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Abstract— In this paper we propose an analytical model of
a resilient, tree-based end-node multicast streaming architecture
that employs path diversity and forward error correction for
improved resilience to node churns and packet losses. We show
that this architecture can distribute data to nodes arbitrarily far
away from the root of the trees as long as the loss probability
is lower than a certain threshold, but the probability of packet
reception suddenly drops to zero once this threshold is exceeded.
The value of the threshold depends on the ratio of redundancy
and on the number of the distribution trees.

I. INTRODUCTION

The delivery of streaming media over end-point overlays
has received much attention recently ([1], [2] and references
therein). Although current commercial content delivery net-
works are capable of supporting many simultaneous streams,
end-node-based multicast could considerably decrease the cost
of large scale streaming, while being resilient to sudden surges
in the client population, such as flash crowds. In an end-point-
based multicast distribution system end-points are organized
or organize themselves into an application layer overlay and
distribute the data among themselves. The main advantages are
that such a system is easy to deploy and it reduces the load
of the content provider, since the distribution cost in terms of
bandwidth and processing power is shared by the nodes of the
overlay.

Since the success of such schemes depends on the behavior
of the participating nodes, several issues have to be dealt with,
such as the effects of group dynamics, stability of the system
or the incentives for nodes to collaborate. Furthermore, since
nodes receive data from their peer nodes only, the performance
of such a scheme in an error prone environment is unclear due
to possible error propagation.

The first proposed architectures focused primarily on low
overhead due to control traffic and on the efficiency of the
data distribution. They were based on a mesh [3], [4] or a
single distribution tree [5]. Resilience to node failures and
error prone transmission paths appeared as important criteria
later.

Robustness to node churns, i.e. node departures that disturb
the data flow, was considered in SRMS [6] by distributing
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packets to randomly chosen neighbors outside of the distri-
bution tree. Though this scheme provides some resilience to
losses, it is known that repeating information is less efficient
than using error correcting codes. SplitStream [7] and CoopNet
[1] introduce multiple distribution trees and employ priority
encoding transmission (PET) [8] based on forward error cor-
rection (FEC) [9] to decrease the effects of node failures and to
recover from packet losses. Simulations were used to show the
resilience of these schemes under various scenarios showing
that increasing the number of trees improves the resilience
both to packet losses and node churns.

Feasibility issues of small overlays with less than 100
nodes were discussed in detail in [10] based on experimental
broadcasts over the Internet, and showed promising results.
The experiments showed that poor performance was due
in a large extent to packet losses. The feasibility of larger
deployments was studied for a CoopNet like end-node overlay
via simulations based on measured traces of user behavior in
[2]. The authors concluded that application layer multicast
architectures have enough resources, are stable in spite of
group dynamics and hence can support large scale streaming
content distribution.

Albeit there is an extensive literature on end-point-based
multicast streaming, previous work on the behavior of these
systems was limited to simulations. In this paper we present
a simple model for a CoopNet like overlay, and evaluate the
performance of such a system for a large number of nodes.
Our results show that an arbitrarily high packet reception
probability can be achieved independent of the number of
nodes in the overlay by adding enough redundancy. The packet
reception probability goes however to zero if there is not
enough redundancy added. The transition between the stable
and non-stable states of the system is ungraceful, which can
raise problems in a dynamic environment.

The paper is organized as follows. In Section II we briefly
describe the architecture of the considered end-point-based
application overlay for multicast. In Section III we present the
mathematical model and the main results. In Section IV we
discuss the performance of the system based on the analytical
model and simulations. In Section V we conclude our work.



II. SYSTEM DESCRIPTION

We consider an application overlay as the one described in
[1], [2] consisting of a root node and N peer nodes. Peer nodes
are organized in t distribution trees, either by a distributed
protocol or a central entity like in [1]. The nodes are members
of all t trees, and in each tree they have a different parent
node from which they receive data and a different child node
to which they forward data. Child nodes of the root node can
have the same parent (i.e. the root) in more than one tree.
Upon construction of the distribution trees each node is at the
same distance from the root node in all trees, and we will
refer to nodes at distance i nodes from the root as members
of layer i. In the presence of group dynamics it is the task of
the tree building algorithm to ensure that all parent nodes of a
node are in the same or almost the same layer. We denote the
number of children of the root node in each tree by m, and
we call it the multiplicity of the root node. The number of
layers in the distribution tree is N/m. Typically the number of
distribution trees is no more than the multiplicity of the root
node m ≥ t; we will consider this case in the analysis. We
assume that nodes do not contribute more bandwidth towards
their children as they use to download from their parents, so
that the multiplicity of the peer nodes is one, i.e. they have
one child in each distribution tree (See Fig. 1).
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Fig. 1. Multicast tree structure for t = 3, m = 3 and N = 6.

The root uses block based FEC, e.g. Reed-Solomon codes,
so that nodes can recover from packet losses due to network
congestion and node departures. To every k packets of infor-
mation c packets of redundant information are added resulting
in a block length of n = k+c. We denote this FEC scheme by
FEC(n,k). FEC can be used to implement MDC as described
in [1] or PET (UXP) as described in [8] if layered coding is
supported by the coder. In case of losses the lost packets can
be reconstructed as long as no more than c packets are lost out
of n packets. The root sends every t th packet to its children
in a given tree. If n ≤ t then at most one packet of a block
is distributed over the same distribution tree. Peer nodes relay
the packets upon reception to their respective child nodes, and
once they received at least k packets of a block of n packets
they recover the remaining c packets and send them to the
child nodes in the corresponding distribution trees. A packet
received from the parent node after it has been decoded based
on other packets in the block will be discarded.

III. MATHEMATICAL MODEL

Our goal is to calculate the probability π(i) that a node in
layer i of the distribution tree receives or can reconstruct an

arbitrary packet. We denote the probability that a packet is lost
on the path between two adjacent peer nodes by p (0 < p < 1),
and assume that the probability of losses is independent. We
assume that the probability that a node is in possession of
a packet is independent of the probability that another node
in the same layer possesses a packet from the same block of
packets. We will comment on the validity and possible effects
of these assumptions later.

In the following we give a nonlinear recurrence equation to
calculate the evolution of π(i). As the root node is assumed
to possess all packets, we have the initial condition

π(0) = 1. (1)

Let us define the probability πa(i) as the probability that a node
in level i receives an arbitrary packet from its parent node.
With the above assumptions this probability can be expressed
as

πa(i) = (1− p)π(i−1), i > 0 (2)

A node in layer i will possess a packet if it receives it, or
if it can reconstruct it using FEC, which is reflected in the
following equation for i≥ 1

π(i) = πa(i)+(1−πa(i)) (3)
n−1

∑
j=k

(

n−1
j

)

πa(i)
j(1−πa(i))

n−1− j.

By substituting (2) into (3) we get the nonlinear recurrence
equation

π(i+1) = π(i)(1− p)+
n−1

∑
j=k

(

n−1
j

)

(4)

(π(i)(1− p)) j(1−π(i)(1− p))n− j,

which describes the evolution of π(i). If (4) has a fixed point,
then in that fixed point π(i+1) = π(i).

We can rewrite (4) by subtracting π(i) from both sides and
omitting the indices to

f (π) = −πp+ (5)
n−1

∑
j=k

(

n−1
j

)

(π(1− p)) j(1−π(1− p))n− j.

Since π(i+1)−π(i) = f (π(i)) we have that for any layer i if
f (π(i)) < 0 then π(i+1) < π(i), if f (π(i)) > 0 then π(i+1) >
π(i) and if f (π(i)) = 0 then π(i+1) = π(i) and π(i) is a fixed
point. Starting with π(0) = 1 as in eq. (1) the value of π(i) will
decrease as long as f (π(i)) < 0. The roots of f (π) correspond
to the fixed points of (4), and if f (π) has a real root r in the
interval (0,1) and the derivative f (1)(r) = d

dπ f (π)π=r < 0 then
π(∞) = limi→∞ π(i) = r. A root r with f (1)(r) > 0 is not stable
on the other hand. We will call the system stable if π(∞) > 0
and unstable otherwise. To check the existence and the number
of real roots of f (π) in (0,1) we investigate the signs of f (π)
at the endpoints of the interval (see Fig. 2 for some examples).
For any p > 0 the ratio of successfully received or recovered
packets has to be less than 1, so that f (1) < 0. Since π = 0 is
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Fig. 2. f (π) vs. π for different ratios of redundancy and loss
probabilities. At the root closest to 1 (if it exists) the derivative is
negative and hence the corresponding fixed point is stable.

a zero of f (π) we have to calculate f (1)(0) to see the sign of
f (0+) = limπ→0+ f (π).

If k = 1 then we get that f (1)(0) = n(1− p)−k, and thus if
p < (n− k)/n then f (1)(0) > 0 and consequently f (0+) > 0.
Hence there has to be at least one root r in (0,1) for which
f (1)(r) < 0 resulting in a asymptotically stable fixed point (the
solid line in Fig. 2). It follows that for any loss probability p
there is a ratio of redundancy c/k above which limi→∞ π(i) > 0.
Otherwise, if p≥ (n− k)/n, then the number of real roots in
(0,1) is either zero or an even number, and using Sturm’s
theorem [11] we find that the number of roots in (0,1) is 0
for any p (the dashed line in Fig. 2).

If k > 1 then we have f (1)(0) = −p, which is always
negative, and thus the number of real roots in (0,1) is either
zero or an even number. By using Sturm’s theorem we find
for any p that the number of real roots in (0,1) is no more
than two (counting their multiplicity). If they exist, denoted
by r1 and r2 (r1 ≤ r2), then f (1)(r2) < 0, and π(∞) = r2 (the
dotted line in Fig. 2). Since f (π) > 0 for r1 < π < r2, the
above result holds for any r1 < π(0) ≤ 1 as initial condition.
Similarly, even if r1 < π(i) < r2 for some i, we have π(∞) = r2.
With other words, the system can recover from disturbances,
as long as π(i) > r1. Without a proof we state that r1 < r2 for
0 < p < pmax, where for pmax r1 = r2. However, f (π) has no
roots in (0,1) for p > pmax (the dash-dotted line in Fig. 2).

In the following we discuss the validity and effects of certain
assumptions made in the model. Losses in the Internet are
known to be correlated [12], which might influence the results
obtained with the model. In particular, if losses occur in bursts
at the output links of the nodes, the burstiness influences the
results if packets from the same block are distributed over
the same distribution tree, i.e. t < n, but does not influence
them otherwise. Bursty losses that occur in the backbone
will influence the results if packets from different distribution
trees traverse the same bottleneck link in the backbone. Worse
performance has to be expected however if bursty losses occur
on the input links of the nodes, in which case the potential
of FEC to recover from losses decreases. End-nodes with
asymmetric links (e.g. ADSL) will have bottlenecks at the
outgoing links, hence correlated losses are more likely to occur

there. The assumptions n ≤ t and m ≥ t are made to ensure
independence of the losses of packets in the same block and to
ensure that each node has different parents in all of the trees
respectively. Removing these assumptions will make losses
more correlated, and hence worsen the performance of the
distribution tree.

The model does not take into account node departures,
which have to be dealt with in the considered scenario. We
argue however that node departures can be incorporated in
the model as an increase of the packet loss probability as
pd = Nd/N ∗ T , where Nd is the mean number of nodes
departing per time unit and T is the mean of the time nodes
need to recover from the departure of a parent node. The
rationale for this hypothesis is that node departures can be
treated as bursty losses on the output link of the departing
node, and can be modeled as independent if n≤ t and m≥ t.
An evaluation of this hypothesis is subject of future work.

IV. PERFORMANCE EVALUATION

In this section we show results obtained with the model
presented in the previous section and simulations. In all
scenarios we set t = n and m = 50 for easy comparison. For
the simulations we considered the streaming of a 128 kbps
stream to 50000 nodes organized in 1000 layers, which results
in m = 50. The root node sends at a bitrate of 6400 kbps and
could be hosted on a 10 Mbps link, while the peer nodes have
128 kbps connections both uplink and downlink. Nodes choose
their parent nodes at random, so that with a small probability
nodes can have the same parents in different trees. In each run
of the simulation the root node sends 10000×m packets,

Figure 3 shows π(1000) as a function of p for k = 10
and k = 20 and different values of c. The figure shows that
for every (n,k) pair there is a loss probability pmax above
which the reception probability in nodes far from the root node
suddenly becomes 0. Below pmax the reception probability is
close to 1 and is slowly decreasing. This stepwise, ungraceful
decrease of the reception probability is an undesired feature
for systems working in a dynamic environment such as the
Internet. The figure shows that increasing the number of trees,
i.e. the FEC block length, slightly improves the resilience of
the distribution tree to losses, which is in accordance with [1],
[9].
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Fig. 3. π(1000) vs p for different ratios of redundancy.
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redundancy and loss probabilities, simula-
tion results.
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Figure 4 shows π(i) as a function of i for different block
lengths n and loss probabilities and a ratio of redundancy of
c/k = 0.2. We see that π(i) is close to one in the cases when
p < pmax, while it becomes almost 0 after some i otherwise.
The value of i at which π(i) breaks down depends on how
far p is from pmax. For k = 10 pmax = 0.0799 and for k =
20 pmax = 0.0885. The positive effects of the increased block
length can be seen by comparing results at p = 0.08, where for
k = 20 the system is stable, whereas for k = 10 it is unstable.
Figure 5 shows simulation results for the same scenarios as
Fig. 4. The comparison shows perfect match for p = 0.07 and
p = 0.10, while the simulation results show worse behavior
than the analytical ones when p is close to pmax. The difference
is rather big for k = 10 and p = 0.08, when p− pmax = 10−4,
in which case deviations from the mean loss probability in
the individual layers make the deterioration faster than that
predicted by the model. For higher values of m the simulation
gives more accurate results as the probability of deviation is
lower due to the central limit theorem.

Figure 6 shows c, the number of redundant packets needed
to ensure π(∞) > 0, π(∞) > 0.99 and π(∞) > 0.999 for k = 10
and k = 20. The figure shows a closely linear relationship
between the number of redundant packets needed and the
loss probability. For low values of p the number of redundant
packets needed to ensure π(∞) > 0.999 is close to the number
of redundant packets needed for π(∞) > 0, and hence in a
dynamic environment the ratio of redundancy has to be set
higher to prevent a severe decrease of π(i) due to a sudden
increase of the loss probability. A similar problem can occur
towards the end of a broadcast, when departures cause the
number of nodes in the overlay to decrease. The increased loss
probability due to node churn might exceed the level of stable
operation and can lead to π(∞) = 0. The root node can prevent
this from happening by increasing the ratio of redundancy c/k
towards the end of the broadcast.

V. CONCLUSION

In this paper we presented a mathematical model for
the analysis of an end-point overlay for multicast based
on multiple distribution trees. We showed that for any loss

probability there is a ratio of redundancy which ensures that
even nodes far away from the root of the trees receive a non-
zero ratio of the information. We showed that this multicast
scheme shows a non-graceful performance degradation once
the loss probability exceeds a certain threshold. The threshold
depends on the number of distribution trees and the ratio of
redundancy used. Albeit the model does not consider certain
characteristics of end-point overlays, it helps to analyze the
stability criteria of these systems. A model including correlated
losses, inhomogeneous packet loss probabilities, the case n > t
and dynamic user population can be built based on e.g. the
Gilbert model [13], and is subject of future work.
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