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Abstract Multimedia applications operating in today’s In-
ternet have to employ some form of error resilience to cope
with losses. For interactive applications with strict delay con-
straints the latency introduced by these schemes has to be
low as well. Furthermore the parameters of the applied scheme
have to be set based on measurements in a possibly rapidly
changing environment. In this paper we propose a robust
method, called min-max-α, for optimal source-channel code
rate allocation to deal with time-varying packet channels
and channel state estimation errors. We evaluate its perfor-
mance when used with forward error correction (FEC) and
multiple description coding (MDC) in both stationary and
non-stationary environments. We show that on a stationary
channel robust rate allocation is suboptimal in terms of mean
distortion, but it achieves a lower variance, while on a non-
stationary channel it prevents severe degradation of the qual-
ity. We apply the proposed rate allocation method to motion
compensated video and show that it performs better on a
non-stationary channel than minimization of the mean dis-
tortion proposed earlier.

Keywords Source-channel coding· MDC · FEC · Rate-
distortion· Real-time multimedia

1 Introduction

Real-time audio and video communication is becoming more
and more important in the Internet. The quality provided
to these applications however is still unpredictable due to
packet losses, end-to-end delay and delay jitter. Though much
research and standardization has been done in recent years,
there is no support yet from the network side for QoS in form
of resource reservation and call admission control. Thus ap-
plications that require low packet loss and delay jitter have
to employ some end-to-end mechanisms that compensate the
disturbances introduced by the network and that are robust
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to variations and estimation errors in the quality of the trans-
mission both on short and long timescales. The problem of
delay jitter is often solved on the receiver side via adaptive
playout algorithms [31,32]. Packet losses can be compen-
sated for on the sender side and the receiver side. On the re-
ceiver side receiver-based error concealment algorithms can
be used like insertion or interpolation [26,39]. On the sender
side redundant information can be added to the data flow or
error resilient source coding can be used. Whenever a packet
is lost, the redundant information can be used to reconstruct
the lost information. Forward error correction (FEC), and the
recently re-discovered multiple description coding (MDC)
have been proposed for this purpose [5,37]. Error resilience
features are included in recent video coding standards, like
the H.264 [41].

The ratio of redundancy has to be chosen in the sender in
a way that maximizes the perceived quality at the receiver.
There are several problems that have to be solved during
this optimization, called optimal rate allocation. Since the
receiver cannot calculate the distortion of the audio-visual
information, it is the sender that has to estimate the effects
of losses on the perceived quality at the receiver. The sender
can attempt to do this by maintaining an estimate of the
channel state, i.e., the state of the transmission path from
the sender to the receiver, and an estimate model of the per-
ceived quality as a function of the redundancy rate and the
channel state. Most of the work in the literature assumes a
stationary channel with known parameters and aims at min-
imizing the mean distortion [2,13,24,29,34,35,44]. A few
other works include feedback in the optimization problem,
but consider the channel state estimate to be accurate and
use it to minimize the mean distortion [1,5,33].

In this paper we propose a method, called min-max-α,
for optimal rate allocation to deal with time-varying chan-
nels and channel state estimation errors. Min-max-α aims to
minimize the maximum distortion for a set of possible future
channel states.

We compare the performance of the proposed method
to that of the common approach in the literature, i.e., min-
imizing the mean distortion for the measured packet loss
probability, under various network scenarios. First, we illus-
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trate the behavior of our method when FEC or MDC is used
for error resilience. We show that although the min-max-α
method is suboptimal in terms of mean distortion on a sta-
tionary channel, it achieves significantly lower variance.On
non-stationary channels the proposed method prevents se-
vere degradation of the quality which would otherwise occur
due to the misestimation of the channel parameters. Finally
we show how the min-max-α method can improve the error-
resilience of H.264 coded video in a non-stationary environ-
ment.

The joint selection of source coding parameters and trans-
mission power for video transmission over wireless channels
was considered in [8]. The authors used the term min-max
to denote the minimization of the mean distortion given a
bound on the maximum transmission power and the mini-
mization of the transmission power given a maximum mean
distortion. Despite of the similar name used for the approach,
the problem presented in that paper is different from ours.
In [30] the authors considered the problem of media broad-
casting in a wireless cell and minimized the maximum dis-
appointment of the users in the cell, that is, the difference
between their perceived performance and the best possible
performance. Despite the similar name used for these ap-
proaches, the addressed problems and the applied analyti-
cal tools are different from ours. The authors in [9] mini-
mized the linear combination of the mean and the variance of
the distortion of motion compensated video for given packet
loss probabilities. Our approach is conceptually differentand
offers two advantages. It is computationally less intensive
and it is not restricted to video coding: it is applicable to a
wide variety of error resilience techniques as we show it in
the paper.

The rest of the paper is organized as follows. In Section
2 we present the rate allocation methods for joint source-
channel coding. In Section 3 we describe the considered
transmission channel and the method used to estimate its
state. In Section 4 we show how the proposed min-max-
α method can be used to set the redundancy rate for FEC
and MDC. In Section 4.2 we analyze the behavior of the
rate-allocation methods on a stationary channel under vari-
ous scenarios. In Section 4.3 we consider the case of non-
stationary channels. In Section 5 we show how the rate-
allocation methods compare when applied to H.264 coded
video. We conclude our work in Section 6.

2 Rate allocation problem

We consider the scenario when delay-sensitive multimedia
traffic, such as real-time video, is transmitted from a sender
to a receiver through a network. Packets can be lost on the
transmission path due to congestion, on unreliable wireless
links, or can be discarded at the receiver due to late arrival.
To cope with losses the sender adds redundant information
to the data flow. We assume that the available transmission
rate at the sender is given, thus redundancy can be increased
by decreasing the source coding rate only.

We consider a receiver described with distortion rate func-
tion D = D(Ra, pω, pω|ω,β), whereRa is the available code
rate,pω is the stationary loss probability,pω|ω is the condi-
tional loss probability (the probability that a packet is lost,
given that the preceding packet was lost) andβ is the ratio of
redundancy. The higher the ratio of redundancyβ, the higher
the distortion will be in the absence of losses. In the pres-
ence of losses, however, a higher value ofβ gives increased
resilience to errors. The distortion rate function depends on
the source and on the means of error resilience used.

The goal of a rate allocation method is to adjust the value
of β at the sender in order to minimize the effect of losses
introduced by the network. The most widely used approach
to solve this problem is to minimize the mean distortion for
the stationary loss probability, i.e., to find the ratio of redun-
dancyβ∗ that minimizes

D(Ra, p̂ω, p̂ω|ω,β), (1)

where p̂ω is the estimated value of the loss probability and
p̂ω|ω is the estimated value of the conditional loss probabil-
ity.

There are several shortcomings of this approach however
[17]. This approach does not take into account the sensitiv-
ity of the human perception to short term variations of the
quality. Psychoacoustic models and models of the human vi-
sual system prefer constant quality, as human observers can
adapt on the long term to reasonably low, but constant qual-
ity. Even on a stationary channel with loss probabilitypω the
number of lost packetsj over a finite period of time, say, in
a block ofn packets, is a random variable (e.g. on a channel
described by the Bernoulli loss model and mean loss prob-
ability pω, the number of lost packets in a block ofn pack-
ets follows a binomial distribution with parameters(n, pω)).
Hence, the estimated loss probability ˆpω is a random vari-
able as well. IfD(Ra, pω, pω|ω,β) is not a linear function of
pω andpω|ω, then

D(Ra, pω, pω|ω,β) 6= E{p̂ω,p̂ω|ω}[D(Ra, p̂ω, p̂ω|ω,β)],

even thoughE[ p̂ω] = pω andE[ p̂ω|ω] = pω|ω if the estima-
tor is unbiased. The fluctuations in the loss probability over
short intervals can degrade the perceived quality.

2.1 Weighted mean distortion

To incorporate the effects of short term fluctuations of the
channel state, we define the weighted mean distortion, a new
evaluation criterion instead of the mean distortion definedby
(1).

Let us consider a channel described with the modelΨ
and the set of channel parametersP . Let us denote byE[s]
the mean number of packets received between two loss events,
and byP( j,E[s] + 1) the distribution of the number of lost
packets in a block ofE[s]+1 packets calculated based on the
model Ψ and the parametersP . Let us denote the density
function of j/(E[s] + 1) by π(p) and its distribution func-
tion by Π(p). Furthermore we denote theγ percent confi-
dence interval ofp by Ωγ, i.e.,Ωγ = {p : γ/2≤ 100Π(p) ≤
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100− γ/2). Using these definitions we define the weighted
mean distortion as

D =
Z

p∈Ωγ

D(Ra, p, pω|ω,β)π(p)d p. (2)

This definition of the mean distortion introduces the tempo-
ral behavior of the channel into the evaluation.

To capture the variation of the distortion we define the
standard deviation of the distortion in a similar way.

σ =

√

Z

p∈Ωγ

E[D̃(Ra, p, pω|ω,β)2]π(p)d p−D2. (3)

Finally we define the coefficient of variation of the distortion
asCoV = σ/D. Given these evaluation criteria in the follow-
ing subsection we introduce three rate allocation methods.

2.2 Rate allocation methods

In order for the application to be able to perform the rate
allocation, it has to assume a channel modelΨ̂ and has to
estimate the channel parametersP̂ . Let us denote by ˆs the
estimated mean number of packets received between two
loss events, by ˆpω = 1/(ŝ + 1) the estimated loss proba-
bility, and by P̂( j, ŝ + 1) the estimated distribution of the
number of lost packets in a block of ˆs + 1 packets calcu-
lated based on the modelΨ̂ andP̂ . Let us denote the density
function of j/(ŝ+1) by π̂(p) and its distribution function by
Π̂(p). Furthermore we denote the estimatedα percent confi-
dence interval ofp by Ω̂α, i.e.,Ω̂α = {p : α/2≤ 100Π̂(p)≤
100−α/2).

Crisp rate allocation

The rate allocation methods used in earlier works [14,22,
6,34] consider a stationary channel with known loss proba-
bility. In this case the density function of the number of lost
packets in a block becomesπ̂(p) = δ(p− p̂ω), whereδ is the
Dirac delta. Thus the optimal ratio of redundancy is given by

β∗
c = argmin

β
D(Ra, p̂ω, p̂ω|ω,β), (4)

and can be found by evaluating the the mean distortion for
all possible redundancy values. We will refer to this method
later as the crisp rate allocation (CRA) method. To evaluate
the performance of CRA the corresponding weighted mean
distortion will be calculated using (2) and denoted byDCRA.

Weighted optimal rate allocation

The rate allocation method that achieves the minimal mean
distortion in the sense of subsection 2.1 is the one that finds
the optimal value ofβ which minimizes (2),

β∗
w = argmin

β

Z

p∈Ω̂α

D(Ra, p, p̂ω|ω,β)π̂(p)d p. (5)

The corresponding weighted mean distortion can be calcu-
lated using (2) and we denote it byDWOA. We will refer
to this method later as the weighted optimal rate allocation
(WOA) method. Note, that the WOA method is computa-
tionally expensive, since the distortion has to be calculated
for all possible future channel states.

The CRA method is a special case of the WOA method:
by taking the density function̂π(p) = δ(p− p̂ω) in (5) we
get (4).

Min-max-α rate allocation

The rationale behind the proposed min-max-α rate alloca-
tion is to minimize the maximum of the distortion over the
channel states that have a certain probability of occurrence.
It will perform worse than optimal whenever the channel
state is close to the expected behavior, is robust however to
fluctuation and to sudden changes of the channel state. In
certain cases, like for example in the case of motion com-
pensated video, the effects of decreased mean distortion be-
low a certain value are not noticed by human observers [38,
40], while an improvement in the worst case performance
remains noticeable. The optimal value of the ratio of redun-
dancyβ in the min-max-α sense is

β∗
α = argmin

β
max
p∈Ω̂α

D(Ra, p, p̂ω|ω,β) (6)

We denote the corresponding weighted mean distortion by
DMMA−α, which can be calculated using (2). We will refer to
this method later as the min-max-α rate allocation (MMA-
α) method. Calculation of the optimal ratio of redundancy
in the min-max-α sense is not more computation intensive
than that of the CRA method. If the distortion rate func-
tion D(R, pω, pω|ω,β) is monotonically increasing inpω for
any value ofβ and pω|ω, then it is enough to find the opti-
mal value ofβ for maxp{p ∈ Ω̂α}. Practical distortion-rate
functions have this property, as increasing the loss probabil-
ity does, ceteris paribus, increase the distortion. If the mean
and the median of the distribution̂π(p) are equal, then the
CRA method is a special case of the MMA-α rate allocation
method, withα = 100.

3 Description of the transmission channel

3.1 Channel model

We assume that the transmission channel, i.e., the packet loss
process on the transmission path from the sender to the re-
ceiver, can be described with a two state Markovian model,
often referred to as the Gilbert model [16]. The Gilbert model
is widely used for the design and evaluation of error con-
trol solutions for channels with correlated losses due to its
simplicity and analytical tractability [14,21]. The Gilbert
model’s capability to model the packet loss process has been
investigated both via measurements [21,42,45] and analyt-
ically [7,43]. Around half of the measured traces of Inter-
net end-to-end packet losses reported in [21,42,45] could
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be modeled sufficiently well with a two state Gilbert model,
while analytical results show that the Gilbert model can cap-
ture the loss process of a single multiplexer if the level of
statistical multiplexing is high.

The Gilbert model is a two state time-discrete Markovian
model, where state 0 corresponds to the good state of the
channel, i.e., the packet is received, and state 1 to the bad
state of the channel, i.e., the packet is lost. Let us denote the
transition probability from state 0 to state 1 byp and from
state 1 to state 0 byq. Given the values ofpω and pω|ω the
parameters of the Gilbert model can be set asq = 1− pω|ω
andp = qpω/(1− pω). The Gilbert model can then be used
to calculate the probability ofj losses in a block ofn packets
as shown in [10].

The number of packets between two loss events are i.i.d.
random variables with probability mass function

P(s = i) =

{

1−q i = 0
q(1− p)i−1p i > 0 , (7)

so that the expected value of the number of packets between
two loss events isE[s] = q/p, and its variance

Var[s] =
q(2− p)−q2

p2
. (8)

In the paper we use the Gilbert model asΨ, and the set of
parametersP is {pω, pω|ω}.

3.2 Estimation of the channel parameters

Adaptive applications that want to optimize their performance
for the actual network conditions have to assume a channel
modelΨ̂ and have to estimate the state of the transmission
channelP̂ . If the assumed channel model is the Bernoulli
model, then the channel parameter to be estimated is ˆpω. If
the assumed channel model is the Gilbert model, then the
channel parameters to be estimated are ˆpω and p̂ω|ω. In par-
ticular, for the above rate allocation methods the application
needs an estimate of the loss probability and the conditional
loss probability. In the following we discuss the estimation
of these parameters.

3.2.1 Estimation of pω

On a stationary channel the estimate ˆpω can get arbitrarily
close to the stationary loss probabilitypω by calculating the
average over a sufficiently long interval. Estimation meth-
ods to be used on a non-stationary channel however have to
follow the changing state of the channel, and thus averaging
has to be done over a short interval, which in turn results in a
higher variance of the estimate. The methods proposed in the
literature to solve the problem of loss probability estimation
can be classified into two groups. Methods belonging to the
first group count the number of lost packets in a loss window,
e.g. the dynamic loss window method [12]. Methods belong-
ing to the other group measure the packet loss intervals, i.e.,
the number of received packets between two loss events, and

calculate the estimated packet loss interval based on a num-
ber of past values. The exponentially weighted moving av-
erage and the adaptive loss interval methods (ALI) [12,45]
belong to this group. The authors in [45] compared the per-
formance of several estimators using measured traces and
concluded that none of them performs significantly better
than the others.

In this analysis we will use the ALI method due to its
simplicity, even though any other on-line estimation method
could be used instead. The estimation of the average packet
loss interval is done using the following formula

ŝ =
∑n

i=1 wisi

∑n
i=1 wi

, (9)

wheresi is theith most recent measured packet loss interval
andwi are the corresponding weighting coefficients defined
as

wi =

{

1 1≤ i ≤ n/2
i−n/2
n/2+1 n/2 < i ≤ n

, (10)

and p̂ω is defined as

p̂ω =
1

ŝ+1
. (11)

As we are not aware of any analytical evaluation of the
ALI method, we present a brief evaluation here. Assuming
that thesi are i.i.d random variables with mean 1/pω−1 and
varianceσ2, the variance of ˆs is

Var[ŝ] = Var[
∑n

i=1 wisi

∑n
i=1 wi

] =
σ2 ∑n

i=1 w2
i

(∑n
i=1 wi)2

=
σ28(4n+7)

27n(n+2)
. (12)

Comparing this to the variance of the minimum variance un-
biased estimator (i.e., the unbiased estimator with the least
possible variance), which isσ2/n, the ratio of the variances
is

Var[ŝ]
σ2/n

=
8(4n+7)

27(n+2)
, (13)

which is bounded from above by 39/29 and goes to 32/27
asn goes to infinity, thus the variance of the ALI method is
close to the minimal.

If the si are correlated, and the covariancecov(si,s j) =
E[sis j]−E[si]E[s j] is a function of|i− j| only (e.g. the pro-
cess is second order stationary), i.e.,ρi, j = cov(si,s j)/σ2 =
ρ|i− j|, then the variance of the estimator is

Var[ŝ] = Var

[

∑n
i=1 wisi

∑n
i=1 wi

]

(14)

=
σ2(∑n

i=1 w2
i +2∑n

i=2 ∑i−1
j=1 wiw jρi− j)

(∑n
i=1 wi)2

, (15)

which is always greater than the one given in (12). The es-
timated value of the packet loss interval ˆs is approximately
normally distributed with mean and variance given above
due to the central limit theorem. These analytical results are
in accordance with simulation results shown in [11].



Robust Source-Channel Coding for Real-time Multimedia 5

3.2.2 Estimation of pω|ω

The estimation of the conditional loss probability does not
have much coverage in the literature, presumably because of
the difficulties regarding the collection of a sufficiently large
sample size on a non-stationary channel. For this reason in-
stead of attempting to estimate the conditional loss probabil-
ity we investigate in Section 4.2 how different assumptions
on the conditional loss probability influence the efficiencyof
the rate allocation methods.

3.2.3 Estimation of Ωα

Given p̂ω (i.e., ŝ), p̂ω|ω and the estimated channel modelΨ̂,
the application can derive the confidence intervalΩα used in
the rate allocation methods shown in Subsection 2.2. E.g., if
Ψ̂ is the Gilbert model, then̂P is { p̂ω, p̂ω|ω}, and the proba-
bility of j losses in a block ofn packets can be calculated as
shown in [10].

4 Min-max-α for FEC and MDC

In this section we illustrate the use of min-max-α via two
simple examples. We apply it to set the redundancy rate
for media-dependent forward error correction (FEC) and to
set the side and central distortions for multiple description
coding (MDC). First we give the distortion-rate functions
D(Ra, pω, pω|ω,β) for FEC and MDC. These functions are
then used to determine the optimal redundancy and the min-
imum achievable distortion with the different rate allocation
methods as given by ( 4)-(6). We use two metrics for evalu-
ation, the mean distortion and the variance of the distortion.

4.1 Distortion-rate bounds for FEC and MDC

In order to keep the examples simple, we consider a memo-
ryless Gaussian source with unit variance and use the squared
distortion measure, which is the most common distortion
measure. The reasons for the choice of the Gaussian source
are twofold. Gaussian mixture models using the weighted
sum of Gaussian densities have lately found application in
speech coding [20,36]. Furthermore, it is known that DCT
transform coefficients in motion compensated pictures have
a generalized Gaussian distribution [19]. The distortion-rate
function for a Gaussian source with unit variance and squared
distortion measure in the absence of losses (i.e., due to quan-
tization) is given as

D(R) = 2−2R, (16)

whereR is the code rate andD(R) is the distortion [18].
To calculate the variance of the distortion we have to cal-

culate its second momentE[D̃2], sinceV [D̃] = E[D̃2]−D2,
where D is the mean distortion. The coefficient of varia-
tion is then the square root of the ratio of the variance and
the meanCoV [D̃] =

√

V [D̃]/D2. In the following we give

a lower bound on the CoV of the distortion for a Gaussian
source with zero mean and the squared distortion measure.

Proposition 1 Given a Gaussian random variable with 0
mean and variance σ2 with pdf p, a squared difference dis-
tortion measure d(x,y) =L(x− y) =(x− y)2, then

CoV [D̃] ≥

√

4eΓ
(

3
4

)4

π2
−1.

The proof of the proposition can be found in the Appendix.
The bound is independent of the code rateR, and can eas-

ily be checked that it holds forR = 0, in which case the sec-
ond moment of the distortion is given by the fourth central
moment of the Gaussian r.v., i.e.,E[D̃2] = 3σ4, and thus the
variance of the distortion isV [D̃] = 2σ4, andCoV [D̃] =

√
2.

Throughout the paper we will use this value as the CoV of
the distortion. We introduce the notationς = CoV [D̃]2 +1=
3, so that given the mean distortion for code rateR, we esti-
mate the second moment of the distortion as

E[D̃2] = ςD(R)2. (17)

In the presence of information loss on the transmission
channel, the distortion depends not only on the code and re-
dundancy rate but also on the error control scheme applied.
In the following we discuss the distortion-rate characteristics
of FEC and MDC for total available rateRa.

4.1.1 Distortion-rate bounds for FEC

In the following analysis we consider media-dependent FEC,
proposed by the IETF and implemented in Internet audio
tools like Rat [28] and Freephone [15], and in the H.264
video coding standard. The idea behind media-dependent
FEC is to add a redundant copy of the original packet to one
of the subsequent packets. The redundant packet is heavily
compressed, so that quality reconstructed from the redun-
dant packet is low, but still better than when there is nothing
to play out. Proposed ways to improve the performance of
the scheme are to increase the offset between the original
packet and the redundant one [23] and to send multiple re-
dundant copies in subsequent packets [5]. The performance
of this FEC scheme has been evaluated via simulations in
[27] and analytically in [3,4,6]. The results show that if the
ratio of the traffic implementing FEC is small, streams can
benefit from using FEC.

In the case of media-dependent FEC the first and the sub-
sequentν−1 (redundant) descriptions are encoded indepen-
dent from each other, and thus, if any of them is received,
its distortion is given by (16). We denote the rate allocated
to the primary encoding withRFEC

1 and the rate allocated to
the kth (redundant) copy withRFEC

k . The redundancy ratio
introduced by the FEC is thenβ = ∑ν

k=2 RFEC
k /RFEC

1 , where
RFEC

1 = Ra/(1+ β). We denote the distortion of the origi-
nal encoding withDFEC

1 , while the distortion of thekth re-
dundant, low quality encoding withDFEC

k . In the case, when
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both the primary and some redundant encodings are received,
the redundant encodings can not be used to reduce the dis-
tortion of the original encoding. In our analysis we consider
the caseν = 2, as this is most commonly used.

The mean distortion of the FEC scheme with two de-
scriptions can be calculated as the weighted sum of the dis-
tortions of the cases when both descriptions are received,
only one of them is received or none of them is received

DFEC(Ra, pω, pω|ω,β) = (pαα(n)+ pαω(n))DFEC
1

+pωα(n)DFEC
2 + pωω(n), (18)

wherepαα(n), pαω(n), pωα(n), pωω(n) are the probabilities
of the joint loss or reception of two packetsn packets apart,
and can be calculated based onpω and pω|ω. The second
moment of the distortion can be calculated similarly

E[D̃FEC(Ra, pω, pω|ω,β)2] = {(pαα(n)+ pαω(n))(DFEC
1 )2(19)

+pωα(n)(DFEC
2 )2 + pωω(n)}ς.

4.1.2 Distortion-rate bounds for MDC

MDC addresses the problem of joint source and channel
coding. Originally designed for the transmission of multiple
descriptions of a single source over independent channels,
it has been rediscovered recently for use in packet switched
networks [37]. In the case of MDC, several coded descrip-
tions of the same source are sent over different channels. If
only one of the descriptions is received, it is used for re-
construction with a certain accuracy. If more than one de-
scriptions are received, then the information from the other
descriptions can be used to enhance the accuracy (in con-
trast to FEC, where the redundant copy can not be used to
enhance quality). In a packet switched network, instead of
using separate channels, one can put the different encodings
into different packets and send them in subsequent packets,
similarly to the case of FEC. In the general case, the amount
of information sent over the separate channels (packets) can
be different; however in single-path packet networks, which
offer identical treatment to all packets, it can be shown that
balanced MDC, i.e., the one sending the same amount of in-
formation in all packets, is optimal [18].

In the case of MDC we consider the (balanced) two-
channel case. We denote the rate allocated to individual de-
scriptions byRMDC

1 = Ra/2. The distortion when both de-
scriptions are received, called the central distortion, isde-
noted byDMDC

0 and the distortion if only one of the descrip-
tions is received, called the side distortion, is denoted by
DMDC

1 . The distortion rate bounds for the 2-channel MDC
are [25]

DMDC
1 ≥ 2−2Ra/2 (20)

DMDC
0 (Ra,D

MDC
1 ) ≥ 2−2Ra γ(Ra,D

MDC
1 ), (21)

whereγ(Ra,DMDC
1 ) = 1 if 2DMDC

1 > 1+DMDC
0 and

γ(Ra,D
MDC
1 ) =

1

1−{(1−DMDC
1 )−

√

(DMDC
1 )2−2−2Ra}2

otherwise. Equation (21) shows that if the side distortion is
not large then the central distortion is higher than the dis-
tortion rate minimum. We can interpret 2−2Ra/2/DMDC

1 as the
ratio of redundancyβ, the higher its value, the more robust
MDC will be to errors. For a primer on rate distortion theory
and multiple description coding see [18].

The mean distortion and the second moment of the dis-
tortion of MDC can be calculated similarly to that of FEC

DMDC(Ra, pω, pω|ω,β) = pαα(n)DMDC
0 (DMDC

1 )

+(pαω(n)+ pωα(n))DMDC
1

+pωω(n), (22)

E[D̃MDC(Ra, pω, pω|ω,β)2] = {pαα(n)DMDC
0 (DRa,MDC

1 )2

+(pαω(n)+ pωα(n))(DMDC
1 )2

+pωω(n)}ς. (23)

4.2 Performance evaluation considering stationary channel

In this subsection we discuss how the rate allocation meth-
ods shown in Section 2 behave in a stationary environment
used in combination with FEC and MDC.

We evaluate the performance of the CRA and the MMA-
α methods forα=1,5,10,25 by comparing the mean and the
standard deviation of the weighted distortions at the opti-
mal level of redundancy. We show distortion values relative
to the ones achievable with the WOA method. WOA would
minimize the weighted distortion in all stationary cases, but
it is not feasible for real-time applications due to its com-
plexity.

Both for FEC and MDC we consider the case of two
descriptions, and the spacing between the packetsn = 1. For
brevity we will show figures forD(Ra) = 10−4 only. The
choice of a fixed rate does not limit the validity of our results,
similar results can be obtained for other values ofRa. If the
application uses some form of rate control, and henceRa

varies over time as a function of the packet loss probability,
then the optimal rate of redundancy has to be chosen with
respect to the actual available rate. Often we use FEC as an
example, the results with MDC are similar, as it is shown in
some cases.

We consider the transmission of a sequence of packets
through a lossy transmission path. Applications set the re-
dundancy rate based on the estimated loss parameters and
the estimated channel model. We calculate usingΨ andP
the corresponding weighted mean distortion (2) and the stan-
dard deviation of the distortion (3).

We consider three cases. First we assume that the appli-
cation has perfect channel information. Then, we assume,
that the application has a perfect estimate on the loss prob-
ability but not on the conditional loss probability. In bothof
these cases ˆpω = pω. Finally, we consider the case when the
application uses the ALI method to estimate the loss proba-
bility.
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4.2.1 Perfect channel information

First we consider the case when the application has a per-
fect estimate of the channel state, i.e., the loss probability
p̂ω = pω and the conditional loss probability ˆpω|ω = pω|ω.
The channel model̂Ψ used by the application is the Gilbert
model, thusΨ̂ = Ψ. Figure 1 shows the mean distortions
achieved using the MMA-1 and the CRA methods divided
by that of the WOA method. The figure shows that in terms
of mean distortion the CRA method is optimal (DFEC

CRA /DFEC
WOA ≈

1). The MMA-1 method performs worse than the CRA method,
especially if both the loss probability and the conditional
loss probability are low. Figure 2 shows the the standard de-
viations of the distortions achieved using the MMA-1 and
the CRA methods divided by that of the WOA method. As
can be seen, the MMA-1 method has a significantly lower
standard deviation than the CRA method, thus MMA-1 ef-
fectively decreases the fluctuations of the perceived quality.
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Fig. 1 Mean distortions vs.pω for the MMA-1 and the CRA meth-
ods compared to the WOA method.

10
−3

10
−2

10
−1

0.4

0.5

0.6

0.7

0.8

0.9

1
1.05

Loss probability (pω)

σF
E

C
...

/σ
F

E
C

W
O

A

 

 

MMA−1, pω|ω=pω
MMA−1, pω|ω=0.01

MMA−1, pω|ω=0.1

MMA−1, pω|ω=0.5

CRA, pω|ω=pω
CRA, pω|ω=0.01

CRA, pω|ω=0.1

CRA, pω|ω=0.5

Fig. 2 Standard deviations vs.pω for the MMA-1 and the CRA
methods compared to the WOA method.

4.2.2 Partial channel information

In this subsection we consider the case when the applica-
tion has a perfect estimate of the loss probability, ˆpω = pω,
but has no information about the conditional loss probabil-

ity. First we consider the case when the channel modelΨ̂
used by the application is the Bernoulli model, i.e., the ap-
plication assumes independent losses. The Bernoulli-model
is a lower order model than the actual channel modelΨ, the
Gilbert-model. Fig. 3 shows the distortions obtained by the
MMA-1 and the CRA methods using the Bernoulli chan-
nel model divided by the distortion obtained by the WOA
method with perfect channel state information (i.e., aware
of pω|ω, denoted by WOA-i in the figures). The figure shows
significant difference compared to Fig. 1 when the loss pro-
cess is highly correlated, for modest levels of correlation,
i.e., below a conditional loss probability of 0.1 there is prac-
tically no difference.
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Fig. 3 Mean distortions vs.pω and pω|ω for the MMA-1 and CRA
methods with partial channel information compared to the WOA
method with perfect channel information.

To see how the relationship of ˆpω|ω and pω|ω influences
the results, we now consider the case when the channel model
Ψ̂ used by the application is the Gilbert model, and the value
p̂ω|ω is chosen by the application betweenpω and 0.9. The
loss probability ispω = 10−3. Fig. 4 shows the ratio of the
mean distortion for the CRA method choosing ˆpω|ω and that
of the CRA method with perfect channel information (de-
noted by CRA-i), as well as the ratio of the mean distor-
tion for the MMA-1 method choosing ˆpω|ω and that of the
MMA-1 method with perfect channel information (denoted
by MMA-1-i). The figure shows that overestimatingpω|ω re-
sults in poorer performance than underestimating it. Com-
paring the curves corresponding to the two rate allocation
methods we see that the CRA method is more sensitive to
the misestimation ofpω|ω than the MMA-1 method. Fig. 5
shows the ratios of the standard deviations for the CRA and
MMA-1 methods for the same scenario. The conclusions are
similar, the CRA method is more sensitive to the misestima-
tion of pω|ω than the MMA-1 method, and overestimating
pω|ω results in higher variance than underestimating it.

4.2.3 Measured channel information

In this subsection we consider the case when the application
uses the ALI method to estimate the loss probability, and
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Fig. 5 Standard deviations vs. ˆpω|ω for the MMA-1 and the CRA
methods with partial channel information compared to the case with
perfect channel information.

hence the estimate ˆpω = 1/(1+ ŝ) is a random variable. We
calculate the 99 percent confidence interval of ˆpω based on
Ψ (the Gilbert model),P (pω and pω|ω) and (12). Then we
calculate the optimal redundancy rate using the CRA, the
WMA and the MMA-α methods corresponding to the ˆpω
values in the confidence interval. Based onP , (2) and (3)
we calculate the distortions corresponding to the optimal re-
dundancy rate, and calculate the weighted average of these
distortions, where the weights are the probabilities of theoc-
currence of ˆpω. We assume that in lack of a reliable estimate
of p̂ω|ω the application assumes independent losses. Based
on the observations of the previous subsection this behav-
ior is the most robust for FEC and MDC, while it will not
influence the results significantly.

Fig. 6 shows the mean distortion achieved using the MMA-
1 and the CRA methods based on the estimated channel
parameters divided by the mean distortion achieved using
the WOA method based on the correct channel parameters.
As an effect of the estimation ofpω the mean distortions
increase especially for correlated losses. Fig. 7 shows the
standard deviation achieved using the MMA-1 and the CRA
methods based on the estimated channel parameters divided
by the standard deviation achieved using the WOA method
based on the correct channel parameters.
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Fig. 6 Mean distortions vs.pω for the MMA-1 and the CRA meth-
ods compared to the WOA method with perfect channel informa-
tion.
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Fig. 7 Standard deviations vs.pω for the MMA-1 and the CRA
methods compared to the WOA method with perfect channel infor-
mation.

Next we compare results obtained with the MMA-α method
for different values ofα. Fig. 8 shows the mean distortions
of the MMA-α methods and the CRA method divided by
that of the WOA method with perfect channel information
for the case of independent losses. Fig. 9 shows the standard
deviations for the same scenario. The figures show the trade-
off between the mean distortion and the standard deviation,
and thatα has to be selected according to the application’s
requirements on these values.

To compare the performance of FEC and MDC we show
the ratio of their mean distortions using the MMA-1 and the
CRA method in Fig. 10. The curves corresponding to the
same conditional loss probability but different rate alloca-
tion method show similar charateristics. The results, MDC
is always better in terms of mean distortion, coincide with
those obtained for the long term average in [6]. In Fig. 11 we
show the ratios of the standard deviations of FEC and MDC
for the CRA and the MMA-1 methods. The figure shows
that MDC gives a lower variance than FEC independent of
the rate allocation method used. Comparing the CRA and
MMA-1 methods shows that while the ratio of the mean dis-
tortions is slightly higher with the MMA-1 method, the ratio
of the standard deviations is slightly lower.

Finally we evaluate how the mean distortion evolves in
the case of misestimation ofpω. Fig. 12 shows the ratio of
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Fig. 8 Mean distortions vs.pω for the MMA-α and CRA methods
compared to the WOA method with perfect channel information.
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Fig. 9 Standard deviations vs.pω for the MMA-α and CRA meth-
ods compared to the WOA method with perfect channel informa-
tion.

the mean distortions for FEC using MMA-1 and CRA as
a function of pω and pω|ω for p̂ω= p̂ω|ω=0.001. The figure
shows that for large estimation errors MMA-1 outperforms
CRA in terms of mean distortion. We observe the biggest
difference in the case of independent losses, the difference
decreases as the correlation between losses increases. Fig.
13 shows the ratio of the standard deviations for the same
scenario. Based on these figures we conclude that in the
presence of estimation errors MMA performs better than
CRA.

4.3 Performance evaluation considering non-stationary
channel

In this section we evaluate how the rate allocation methods
shown in Section 2 behave on a non-stationary channel. To
study the robustness of the rate allocation methods we use a
step increase function of the packet loss probability. For the
calculations we used packet level simulations, where each
packet corresponds to one piece of information generated by
the sender application. We generate the packet loss process
according to the Gilbert model. In the considered scenario
pω = 0.003 andpω|ω = 0.02 initially, after thenst

1 packet
they increase topω = 0.05 andpω|ω = 0.12, and after thennd

2
packet they decrease topω = 0.005 andpω|ω = 0.03. These
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Fig. 10 Ratio of the mean distortions vs.pω of FEC and MDC using
the the MMA-1 and the CRA method.

10
−3

10
−2

10
−1

0.9

1

1.2

1.4

1.6

1.8

2

Loss probability (pω)

σF
E

C
...

/σ
M

D
C

...
 

 
MMA−1, pω|ω=pω
MMA−1, pω|ω=0.01

MMA−1, pω|ω=0.1

MMA−1, pω|ω=0.5

CRA, pω|ω=pω
CRA, pω|ω=0.01

CRA, pω|ω=0.1

CRA, pω|ω=0.5

Fig. 11 Ratio of the standard deviations vs.pω of FEC and MDC
using the MMA-1 and the CRA methods.

particular values for loss probability were taken from mea-
surements shown in [42]. We consider two scenarios, in the
first one the application uses the ALI method withn = 8 as
proposed in [12] to estimate the channel state, andn1 = 200,
n2 = 600, while in the second one the application uses the
ALI method with n = 32 andn1 = 200, n2 = 1000. Based
on the estimated channel state the application uses the CRA
or the MMA-1 method to set the redundancy rate. The cal-
culated redundancy rate is used by the sender until the next
update of the estimate of the loss probability. Figs. 14 and
15 show the averages of the distortions of 5000 simulations
respectively.

While CRA achieves a lower mean distortion in the sta-
tionary state of the channel, the sudden increase of the sta-
tionary loss probability affects its performance more than
that of MMA-1: MMA-1 adjusts smoothly to the new chan-
nel conditions. We can also observe the smaller variance of
the distortion using the MMA-1 method. Comparing MDC
and FEC, we see that MDC achieves a lower mean distor-
tion and variance throughout the whole simulation, which
is in accordance with results obtained in Section 4.2. Com-
paring the two figures we conclude that a slower adaptation
(increasing value ofn) to the changing channel conditions
requires more robustness from the rate allocation method to
avoid degradation of the quality.
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MMA-1 and CRA methods when ˆpω = 10−3.

5 Min-max-α for H.264 coded video

In this section we show how the min-max-α rate allocation
method can be used to tune the error resilience of the H.264
video coder to increase the robustness of the video stream to
fluctuations and sudden changes of the channel quality.

5.1 Error resilience in H.264 video

The H.264/AVC video coding standard is the newest in the
line of video coding standards, suitable for both low and
high quality video communications. For an overview of the
standard see [41]. Compared to earlier standards it has a
large set of error resilience features as it was developed to
be used in error-prone networks. While many of the features,
like for example data partitioning, are suitable only for high
bitrate applications, others, like periodic intra updatescan
always be used. Periodic intra updates are an efficient way
to combat inter-frame error propagation without the need
for large intra coded frames. When periodic intra updates
are used, a small portion of each frame, a certain number
of macroblocks, is encoded in intra mode. Intra coded mac-
roblocks do not depend on previous frames, and thus stop the
propagation of errors. The higher the portion of intra coded
macroblocks, denoted byβ, the more error resilient will be
the video stream. On the other hand, increasing the ratio of
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Fig. 14 Mean distortion vs. time for the MMA-1 and CRA methods
with MDC and FEC,n = 8, n1 = 200,n2 = 600
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Fig. 15 Mean distortion vs. time for the MMA-1 and CRA methods
with MDC and FEC,n = 32,n1 = 200,n2 = 1000

intra coded macroblocks increases the encoding distortion
at a given available bitrate. The tradeoff between the ratio
of intra coded macroblocks, the encoding rate and the mean
distortion in the absence of losses is shown in Fig. 16 for
the Foreman sequence at 12.5 frames per second in QCIF
format. The measure used is the peak signal to noise ratio
defined asPSNR = 10log10(2552/D), whereD is the mean
distortion per pixel. To conduct the simulations we used the
JVT test model encoder and decoder with slight modifica-
tions in the decoder to make it able to cope with losses.

We performed simulations over stationary channels mod-
eled with the Gilbert model with different stationary and
conditional loss probabilities to determine the distortion-rate
curve in the presence of losses. Fig. 17 shows the PSNR as a
function of β for seven different channels for the Foreman
sequence encoded at 128 kbps, each value is the average
of 40 simulations. The figure shows that for each station-
ary channel there is a particular value ofβ which minimizes
the mean distortion. The values obtained from the simula-
tions can be used to parametrize a distortion rate model of
the encoded video, e.g. the one presented in [34],

D(Ra, pω,β) =
θ(β)

Ra −R0(β)
+D0(β)+ pωσ2

u0

1/β−1

∑
t=0

1−βt
1+ γt

.

The model can then be used to select the optimal value of
β in a changing environment. Fig. 18 shows the CoV of the
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PSNR as a function ofβ, showing that the CoV attains its
minimum not necessarily at the sameβ as the mean.

5.2 Performance on a non-stationary channel

To see how the MMA-α and CRA methods perform on a
non-stationary channel we use the step increase function of
the loss probability. We setpω = 0.005 andpω|ω = 0.02 for
the first 800 packets and topω = 0.03 andpω|ω = 0.12 after-
ward. We used the Gilbert model to generate 40 loss traces
with these parameters. The sender uses the ALI method for
loss estimation withn = 8 and assumes independent losses.

Fig. 19 shows the PSNR vs. the frame number with the
MMA-1, the MMA-25 and the CRA methods for one of the
loss traces. Over the 2000 frame interval shown in the figure
the mean PSNR of the CRA method is 29.89, the MMA-25
method 29.78 and the MMA-1 method 30.64. The standard
deviation of the PSNR is 5.76, 5.42 and 3.44 respectively.
Averaged over 40 simulations the mean PSNRs are 30.88,
31.105 and 31.28 respectively, and the averages of the stan-
dard deviations are 5.43, 4.91 and 3.53 respectively, which
shows the possible benefits of robust rate allocation in a non-
stationary environment.
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Fig. 16 PSNR vs. bitrate (R) and ratio of I coded macroblocks (β)
for the Foreman sequence at 12.5fps, QCIF.
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Fig. 17 PSNR vs. ratio of intra coded macroblocks on a stationary
channel at 128 kbps at different loss rates.
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stationary channel at 128 kbps at different loss rates.
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Fig. 19 PSNR on a non-stationary channel at 128 kbps for three rate
allocation methods.

6 Conclusions

In this paper we presented a robust rate allocation method for
joint source-channel coding that is able to cope with chan-
nel estimation errors and changes in the channel state. We
applied our method to media-dependent forward error cor-
rection and multiple description coding, and compared its
performance to the rate allocation method commonly used in
the literature. We showed that although in terms of mean dis-
tortion min-max-α is suboptimal on a stationary channel, it
reduces the variance of the distortion significantly. We stud-
ied the effects of short term variations of the channel and es-
timation errors on the performance of the proposed method.
We showed how the proposed method can prevent severe
degradations of the quality due to rapid changes on a non-
stationary channel. We compared the performance of FEC
and MDC and concluded that MDC outperforms FEC under
all circumstances, regardless of the rate-allocation method,
the errors in the estimate of the channel state and the chan-
nel characteristics. We applied the proposed min-max-α rate
allocation method to motion compensated video and showed
how it improves its error resilience on a non-stationary chan-
nel. The proposed min-max-α method can be used in con-
junction with different error resilience solutions and objec-
tive functions, such as mean opinion score. We believe that
due to the characteristics of the human audiovisual percep-
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tion the proposed robust rate allocation method can provide
better perceived quality in an algorithmically efficient way
than the approach of minimizing the mean distortion.

Appendix

Proof of Proposition 1: We will prove the proposition with
help of the Shannon lower bound, which says that given a
continuous random variable, described by a pdf p and differ-
ence distortion measured(x,y) = L(x− y), then

R(D) ≥ RSLB(D)

where

RSLB(D) = h(p)+ loga(D)−Db(D)

where a(D) and b(D) are solutions to the equations

a(D)
Z

e−b(D)L(x)dx = 1 (24)

a(D)
Z

L(x)e−b(D)L(x)dx = D. (25)

At a given rate R the lower bound for the second moment of
the distortion with respect to the squared distortion measure
can not be less than the lower bound for the mean distortion
with respect to the quartic distortion measure. Thus we will
derive the distortion-rate function for the quartic distortion
measure and use it as a lower bound for the second moment
of the distortion with respect to the squared distortion mea-
sure. ¿From equation (24) we have that

a(D) =
b(D)1/4

√
2Γ

(

3
4

)

π
so that equation (25) evaluates to

1
4b(D)

= D.

Thus using natural logarithms the Shannon lower bound for
the quartic distortion measure becomes

RSLB4(D) =
1
2

log(
2
√

πeσ2Γ
(

3
4

)2

√
D

).

Similarly we derive the Shannon lower bound for the squared
distortion measure

RSLB2(D) =
1
2

log
σ2

D
.

We can invert both R(D) functions and calculate the ratio

D4(R)

D2(R)2
=

4eΓ
(

3
4

)4

π2
,

which leads to the proposition.
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