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Abstract— In this paper we propose an analytical model of
a resilient end-node multicast streaming architecture based on
multiple minimum-depth-trees that employs path diversity and
forward error correction for improved resilience to node churns
and packet losses. We study the performance of the architecture
in the presence of packet losses and dynamic node behavior.
We show that for a given redundancy the probability that an
arbitrary node possesses a packet is high as long as the loss
probability in the network is below a certain threshold. After
reaching the threshold the packet possession probability suddenly
drops; the rate decrease gets faster as the number of nodes in
the overlay grows. The value of the threshold depends on the
ratio of redundancy and on the number of the distribution trees.
We study the overlay structure in the presence of node dynamics
and conclude that stability can be achieved only if the root node
serves a large number of nodes simultaneously.

I. I NTRODUCTION

The delivery of streaming media over end-point overlays
has received a lot of attention recently ([1], [2] and refer-
ences therein). In an end-point-based multicast distribution
system end-points are organized or organize themselves into
an application layer overlay and distribute the data among
themselves. Such systems are easy to deploy and they reduce
the load of the content provider, since the distribution cost
in terms of bandwidth and processing power is shared by
the nodes of the overlay. Since the success of such schemes
depends on the behavior of the participating nodes, several
issues have to be dealt with, such as the effects of group
dynamics, stability of the system or the incentives for nodes
to collaborate. Furthermore, since nodes receive data from
their peer nodes only, the performance of such a scheme in
an error prone environment is unclear due to possible error
propagation.

The first proposed architectures focused primarily on low
overhead due to control traffic and on the efficiency of the
data distribution [3], [4]. Resilience to node failures anderror
prone transmission paths appeared as important criteria later.
Robustness to node churns, i.e., node departures that disturb
the data flow, was considered in SRMS by distributing packets
to randomly chosen neighbors outside of the distribution tree
[5]. Though this scheme provides some resilience to losses,
it is known that repeating information is less efficient than
using error correcting codes. SplitStream [6] and CoopNet
[1] introduce multiple distribution trees and employ priority
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encoding transmission (PET) [7] based on forward error cor-
rection (FEC) [8] to decrease the effects of node failures and
to recover from packet losses. The feasibility of these overlays
was studied via simulations based on measured traces of user
behavior in [2]. The authors concluded that application layer
multicast architectures have enough resources, are stablein
spite of group dynamics, and hence can support large scale
streaming content distribution. The authors in [9] proposed the
use of time shifting and video patching to provide robustness
to node departures. Robustness to errors using selective ARQ
and error resilient video coding was considered in [10]. There
are some implemented peer-to-peer multicast systems in the
Internet [3], [11], but these systems suffer from large startup
delays in the order of minutes, and poor stability.

Albeit an extensive literature on end-point-based multicast
streaming, previous work on the behavior of these systems was
mainly based on simulations. In [12] the authors presented
a mathematical model for a minimum-width CoopNet like
overlay employing multiple distribution trees and FEC for
resilience. The model was extended to include correlated
losses in [13] and applied to model dynamic node behavior.
But the feasibility of the overlay considered in these works
for large-scale deployment is questionable as the maximum
distance of the nodes from the root node increases asO(N),
where N is the number of nodes in the overlay. In a large
overlay, delay and delay jitter become an issue.

In this paper we present a model for a minimum-depth
CoopNet like overlay combined with FEC. The maximum
depth of the overlay considered in this paper grows as
O(log(N)) and hence delay and delay jitter are less of a
problem. It is recognized however that the overlay can be
disconnected due to node departures and requires complex
maintenance. We evaluate the performance of data distribution
for a large number of nodes in the case of independent losses
and investigate the effects of node dynamics on the stability
of the overlay.

The rest of the paper is organized as follows. In Section
II we give a brief description of the considered overlay for
multicast. In Section III we evaluate the performance of the
data distribution. In Section IV we analyze the stability ofthe
overlay. In Section V we conclude our work.



II. SYSTEM DESCRIPTION

We consider an application overlay as the one described
in [1], [2], [6] consisting of a root node andN peer nodes.
Peer nodes are organized int distribution trees, either by a
distributed protocol like in [6] or by a central entity like in [1].
The nodes are members of allt trees, and in each tree they
have a different parent node from which they receive data.
Each node can have up tot children to which it forwards data
in one of thet trees, called the fertile tree of the node. In
all other trees the node is sterile, that is, it does not have any
children. We say that each node hast cogs in its fertile tree and
has no cogs in its sterile trees. Child nodes can be connected
to the available (not yet taken) cogs of a node. If we denote the
number of layers in the trees byL, then in a well maintained
tree each node is 1≤ i < L hops away from the root node in
its fertile tree, andL−1≤ i ≤ L hops away in its sterile trees.
We denote the maximum number of children of the root node
in each tree bym, and we call it the multiplicity of the root
node. Hence, the number of cogs of the root node ismt. We
assume that nodes do not contribute more bandwidth towards
their children as they use to download from their parents. (See
Fig. 1).

Fig. 1. Multicast tree structure fort = 3, m= 3 andN = 12.

The root uses block based FEC, e.g., Reed-Solomon codes
[14], so that nodes can recover from packet losses due to
network congestion and node departures. To everyk packets
of information c packets of redundant information are added
resulting in a block length ofn = k+ c. If a source would
like to increase the ratio of redundancy while maintaining its
bitrate unchanged, then it has to decrease its source rate. We
denote this FEC scheme by FEC(n,k). Using this FEC scheme
one can implement UXP, PET, or the MDC scheme considered
in [1]. Lost packets can be reconstructed as long as no more
than c packets are lost out ofn packets. The root splits the
data stream intot stripes, with everytth packet belonging to
the same stripe, and it sends everytth packet to its children
in a given tree. Ifn ≤ t then at most one packet of a block
is distributed over the same distribution tree. Peer nodes relay
the packets upon reception to their respective child nodes in
the tree corresponding where they are fertile, and once they
received at leastk packets of a block ofn packets they recover
the remainingc packets. If a packet, which should have been
received in the tree where the node is fertile, is recovered,then
it is sent to the respective children. A packet received fromthe
parent node after it has been decoded based on other packets
in the block is discarded.

III. D ATA DISTRIBUTION

In the following section we evaluate the performance of the
overlay in the absence of group dynamics. In this scenario

the only source of failure is the loss of packets between peer-
nodes.

A. Mathematical model

In this section our goal is to calculate the probabilityπ(i)
that a node, which is in layeri in the tree where it is
fertile, receives or can reconstruct an arbitrary packet. The
mathematical model we present describes the behavior of
the overlay in the presence of independent packet losses.
We denote the probability that a packet is lost between two
adjacent nodes byp. We assume that the probability that a
node is in possession of a packet is independent of that a
node in the same layer is in possession of a packet. We also
assume that nodes can wait for redundant copies to reconstruct
a packet for an arbitrary amount of time. For the model we
consider a tree with the maximum number of nodes in the
last layer. We will comment on the possible effects of our
assumptions later.

To calculate the probabilityπ(i) we have to calculate the
probability π f (i) that a node, which is in layeri in its fertile
tree, receives or can reconstruct anarbitrary packet in its
fertile tree. Since the root node possesses every packet, we
have thatπ f (0) = 1. The probability that a node in layeri
receives a packet in a tree isπa(i) = (1− p)π f (i −1). Every
node is fertile in one tree and is sterile in the othert − 1
trees. A node can possess a packet in its fertile tree either if it
receives the packet or if it can reconstruct it using the packets
received in its sterile trees. Reconstruction can take place if
the number of received packets is at leastn− c out of the
remainingn−1, hence we can write for 0≤ i < L−1

π f (i +1) = πa(i +1)+{(1−πa(i +1)) (1)
n−1

∑
j=n−c

(

n−1
j

)

πa(L) j(1−πa(L))n−1− j

}

.

Based on the probabilitiesπ f (i) we can express the probability
π(i) (0≤ i < L−1) as the probability of possessing an arbitrary
packet in a block ofn packets, i.e., the mean number of packets
possessed after FEC reconstruction in a block ofn packets. If
a node receives at leastk packets in a block ofn packets
then it can use FEC to reconstruct the lost packets, and hence
possesses alln packets. Otherwise, FEC cannot be used to
reconstruct the lost packets. Hence forπ(i) we get the equation

π(i +1) =
1
n

{

πa(i +1)
n

∑
j=1

τ( j)

(

n−1
j −1

)

πa(L) j−1(1−πa(L))n−1−( j−1)
}

+

1
n

{

(1−πa(i +1))
n−1

∑
j=0

τ( j)

(

n−1
j

)

πa(L) j(1−πa(L))n−1− j} , (2)

whereτ( j) indicates the number of packets after FEC recon-
struction if j packets have been received; it is given as

τ( j) =

{

j 0≤ j < k
n k≤ j ≤ n.



To calculate the probabilitiesπ f (i) we use an iterative method.
First, we setπ f (L−1)(0) = 1 and calculate the probabilities
π f (i)(1), 1≤ i ≤ L. Then, in iterationr, we calculateπ f (i)(r),
1 ≤ i ≤ L using π f (L − 1)(r−1). The iteration stops when
π f (L−1)(r−1)−π f (L−1)(r) < ε, whereε > 0.

Based on theπ(i) we can calculate the probabilityπ of
packet possession for an arbitrary node in the overlay by
weighting theπ(i) with the portion of nodes that are in layer
i of their fertile tree

π =
L−1

∑
i=1

t i−1

(tL−1−1)/t −1
π(i). (3)

1) Lower bound: In the following we give an asymptotic
lower bound on the values of the above probabilities to better
understand their evolution. Let us consider an overlay where
the number of layers can be arbitrarily high. It is clear that
π f (i) is a non-increasing function ofi and π f (i) ≥ 0. Hence
lim i→∞ π f (i) = π f (∞) exists, and instead of eq. (1) we get the
following nonlinear recurrence equation

π f (i +1) = πa(i +1)+{(1−πa(i +1)) (4)
t−1

∑
j=n−c

(

n
j

)

πa(i +1) j(1−πa(i +1))n−1− j

}

.

This equation is the same as eq. (4) in [12], and thus the
analysis shown there can be applied to describe the evolution
of π f (i). For brevity, we only state the main results regarding
π f (i), for a detailed explanation see [12], [13]. For every
(n,k) there is a loss probabilitypmax below which the packet
possession probabilityπ f (∞) > 0 and above whichπ f (∞) = 0.
Furthermore, for any 0< δ < 1 there is (n,k) such that
π f (∞) ≥ δ. Consequently, in the overlay considered in this
paper, we haveπ f (i) ≥ π f (∞) > 0 andπ(i) ≥ π f (∞) > 0 for
p< pmax. For loss probabilitiesp> pmax such a positive lower
bound cannot be given, and the packet possession probability
approaches 0 as the number of layers increases. We refer to
the system as stable ifp< pmax and call it unstable otherwise.
To get a lower bound onπ(i) we substituteπ f (∞) in eq. (2)
instead ofπ f (i) and π f (L − 1). The lower bound is 0 for
p > pmax and is positive otherwise.

2) Discussion: In the following we discuss the validity of
certain assumptions made in the model. The model does not
take into account the correlations between packet losses in
the Internet. Losses occurring in bursts on the output linksof
the nodes influence the performance of the overlay if several
packets of the same block are distributed over the same tree,
that is if n > t. Bursty losses in the backbone influence the
performance if packets of different distribution trees traverse
the same bottleneck. The effects of correlated losses on the
input links of the nodes has been considered in [13], and the
analysis showed that correlated losses slightly decrease the
performance of the overlay.

In the analysis we assume that the number of nodes in the
last layer of the tree is maximal. If the number of nodes in the
last layer of the tree is not maximal then some nodes are in
layerL−1 in their sterile trees, and the overlay’s performance
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Fig. 2. π f (i) vs. i for t = 8, m= 8, n = 8. π f (∞) > 0 for p < pmax,
π f (i) decreases quickly ini otherwise.

is slightly better. The results of the asymptotic analysis still
hold however.

The model does not take into account node departures, an
important source of disturbances for the considered overlay.
Following the arguments presented in [13] node departures
can be incorporated in the model as an increase of the loss
probability by pω = Nd/N×θ, whereNd is the mean number
of departing nodes per time unit andθ is the time nodes need
to recover from the departure of a parent node. The simulation
results presented in [13] support this hypothesis.

B. Performance evaluation

In this section we first show results obtained with the
mathematical model and then verify the results via simulations.
In all scenarios we sett = n and consider the streaming of a
112.8 kbps stream to nodes with link capacity 128 kbps. The
packet size is set to 1410 bytes. Each node has a playout buffer
of 70 packets, which corresponds to 7 seconds of playout
buffer delay. Each node has an output buffer of 40 packets
to absorb the bursts of outgoing packets in its fertile tree.The
simulation time is 4000 seconds and the presented results are
the averages over 10 simulation runs.

Figure 2 showsπ f (i) as a function ofi for t = 8, m= 8,
n = 8, L = 300, and different ratios of redundancy and packet
loss probability p. The figure shows thatπ f (i) > 0 for any
i as long as the packet loss probability is belowpmax, but
decreases to 0 rapidly ifp > pmax. For c = 1 the threshold is
pmax= 0.0536 and forc = 2 it is pmax= 0.1292.

Figure 3 showsπ(i) as a function ofi for t = 8, m = 8,
n = 8, L = 300 and different ratios of redundancy and packet
loss probabilityp. The figure shows thatπ(i) evolves similarly
to π f (i) for p > pmax. For p < pmax it drops even faster than
π f (i) sinceπ(i) is a function ofπ f (i) andπ f (L−1) as shown
by eq. (2). Consequently, we expect that increasing the number
of layers in the overlay worsens its performance whenever the
overlay is unstable.

Figure 4 showsπ as a function of the packet loss probability
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for t = 4, m = 4, n = 4, c = 1 and various values ofL.
The vertical bars show the valuesπ(1) at the upper end
and π(L − 1) at the lower end. Note, that ifL = 2 then
L− 1 = 1, hence there is no vertical bar. The figure shows
that the packet possession probability is high as long as the
loss probability is belowpmax. It drops however as the packet
loss probability crosses the threshold. The drop of packet
possession probability gets worse as the number of layers and
hence the number of nodes in the overlay increases. At the
same time, forp > pmax, the difference betweenπ(1) and
π(L−1) (the packet possession probability of nodes that are
fertile in the first and the penultimate layers, respectively)
increases. The figure shows as well that increasing the number
of layers affects the packet possession probabilityπ(1) (and
π(i) in general), that is, the performance experienced by nodes
that are already part of the overlay is influenced by arriving
nodes. The effect is negligible when the system is stable, but
becomes large when it is unstable. The line corresponding to
L = 500 shows the asymptotic value of the packet possession
probability as the number of layers increases. The value ofπ
for large values ofL is close toπ f (L−1), and it shows the
evolution of the fixed point of eq. (4) forp< pmax. This curve
is in accordance with those in Figs. 2 and 3 and in [12], [13].

Figure 5 showsπ as a function of the packet loss prob-
ability for t = 8,m = 8,n = 8 and various values ofc and
L. Comparing results obtained with different values ofc we
see that increasing the ratio of redundancy increases the value
of the thresholdpmax. At the same time, increasing the ratio
of redundancy makes the drop faster oncepmax has been
exceeded. Comparing Figs. 4 and 5 shows that increasing the
FEC block length slightly increases the value ofpmax, at the
price of a faster drop once the threshold in exceeded.

Figures 6 and 7 show results obtained via simulations for
the same scenarios as in Figs. 4 and 5 respectively, and show
perfect match with the analytical model. We did not perform
simulations forL = 500, as even fort = 4 an overlay with 500
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layers would consist of approximately 4499 nodes.

IV. D ISTRIBUTION TREE STABILITY

In this section we analyze the stability of the overlay in the
presence of node dynamics. We show a necessary condition
for the overlay to be feasible. Then we present an approximate
model to describe the evolution of the available capacity inan
arbitrary tree of the overlay, and use the model and simulations
to study the stability of the overlay.

In the presence of node dynamics, children of the departing
nodes have to find a new parent in the fertile tree of the
departing node. Finding a parent is however not possible if
the number of fertile nodes in the tree is too low, as we
will explain later. If some nodes cannot find parents in a
tree, the tree becomes disconnected. In [6] a decentralized
mechanism was proposed to resolve this problem, in [1] the
entity responsible for tree construction was responsible for
moving fertile nodes from trees with available capacity to the
trees without available capacity. In an environment with high
churn rate reallocating fertile nodes between trees can lead
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to high management overhead. Another solution is to allocate
arriving nodes to be fertile in the disconnected trees, and hence
make the trees connected. This way the failures of the overlay
due to node departures can be healed by the arrivals; if a node
fails to find a parent, it can reattempt after a reconnection
interval T.

A. Overlay feasibility

We say that the overlay is feasible for givenm, t andN if
the overlay can be constructed. A necessary and a sufficient
condition for the tree to be feasible was shown in [6]. Those
conditions were based on the number of cogs that nodes want
to use and are willing to offer. The condition shown here
extends those conditions and is a condition that relates the
parameters of the overlay to each other.

Proposition 1: If the overlay is feasible for arbitraryN, then
m≥ t −1.

Proof: We show that this condition is necessary in a well
maintained overlay. To prove the proposition we calculateNs,
the number of nodes that do not have to forward data in any

of the t distribution trees and show thatNs is negative for
m< t −1 for someN. We use the term drain for such nodes
to distinguish them from freeriders that do not want to offer
any cogs. The number of drains is maximal if there is at most
one fertile node in each tree with less thant children. Using
the notations introduced in Section II the number of nodes
in layer i in a tree isNi = mti−1. In a well maintained tree
with L ≥ 2 sterile nodes are located in layersL−1 andL. The
number of drains is equal to the number of nodes minus the
number of nodes that are fertile in any tree, i.e., the numberof
nodes in layers 1 toL−1 minus the number of nodes without
children in layerL−1, and has to satisfyNs ≥ 0.

Ns = N− t

{

m
tL−1−1

t −1
−

[

mtL−2−⌈
NL

t
⌉

]}

≥ 0, (5)

where NL is the number of nodes in the last layer given as
NL = N−mtL−1−1

t−1 . Rewriting ineq. (5) we get that

m≥ t⌈
NL

t
⌉−NL. (6)

If this condition is not satisfied thenNs < 0, and hence the
overlay cannot be constructed. The condition can be satisfied
independent ofNL by choosingm≥ t−1 sinceNL ≥ 1. In this
case the overlay is feasible for anyN.
The condition is not sufficient for feasibility since the overlay
cannot always be kept well maintained in the presence of
node departures and it cannot be ensured that there be at
most one fertile node in each tree with less thant children. A
consequence of Proposition 1 is that if the number of freeriders
in the overlay is more thanm− t +1 then the overlay might
become infeasible. Furthermore, if the number of freeriders in
the overlay is more thanm then the overlay is infeasible for
any N.

B. Evolution of the available capacity

We define the available capacity in the overlay as the sum
of the unused offered cogs of fertile nodes. For example, if
there are f drains and no fertile nodes with available cogs
then the available capacity isf t. To calculate the available
capacity in the overlay we use induction. Initially, the available
capacity in the overlay ismt, since the root node can support
m nodes in each tree. Upon arrival of an arbitrary node the
available capacity does not change, since the node consumes
one available cog in each of thet trees and addst available
cogs in its fertile tree. Hence the available capacity remainsmt.
Similarly, a departure does not change the available capacity
as long as the overlay remains feasible. Since the available
capacity in the overlay ismt, the available capacity per tree is
m on average.

Trees of the overlay can however become disconnected after
the departure of a node. Upon departure of a node the available
capacity decreases byt −1 in the departing node’s fertile tree
and increases by one in itst − 1 sterile trees. The available
capacity in the departing node’s fertile tree can decrease
below zero, in which case that tree becomes disconnected. In
the following we show how the probability of disconnection
depends on the parameterst andm of the overlay.



We consider the stationary state of the system, when the
arrival and departure rates are equal. We assume that the
interarrival times of nodes are exponentially distributed, this
assumption is supported by several measurement studies [15],
[16]. We approximate the distribution of the session holding
times by an exponential distribution. The distribution of the
session holding times was shown to fit the log-normal distri-
bution [15], however, using the exponential distribution makes
modeling easier and as we will see, the model gives a good
match with the results of simulations where we use the log-
normal distribution. For a given arrival intensityλ the mean
number of nodes in the overlay isN = λ/µ, where 1/µ is the
mean session holding time.

To model the evolution of the available capacity we use
a two-dimensional Markov process with state(ν, ι), corre-
sponding to the number of nodes in the overlay and the free
capacity in an arbitrary tree respectively. The state spaceof the
process is{Nl . . .Nu}×{cl . . .cu}. The parametersNl and Nu

are the lower and the upper bounds on the number of nodes in
the overlay that the model considers. Similarly,cl andcu are
the lower and the upper bounds on the free capacity that the
model considers. We setNl = 0.9N, Nu = 1.1N, cl =−(m−1)t
and cu = mt, so that the model is computationally feasible
but the probability ofν /∈ {Nl . . .Nu} and ι /∈ {cl . . .cu} is
negligible. The model is approximate, since the available
capacity in an arbitrary tree is not independent of the available
capacity in the other trees (since their sum is constant). A
model that considers the evolution of all trees would bet +1
dimensional, and hence computationally not feasible. Another
approximation is the use of a limited state space.

We denote the arrival rate of the nodes byλ and the
mean session holding time by 1/µ. We denote byqk,l

i, j the
transition intensity from state(i, j) to state(k, l) and a( j) is
the probability of that an arriving node is assigned to be fertile
in the chosen tree given that the available capacity isj in that
tree. The transition intensities are then given as (Nl ≤ i ≤ Nu

andcl ≤ j ≤ cu)

qmax(i−1,Nl ),min( j+1,cu)
i, j = (t −1)µ/t

qmax(i−1,Nl ),max( j−t+1,cl )
i, j = µ/t

qmin(i+1,Nu),max( j−1,cl )
i, j = (1−a( j))λ

qmin(i+1,Nu),min( j+t−1,cu)
i, j = a( j)λ

qi, j
i, j = − ∑

k6=i,l 6= j

qk,l
i, j .

The above intensities correspond to the departure of a sterile
node, the departure of a fertile node, the arrival of a sterile
node, and the arrival of a fertile node respectively. The last line
corresponds to the diagonal of the transition intensity matrix.
To calculate the steady state distribution of the Markov process
we use the following distribution ofa( j)

a( j) =

{

0 j > m
(1−F( j−m

t/2−1))t−1 j ≤ m,
(7)
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Fig. 8. a( j) vs. available capacity fort = 4,8,16 andm= t.

where F() is the standard normal distribution function. The
rationale behind the distribution ofa( j) is the following. An
arriving node is chosen to be fertile in the tree with the
lowest available capacity among allt trees. This happens with
probability 0 if j > m, since there has to be at least one tree
with available capacity belowm so that the total available
capacity in the overlay can bemt. For j ≤ m we assume
independence of the available capacity in the other trees and
model their distribution by a normal random variable with
meanm and standard deviationt/2− 1. Hence, in this case
the probability that the arriving node is assigned to be fertile
is the probability that the available capacity in all other trees
is higher thanj.

Figure 8 showsa( j) from eq. 7 and obtained via simulations
for t = 4,8,12 andm= t. For j < 0 the model assumesa( j) to
be higher, while forj close tom to be lower than it is according
to the simulations. The probability ofj < 0 is however small,
and hence eq. 7 is a pessimistic estimate. It will be subject
of future work to derive a more precise distribution fora( j).
We can calculate the steady state distributionψ(i, j) of the
Markov process using the transition intensity matrixQ= (qk,l

i, j )
[17]. The probability that the tree is disconnected is thenpd =

∑Nl≤i≤Nu, j<0 ψ(i, j).

C. Performance evaluation

For the evaluation we consider a mean session duration of
1/µ = 306 s as it was measured in [15]. We use exponential
session length distribution in the model and log-normal distri-
bution in the simulations. The reconnection interval is setto
T = 1 s in the simulations unless otherwise stated. The first
measure we consider is the blocking probabilitypa

b, the proba-
bility that an arriving node can not join the overlay becauseit
finds it in a state in which there are at least two disconnected
trees. Due to the PASTA [17] property, this is the same as the
probability that at least two trees are disconnected. Basedon
the model we can calculatepa

b assuming independence of the
trees aspa

b = 1− (1− pd)
t − t pd(1− pd)

t−1. Figure 9 shows
pa

b as a function of the root multiplicitym for t = 4, t = 8 and
t = 16 as obtained with the approximate mathematical model.



Figure 10 shows results for the same parameters obtained via
simulations. Both figures show that for a givent increasing
m decreases the probability of blocking. But increasing the
value of t for a given m increasespa

b. Figure 11 obtained
using the model and showingpa

b as a function oft for
differentm/t ratios leads to the same conclusion. Form= t the
blocking probability increases sharply as the number of trees
increases. Form = 2t the blocking probability remains very
low however. The same results were obtained via simulations
and are shown in Fig. 12. These results suggest that an overlay
with high churn rate is only feasible for high values ofm.
For low values ofm the trees get disconnected with a high
probability. Comparing the results obtained with the modeland
the simulations shows that the approximate model describes
the behavior of the overlay with good accuracy.
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Fig. 9. Blocking probability (pa
b) vs. root multiplicity fort = 4, t = 8,

t = 16, λ = 16.7/s.
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Fig. 10. Blocking probability (pa
b) vs. root multiplicity for t = 4,

t = 8, t = 16, λ = 16.7/s. Simulation results.

The next measure we study is the reconnection failure prob-
ability pr

f , the ratio of the number of failed attempts to find a
parent node and the total number of attempts to find a parent
node. Figure 13 shows simulation results for the reconnection
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Fig. 11. Blocking probability (pa
b) vs. number of trees form = t,

m= 1.5t, m= 2t, λ = 16.7/s.

0 5 10 15 20 25 30 35 40 45
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of Trees

B
lo

ck
in

g 
pr

ob
ab

ili
ty

 

 

m=t
m=1.5t
m=2t

Fig. 12. Blocking probability (pa
b) vs. number of trees form = t,

m= 1.5t, m= 2t, λ = 16.7/s. Simulation results.

failure probability as a function of the root multiplicity for
t = 4, t = 8, t = 16. The figure shows that the reconnection
failure probability decreases asm increases similar to the
blocking probability. Figure 14 shows simulations results
for the reconnection failure probability as a function of the
number of trees form= t, m= 1.5t, m= 2t. The conclusions
are similar to those regarding the blocking probability; the
reconnection failure probability slightly decreases however for
large values oft.

Figure 15 showspr
f as a function ofN for t = 4, t = 8 and

t = 16 andm= t. The figure shows that the failure probability
slowly decreases as the number of nodes in the overlay
increases, hence a large overlay is more resilient to node
departures than a small one. Figure 16 shows the reconnection
failure probability as a function ofT, the reconnection interval.
The figure shows that increasing the reconnection interval de-
creases the failure probability. The reason for this phenomenon
is that the longer a node waits the higher the probability that a
fertile node arrives to the disconnected tree by the time it tries
to reconnect. But the decreased failure probability comes at
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Fig. 13. Reconnection failure probability vs. root multiplicity for
t = 4, t = 8, t = 16 andλ = 16.7/s. Simulation results.
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Fig. 14. Reconnection failure probability vs. number of trees for
m= t, m= 1.5t, m= 2t andλ = 16.7/s. Simulation results.

the price that nodes have to wait longer between reconnection
attempts and hence loose more packets. This result suggests
that there is an optimal value ofT for given t, m and FEC
parameters, which has to be set dynamically to achieve best
performance.

V. CONCLUSION

In this paper we presented an analytical model of a resilient
end-point-based overlay for multicast streaming based on
multiple minimum-depth distribution trees that employs path
diversity and forward error correction for improved resilience
to node churns and packet losses. We showed that the proba-
bility that an arbitrary node in the overlay possesses a packet
is high while the loss probability in the network is lower than a
certain threshold. After reaching the threshold this probability
suddenly drops. The decrease rate gets faster as the number
of nodes in the overlay grows. The value of the threshold
depends on the ratio of redundancy and on the number of
the distribution trees. We derived a necessary condition for
the feasibility of the overlay and developed an approximate
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Fig. 15. Reconnection failure probability vs. mean number of nodes
for t = 4, t = 8, t = 16 andm= t. Simulation results.
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Fig. 16. Reconnection failure probability vs. reconnection interval
for λ = 16.7/s. Simulation results.

model to study the stability of the overlay in the presence
of node dynamics. Simulations show that the model is rather
accurate and helps to understand the effect of the parameters
of the overlay on its stability. It is subject of our future
work to improve the approximate model by considering the
correlations between the available capacity in different trees
and by finding a more precise distribution fora( j). Another
open issue is how ungraceful departures (nodes that depart
without sending a notification about the departure) can be
incorporated in the model. The results presented here serve
to improve our understanding of the behavior of the overlay
in a dynamic environment and help us to design an overlay
with improved stability properties.
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