channel case. We denote the rate allocated to individual descriptions with
RMDC

1 = RMDC/2. The distortion when both descriptions are received, called the central
distortion, is denoted by DMDC

0 and the distortion if only one of the descriptions is
received, called the side distortion, is denoted with DMDC

1 . The distortion rate bounds
for the 2-channel MDC are [3]

DMDC
1 ≥ 2−2RMDC/2 (9)

DMDC
0 (DMDC

1 ) ≥ 2−2RMDC
γ(RMDC,DMDC

1 ), (10)

where γ(RMDC,DMDC
1 ) = 1 if 2DMDC

1 > 1+DMDC
0 and

γ(RMDC,DMDC
1 ) = {1−{(1−DMDC

1 )−

√

(DMDC
1 )2−2−2RMDC

}2}−1 (11)



otherwise. Equation (10) shows that if the side distortion is not large then the central
distortion is higher than the distortion rate minimum. For a primer on rate distortion
theory and multiple description coding see [3].

In general the source rate R (bits per symbol) and the bitrate of the stream C (bits
per second) are related to each other through the symbol rate S (symbols per second)
as C = SxR. For example a video sequence with a small image size can reach a higher
source rate R at the same bitrate as another sequence with a big image size. For this
reason in the following analysis we will distinguish between these two parameters.

4 MD-FEC vs MDC

In this section we consider a source that has an available source rate Ra and due to the
low delay bounds and low bitrate can introduce either MD-FEC or MDC. For simplicity,
we will consider the case of ν = 2. Using the notations introduced in Section 3 the mean
distortion bound of the MD-FEC scheme can be calculated as the weighted sum of the
distortions of the cases when both descriptions are received, only one of them is received
or none of them is received

DMDF(β) = (pαα(n)+ pαω(n))D(RMDF
1 )+ pωα(n)D(RMDF

2 )+ pωω(n), (12)

where the loss probabilities were defined in Section 2.2. For a redundancy ratio β the
rates of the individual descriptions are RMDF

1 = Ra/(1 + β) and RMDF
2 = Raβ/(1 + β).

The level of redundancy that minimizes (12) is the solution βMDF
∗ of ∂DMDF (β)

∂β = 0.

Using the distortion rate function introduced in Section 3 the solution is

βMDF
∗ =

ln(22Ra)− ln( pαα(n)+pωα(n)
pωα(n) )

ln(22Ra)+ ln( pαα(n)+pωα(n)
pωα(n) )

=
ln(22Ra)− ln( 1−pω(n)

pω(n)(1−pω|ω(n)) )

ln(22Ra)+ ln( 1−pω(n)
pω(n)(1−pω|ω(n)) )

. (13)

We denote the minimal mean distortion with DMDF
∗ . Based on (13) the optimal ratio of

redundancy βMDC
∗ is positive only if

pω > {1+D(Ra)
−1(1− pω|ω(n))}−1 (14)

Thus for a given source rate it is not beneficial to use MD-FEC below this average
loss probability. Furthermore, if pω|ω(n) is not close to 1, the minimum value of pω is
dominated by D(Ra)

−1. In general, for any distortion rate function of the form D(R) =
ab−cR the limit given in (14) is pω > {1+aD(Ra)

−1(1− pω|ω(n))}−1.
By substituting βMDF

∗ given by (13) into (12) it can be shown analytically that in-
creasing n decreases the average distortion whenever pω satisfies (14) as pω|ω(n) is a
decreasing function of n. This result is in accordance with the empirical observations
presented in [4]. If, however, pω≤ 1/(1+D(Ra)

−1) then increasing n does not decrease
the distortion. The value βMDF

∗ that minimizes the average distortion at a given average
loss probability and conditional loss probability is shown in Fig. 1 and 2 for distortions
D(Ra) = 10−2 and D(Ra) = 10−4 respectively. Comparing the figures we see that the



rate of the source and the average loss probability have a big influence on whether or
not MD-FEC should be used.

Now we consider the case of the balanced MDC scheme with two descriptions. The
total available rate is Ra, and thus the rates of the individual descriptions are RMDC

1 =
RMDC

2 = Ra/2. The mean distortion bound can be calculated as

DMDC(DMDC
1 ) = pαα(n)DMDC

0 (DMDC
1 )+(pαω(n)+ pωα(n))DMDC

1 + pωω(n). (15)

The optimal combination of central and side distortion can be found by setting the first
derivative with regard to DMDC

1 of (15) to zero [11]. The solution is given by

∂DMDC
0 (DMDC

1 )

∂DMDC
1

=−
pαω(n)+ pωα(n)

pαα(n)
=−

pω(1− pω|ω(n))

1+ pω|ω(n)pω−2pω
. (16)

We denote the minimal mean distortion by DMDC
∗ . To compare the performance of MD-

FEC and MDC we define δMDC
MDF = DMDC

∗ /DMDF
∗ , the ratio of the mean distortion bounds.

Similarly we define δMDC = DMDC
∗ /(pαD(Ra) + pω), the ratio of the mean distortion

bound with MDC and without any error control. Figs. 3 and 4 show δMDC as a func-
tion of the average loss probability and the conditional loss probability for distortions
D(Ra) = 10−2 and D(Ra) = 10−4. They show that the available source rate, the average
loss probability and the conditional loss probability together determine the potential of
MDC to decrease the mean distortion. Figs. 5 and 6 show δMDC

MDF as a function of the av-
erage loss probability and the conditional loss probability for distortions D(Ra) = 10−2

and D(Ra) = 10−4. They show that MDC reduces the mean distortion more efficient
than MD-FEC under all circumstances. The difference, however, is not large, up to a
factor of 25%. Comparing these figures to Figs. 1 and 2 we see that MDC outperforms
MD-FEC primarily in those regions of average loss and conditional loss probability
where βMDF

∗ > 0. It follows that error correction with MDC becomes practically use-
less below the loss probability given in (14).

The value of the parameters pω and pω|ω(n) used in the evaluation presented above
can be taken from measured traces, simulations or mathematical models. In the re-
mainder of the section we use the model presented in Section 2 to evaluate the effects
of various traffic and network parameters on the loss correlation. We consider a sce-
nario, possibly VoIP transmission, where the average arrival intensity is 50/sec and
the packets have a constant size of 160 bytes, thus the corresponding bitrate would be
64 kbps. The interarrival time between packets from the tagged source is exponentially
distributed. This assumption can be justified by the fact that packets from a flow cross
several routers before arriving to the bottleneck router [6]. The background traffic is
modeled by a Poisson process, packet sizes are exponentially distributed with an av-
erage packet length of 454 bytes. This value closely matches the average packet size
of Internet traffic traces shown in [21]. We denote by α the probability that an arriving
packet belongs to the tagged source, and consider values between 10−4 and 1. These
values correspond to a background traffic between 0 and 226 Mbps. Depending on the
value of α the packet size distribution of the aggregate traffic will differ from expo-
nential. We approximate the resulting packet size distribution by means of the Erlang-r
distribution. For a given value of α we change the link capacity to achieve different



average loss probabilities, between 10−4 and 10−1. Figs. 7 and 8 show Pω|ω(1) as a
function of the average loss probability and α for a queue capacity of K = 5 and K = 20
respectively. The figures show that at high loss rates the conditional loss probability
reaches the average loss probability faster than at low loss rates. Fig. 9 shows Pω|ω(4)
(a spacing of 4 packets corresponds to a delay of 80 ms) as a function of pω and α for
queue capacity K = 20. The figure shows that the lower the value of α the higher the
decrease of Pω|ω due to the increased delay. This has been observed in measurements
on the public Internet [22].

5 MI-FEC vs MDC

In the following section we consider an arbitrary packet, part of a high bitrate multime-
dia stream and evaluate how MI-FEC and MDC can protect the information contained
in it against losses. Using the notations of Section 3 the mean distortion bound of MI-
FEC for given block length n, ratio of redundancy β and available rate Ra is

DMIF(n,k) = (1−Puc(n,k))D(
Ra

1+β
)+Puc(n,k), (17)

where Puc(n,k) was defined in Section 2.3. We consider the case when the block length
n is given and if the source wants to increase the ratio of redundancy then it has to
decrease its source rate. Thus in order to minimize the mean distortion we select the
value of k that minimizes (17).

The mean distortion bound of the two channel MDC and the optimal combination
of side and central distortion for a given loss process have been shown in (15) and (16)
in Section 4. We choose the spacing between the two descriptions to be n− 1 packets,
where n is the block length of MI-FEC. This way the delay introduced by the two
schemes is the same.

In the following we consider a scenario, where the tagged source is a 3-state Markov
modulated Poisson process with arrival intensities λ1 = 116/s,λ2 = 274/s,λ3 = 931/s
and transition rates r12 = 0.12594,r21 = 0.25,r23 = 1.97,r32 = 2. These values were
derived from an MPEG-4 coded trace by matching the average bitrates of the I, P and
B frames and the corresponding transition intensities. We use the same model for the
MD coded video as there are no models for MD coded video available yet. The packet
size of the tagged source is fixed, 188 bytes as given for the transport stream in the
MPEG-2 standard [23]. Based on these parameters the bitrate of the source is 540 kbps.
The assumptions on the background traffic, the aggregate packet size distribution and
the definition of α are the same as in Section 4. We change the value of α between 10−3

and 1, these values correspond to a background traffic of 0 to 162 Mbps. We change the
link capacity to achieve different average loss probabilities between 10−4 and 10−1.

To compare the performance of MI-FEC and MDC we define δMIF
MDC = DMIF

∗ /DMDC
∗ ,

the ratio of the mean distortion bounds. Fig. 10 shows δMIF
MDC as a function of the average

loss probability and α for a source with distortion D(Ra) = 10−2, buffer capacity K = 5
and block length n = 10 (≈ 30 ms delay). The figure shows that below the loss prob-
ability given in (14) neither MI-FEC nor MDC can decrease the distortion. Above this
loss probability MDC outperforms MI-FEC if α is high, e.g. losses are correlated (see



Fig. 7). The reason for this phenomenon is that with MI-FEC the redundant information
needed to recover a lost packet is carried in subsequent packets. Thus if losses occur in
bursts, a high ratio of redundancy is needed to recover from losses. In the case of MDC
however, descriptions are placed as far away as possible and so the loss process as seen
by MDC is less bursty. Measurements performed on the Internet [22] confirm that losses
occur independently above spacing n > 20. The “valley” shapes parallel to the α axis
are due to the fact that β for MI-FEC can not be adjusted continuously. Figure 11 shows
the same scenario for a block length of n = 20 (≈ 60 ms delay). Comparing the figures
shows an increasing performance of MI-FEC as the block length increases. In fact, as
the block length increases, MI-FEC can correct longer bursts at the same redundancy
ratio. By increasing the buffer size, M to 20, we see that MDC performs better over a
wider range of parameters pω and α as shown in Figs. 12 and 13. This is due to the
higher correlation between losses as an effect of the increased queue length (see Figs. 7
and 8). Figs. 14-15 show results for the same scenarios for distortion D(Ra) = 10−4.

Recent measurements on the Internet [24, 22] show that the average loss probability
is around 1% while the consecutive loss probability around 0.25. Considering K = 20
and D(Ra) = 10−4, these parameters correspond to α = 0.0305 (Fig. 16), and thus for
n = 5,10 and 20 we get δMIF

MDC = 2.32,1.5 and 0.91 respectively (Figs. 14 and 15). The
choice of an average loss probability of 5% and consecutive loss probability 0.2 as in
[10] corresponds to α = 0.016 and leads to δMIF

MDC = 1.45,0.96 and 0.59 for n = 5,10
and 20 respectively. These examples suggest that for short delays MDC performs better
than MI-FEC on today’s Internet.

6 Conclusions and discussion

In this paper we presented an analytical evaluation of the potential of forward error
correction and multiple description coding to recover from losses under various network
conditions. We compared media dependent FEC to MDC and concluded that MDC
gives better performance under all circumstances. The comparison is based on the loss
probabilities, thus it is independent of the traffic parameters. We showed that for a big
class of distortion rate models the optimal ratio of redundancy is mainly determined
by the average packet loss probability. We proposed a queueing model to evaluate the
loss process of bursty traffic and used the model to compare the performance of media
independent FEC and MDC with two descriptions. We showed that MDC gives better
performance if losses are correlated and the available delay for error control is low.
In today’s Internet losses are correlated and network end-to-end delays are large, thus
leaving short delays for error control. Hence we conclude that even MD coding with
two descriptions could improve the quality of real-time multimedia communications.

Based on the results presented in this paper we believe that multiple description
coding is an appealing error control solution for delay sensitive traffic in an environment
with correlated packet losses like the Internet.
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Fig. 2. Optimal rate of redundancy vs. pω and
pω|ω(n) for D(Ra) = 10−4.
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D(Ra) = 0.01.
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Fig. 4. MDC gain vs. pω and pω|ω(n) for
D(Ra) = 10−4.
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Fig. 5. δMDC
MDF vs. pω and pω|ω(n) for D(Ra) =

0.01.
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Fig. 6. δMDC
MDF vs. pω and pω|ω(n) for D(Ra) =

10−4.
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Fig. 7. Pω|ω(1) vs. average loss probability
and α for K=5.
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Fig. 8. Pω|ω(1) vs. average loss probability
and α for K=20.
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Fig. 9. Pω|ω(4) vs. average loss probability
and α for K=20.
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Fig. 10. δMIF
MDC vs. average loss probability and

α for K = 5, n = 10 and D(Ra) = 10−2.
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Fig. 11. δMIF
MDC vs. average loss probability and

α for K = 5, n = 20 and D(Ra) = 10−2.
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Fig. 12. δMIF
MDC vs. average loss probability and

α for K = 20, n = 10 and D(Ra) = 10−2.
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Fig. 13. δMIF
MDC vs. average loss probability and

α for K = 20, n = 20 and D(Ra) = 10−2.
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Fig. 14. δMIF
MDC vs. average loss probability and

α for K = 20, n = 10 and D(Ra) = 10−4.
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Fig. 15. δMIF
MDC vs. average loss probability and

α for K = 20, n = 20 and D(Ra) = 10−4.
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Fig. 16. Pω|ω(1) vs. average loss probability
and α for K=20, bursty traffic.
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