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Abstract Multimedia applications operating in today’s In4o variations and estimation errors in the quality of thesra
ternet have to employ some form of error resilience to copeission both on short and long timescales. The problem of
with losses. For interactive applications with strict gatan- delay jitter is often solved on the receiver side via adaptive
straints the latency introduced by these schemes has toplaeyout algorithms [31,32]. Packet losses can be compen-
low as well. Furthermore the parameters of the applied seheated for on the sender side and the receiver side. On the re-
have to be set based on measurements in a possibly rapadiver side receiver-based error concealment algorithms ca
changing environment. In this paper we propose a robumst used like insertion or interpolation [26,39]. On the sender
method, called min-max-, for optimal source-channel codeside redundant information can be added to the data flow or
rate allocation to deal with time-varying packet channetsror resilient source coding can be used. Whenever a packet
and channel state estimation errors. We evaluate its perfisriost, the redundant information can be used to reconstruct
mance when used with forward error correction (FEC) aritle lost information. Forward error correction (FEC), and the
multiple description coding (MDC) in both stationary andecently re-discovered multiple description coding (MDC)
non-stationary environments. We show that on a stationdrgtve been proposed for this purpose [5,37]. Error resilience
channel robust rate allocation is suboptimal in terms ofrme&eatures are included in recent video coding standards, like
distortion, but it achieves a lower variance, while on a nothe H.264 [41].

stationary channel it prevents severe degradation of thk qu  The ratio of redundancy has to be chosen in the sender in
ity. We apply the proposed rate allocation method to motienway that maximizes the perceived quality at the receiver.
compensated video and show that it performs better orThere are several problems that have to be solved during
non-stationary channel than minimization of the mean dithis optimization, called optimal rate allocation. Sinte t
tortion proposed earlier. receiver cannot calculate the distortion of the audio-visua
information, it is the sender that has to estimate the effects
of losses on the perceived quality at the receiver. The sende
can attempt to do this by maintaining an estimate of the
channel state, i.e., the state of the transmission path from
- the sender to the receiver, and an estimate model of the per-
1 Introduction ceived quality as a function of the redundancy rate and the

] ] ] o ) channel state. Most of the work in the literature assumes a
Real-time audio and video communication is becoming ma§@ytionary channel with known parameters and aims at min-

and more important in the Internet. The quality provideghizing the mean distortion [2,13,24, 29,34, 35,44]. A few
to these applications however is still unpredictable due ¢gher works include feedback in the optimization problem,

packet losses, end-to-end delay and delay jitter. Though mg¢hconsider the channel state estimate to be accurate and
research and standardization has been done in recent yq@gs.it to minimize the mean distortion [1,5, 33].

there is no support yet from the network side for QoSinform |, tis paper we propose a method, called min-raax-
of resource reservation and call admission control. Thus gg;, optimal rate allocation to deal with fime—varying chan-
plications that require low packet loss and delay jitterehay,o|s and channel state estimation errors. Min-ragims to

to employ some end-to-end mechanisms that compensate{figimize the maximum distortion for a set of possible future
disturbances introduced by the network and that are robygt, \nel states.

Keywords Source-channel codingMDC - FEC - Rate-
distortion- Real-time multimedia
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trate the behavior of our method when FEC or MDC is used We consider a receiver described with distortion rate func-
for error resilience. We show that although the min-ntax-tion D = D(Ra, Pw, Pwjw: B), WhereR, is the available code
method is suboptimal in terms of mean distortion on a steate, p, is the stationary loss probabilitp,,, is the condi-
tionary channel, it achieves significantly lower varian©e. tional loss probability (the probability that a packet istJos
non-stationary channels the proposed method prevents gigen that the preceding packet was lost) 8risithe ratio of
vere degradation of the quality which would otherwise occuedundancy. The higher the ratio of redundaficthe higher

due to the misestimation of the channel parameters. Finaye distortion will be in the absence of losses. In the pres-
we show how the min-mag-method can improve the error-ence of losses, however, a higher valugafives increased
resilience of H.264 coded video in a non-stationary enviroresilience to errors. The distortion rate function depemnus o
ment. the source and on the means of error resilience used.

The joint selection of source coding parameters and trans-The goal of a rate allocation method is to adjust the value
mission power for video transmission over wireless channalg 3 at the sender in order to minimize the effect of losses
was considered in [8]. The authors used the term min-m#ntroduced by the network. The most widely used approach
to denote the minimization of the mean distortion given ta solve this problem is to minimize the mean distortion for
bound on the maximum transmission power and the mirihe stationary loss probability, i.e., to find the ratio afiue-
mization of the transmission power given a maximum meaancyp* that minimizes
distortion. Despite of the similar name used for the apprpa A A
the problem presented in that paper is different from ou(r?(Ra’ p‘f’ P‘“"‘”’ B). _ __(1)

In [30] the authors considered the problem of media broa¢there p, is the estimated value of the loss probability and
casting in a wireless cell and minimized the maximum diglw is the estimated value of the conditional loss probabil-
appointment of the users in the cell, that is, the differend¥- . )

between their perceived performance and the best possible There are several shortcomings of this approach however
performance. Despite the similar name used for these &pZ]- This approach does not take into account the sensitiv-
proaches, the addressed problems and the applied anal{iof the human perception to short term variations of the
cal tools are different from ours. The authors in [9] miniduality. Psychoacoustic models and models of the human vi-
mized the linear combination of the mean and the variance®fal system prefer constant quality, as human observers can
the distortion of motion compensated video for given pack@géapt on the long term to reasonably low, but constant qual-
loss probabilities. Our approach is conceptually diffesemd  ity. Even on a stationary channel with loss probabifitythe
offers two advantages. It is computationally less intensi@imber of lost packetgover a finite period of time, say, in
and it is not restricted to video coding: it is applicable to @& block ofn packets, is a random variable (e.g. on a channel
wide variety of error resilience techniques as we show it fescribed by the Bernoulli loss model and mean loss prob-
the paper. ability p,,, the pumt_)er qf Iqst packe_ts in a blockmpack-

The rest of the paper is organized as follows. In Sectis follows a binomial distribution with parameters p,,)).

2 we present the rate allocation methods for joint sourcg€nce, the estimated loss probabilily iS a random vari-
channel coding. In Section 3 we describe the considerdle as well. ID(Ra; Pw, Pujw; B) is not a linear function of
transmission channel and the method used to estimatePts2NdPuje, then

state. In Section 4 we show how the proposed min-magy(Ry, pu, Pujew: B) 7 Eqpypuu} [D(Re: Poos Puoer B,

a method can be used to set the redundancy rate for FE . ~ ) .

and MDC. In Section 4.2 we analyze the behavior of tHfYen thougrE[pu] = p, andE[Pyw| = Pu if the estima-
rate-allocation methods on a stationary channel under vaf! iS unbiased. The fluctuations in the loss probabilityrove
ous scenarios. In Section 4.3 we consider the case of n8ROTt intervals can degrade the perceived quality.
stationary channels. In Section 5 we show how the rate-

allocation methods compare when applied to H.264 cod . . .

video. We conclude our work in Section 6. qu Weighted mean distortion

To incorporate the effects of short term fluctuations of the
channel state, we define the weighted mean distortion, a new
2 Rate allocation problem evaluation criterion instead of the mean distortion defimed

Q).
We consider the scenario when delay-sensitive multimedia Let us consider a channel described with the mddel
traffic, such as real-time video, is transmitted from a sendand the set of channel parametétsLet us denote b¥[g
to a receiver through a network. Packets can be lost on the mean number of packets received between two loss events,
transmission path due to congestion, on unreliable wiseleand byP(j,E[g] 4+ 1) the distribution of the number of lost
links, or can be discarded at the receiver due to late arrivahckets in a block dE[s] 4+ 1 packets calculated based on the
To cope with losses the sender adds redundant informatioodel Y and the parameter8. Let us denote the density
to the data flow. We assume that the available transmissfanction of j/(E[s| + 1) by m(p) and its distribution func-
rate at the sender is given, thus redundancy can be increased by M(p). Furthermore we denote thepercent confi-
by decreasing the source coding rate only. dence interval op by Qy, i.e.,Q, = {p:y/2 <1001 (p) <
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100-y/2). Using these definitions we define the weighte@ihe corresponding weighted mean distortion can be calcu-

mean distortion as lated using (2) and we denote it yoa. We will refer
to this method later as the weighted optimal rate allocation
D= /pEQ D(Ra; P, Pwjw, B)TI(P)dp. (2) (WOA) method. Note, that the WOA method is computa-
Y

tionally expensive, since the distortion has to be calewdlat
This definition of the mean distortion introduces the tempder all possible future channel states.

ral behavior of the channel into the evaluation. The CRA method is a special case of the WOA method:
To capture the variation of the distortion we define thiey taking the density functiofi(p) = 8(p— p) in (5) we
standard deviation of the distortion in a similar way. get (4).
o= \//peg E[5(Ra7 P, Puses B)2m(p)dp— D2. 3) Min-max-a rate allocation
Y

The rationale behind the proposed min-ntaxate alloca-
Finally we define the coefficient of variation of the distorti tjon is to minimize the maximum of the distortion over the
asCoV = a/D. Given these evaluation criteria in the followchannel states that have a certain probability of occusenc
ing subsection we introduce three rate allocation methodst will perform worse than optimal whenever the channel
state is close to the expected behavior, is robust however to
fluctuation and to sudden changes of the channel state. In
2.2 Rate allocation methods certain cases, like for example in the case of motion com-
pensated video, the effects of decreased mean distortion be-
In order for the application to be able to perform the ratew a certain value are not noticed by human observers [38,
allocation, it has to assume a channel mo#lehnd has to 40], while an improvement in the worst case performance
estimate the channel parametésLet us denote by fhe remains noticeable. The optimal value of the ratio of redun-
estimated mean number of packets received between thancyp in the min-maxe sense is
loss events, by, = 1/(§+ 1) the estimated loss proba-p« _ ; A
bility, and by P(j,5+ 1) the estimated distribution of the' @ argﬁm'”[fé‘;’%fma’ P P P) ©)
number of lost packets in a block st~1 packets calcu- \ye genote the corresponding weighted mean distortion by
lated based on the mod&land<. Let us denote the densityp, . which can be calculated using (2). We will refer to
function of j/(§+1) by fi(p) and its distribution function by thjs' method later as the min-maxate allocation (MMA-
M(p). Furthermore we denote the estimatedercent confi- o) method. Calculation of the optimal ratio of redundancy
dence interval op by Qq, i.e.,Qq = {p: 0a/2<1007(p) < in the min-maxe sense is not more computation intensive

100—a/2). than that of the CRA method. If the distortion rate func-
tion D(R, pw, Pejw; B) is monotonically increasing i, for
Crisp rate allocation any value offf and p,, then it is enough to find the opti-

mal value off3 for max,{p € Qq}. Practical distortion-rate
The rate allocation methods used in earlier works [14, 2®inctions have this property, as increasing the loss probabi
6,34] consider a stationary channel with known loss probiy does, ceteris paribus, increase the distortion. If tream
bility. In this case the density function of the number of logind the median of the distributian(p) are equal, then the
packets in a block becomégp) = 8(p— p.,), wheredis the CRA method is a special case of the MMArate allocation
Dirac delta. Thus the optimal ratio of redundancy is given byethod, witha = 100.

B(*: = argBminD<Ra7 ﬁwa ﬁw\om B)’ (4)

3 Description of the transmission channel

and can be found by evaluating the the mean distortion for

all possible redundancy values. We will refer to this methagll Channel model

later as the crisp rate allocation (CRA) method. To evaluate

the performance of CRA the corresponding weighted meslve assume that the transmission channel, i.e., the padeet lo
distortion will be calculated using (2) and denotedlpza.  Process on the transmission path from the sender to the re-
ceiver, can be described with a two state Markovian model,
often referred to as the Gilbert model [16]. The Gilbert model
is widely used for the design and evaluation of error con-

The rate allocation method that achieves the minimal me Rl squtions for Cha’?”e's with c_qrrelated losses dug to its
4 plicity and analytical tractability [14,21]. The Gilbert

distortion in the sense of subsection 2.1 is the one that firds" - -
the optimal value of which minimizes (2), model’s capability to model the packet loss process has been

investigated both via measurements [21,42,45] and analyt-
x _ ; D A A . ically [7,43]. Around half of the measurgd traces of Inter-
B argBmm/ d, (R, P, P, B)TIP)dP ®) net end-to-end packet losses reported in [21,42,45] could

Weighted optimal rate allocation
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be modeled sufficiently well with a two state Gilbert modekalculate the estimated packet loss interval based on a num-
while analytical results show that the Gilbert model can-caper of past values. The exponentially weighted moving av-
ture the loss process of a single multiplexer if the level @frage and the adaptive loss interval methods (ALI) [12,45]
statistical multiplexing is high. belong to this group. The authors in [45] compared the per-
The Gilbert model is a two state time-discrete Markoviaformance of several estimators using measured traces and
model, where state 0 corresponds to the good state of tmncluded that none of them performs significantly better
channel, i.e., the packet is received, and state 1 to the lhan the others.
state of the channel, i.e., the packet is lost. Let us dehete t In this analysis we will use the ALI method due to its
transition probability from state O to state 1 pyand from simplicity, even though any other on-line estimation method
state 1 to state O bg. Given the values op,, and p,, the could be used instead. The estimation of the average packet
parameters of the Gilbert model can be setjas1— py., loss interval is done using the following formula
andp = gpw/(1— pw). The Gilbert model can then be used
to calculate the probability gfflosses in a block afi packets §— zlliw" 9)
as shown in [10]. Tt Wi
The number of packets between two loss events are i.

'v%ere is theith most recent measured packet loss interval
random variables with probability mass function b P

andw; are the corresponding weighting coefficients defined

. 1-q i=0 as
P S=1) = i . s 7
=1 {Q(l—p)' 'pi>0 0 1 1<i<n/2 10
so that the expected value of the number of packets betwg\éﬁ { :J;ﬁ n/2<i<n’ (10)
two loss events i§[s] = q/p, and its variance . .
andp,, is defined as
_ 2
p Pw = 511 (11)

In the paper we use the Gilbert model\#sand the set of

: As we are not aware of any analytical evaluation of the
parameter< is { Puw, Pojw} -

ALI method, we present a brief evaluation here. Assuming
that thes are i.i.d random variables with meapg,— 1 and

X > . -
3.2 Estimation of the channel parameters varianceo®, the variance o1

SLaws, 02y w2 028(4n+7)
Adaptive applications that want to optimize their performan n/ar(§ = Var| - I= : = 12)

YW (Staw)?  27n(n+2)

for the actual network conditions have to assume a channel
model® and have to estimate the state of the transmissi&®mparing this to the variance of the minimum variance un-
channel?. If the assumed channel model is the Bernouliased estimator (i.e., the unbiased estimator with the leas
model, then the channel parameter to be estimateg.if ° possible variance), WhICh is?/n, the ratio of the variances
the assumed channel model is the Gilbert model, then te
c_hannel parameters to be estlmated @send Puyg. I par- Var[§ 8(4n+7)
ticular, for the above rate allocation methods the applcati —% /. = ) (13)

; i~ -~ ag?/n 27(n+2)
needs an estimate of the loss probability and the conditiona
loss probability. In the following we discuss the estimatiowhich is bounded from above by 329 and goes to 327

of these parameters. asn goes to infinity, thus the variance of the ALI method is
close to the minimal.

3.2.1 Estimation of p, If the s are correlated, and the covarianmm(s;,sj) =
E[ssj] — E[s]E[s;] is a function of|i — j| only (e.g. the pro-

On a stationary channel the estimaig can get arbitrarily cess is second order stationary), i = cov(s; sj)/0° =
close to the stationary loss probabiliy, by calculating the Pji-j|, then the variance of the estimator is
average over a sufficiently long interval. Estimation meth-

n
ods to be used on a non-stationary channel however havg/@[g] = Var F';lw's‘] (14)
follow the changing state of the channel, and thus averaging 2i=1Wi
has to be done over a short interval, which in turn results in a o2(S w2425 sz LwWiw;pi_ J)
higher variance of the estimate. The methods proposedinthe = 5w )2 (15)
literature to solve the problem of loss probability estiroat SiLWi

can be classified into two groups. Methods belonging to thdich is always greater than the one given in (12). The es-
first group count the number of lost packets in a loss windotinated value of the packet loss intengik "approximately
e.g. the dynamic loss window method [12]. Methods belongermally distributed with mean and variance given above
ing to the other group measure the packet loss intervals, igdue to the central limit theorem. These analytical results a
the number of received packets between two loss events, amedccordance with simulation results shown in [11].
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3.2.2 Estimation of pyye a lower bound on the CoV of the distortion for a Gaussian
source with zero mean and the squared distortion measure.

The estimation of the conditional loss probability does not

have much coverage in the literature, presumably becaus@g9position 1 Given a Gaussian random variable with O

the difficulties regarding the collection of a sufficientiyge Mean and variance o2 with pdf p, a squared difference dis-

sample size on a non-stationary channel. For this reasont@ftion measure d(x,y) =L(x—y) =(x—y)?, then

stead of attempting to estimate the conditional loss pribbab

ity we investigate in Section 4.2 how different assumptions . del (%)4

on the conditional loss probability influence the efficiengy COV[D] = {\/ ——

the rate allocation methods.

S -1

The proof of the proposition can be found in the Appendix.
The bound is independent of the code IRtand can eas-
ily be checked that it holds fdR = 0, in which case the sec-

t?]lt\a,/zn pﬁc%ﬁéynﬁéa%mgemg m: ssgmj?etr?geﬁrr:?ggetuns]ggﬂ ond moment of the distortion is given by the fourth central
pp & moment of the Gaussian r.v., i.&[|D?] = 304, and thus the

the rate allocation methods shown in Subsection 2.2. E.g., | . : . T X
@ is the Gilbert model, the is { P, Pu}, and the proba- Variance of the distortion ¢ [D] = 26*, andCoV D] = v/2.

- . . Throughout the paper we will use this value as the CoV of
bwty of j I[ciso.;,es in a block ofl packets can be calculated A% e disgtortion Wg ilgtroduce the notatiga= Cov/ D)2+ 1 —
shown in . :

3, so that given the mean distortion for code miateve esti-
mate the second moment of the distortion as

4 Min-max-a for FEC and MDC E[D? =¢D(R? (17)

In the presence of information loss on the transmission
hannel, the distortion depends not only on the code and re-

for media-dependent forward error correction (FEC) and Endancy rate but also on the error control scheme applied.

set the side and central distortions for multiple descr'rptioR the following we discuss the distortion-rate charactesst

coding (MDC). First we give the distortion-rate functions?f FEC and MDC for total available raf,.

D(Ra, P Pojw, B) for FEC and MDC. These functions are ) )

then used to determine the optimal redundancy and the mffl-1 Distortion-rate bounds for FEC

imum achievable distortion with the different rate allooati ) ) ) i

methods as given by ( 4)-(6). We use two metrics for evalll? the following analysis we consider media-dependent FEC,

ation, the mean distortion and the variance of the distortioProposed by the IETF and implemented in Internet audio
tools like Rat [28] and Freephone [15], and in the H.264

video coding standard. The idea behind media-dependent
4.1 Distortion-rate bounds for FEC and MDC FEC is to add a redundant copy of the original packet to one
of the subsequent packets. The redundant packet is heavily

In order to keep the examples simple, we consider a ment@Mmpressed, so that quality reconstructed from the redun-
ryless Gaussian source with unit variance and use the stju&i@nt packet is low, but still better than when there is nahin
distortion measure, which is the most common distortidR Play out. Proposed ways to improve the performance of
measure. The reasons for the choice of the Gaussian solif@scheme are to increase the offset between the original
are twofold. Gaussian mixture models using the weight@gcket and the redundant one [23] and to send multiple re-
sum of Gaussian densities have lately found application @§ndant copies in subsequent packets [5]. The performance
speech coding [20,36]. Furthermore, it is known that DCAf this FEC scheme_has been evaluated via S|mulat!ons in
transform coefficients in motion compensated pictures halé/] and analytically in [3,4,6]. The results show that if the

a generalized Gaussian distribution [19]. The distortioe-raf@tio of the traffic implementing FEC is small, streams can
function for a Gaussian source with unit variance and squakgdnefit from using FEC. .

distortion measure in the absence of losses (i.e., due to quan In the case of media-dependent FEC the first and the sub-

3.2.3 Estimation of Qq

In this section we illustrate the use of min-maxvia two
simple examples. We apply it to set the redundancy r?

tization) is given as sequent — 1 (redundant) descriptions are encoded indepen-
R dent from each other, and thus, if any of them is received,

D(R) =27, (16) its distortion is given by (16). We denote the rate allocated

whereRis the code rate anB(R) is the distortion [18]. t0 the primary encoding witR}=" and the rate allocated to

To calculate the variance of the distortion we have to cghe kK" (redundant) copy witfRE . The redundancy ratio
culate its second mome&{D?], sinceV[D] = E[D?] — D?, introduced by the FEC is thepi= S_, R E¢/RTEC, where
whereD is the mean distortion. The coefficient of variaRTE¢ = R,/(1+ B). We denote the distortion of the origi-
tion is then the square root of the ratio of the variance am@l encoding withDFEC, while the distortion of thei" re-
the mearCoV D] = /V[D]/D2. In the following we give dundant, low quality encoding withf 5. In the case, when
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both the primary and some redundant encodings are receivglerwise. Equation (21) shows that if the side distortion is

the redundant encodings can not be used to reduce the dist-large then the central distortion is higher than the dis-

tortion of the original encoding. In our analysis we considéortion rate minimum. We can interpret2%/2 /DY'PC as the

the case = 2, as this is most commonly used. ratio of redundancy, the higher its value, the more robust
The mean distortion of the FEC scheme with two dé4DC will be to errors. For a primer on rate distortion theory

scriptions can be calculated as the weighted sum of the digid multiple description coding see [18].

tortions of the cases when both descriptions are received, The mean distortion and the second moment of the dis-

only one of them is received or none of them is received tortion of MDC can be calculated similarly to that of FEC

FEC _ FEC

D (Ra, pw’ pw‘(‘)’ B) - (pua(n) + Ez(g(n))Dl DMDC(Rav p(x)a p(k)‘(x)v B) = pﬂa(n)D('\)ADC(DlMDC)
FPoaBz T Pl (18) +(Pauln) + P (1) DY

vvfhcare paq(rr), Pae(N), Poc (N), ?m(n) ar(la< the prl?babllltles +Pax(N), (22)
of the joint loss or reception of two packeipackets apart, _ ~xvpc o MDC / ~R.,MDC\ 2
and can be calculated based pg and p,. The second E[D™™(Ras Po: Pujw: B)7] = {Paa (M) (D1™)
moment of the distortion can be calculated similarly +(Paw(N) + Pea(n))(DYIPC)2
E[D"(Ra, P Puseor B)?) = {(Paa(n) + Pao()) (DT A9) TP }6 (23)

+Pea (M) (D359)? + Pao(N) } 6.
4.1.2 Digtortion-rate bounds for MDC 4.2 Performance evaluation considering stationary channel

MDC addresses the problem of joint source and channglthis subsection we discuss how the rate allocation meth-
coding. Originally designed for the transmission of muktiplods shown in Section 2 behave in a stationary environment
descriptions of a single source over independent channgjsed in combination with FEC and MDC.

it has been rediscovered recently for use in packet switched \yg gyauate the performance of the CRA and the MMA-
networks [37]. In the case of MDC, several coded descrig-mathods fori=1,5,10,25 by comparing the mean and the
tions of the same source are sent over different channelsqllygarq deviation of the weighted distortions at the opti-
only one of the descriptions is received, it is used for ren ) jevel of redundancy. We show distortion values relative
construction with a certain accuracy. If more than one dgs the ones achievable with the WOA method. WOA would
scriptions are received, then the information from the othgfinimize the weighted distortion in all stationary casas, b
descriptions can be used to enhance the accuracy (in c@fis not feasible for real-time applications due to its com-
trast to FEC, where the redundant copy can not be used, xity.

enhance quality). In a packet switched network, instead o Both for FEC and MDC we consider the case of two

using separate channels, one can put the different enCOdiaggcriptions and the spacing between the packets. For
into different packets and send them in subsequent pack% ity we V\,/i|| show figures foD(Ra) — 10# only .The
S'”.“'a”y to.the case of FEC. Inthe general case, the amoilbvice of a fixed rate does not limit the validity of our result
of |nformat|on sent over the separate channels (packets)_ Alilar results can be obtained for other valueReflf the
be different; however in single-path packet networks, whic plication uses some form of rate control, and heRge

gzlea[r:gggtﬁgdéreii[mtehrg ;%:lgﬁgﬁ\etsthg g:nmgz;c’nhooa’m ct)f ries over time as a function of the packet loss probability,
Y 9 then the optimal rate of redundancy has to be chosen with

formation in all packets, is optimal [18]. :
In the case of MDC we consider the (balanced) tw respect to the actual available rate. Often we use FEC as an

channel case. We denote the rate allocated to individual xample, the results with MDC are similar, as it is shown in

scriptions byRYP¢ = R,/2. The distortion when both de- %mvi cases._d the t ission of ¢ packet
scriptions are received, called the central distortionjas € consider he transmission of a Sequence ol packets

noted byDYPC and the distortion if only one of the descrip_through a lossy transmission path. Applications set the re-

tions is received, called the side distortion, is denoted fyndancy rate based on the estimated loss parameters and
DMPC_ The distortion rate bounds for the 2-channel MD e estimated channel model. We calculate usihgnd P

e corresponding weighted mean distortion (2) and the stan-

are [25] dard deviation of the distortion (3).
DYIPC > 27 2R/2 (20) We consider three cases. First we assume that the appli-
DMOC(R,, DMPC) > 2-2Ray(R,, DVOC), (21) cation has perfect channel information. Then, we assume,
] that the application has a perfect estimate on the loss prob-
wherey(R,, DY) = 1 if 2DY'°° > 1+ D{*® and ability but not on the conditional loss probability. In baih
these casep, = pw.- Finally, we consider the case when the
Y(Ra, D'IADC) = application uses the ALI method to estimate the loss proba-

1
1— {(1—DMPC) —  /(DMPC)2 _2-2R}2 ity
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4.2.1 Perfect channel information ity. First we consider the case when the channel mélel
used by the application is the Bernoulli model, i.e., the ap-
First we consider the case when the application has a pglication assumes independent losses. The Bernoulli-model
fect estimate of the channel state, i.e., the loss probwpbilis a lower order model than the actual channel médeghe
Pw = Pw and the conditional loss probability,, = Pye-  Gilbert-model. Fig. 3 shows the distortions obtained by the
The channel moddP used by the application is the GilbertMMA-1 and the CRA methods using the Bernoulli chan-
model, thus® = W. Figure 1 shows the mean distortion§€! model divided by the distortion obtained by the WOA
achieved using the MMA-1 and the CRA methods divide@€thod with perfect channel state information (i.e., aware
by that of the WOA method. The figure shows that in ternf¥ Pujw: denoted by WOA-iin the figures). The figure shows
of mean distortion the CRA method is optimBFES /DFES ~ S|gn|f|_can_t difference compared to Fig. 1 when the loss pro-
1). The MMA-1 method performs worse than the CRA metif§§S IS highly co_rr_elated, for mode_s_t levels of c_orrelatlon,
especially if both the loss probability and the conditionaf€:» below a conditional loss probability oflthere is prac-
loss probability are low. Figure 2 shows the the standard d&ally no difference.
viations of the distortions achieved using the MMA-1 and
the CRA methods divided by that of the WOA method. As

can be seen, the MMA-1 method has a significantly lower 14 ‘ NVA-L. 5y 2,
standard deviation than the CRA method, thus MMA-1 ef- o MMA-1,p,, =001

1.3 opgooooooooooooOOO

fectively decreases the fluctuations of the perceived qualit - MMA-1,p, =0.1]

- MMA-1,p, =05
== CR&' pm\m:pm 1
——CRA, p_>=001

[AINeN

MMA-1,p,, =p, = =0.1 ~~

o-- MMA-1,p  =0.01]
1.330}09;00000000000000000 wlw
-- - - - MMA-1, pwiw—OAl

—o—CRA,p,, =05

9 é L — \l\fIg/IA—l, pi:leO‘S . |
) CRA PPy 10° 107 10
(u:._r\ 11 == CRA. p; 7001 Loss probability ()
o —+—CRA, pm'm= R
_ & CRAp. =05 ) ) )
19494669009 6400 0090960900003 3309999 t*j WWWWW Fig. 3 Mean distortions vs wand for the MMA-1 and CRA
0w

methods with partial channel information compared to the AVO
method with perfect channel information.

0.9

L
-3 2 -1

10°
Loss probability (B)

To see how the relationship @k, and p,, influences
Fig. 1 Mean distortions vsp, for the MMA-1 and the CRA meth-  the results, we now consider the case when the channel model

ods compared to the WOA method. W used by the application is the Gilbert model, and the value
1.05 ‘ Pujw IS chosen by the application betwepg and 09. The
loss probability isp, = 10~3. Fig. 4 shows the ratio of the
o.9f - i VWAL B b, mean distortion for the CRA method choosipg,,’and that
oSosl . o° o MMA-Lp, =001 of the CRA method with perfect channel information (de-
L2 o° - -MMA-1p, =01 noted by CRA-i), as well as the ratio of the mean distor-
g\ o7 ——MMA-1,p,, =05 | tion for the MMA-1 method choosing,,, and that of the
° o8 oo ——CRA R, | MMA-1 method with perfect channel information (denoted
T CRARy 00 by MMA-1-i). The figure shows that overestimatipg, re-
05 :zii E“"ig:; sults in poorer performance than underestimating it. Com-
- paring the curves corresponding to the two rate allocation

Loss prifabilty ® 10 methods we see that the CRA method is more sensitive to

the misestimation ofy, than the MMA-1 method. Fig. 5
Fig. 2 Standard deviations vep,, for the MMA-1 and the CRA shows the ratios of the standard deviations for the CRA and
methods compared to the WOA method. MMA-1 methods for the same scenario. The conclusions are
similar, the CRA method is more sensitive to the misestima-
tion of py than the MMA-1 method, and overestimating
Puwie results in higher variance than underestimating it.

4.2.2 Partial channel information
4.2.3 Measured channel information
In this subsection we consider the case when the applica-
tion has a perfect estimate of the loss probability="p,, In this subsection we consider the case when the application
but has no information about the conditional loss probabikses the ALI method to estimate the loss probability, and
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19 T 2.4 T
1.8l ——MMA-L, qu:m_g i MMA-1,p =P,
+ MMA-1,p, =107 2.2r o MMA-1,p,=0.01
L ___MMA-1,p_ =0.1
L1.6)| =+~ MMAL, p =10 7 2 wwacLp =05 |
QT - MMA-1,p, =05 03 g™
“-D : 5 W = 1.8 —__CRA, pqm=pm
o= 14t ——CRA, pdw:].() [a)
Q . & e ——CRA,p,, =001
T CRA,p , =10 S _
A ” £ ) ——CRA,p =01
1.2 - - - CRA,p, 107" 1.45, —6—CRA, P, =05
___CRA,p, =05
o
L W Jd_ 1.2¢ ou
S 5 1 0 O M S SRS VAA#%”’*#eae AAAA
0.9 - 1= _
107° 2 10° 10° 107"

_10] o 107" 107
Estimated conditional loss proﬁ\.m(‘g) Loss probability (B)

Fig. 4 Mean distortions vsp, for the MMA-1 and CRA methods  Fig. 6 Mean distortions vsp,, for the MMA-1 and the CRA meth-
with partial channel information compared to the case wikfgrt ods compared to the WOA method with perfect channel informa-

channel information. tion.
35 ‘ 11
—+ MMA-1, pw‘w=10_3
| ) L, 1 IUVOUUR JUUUR
3+ MMAl,Pw‘w—lo W'/‘/,/~~~”
1071 -7 = =
-+ MMA-L,p,, =10 _o09f - . MMA-1,p, =P, [l
Q-1 25]| - MmA-1, P05 o <O'( . .0 o MMA-1,p  =0.01
LLQ : —CRA,p =107 Ebg 08 - oOo -~ ~MMA-L, P, =01 1}
9 Al o™ =2 00 . MMA-1,p =05 ||
L CRA, p,,=10 w 07 00 b
. o o —CRA PP,
1.5/ -~ - CRA,p 710 0.6/ 60° «_CRA,p . =0.01
CRA,p =05 000° o
Py ) 05 ——CRA, 501
== =" _ 4 CRA, pm|m:0'5
0.75- : ; 0.4 . ,
10 3 2 1 100 10 3 2 10 1

10 » 10 10
Estimated conditional loss proliwfg) Loss probability (B)

Fig. 5 Standard deviations vy, for the MMA-1 and the CRA Fig. 7 Standard deviations vg, for the MMA-1 and the CRA
methods with partial channel information compared to threeagith methods compared to the WOA method with perfect channet-info
perfect channel information. mation.

Next we compare results obtained with the MM&method
hence the estimate, = 1/(1+ $) is a random variable. We for different values ofx. Fig. 8 shows the mean distortions
calculate the 99 percent confidence intervapgfbased on of the MMA-a methods and the CRA method divided by
W (the Gilbert model)/? (p,, and pyyw) and (12). Then we that of the WOA method with perfect channel information
calculate the optimal redundancy rate using the CRA, ther the case of independent losses. Fig. 9 shows the standard
WMA and the MMA-a methods corresponding to th®, ™ deviations for the same scenario. The figures show the trade-
values in the confidence interval. Based Bn(2) and (3) off between the mean distortion and the standard deviation,

we calculate the distortions corresponding to the optireal rand thata has to be selected according to the application’s
dundancy rate, and calculate the weighted average of thesguirements on these values.

distortions, where the weights are the probabilities ofdte To compare the performance of FEC and MDC we show
currence ofp,. We assume that in lack of a reliable estimatg,q (atio of their mean distortions using the MMA-1 and the
of Py, the application assumes independent losses. Baggda method in Fig. 10. The curves corresponding to the
on the observations of the previous subsection this beh@ine conditional loss probability but different rate alloca

ior is the most robust for FEC and MDC, while it will notjon method show similar charateristics. The results, MDC
influence the results significantly. is always better in terms of mean distortion, coincide with

Fig. 6 shows the mean distortion achieved using the MNfse obtained for the long term average in [6]. In Fig. 11 we
1 and the CRA methods based on the estimated Charﬁmw the ratios of the standard deviations of FEC and MDC
parameters divided by the mean distortion achieved usif®j the CRA and the MMA-1 methods. The figure shows
the WOA method based on the correct channel parametdh@t MDC gives a lower variance than FEC independent of
As an effect of the estimation g, the mean distortions the rate allocation method used. Comparing the CRA and
increase especially for correlated losses. Fig. 7 shows M&A-1 methods shows that while the ratio of the mean dis-
standard deviation achieved using the MMA-1 and the CRAtions is slightly higher with the MMA-1 method, the ratio
methods based on the estimated channel parameters diviefelite standard deviations is slightly lower.
by the standard deviation achieved using the WOA method Finally we evaluate how the mean distortion evolves in
based on the correct channel parameters. the case of misestimation gf,. Fig. 12 shows the ratio of



Robust Source-Channel Coding for Real-time Multimedia 9
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Fig. 8 Mean distortions vsp,, for the MMA-a and CRA methods  Fig. 10 Ratio of the mean distortions vg,, of FEC and MDC using
compared to the WOA method with perfect channel information  the the MMA-1 and the CRA method.

1.1 ‘ 2
MMA-1, pmiw:pw
1 o 18k o MMA-L,p,, =0.01|
oo P | - -MMA-1,p =0.1
X TS o 16l ——MMA-1,p,, =05 ||
02 osf o e .. CRA,p , =
meo. o e ——CRA,p, =P,
XL O~ 140 ——CRA, p,, =0.01
g 07 - i %o, CRA, p, =0.1
o - —— MMA-1 © o e
0.6~ MMA-5 || 1.2 %o, ——CRA,p =05
- - - MMA-10 004 oo
o
0.5¢ -~ MMA-25|] T °
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Fig. 9 Standard deviations vg,, for the MMA-a and CRA meth- Fig. 11 Ratio of the standard deviations u&, of FEC and MDC
ods compared to the WOA method with perfect channel informa- using the MMA-1 and the CRA methods.
tion.

the mean distortions for FEC using MMA-1 and CRA as
a function of p,, and pyye, for Pu= Puyw=0.001. The figure P
shows that for large estimation errors MMA-1 outperformﬁ
CRA in terms of mean distortion. We observe the bigge

difference in the case of independent losses, the differente hile in th h licati h
decreases as the correlation between losses increases. Eig 600, while in the second one the application uses the

i .
13 shows the ratio of the standard deviations for the sa Q:r?;eézggn:{gz 2;1 r?r?e?r;?aale Thgoa?’ nlzicztilc)%ogéeiat[shdeR A
scenario. Based on these figures we conclude that in fife PP

presence of estimation errors MMA performs better than] the MMA-1 method to set the redundancy rate. _The cal-
CRA culated redundancy rate is used by the sender until the next

update of the estimate of the loss probability. Figs. 14 and
15 show the averages of the distortions of 5000 simulations
respectively.

articular values for loss probability were taken from mea-
urements shown in [42]. We consider two scenarios, in the
ESt one the application uses the ALI method with- 8 as
posed in [12] to estimate the channel state,rand 200,

4.3 Performance evaluation considering non-stationary

channel While CRA achieves a lower mean distortion in the sta-

tionary state of the channel, the sudden increase of the sta-
In this section we evaluate how the rate allocation meth0ﬂ§nary loss probability affects its performance more than
shown in Section 2 behave on a non-stationary channel. that of MMA-1: MMA-1 adjusts smoothly to the new chan-
study the robustness of the rate allocation methods we usge conditions. We can also observe the smaller variance of
step increase function of the packet loss probability. Fer tihe distortion using the MMA-1 method. Comparing MDC
calculations we used packet level simulations, where eaghd FEC, we see that MDC achieves a lower mean distor-
packet corresponds to one piece of information generatedtth and variance throughout the whole simulation, which
the sender application. We generate the packet loss progesa accordance with results obtained in Section 4.2. Com-
according to the Gilbert model. In the considered Scenaﬁ)@ring the two figures we conclude that a slower adaptation
P = 0.003 andpy, = 0.02 initially, after theni packet (increasing value ofi) to the changing channel conditions
they increase t@,, = 0.05 andp,,, = 0.12, and after the)d requires more robustness from the rate allocation method to
packet they decrease g, = 0.005 andp,, = 0.03. These avoid degradation of the quality.
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Fig. 12 Ratio of the mean distortions v, andpy, for the MMA- Fig. 14 Mean distortion vs. time for the MMA-1 and CRA methods
1 and CRA methods whem, = 1072, with MDC and FECh = 8, n; = 200,n, = 600
0.016 T
y 0.014k M‘*"J /FEC CRA
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Fig. 13 Ratio of the standard deviations s, and p, for the Fig. 15 Mean distortion vs. time for the MMA-1 and CRA methods
MMA-1 and CRA methods whep,,'= 1073, with MDC and FECpn = 32,m = 200,n, = 1000

5 Min-max-a for H.264 coded video intra coded macroblocks increases the encoding distortion
at a given available bitrate. The tradeoff between the ratio
In this section we show how the min-maxtate allocation ©f intra coded macroblocks, the encoding rate and the mean

method can be used to tune the error resilience of the H.2é4tortion in the absence of losses is shown in Fig. 16 for
video coder to increase the robustness of the video streantte Foreman sequence at.832rames per second in QCIF

fluctuations and sudden changes of the channel quality. format. The measure used is the peak signal to noise ratio
defined aPPSNR = 100g;0(255 /D), whereD is the mean

distortion per pixel. To conduct the simulations we used the
5.1 Error resilience in H.264 video JVT test model encoder and decoder with slight modifica-
tions in the decoder to make it able to cope with losses.
The H.264/AVC video coding standard is the newest in the We performed simulations over stationary channels mod-
line of video coding standards, suitable for both low aneled with the Gilbert model with different stationary and
high quality video communications. For an overview of theonditional loss probabilities to determine the distortiate
standard see [41]. Compared to earlier standards it hasuave in the presence of losses. Fig. 17 shows the PSNR as a
large set of error resilience features as it was developedftamction of 3 for seven different channels for the Foreman
be used in error-prone networks. While many of the featureggquence encoded at 128 kbps, each value is the average
like for example data partitioning, are suitable only for highf 40 simulations. The figure shows that for each station-
bitrate applications, others, like periodic intra updatas ary channel there is a particular valuefoivhich minimizes
always be used. Periodic intra updates are an efficient wig mean distortion. The values obtained from the simula-
to combat inter-frame error propagation without the nedins can be used to parametrize a distortion rate model of
for large intra coded frames. When periodic intra updatéise encoded video, e.g. the one presented in [34],
are used, a small portion of each frame, a certain number ® B
of macroblocks, is encoded in intra mode. Intra coded mag- 0(p _C1-pt
roblocks do not depend on previous frames, and thus stopa[%@a’ P, B) = Ra— Ro(B) +Do(B) + PuTio T4yt
propagation of errors. The higher the portion of intra coded =
macroblocks, denoted [y, the more error resilient will be The model can then be used to select the optimal value of
the video stream. On the other hand, increasing the ratiofin a changing environment. Fig. 18 shows the CoV of the
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PSNR as a function d8, showing that the CoV attains its 1 ‘
minimum not necessarily at the sad@s the mean. N ) ——P,;=0.00]
N . - - -p,=0.003
0.8 Fy . o =000
\X 3 - - p=0.01
0.61 N ——p,=0.03 ]
5.2 Performance on a non-stationary channel § T . _p,=0.05
0.4:
it

To see how the MMAa and CRA methods perform on a

non-stationary channel we use the step increase function of 0.2,

the loss probability. We sed,, = 0.005 andp,,, = 0.02 for ‘ ‘ ‘ ‘

the first 800 packets and m, = 0.03 andp,, = 0.12 after- % 20 40 60 80 100

ward. We used the Gilbert model to generate 40 loss traces Ratio ofintra coded macrobloci)(

with these parameters. The sender uses the ALI method for

loss estimation witln = 8 and assumes independent losses§ig. 18 CoV of the PSNR vs. ratio of intra coded macroblocks on a
Fig. 19 shows the PSNR vs. the frame number with tistationary channel at 128 kbps at different loss rates.

MMA-1, the MMA-25 and the CRA methods for one of the 40 ‘

loss traces. Over the 2000 frame interval shown in the figure T

the mean PSNR of the CRA method is.29, the MMA-25 a5 | il L

method 2978 and the MMA-1 method 364. The standard Lo F

deviation of the PSNR is.86, 542 and 344 respectively.

Averaged over 40 simulations the mean PSNRs ar880

31.105 and 3128 respectively, and the averages of the stan- ;

dard deviations are.83, 491 and 353 respectively, which ' ‘ L

shows the possible benefits of robust rate allocation in a non ey /

stationary environment. -~ MMA-25

w
o

PSNR [dB]
N
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N
o

15 : : =
0 500 1000 1500 2000
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Fig. 19 PSNR on a non-stationary channel at 128 kbps for three rate
allocation methods.

6 Conclusions

In this paper we presented a robust rate allocation method for
joint source-channel coding that is able to cope with chan-
nel estimation errors and changes in the channel state. We
applied our method to media-dependent forward error cor-
rection and multiple description coding, and compared its
performance to the rate allocation method commonly used in
the literature. We showed that although in terms of mean dis-
tortion min-maxe is suboptimal on a stationary channel, it
reduces the variance of the distortion significantly. Welstu
ied the effects of short term variations of the channel and es-
timation errors on the performance of the proposed method.
We showed how the proposed method can prevent severe

Fig. 16 PSNR vs. bitrate (R) and ratio of | coded macroblodks (
for the Foreman sequence at 12.5fps, QCIF.

40

HF-1- £ <-2 %
11T T

1
e

I

i

% degradations of the quality due to rapid changes on a non-
& o stationary channel. We compared the performance of FEC
. _ 3 and MDC and concluded that MDC outperforms FEC under
5 ¥ x —p =0.001f —p =0.03] . .
208 o e000d . p<00[| all circumstances, regardless of the rate-allocation nuktho
= pZ:o.oos . p::O.l the errors in the estimate of the channel state and the chan-

0 20 40 60

80 100

Ratio of intra coded macroblock3)(

nel characteristics. We applied the proposed min-maaste
allocation method to motion compensated video and showed
how it improves its error resilience on a non-stationary ehan

Fig. 17 PSNR vs. ratio of intra coded macroblocks on a stationary N€l. The proposed min-max-method can be used in con-

channel at 128 kbps at different loss rates.

junction with different error resilience solutions and abje
tive functions, such as mean opinion score. We believe that
due to the characteristics of the human audiovisual percep-
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