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Abstract—Mobile edge computing (MEC) is an emerging archi-
tecture for accommodating latency sensitive virtualized services
(VSs). Many of these VSs are expected to be safety critical,
and will have some form of reliability requirements. In order
to support provisioning reliability to such VSs in MEC in an
efficient and confidentiality preserving manner, in this paper we
consider the joint resource dimensioning and placement problem
for VSs with diverse reliability requirements, with the objective of
minimizing the energy consumption. We formulate the problem
as an integer programming problem, and prove that it is NP-
hard. We propose a two-step approximation algorithm with
bounded approximation ratio based on Lagrangian relaxation.
We benchmark our algorithm against two greedy algorithms in
realistic scenarios. The results show that the proposed solution
is computationally efficient, scalable and can provide up to 30%
reduction in energy consumption compared to greedy algorithms.

I . I N T R O D U C T I O N

Mobile edge computing (MEC) is an emerging technology
for providing distributed computational and storage resources to
end users in mobile networks. Due to its proximity to end users,
MEC benefits operators and end users by reducing end-to-end
service latency, and by increasing data and service capacity, and
is a promising architecture for hosting mission critical services
as well if end-to-end latency requirements can be met [1]–
[6]. Notable applications include real-time machine learning
services, data analytics services, computation offloading for
Internet of Things (IoT) devices and for connected vehicles,
and process control for critical infrastructures [7], [8].

For all these applications resource dimensioning is a prereq-
uisite for MEC to be able to host the Virtualized Services (VSs)
corresponding to end-user applications (VSs are often referred
to as micro-services in the literature). Resource dimensioning
involves determining the location and amount of MEC resources
to be deployed. In practice, MEC resource dimensioning at a
candidate site needs to consider the available bandwidth and
power supply, together with the kinds of MEC node hardware
suitable for the site. Resource dimensioning naturally affects
the feasible set of locations for the placement of VSs, and
thus dimensioning and placement together have a high impact
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on the end-to-end latency and performance provided to the
VSs [1]–[3].

While there has been significant attention paid to the latency
and energy consumption aspects of MEC, resilience to the
failure of computing and communication resources has received
less attention even though for many VSs that would benefit
from MEC it is an essential requirement [6], [9], [10]. Failures
could be due to cyber attacks, faulty components, or mistakes
in operations [11]. While in the case of traditional cloud
environments the cloud infrastructure exposes a high level
topological abstraction to applications (typically referred to as
availability zones), in the case of MEC such an abstraction
is unlikely to be feasible as the small scale of the backhaul
network would not allow a confidentiality preserving abstraction
[12]. Thus, we argue that resilience in MEC would have to be
expressed as part of the service level agreement (SLA) between
individual applications and the network operator.

Including resilience as a requirement in SLAs implies that
the network infrastructure has to be able to cater for the diverse
resilience requirements of different services. For critical services
that require continuous operation 1+1 redundancy shall be
considered, such that seamless failover is possible between the
primary instance and the redundant instance [11]. Less costly
than 1+1 redundancy but suitable for stateful services with
lower availability requirements is to stream the state of the
primary VS instance to a secondary VS on a different MEC
node. In this case the secondary VS only requires shared
resources and a small amount of computational resources.
Clearly, the resource requirements of VSs depend on their
resilience requirements, which implies that existing approaches
to resource dimensioning and placement have to be revisited
to enable efficient MEC infrastructures that respect the latency
and resilience requirements set in the SLAs, and at the same
time are energy efficient.

In this paper we address the problem of joint resource
dimensioning and placement (RDP) of VSs with diverse
availability requirements in MEC. We consider a set of
hardware configuration for MEC nodes and a set of candidate
locations for deploying MEC nodes. The RDP problem is to
dimension the MEC nodes to be deployed at each location
for placing a set of VSs, with the objective of minimizing
the total energy consumption of the system. To ensure service



continuity despite potential failures, we consider three classes
of VSs with different availability requirements, and we consider
that VS placement is subject to computational resource and
VS-dependent end-to-end latency constraints. We formulate the
RDP problem as an integer programming (IP) problem, and
prove that it is NP-hard. We propose an efficient approximation
algorithm based on Lagrangian relaxation and provide a bound
on its approximation ratio. By simulations we benchmark our
algorithm against three greedy algorithms, and we show through
numerical results that it is efficient and scalable.

The rest of the paper is organized as follows. Section
II reviews the related work and Section III introduces the
system model and the problem formulation. Section IV shows
the complexity of the RDP problem and Section V presents
our approximation scheme for the RDP problem. Section VI
presents numerical results and Section VII concludes the paper.

I I . R E L AT E D W O R K

Closely related to our work is resource dimensioning in
the area of cloud computing [13]–[17]. The recent work
[13] considers the placement of Virtual Machines (VMs) in
MEC for minimizing average response times of services. [14]
focuses on minimizing the total cost for MEC node and
Access Point (AP) placement and for traffic routing. Both [13]
and [14] propose heuristic solutions. [15] considers resource
dimensioning for improving resource utilization, and proposes a
two-step algorithm that decides the location of data centers and
allocates computational resources to the data centers separately.
However, resilience is not considered in these works.

Resource dimensioning with resilience is addressed in [16]
with the objective of minimizing infrastructure cost. A multi-
step solution is proposed to protect the system against network
link failures. However, in this work the number of data centers
is assumed to be given a priori, which limits the flexibility of
resource dimensioning. Compared to these works, our model
considers opening MEC nodes with heterogeneous hardware
configurations at different locations. In addition, compared to
[13]–[16] our work also considers the placement of services
among the opened computational resources.

[17] considers the joint dimensioning and placement problem
for IoT applications. The proposed solution relies on solving
two sub-problems iteratively without a performance bound,
places at most one MEC node per location, and resilience is
not considered.

Also related to ours are the works that focus on ser-
vice placement within MEC [1]–[5]. [1] considers the joint
service placement and routing problem in MEC subject to
computational and communication resources and proposes a
randomized rounding based approximation algorithm. The
algorithm allows to exceed the capacity of MEC nodes, which
limits its application in realistic scenarios. [2] considers the
joint service placement and request scheduling in MEC with
the objective of maximizing the number of served users,
subject to available computational and network resources.
The problem is proven to be NP-hard and approximation
algorithms are proposed. [3] considers the placement of services

in heterogeneous MEC to maximize the total reward for
providing services, and proposes an approximation algorithm
based on partitioning each edge node into multiple slots. [4]
considers the placement of multi-component applications in
MEC and proposes and approximation algorithm. However,
these works mainly consider minimizing the maximal cost
of using an individual MEC node instead of the total cost.
[5] proposes a multi-stage stochastic programming model
for service placement in MEC subject to energy budget, and
maximizes the quality of service.

Closest to our work in terms of methodology are the works
on the uncapacitated facility location (UFL) problems, which
we use as a building block of our approximation solution.The
UFL problem is NP-hard, and approximation algorithms with
a tight approximation bound have been proposed for the
UFL problem [18], [19]. However, those works assume costs
on a metric space, i.e., the cost for serving a client by a
facility is proportional to geometric distances. Non-metric costs
make many approximation techniques inapplicable to the UFL
problem. An approximation algorithm based on converting
the UFL problem to a minimal weight set cover problem was
proposed in [19]. Compared to the UFL problems above, we
consider the dimensioning of resources, services with different
service availability requirements, and constraints on network
delay and compatibility, which are in general not considered
in the UFL problems.

I I I . S Y S T E M M O D E L A N D P R O B L E M
F O R M U L AT I O N

A. Edge Computing Infrastructure

We consider a mobile backhaul that contains a set B of
base stations (BSs) and a set L of locations where MEC nodes
can be deployed. The MEC nodes can be located within the
radio access network or at different network edge elements,
for example, at base stations and at core network functions
[20], [21]. Practically, the locations L are constrained by the
availability of power supply, backhaul connectivity, and the
preferences of the operators. There is an underlying backhaul
network topology connecting the BSs B and the locations L,
which we model as a weighted graph G = (B ∪L, E ,W). The
set of edges E corresponds to the set of paths in the backhaul
network, and the weight wi,j∈ W of edge (i, j) ∈ E models
the latency of the corresponding path.

We consider to open MEC nodes at the set L of locations,
and we denote by T the set of MEC node types (e.g., hardware
configuration) available for use. We denote by cl,t ∈ Z≥0 the
number of MEC nodes of type t ∈ T to be opened at location
l ∈ L, and we denote by the tuple (l, t, n) the nth instance
of a MEC node of type t opened at location l. Finally, we
denote by M = {(l, t, n)|l ∈ L, t ∈ T , n ∈ Z≥0} the set of
MEC nodes that could be opened in the mobile backhaul (i.e.,
considering all combinations of locations, types and number of
nodes). Our notation allows M to be infinite, we will provide
an upper bound on n later to ensure that M is a finite set.
Assuming that M is finite we can reindex the MEC nodes in
M so as to simplify notation: in what follows we use a single



index i for the MEC nodes in M, and we define the functions
T (i) ∈ T , L(i) ∈ L, and N(i) ∈ Z≥0 that provide the type,
the location and the index of MEC node i, respectively. For
convenience, let Ml,t = {i ∈ M|T (i) = t, L(i) = l} be the
set of MEC nodes of type t that can be placed at location l.
We will use binary variable ci to indicate if MEC node i is
open, and we define c = {c1, c2, . . . , c|M|}.

We denote by integer parameter ωi the number of com-
putational resources available at MEC node i ∈ M. The
assumption of integer resource availability is reasonable if
we consider the number of virtual CPUs (e.g., cores) as the
computational resource, as bare metal partitioning hypervisors,
such as Jailhouse [22] allocate dedicated virtual CPUs to each
process for isolation and security reasons. Clearly, the MEC
nodes of a particular type at a particular location have the same
capacity, i.e., ωi = ωj , ∀i, j ∈Ml,t, ∀l ∈ L, ∀t ∈ T .

B. Virtualized Services and Availability

We consider the placement of VSs at the set L of MEC node
locations; a VS corresponds to an edge computing application,
such as an industrial control process, an augmented reality
service, or a visual analytics application. The application logic
for a VS is implemented in a virtualized environment (e.g., a
container), and receives data from (and possibly sends data
to) a physical process. Each VS f is characterized by its end-
to-end latency requirement Df , and by its service availability
requirement. We consider three types of VSs in terms of their
requirement for service availability.

Non-critical stateless: The first type of services have low
availability requirements and/or do not require to maintain state.
In case of failure of the node the VS is running on, a new
instance of the VS can be created from a stored image without
major impact on the application performance. Typical examples
include visual analytics services (e.g., object recognition), and
proportional-derivative (PD) controllers used for process control.
These services require a single running instance, and do not
need a hot standby or a replica. We denote by Fl the set of
non-critical services.

Stateful: The second type of services require state to be
maintained despite node failure. Typical examples of stateful
VSs are process control services, such as the widely used
proportional-integral-derivative (PID) controller, the linear-
quadratic-Gaussian (LQG) controller, and model predictive
control (MPC). These VSs thus require a hot standby besides
the primary VS: when the primary instance of a VS is available,
only the primary instance provides service, while the state of
the primary instance is streamed to the secondary instance(s).
In case of failure of the primary instance the secondary instance
can take over based on the most recent state. We denote by
Fn the set of processes that are stateful.

Critical: The third type of services may be stateful or
stateless, but they require continuous real-time operation despite
failure. Thus, they require redundant VSs that provide service
simultaneously. Examples include controllers for unstable plants
and controllers for safety critical systems, e.g., autonomous
vehicles. We denote by Fh the set of critical processes.
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Figure 1: An example of resource dimensioning and VS
placement for a system with two BSs (|B|= 2), three locations
(|L|= 3), and two MEC node types (|T |= 2). Three VSs
are placed to serve three physical processes, with Fl = {f1},
Fn = {f2} and Fh = {f3}.

We consider n− 1 contingency as the planning criterion for
reliability, that is, in case of the failure of a single MEC node
the service continuity of stateful and critical VSs should be
guaranteed (Section III, [23]). To satisfy the n− 1 contingency
criterion, we thus consider that each VS f ∈ Fn requires a
primary instance to provide service, and a secondary instance
as a hot standby. For critical services f ∈ Fh instead we have
to ensure 1 + 1 redundancy, i.e., two primary instances provide
the service simultaneously.

An example of resource dimensioning and VS placement
is shown in Figure 1. The mobile backhaul consists of two
BSs (|B|= 2) and three locations (|L|= 3), where two types of
MEC nodes (|T |= 2) can be opened. In this mobile backhaul
three VSs of different types (i.e., Fl = {f1}, Fn = {f2} and
Fh = {f3}) need to be placed to serve three physical processes.
As an illustrative solution, a MEC node of type 1 and a MEC
node of type 2 are opened at locations 1 and 2, respectively.
VS instances are then placed as the figure shows to ensure
service continuity for stateful and for critical VSs.

C. Placement Model

In order to provide a unified treatment of the different classes
of VSs, we start with introducing replica instances for VSs
f ∈ Fh, which require two primary instances. We do so by
introducing a replica fc for each f ∈ Fh, and we define the
set Fc of replica VSs. Note that |Fc|= |Fh|. Furthermore,
for convenience we define the set F = Fl ∪ Fn ∪ Fh ∪ Fc
of all VSs. We use binary decision variables xpf,i and xsf,j
to indicate the placement of the VS instances. Specifically,
xpf,i = 1 if a primary instance of VS f is placed on MEC
node i ∈ M, and xpf,i = 0 otherwise. Similarly, xsf,j = 1
if a secondary instance of VS f is placed on MEC node
j ∈ M, and xsf,j = 0 otherwise. Furthermore, we define
x = {xp1,1, xs1,1, . . . , x

p
|F|,|M|, x

s
|F|,|M|}. Since each VS f ∈ F

requires one primary instance to be placed, and each VS in Fn
also requires one secondary instance to be placed, we have



∑
i∈M

xpf,i = 1,∀f ∈ F , (1)

and
∑

j∈M
xsf,j = 1,∀f ∈ Fn. (2)

Besides the general constraints above we introduce two
constraints that are specific to the type of VS. First, for a VS
f ∈ Fn, the primary and secondary instances of VS f cannot
be placed on the same MEC node, and thus

xpf,i + xsf,i ≤ 1,∀f ∈ Fn, i ∈M. (3)

The constraint above ensures that upon the failure of the MEC
node that hosts the primary instance of f ∈ Fn, the secondary
instance of f can provide service, while the primary instance
of f is not affected if the MEC node that hosts the secondary
instance of f fails.

Furthermore, for a critical VS f ∈ Fh, the primary instance
of VS f and its replica fc cannot be placed on the same MEC
node, and therefore we have

xpf,i + xpfc,i ≤ 1,∀f ∈ Fh and ∀i ∈M. (4)

In order to ensure that the placement of VSs respects the end-
to-end latency requirements, we consider the communication
latency due to wireless transmission and backhaul network
transmission. We denote by bf ∈ B the BS that serves the edge
computing application (plant, augmented reality device, etc)
corresponding to VS f , and we denote by df,bf the wireless
transmission latency to BS bf . Furthermore, we denote by dbf ,i
the backhaul network transmission latency between BSs bf and
MEC node i. dbf ,i is calculated as the sum weight of the edges
on the shortest path between bf and i on the backhaul graph
G. Based on these the total communication latency between
VS f and MEC node i is

df,i = df,bf + dbf ,i. (5)

This model is simple, but can be used with any additive
measure of latency (e.g., mean). We consider that the amount
of traffic related to VSs is relatively small and therefore it
does not affect the latency on a link. Thus the latency mainly
depends on the locations of the VSs and the backhaul topology.
Furthermore, df,i can include the latency in the uplink and in
the downlink, depending on the use case of VS f , determined
by interference, radio network topology and the interference
management solutions used.

Let us denote by Df the end-to-end delay requirement of
VS f . Then any instance of VS f ∈ F must be placed on a
MEC that satisfies

xpf,idf,i ≤ Df ,∀f ∈ F , i ∈M (6)

xsf,jdf,j ≤ Df ,∀f ∈ Fn, j ∈M. (7)

We consider that the MEC nodes of a particular type t ∈ T
at a particular location l ∈ L also have the same total com-
munication latency for serving a VS, i.e., df,i = df,j ,∀i, j ∈
Ml,t and ∀f ∈ F .

Placement is also constrained by the availability of compu-
tational resources. We consider that each primary VS instance
requires one unit of computational resource to provide service,
while a secondary VS instance requires a unit of computational

resource only if it is providing service (i.e., if the primary
has failed). Our assumption of the resource requirements
of the primary instances are motivated by the use case of
critical applications, which require isolation for performance
and security reasons and thus would prefer to be executed
on a dedicated resource. The assumption about the secondary
instances is reasonable, as when a secondary instance is not
providing service, it only needs computational resources for
the state to be synchronized with the primary instance, which
requires much less resources than providing the service. We
provide experimental results in Section VI-D that support our
modeling assumption. We can thus consider that on each MEC
node all secondary instances that are not providing service can
be handled by a single computational resource on the MEC
node, e.g., by the resource (vCPU) that executes the operating
system (or the hypervisor).

For a VS f of any type its primary and secondary instances
can be placed on MEC node i only if i is open, and therefore

xpf,i ≤ ci,∀f ∈ F , i ∈M, (8)

and xsf,j ≤ cj , ∀f ∈ Fn, j ∈M. (9)
When MEC node i is open, the number of primary VS

instances placed on it can be calculated as
∑
f∈F x

p
f,i, and

therefore the available resources for placing the secondary
instances on MEC node i are:

ai = ciωi −
∑

f∈F
xpf,i. (10)

When a MEC node j ∈ M fails, the secondary instances
of VSs in Fn with xpf,j = 1 will be providing service, among
which

∑
f∈Fn

xsf,ix
p
f,j secondary VS instances will be running

on MEC node i 6= j. Therefore, MEC node i needs to have
enough resources for those secondary instances,

ai ≥
∑

f∈Fn

xsf,ix
p
f,j , ∀i, j ∈M. (11)

Note that constraint (11) is non-linear. In order to solve the
problem as an IP problem, we linearize (11) by introducing a
new binary variable yf,i,j with the following constraints:

yf,i,j ≤ xpf,i,∀f ∈ Fn, and i, j ∈M, (12)

yf,i,j ≤ xsf,j ,∀f ∈ Fn, and i, j ∈M, (13)

yf,i,j ≥ xpf,i + xsf,j − 1,∀f ∈ Fn, and i, j ∈M. (14)
When at least one of the the variables xpf,i and xsf,j is equal

to 0, constraints (12) and (13) enforce that yf,i,j ≤ 0. Since
yf,i,j is binary, yf,i,j = 0. When xpf,i = 1, xsf,j = 1, the
constraints above require that yf,i,j ≤ 1 and yf,i,j ≥ 1, and
thus yf,i,j = 1. Therefore, with the constraints (12)-(14), we
can replace xpf,ix

s
f,j by yf,i,j , and thus (11) is equivalent to

ai ≥
∑

f∈Fn

yf,j,i,∀f ∈ Fn, and i, j ∈M. (15)
Finally, we define y = {y1,1,1, . . . , y|F|,|M|,|M|}.

D. Energy Consumption and Problem Formulation
When MEC node i is open for placing VSs, we consider

that its energy consumption has two sources. The first source is
the base energy consumption pi that accounts for running the
operating system and for hosting the secondary VS instances.
The second source is the energy consumption for executing



Table I: Table of Notations

Sets
B Set of base stations
Fl Set of non-critical stateless VSs
Fn Set of stateful VSs
Fh Set of critical VSs
Fc Set of replica VSs
F Set of all VSs
L Set of possible locations of MEC nodes
T Set of MEC node types
M Set of all MEC nodes
Ml,t Set of MEC nodes of type t ∈ T at l ∈ L

Parameters
bf,i Latency between f ∈ F and i ∈M
cl,t Number of possible MEC nodes of type t ∈ T at l ∈ L
Df Delay requirement of f ∈ F
pi Base energy consumption of i ∈M
pf,i Energy consumption for executing f ∈ F on i ∈M
ωi Capacity of i ∈M

Functions
T (i) MEC node type of i ∈M
L(i) Location of i ∈M
N(i) Index of i ∈M

Decision Variables

ci =

{
1, MEC node i ∈M is open
0, Otherwise

xpf,i =

{
1, Primary instance of f ∈ F is placed on i ∈M
0, Otherwise

xsf,j =

{
1, Secondary instance of f ∈ F is placed on j ∈M
0, Otherwise

yf,i,j =

{
1, xpf,i = 1 and xsf,j = 1, ∀f ∈ F and i, j ∈M
0, Otherwise

the primary VS instances; we denote by pf,i the energy
consumption of hosting the VS f ∈ F on i. We consider
that pf,i accounts for the increased energy consumption of
the CPUs, memory, hard disks, cooling systems and other
hardware components, due to hosting VS f . Furthermore,
we make the reasonable assumption that MEC nodes of the
same type t ∈ T and at the same location l ∈ L have the
same energy consumption, i.e., pi = pj ,∀i, j ∈ Ml,t, and
pf,i = pf,j ,∀i, j ∈Ml,t. Using these notations we can express
the total energy cost as

E(c,x) =
∑

i∈M

(
cipi +

∑
f∈F

pf,ix
p
f,i

)
. (16)

We are now ready to formulate the joint resource dimension-
ing and placement problem for VSs within MEC, referred to as
the RDP problem. The RDP problem is to decide the number
of MEC nodes to be placed at each location of each MEC
node type, and to compute the placement of the primary and
secondary instances of VSs, with the objective of minimizing
the total energy consumption of the MEC nodes.

minimize
c,x,y

E(c,x)

subject to (1)− (10) and (12)− (15)
ci ∈ {0, 1}, ∀i ∈M
xpf,i ∈ {0, 1}, ∀f ∈ F , and i ∈M
xsf,j , yf,i,j ∈ {0, 1}, ∀f ∈ Fn, and i, j ∈M

(RDP)
In the RDP problem we observe that the number of binary

variables xpf,i and xsf,j depends on the number of MEC nodes
|M|, which further depends on cl,t, the number of MEC nodes
of type t opened at location l. Therefore, in order to solve the
RDP problem as an IP programming problem, we need to fix
the number of variables. In the following result, we show that
cl,t can in fact be bounded.

Lemma 1. Consider a set F of VSs with delay constraints Df .
Denote by ωl,t = ωi ∀i ∈ Ml,t the capacity of MEC nodes
of type t ∈ T at location l ∈ L, and by df,l,t = df,i ∀i ∈
Ml,t,∀f ∈ F their communication latency. Then at location
l we need to open at most cmaxl,t = d |{f∈F|df,l,t≤Df}|

ωl,t
e + 1

MEC nodes of type t.

Proof. The set of VSs for which the delay constraints can
be satisfied by MEC nodes in Ml,t is {f ∈ F|df,l,t ≤ Df}.
Therefore, to place the primary VS instances at most cmaxl,t =

d |{f∈F|df,l,t≤Df}|
ωl,t

e MEC nodes of type t need to be opened at
location l. In addition, we need at most one more MEC node
of type t at location l to satisfy the n−1 contingency criterion
(i.e., place the secondary instances of the stateful VSs with
primary instances placed on MEC nodes Ml,t). This proves
the result.

By Lemma 1 we can thus set cl,t = cmaxl,t in the RDP
problem. Then the problem becomes an IP problem. The most
frequently used notations are summarized in Table I.

I V. C O M P L E X I T Y A N A LY S I S

In what follows we analyze the computational complexity of
the RDP problem. For this, we start with recalling the minimum
set cover (MSC) problem.

MSC problem: Consider a set E = {e1, e2, . . . , e|E|} of
elements, and let S = {S1, S2, . . . , S|S|} be a collection of
subsets of E such that ∪|S|s=1Ss = E . For a sub-collectionR ⊆ S
we say that R is a set cover of E if each element in E belongs
to at least one subset in R. The MSC problem is to find a set
cover of E consisting of a minimal number of subsets. The
MSC problem is known to be NP-hard (Chapter 16.1, [24]).
We now introduce a variant of MSC as follows.

Minimum set cover with soft capacity constraints
(MSCSC) problem: Consider a set E = {e1, e2, . . . , e|E|}
of elements. Let S = {S1, S2, . . . , S|S|} be a collection of
subsets of E , such that ∪|S|s=1Ss = E . Furthermore, assume that
each subset Si ∈ S can be used to cover at most gi ∈ Z≥0

elements of E . For a sub-collection R ⊆ S we say that R is
a set cover of E if there exists a mapping Q : E → R and
non-negative integers hi, 1 ≤ i ≤ |S|, such that Q is defined
for all e ∈ E , and there are at most gihi elements mapped to



subset Si ∈ R. The MSCSC problem is to find a set cover
R with minimal

∑
Si∈R hi. Our next result shows that the

MSCSC problem is also NP-hard.

Lemma 2. The MSCSC problem is NP-hard.

Proof. We prove this result by reducing the MSC problem
to the MSCSC problem. For an instance (E , S) of the MSC
problem we create an instance of the MSCSC problem with
(E , S,(gi)), with gi = |Si| ∀Si ∈ S. Since gi = |Si|, each
subset in S needs to be included in R at most once, i.e.,
hi ∈ {0, 1} at optimality. Therefore, a solution to the MSCSC
problem instance is a solution to the corresponding MSC
problem instance, which proves the lemma.

Now we can prove the complexity of the RDP problem.

Proposition 1. The RDP problem is NP-hard.

Proof. We prove the proposition by reducing the MSCSC
problem to the RDP problem. For an instance (E , S ,(gi)) of the
MSCSC problem we construct a corresponding instance of the
RDP problem as follows. We create a set Fn = {1, 2, . . . , |E|}
of stateful VSs, where f ∈ Fn corresponds to element ef ∈ E ,
and let sets Fl = Fh = Fc = ∅. Clearly, F = Fn.
We then create a mobile backhaul with a single BS and a
single MEC location, i.e., L = B = {1}, and create a set
T = {1, 2, . . . , |S|, |S|+1} of MEC node types. Each MEC
node type 1 ≤ t ≤ |S| corresponds to subset St ∈ S.
Furthermore, we set df,i ≤ Df ∀ef ∈ ST (i) if 1 ≤ T (i) ≤ |S|,
and we set df,i ≤ Df ∀f if T (i) = |S|+1. The capacity of
each MEC node is set as ωi = gT (i) ∀1 ≤ T (i) ≤ |S|, and
ωi = |F| if T (i) = |S|+1. We set the base energy consumption
pi = 1 ∀1 ≤ T (i) ≤ |S| and pi = 0 if T (i) = |S|+1. The
energy consumption for executing a VS instance is set as
pf,i = 0 ∀f if ∀1 ≤ T (i) ≤ |S|, and pf,i � 0, ∀f if
T (i) = |S|+1.

Let us denote by (c?,x?) an optimal solution to the RDP
problem above, and let M? = {i ∈ M : c?i = 1, 1 ≤ T (i) ≤
|S|}. Since MEC nodes of type |S|+1 have much higher energy
cost than the MEC nodes of other types for executing VS
instances, in an optimal solution they are only suitable for the
placement of the secondary instances, i.e., xp?f,i = 0,∀ T (i) =
|S|+1 and f ∈ F . Therefore, the objective function of the
RDP problem above becomes

E(c?,x?) =
∑

1≤T (i)≤|S|

(c?i pi +
∑
f∈F

pf,ix
p?
f,i)+

+
∑

T (i)=|S|+1

(c?i pi +
∑
f∈F

pf,ix
p?
f,i) =

∑
1≤T (i)≤|S|

c?i . (17)

In what follows we construct a solution (R?, Q?, h?i ) to
the MSCSC problem from (c?,x?). For each VS f , by
constraint (1) there exists i such that xp?f,i = 1. Then we
include subset ST (i) in R?, add mapping ef → ST (i) to Q?.
For each subset Si, we set h?i =

∑
j∈M,T (j)=i c

?
j . Clearly,

E(c?,x?) =
∑
Si∈R? h?i .

To prove the proposition, what remains is to prove that
(R?, Q?, h?i ) is an optimal solution to the MSCSC problem.
We prove this by contradiction. Let us assume that there exists
another solution (R′, Q′, h′i) to the MSCSC problem such that∑
Si∈R′ h

′
i <

∑
Si∈R? hi . Then we can construct a solution

(c′,x′) to the RDP problem as follows. We open h′i MEC
nodes of type i, and then place the primary instance of VS f
on one of the MEC nodes of type i if there exists a mapping
ef → Si ∈ Q′. Finally, we place the secondary instance
of the VSs on the MEC node of type |S|+1, which does
not increase the total energy consumption. Since E(c′,x′) =∑

1≤T (i)≤|S| c
′
i =

∑
Si∈R′ h

′
i, we have E(c′,x′) < E(c?,x?),

which contradicts the assumption that (c?,x?) was optimal.
This concludes the proof.

V. A P P R O X I M AT I O N A L G O R I T H M B A S E D O N
L A G R A N G I A N R E L A X AT I O N

Our proof of NP-hardness of the RDP problem relies on
proving that the classical set cover problem is a special case
of the RDP problem. For set cover type problems branch-and-
bound algorithms have been shown not to perform well (Table 5,
[25]), thus in what follows we propose computationally efficient
algorithms for computing approximate solutions to the RDP
problem. We start with introducing an approximation algorithm
for the UFL problem with delay and compatibility constraints,
which we use as a building block in our approximation scheme,
after that we develop the approximation algorithm, and prove
its approximation ratio bound.

A. UFL problem with delay and compatibility constraints

We present an approximation algorithm for the UFL problem
with delay and compatibility constraints, referred to as the
UFL-DC problem. We are not aware of an approximation
algorithm for the UFL-DC, but in the following we show that
the algorithm for approximating the non-metric UFL problem
proposed in [26] can be extended to the UFL-DC problem.

The UFL-DC problem is as follows. Consider a set of
facilities U and a set of clients K. Decision variable bu denotes
if facility u is open, and decision variable zk,u denotes if client
k is served by facility u. The cost for opening facility u is
qu and the cost for serving a client k by facility u is qk,u. In
a feasible solution each client k ∈ K must be served by one
facility, ∑

u
zk,u = 1,∀k ∈ K. (18)

Parameter Dk denotes the delay requirement of client k,
and parameter dk,u denotes the service delay when client k is
served by facility u. A client k can be served by a facility u
only if its delay requirement is satisfied, thus

zk,udk,u ≤ Dkbu, ∀u ∈ U ,∀k ∈ K. (19)
Due to the compatibility constraint two clients that are

incompatible with each other cannot be served by the same
facility. Parameter rk,k′ indicates if two clients k, k′, k 6= k′

are compatible, and thus
zk,u + zk′,u ≤ 1 + rk,k′ ,∀k, k′ ∈ K, u ∈ U . (20)

The objective of the UFL-DC problem is to find a feasible
solution that minimizes the total cost,



Algorithm 1: Approximation algorithm for UFL-DC
Input :U ,K, qk, qk,u, rk,k′

1 Ω = K, and n = 0
2 while Ω 6= ∅ do
3 n = n+ 1
4 [u(n),K(n)] =

argmin{v(u,K′u)|u ∈ U ,K′u ⊆ Ku ∩ Ω}
5 bu(n) = 1
6 zu(n),k = 1,∀k ∈ K(n)

7 Ω = Ω \ K(n)
u

Output : bu, zf,u

minimize
bu,zk,u

∑
u

buqu +
∑
u

∑
k

zk,uqk,u

subject to (18)− (20)
bu ∈ {0, 1}, ∀u ∈ U
zk,u,∈ {0, 1}, ∀ k ∈ K, u ∈ U

(UFL-DC)

The UFL-DC problem is clearly NP-hard, as we can convert an
instance of the UFL problem into an instance of the UFL-DC
problem by setting Dk =∞ and rk,k′ = 1,∀k, k′ ∈ K.

To develop an approximation algorithm, for convenience, let
us denote by Ku = {k ∈ K|dk,u ≤ Dk} the set of clients that
can be served by facility u. Let us consider a subset K′u ⊆ Ku
of clients, and let us define the cost efficiency of serving clients
K′u by u as

v(u,K′u) =
qu +

∑
k∈K′u

qk,u

|K′u|
. (21)

In what follows we propose Algorithm 1 as an approximation
scheme for the UFL-DC problem. The algorithm is an extension
of an approximation algorithm for the UFL problem proposed
in [26]. In line 1, we initialize the set of unserved clients
Ω = K. Observe that Ku ∩ Ω is the set of unserved clients
that can be served by facility u. Then in iteration n, among
all the facilities, we find the facility u(n) and the subsets of
clients K(n) with the lowest cost efficiency v(u(n),K(n)) (line
4). Then we open the facility u(n) and let u(n) serve the clients
K(n) (lines 5-7). The algorithm continues until all the clients
are served. The following result provides an approximation
ratio bound for Algorithm 1.

Lemma 3. For an instance of the UFL-DC problem let us
denote by (bu,zk,u) the solution provided by Algorithm 1, and
let us denote by Opt(UFL-DC) the optimal objective value of
the UFL-DC problem. Then∑

u

buqu +
∑
u

∑
k

zk,uqk,u ≤ H|K| · Opt(UFL-DC), (22)

where H|K| is the harmonic series and H|K| ≈ log(|K|).

The proof is provided in the appendix.

B. Approximation Algorithm

We now proceed with presenting our approximation scheme
for the RDP problem. First, we apply Lagrangian relaxation to
the RDP problem, and then we propose algorithms that place
the primary and the secondary instances, referred to as the
LRA (LRA) algorithm.

Lagrangian relaxation: We apply Lagrangian relaxation to
constraint (15) of the RDP problem as follows. Let us denote
by λi,j > 0 the Lagrangian multiplier of constraint (15), then
the objective function of the relaxed problem becomes

E(c,x)−
∑
i∈M

∑
j∈M

λi,j(ciωi −
∑
f∈F

xpf,i −
∑

f∈Fn

yf,j,i)

=
∑
i∈M

ci

(
pi − ωi

∑
j∈M

λi,j

)
+
∑
i∈M

∑
f∈F

xpf,i

(
pf,i +

∑
j∈M

λi,j

)
+
∑
i∈M

∑
j∈M

∑
f∈Fn

λi,jyf,j,i (23)

As a next step let us set λi,j = βi

ωi
, for some βi > 0, whose

value we will determine later to serve the derivation of the
approximation bound of the proposed LRA algorithm. We can
express the objective function of the relaxed problem as

ER(c,x,y) =
∑
i∈M

ci(pi − |M|βi)︸ ︷︷ ︸
base energy consumption

(24)

+
∑
f∈F

∑
i∈M

(pf,i + |M |βi
ωi

)xpf,i︸ ︷︷ ︸
placement of primary instances

+
∑

f∈Fn

∑
i∈M

∑
j∈M

βj
ωj
yf,i,j︸ ︷︷ ︸

placement of secondary instances

The relaxed-RDP (R-RDP) problem then becomes

minimize
c,x,y

ER(c,x,y)

subject to (1)− (9) and (12)− (14)
ci ∈ {0, 1}, ∀i ∈M
xpf,i ∈ {0, 1}, ∀f ∈ F , and i ∈M
xsf,j , yf,i,j ∈ {0, 1}, ∀f ∈ Fn, and i, j ∈M

(R-RDP)

Let us denote by Opt(RDP) and Opt(R-RDP) the optimal ob-
jective value of the RDP and the R-RDP problems, respectively.
We relate Opt(RDP) and Opt(R-RDP) as follows.

Proposition 2. Opt(R-RDP) ≤ Opt(RDP).

Proof. Assume that (c?,x?,y?) is an optimal solution to an
instance of the RDP problem. Since the constraints of the R-
RDP problem constitute a subset of the constraints of the RDP
problem, (c?,x?,y?) is also a feasible solution to the R-RDP
problem. Thus,

Opt(R-RDP) ≤ ER(c?,x?,y?). (25)

Now, because (c?,x?,y?) is feasible for the RDP problem,
the constraint (15) is satisfied, and thus

c?iωi −
∑
f∈F

xp?f,i −
∑
f∈Fn

y?f,j,i ≥ 0,∀i, j ∈M. (26)

Furthermore, since λi,j > 0 and by (23) we have that

ER(c?,x?,y?) ≤ E(c?,x?) = Opt(RDP ). (27)

This proves the statement.



Based on the Lagrangian relaxation of constraint (15), in
what follows we first focus on the placement of the primary
instances, and then we handle the placement of the secondary
instances.

Placement of the primary instances: For the placement of
the primary instances we first construct the modified-RDP
(M-RDP) problem by ignoring the terms βj

ωj
|M|yf,i,j that

are related to the placement of the secondary instances in
the objective function of the R-RDP problem, and by only
considering the constraints related to the primary placement
variable xpf,i,

minimize
c,x

EM (c,x) =
∑
i∈M

ci(pi − |M|βi)

+
∑
f∈F

∑
i∈M

(pf,i + |M|βi
ωi

)xpf,i

subject to (1), (4), (6), and (8)
ci ∈ {0, 1}, ∀i ∈M
xpf,i ∈ {0, 1}, ∀f ∈ F , and i ∈M

(M-RDP)

Let us denote by Opt(M-RDP) the optimal objective value of
the M-RDP problem. The following result relates the optimal
objective values of M-RDP and R-RDP, and will facilitate the
derivation of the approximation ratio bound of the proposed
algorithm.

Proposition 3. Opt(M-RDP)≤ Opt(R-RDP)

Proof. Let use denote by (c?,x?,y?) an optimal solution to the
R-RDP problem. Observe that the constraints of the M-RDP
problem are a subset of the constraints of the R-RDP problem,
therefore (c?,x?) is also a feasible solution to the M-RDP
problem, and thus

Opt(M-RDP) ≤ EM (c?,x?).

Furthermore, observe that the objective function EM (c?,x?)
contains the first two terms of the objective function
ER(c?,x?,y?), and therefore,

EM (c?,x?) ≤ ER(c?,x?,y?) = Opt(R-RDP),
which concludes the proof.

In what follows we propose to solve the M-RDP problem
by mapping it to the UFL-DC problem introduced in Section
V-A. For an instance of the M-RDP problem we first create
a set of facilities U , with |U|= |M|, where facility ui ∈ U
corresponds to MEC node i ∈M, and qui

= pi − |M|βi. We
then create a set of clients K, with |K|= |F|, where client
kf ∈ K corresponds to VS f ∈ F . The cost for serving
client kf ∈ K by facility ui is qkf ,ui = pf,i + βi

ωi
|M |. The

delay constrains are set to dkf ,ui = df,i. Finally, in the M-
RDP problem any two primary instances of the VSs in Fl ∪
Fn ∪ Fh are compatible with each other, therefore we set
rkf ,kf′ = 1,∀f, f ′ ∈ Fl ∪ Fn ∪ Fh. Since VS f ∈ Fh and
its replica fc ∈ Fc cannot be placed on the same MEC node,
rkf ,kfc = 0 ∀f ∈ Fh.

Now we can use Algorithm 1 to solve the constructed
UFL-DC problem instance (U ,K, dk,u, rk,k′). Let us denote
by (bu, zk,u) the solution given by Algorithm 1. Since the

Algorithm 2: LRA(1)-Primary instance placement
Input : MEC nodes M and VSs F

1 Create UFL-DC problem instance (U ,K, dk,u, rk,k′)
2 Compute a solution (bu, zk,u) by Algorithm 1
3 for i ∈M do
4 if c′L(i),T (i) > 0 and N(i) ≤ c′L(i),T (i) then
5 ci = 1

6 for f ∈ F do
7 Find i with f ∈ FL(i),T (i), and

∑
i x

p
f,i < ωici

8 xpf,i = 1

Output : ci, xpf,i

M-RDP problem is not constrained by MEC node capacity ωi,
in the solution (bu, zk,u) facility ui that corresponds to MEC
node i serves

∑
kf
zkf ,ui

clients, corresponding to
∑
kf
zkf ,ui

VSs. If we place the VSs to MEC node i as implied by zkf ,ui

(i.e., set xpf,i = zkf ,ui ), we may overload the MEC nodes (i.e.,∑
f x

p
f,i > ωi). Therefore, we have to construct a feasible

placement of the primary VS as follows.
The solution (bu, zk,u) implies that on MEC nodes of type

t ∈ T at location l ∈ L the number of primary VS instances
to be placed is (

∑
i∈Ml,t

∑
kf
zkf ,ui

). Thus the total number
of MEC nodes of type t to be opened at location l is

c′l,t = d
∑

i∈Ml,t

∑
kf
zkf ,ui

ωi
e ≤

∑
i∈Ml,t

d
∑
kf
zkf ,ui

ωi
e. (28)

Let us denote by Fl,t = {f ∈ F|zkf ,ui = 1, i ∈ Ml,t}
the set of VSs that have their corresponding clients served by
facilities that correspond to MEC nodes Ml,t. We can then
place the primary instances of VSs f ∈ Fl,t at any MEC node
(l, t, n), as long as

∑
f x

p
f,i<ωi. The pseudo-code for placing

the primary instances is shown in Algorithm 2.

Proposition 4. Consider an M-RDP problem instance, and its
corresponding UFL-DC problem instance. Let us denote by
(bu, zu,k) the solution given by Algorithm 1 for the UFL-DC
problem instance above. Then∑

i

bui
(pi − |M|βi) +

∑
f

∑
i

(
pf,i + |M |βi

ωi

)
zkf ,ui

≤ H|F| · Opt(UFL-DC) = H|F| · Opt(M-RDP)

≤ H|F| · Opt(RDP). (29)

Proof. The first inequality holds as Algorithm 2 is a H|F|-
approximation solution to the constructed UFL-DC problem
(Lemma 3). Furthermore, the equality holds because the
objective functions of the M-RDP problem and the constructed
UFL-DC problem are the same. Finally, the last inequality
holds by Propositions 2 and 3.

Placement of the secondary instances: What remains to
be solved is the placement of the secondary VSs instances of
the stateful VSs f ∈ Fn as the other VSs in Fl ∪ Fh ∪ Fc
do not require secondary instances. We handle the placement
of the secondary VS instances by constructing and solving a
maximal matching problem. For convenience, let us define the
set Fpi = {f ∈ F|xpf,i = 1} of VSs that have their primary



Algorithm 3: LRA(2)-Secondary instance placement
Input : ci, xpf,i

1 for i ∈M with ci = 1, N(i) ≤ c′L(i),T (i) do
2 Construct bipartite graph Gi
3 Compute Emaxi by Hopcroft-Karp Algorithm [27]
4 if |Emaxi |= |Fpi | then
5 for (f, vi,m) ∈ Emaxi do
6 xsf,i = 1

7 else
8 ci′ = 1 with i′ ∈ML(i),T (i), and

N(i′) = c′L(i),T (i) + 1

9 xsf,i′ = 1 ∀f ∈ Fpi
Output : ci, xsf,j

instances placed on MEC node i. Recall that ai defined in (10)
is the amount of resources that are available for the placement
of secondary VS instances on MEC node i. For each set of VSs
Fpi , we create a bipartite graph Gi = (Fpi ,Vi, Ei) as follows.
For each MEC node that is open, we add ai vertices to Vi,
and we denote by vi,m,m ≤ ai the mth vertex added for
MEC node i. We then add an edge (f, vi,m)∀m ≤ ai to Ei if
MEC node i satisfies the delay requirement of f ∈ Fpi (i.e.,
df,i ≤ Df ).

Now we are ready to place the secondary VS instances using
Algorithm 3. For each MEC node that is opened by Algorithm
2 we construct a bipartite graph Gi, and we compute a maximal
matching by the Hopcroft-Karp algorithm [27] (lines 2-3). We
denote by Emaxi the set of edges included in the maximal
matching. For each bipartite graph Gi, if the number of edges
in Emaxi is equal to the number of VSs in Fpi , it indicates that
each vertex that corresponds to a VS can be mapped to a vertex
that corresponds to a MEC resource uniquely. For each edge
(f, vi,m) ∈ Emaxi we then place the secondary instance of f
on MEC node i, i.e., xsf,i = 1 (lines 5-6). Otherwise, we open
a MEC node i′ of the same type and at the same location as
MEC node i (line 8). Since ω′i = ωi, MEC node i′ has enough
capacity for placing the secondary instances of VSs Fpi , and
thus we set xsf,i′ = 1 ∀f ∈ Fpi (line 9).

C. Approximation Ratio Bound

The above algorithm clearly executes in polynomial time,
and as we show next, has a bounded approximation ratio.

Lemma 4. Let (c,x) be the solution provided by the LRA
algorithm for an instance of the RDP problem. Then

E(c,x) ≤ 3 ·H|F|Opt(RDP ), (30)

where H|F| is the harmonic series and H|F| ≈ log(|F|).

Proof. Recall that in the first part of the LRA algorithm, the
algorithm opens c′l,t MEC nodes of type t at location l,

c′l,t≤
∑

i∈Ml,t

d

∑
kf
zkf ,ui

ωi
e ≤

∑
i∈Ml,t

(∑
kf
zkf ,ui

ωi
+ bui

)
(31)

The first inequality holds by (28). The second inequality
holds because when bui = 0 no client can be served by facility

ui and therefore d
∑

kf
zkf ,ui

ωi
e = 0. Otherwise,

d
∑
kf
zkf ,ui

ωi
e ≤

(∑
kf
zkf ,ui

ωi
+ 1

)
=

(∑
kf
zkf ,ui

ωi
+ bui

)
.

For convenience, let us define the indicator

1|c′l,t>0=

{
1, c′l,t > 0

0, Otherwise
(32)

Clearly, when c′l,t = 0,
∑
i∈Ml,t

bui
= 0 and 1|c′l,t>0 = 0.

Otherwise, 1|c′l,t>0 = 1 ≤
∑
i∈Ml,t

bui
. Therefore

1|c′l,t>0 ≤
∑

i∈Ml,t

bui
. (33)

In the stage of the secondary instance placement, the
algorithm may open one extra node for each MEC node type
if c′l,t > 0. Let us denote by cl,t the total number of MEC
nodes of type t opened by the algorithm at location l,

cl,t ≤ c′l,t + 1|c′
l,t

>0

≤
∑

i∈Ml,t

(∑
kf
zkf ,ui

ωi
+ bui

)
+

∑
i∈Ml,t

bui

=
∑

i∈Ml,t

(∑
f zf,ui

ωi
+ 2bui

)
(34)

Recall that MEC nodes of the same type and at the same
location have the same energy consumption. We can thus
denote by pl,t the base energy consumption of MEC nodes of
type t at location l. Then the cost of solution (c,x) is

E(c,x) =
∑
l

∑
t

cl,tpl,t +
∑
i

∑
f

xpf,ipf,i

≤
∑
l

∑
t

∑
i∈Ml,t

(∑
f zkf ,ui

ωi
+ 2bui

)
pl,t +

∑
i

∑
f

zkf ,uipf,i

≤
∑
i

(∑
f zkf ,ui

ωi
+ 2bui

)
pi +

∑
i

∑
f

zkf ,uipf,i

= 2
∑
i

buipi +
∑
i

∑
f

pi
ωi
zkf ,ui +

∑
i

∑
f

zkf ,uipf,i (35)

Finally, let us substitute βi = pi
3|M| into (29) to obtain

2
∑
i

buipi +
∑
i

∑
f

pi
ωi
zkf ,ui + 3

∑
i

∑
f

zkf ,uipf,i

≤ 3H|F| · Opt(RDP). (36)
Then, (30) follows by (35) and (36).

Finally, we show that the LRA algorithm terminates after a
finite number of iterations.

Lemma 5. The LRA algorithm terminates after at most
2(|F|+|M|) iterations.

Proof. To begin with, let us focus on the first part of LRA
(Algorithm 2). Line 2 of Algorithm 2 relies on Algorithm
1 to compute the placement of the primary instances. Since



Figure 2: The simulated area, based on a map of the city of
Milan, Italy. Triangles show the considered locations of the
MEC nodes.

Algorithm 1 chooses one subset that corresponds to at least
one VS at each iteration, Algorithm 1 terminates in at most
|F| iterations. Furthermore, we observe that the remaining
parts of Algorithm 2 require |F|+ |M| iterations. The second
part of LRA (Algorithm 3) needs exactly |M| iterations to
compute the placement of the secondary VS instances, as the
pseudo-code shows. This proves the result.

V I . N U M E R I C A L R E S U LT S

For the evaluation we simulated an urban area based on the
map of the center of the city of Milan, Italy, covered by a set
B of BSs of 581 LTE BSs (http://opencellid.org/). The set L
of MEC locations is chosen as a subset of B using a local
search heuristic for the K-means problem; the MEC locations
are shown by triangles in Figure 2. The backhaul network
topology is a minimum cost spanning tree of B.

We used the number of CPU cores as the capacity of a
hardware configuration t, and we used a set of four hardware
configurations T = {2, 4, 8, 16}. The maximal energy con-
sumption per CPU core pcoret was chosen uniform at random
between 2W and 20W based on the technical specifications of
recent Intel CPUs. We choose the base energy consumption
Pt of MEC node type t uniformly between [65%, 230%] of
the maximal energy consumption of its CPU cores pcoret ωt,
which is based on the experimental results in [28]. In the
simulations we consider that the CPUs are the main source
of energy consumption for executing the VS instances and
thus the energy consumption of executing a VS instance on a
MEC node of type t is chosen uniformly on [0.5, 1] × pcoret .
This assumption is reasonable, as CPUs usually account for a
large portion of the energy consumption of a MEC server, e.g.,
measurement results in [28] show that the CPU may account
for 30% to 60% of the energy consumption of a single CPU
server; the ratio may be even higher in servers with multiple
CPUs and solid state drives.

At each location l ∈ L we selected 3 hardware configu-
rations from T as the configurations that can be deployed.
This corresponds to typical technical constraints, such as the
available energy supply at a site and constraints on physical
dimensions. As baselines for comparison we use three greedy
algorithms.

Least Opening Cost First: The first greedy algorithm
attempts to open MEC nodes in ascending order of their opening

Algorithm 4: Least Opening Cost First Algorithm
1 Ω = F
2 while Ω 6= ∅ do
3 [l, t] = argminl,t{pl,t|c′l,t = 0}
4 c′l,t = d |Ω∩Fl,t|

ωi
e

5 ci = 1, ∀i with N(i) ≤ c′l,t, T (i) = t, L(i) = l
6 for f ∈ Ω ∩ Fl,t do
7 Find i ∈Ml,t with ci = 1,

∑
f x

p
f,i < ωi

8 xpf,i = 1, and Ω = Ω \ {f}

9 Use Algorithm 3 to compute xsf,j , ∀f ∈ Fn

Algorithm 5: Least Execution Cost First Algorithm
1 for f ∈ F do
2 i = argmini{pf,i|i ∈M,

∑
f x

p
f,i < ωi, df,i ≤ Df}

3 ci = 1 and xpf,i = 1

4 Use Algorithm 3 to compute xsf,j∀ f ∈ Fn

cost; we refer to it as the least open cost first (LOC) algorithm.
The pseudo-code of LOC is shown in Algorithm 4. In line 1,
the algorithm initializes the set Ω of VSs that have not yet
been placed. Then in each iteration it finds the MEC node type
t and location l with minimal base energy consumption (line
3). Then the algorithm opens the minimal number of MEC
nodes of type i at location l (i,e., c′l,t = d |Ω∩Fl,t|

ωi
e in lines

4-5), to place the primary instances of all the VSs in Ω ∩ Fl,t.
At the end, we use Algorithm 3 to compute the placement of
secondary instances of the stateful VSs Fn.

Least Execution Cost First: The second greedy algorithm
attempts to minimize the execution cost; we refer to it as the
least execution cost first (LEC) algorithm. The pseudo-code of
LEC is shown in Algorithm 5. LEC places primary instance
of VS f on MEC node i with the lowest execution energy
consumption, among all the feasible MEC nodes that have
available computational resources (i.e.,

∑
f x

p
f,i<ωi) and can

satisfy the delay requirement of f (i.e., df,i ≤ Df ) in lines 2-3.
At the end, LEC uses Algorithm 3 to compute the placement
of secondary instances of the stateful VSs Fn (line 4).

Non-joint Dimensioning and Placement: The third greedy
algorithm considers the MEC node dimensioning and VS
instance placement in two separate steps, and we refer to it as
the non-joint dimensioning and placement (NJDP) algorithm.
The pseudo-code of NJDP is shown in Algorithm 6. The NJDP
algorithm first dimensions the MEC resources (lines 1-2). At
each location l, MEC nodes of type t can satisfy the delay
requirement of |{f ∈ F|df,l,t ≤ Df}| VSs, and thus the
algorithm opens d |{f∈F|df,l,t≤Df}|

ωl,t
e MEC nodes of type t at

location l. The NJDP algorithm then handles the VS placement
(lines 3-6). The NJDP algorithm assigns the primary VS
instance of f to the MEC node with the lowest execution cost,
among all the MEC nodes that have available computational
resources and can satisfy the delay requirement of f (lines 4-5),
and then uses Algorithm 3 to place the secondary instances
(line 6).



Algorithm 6: Non-joint Dimensioning and Placement
Algorithm
// Dimensioning

1 for l ∈ L do
2 Open d |{f∈F|df,l,t≤Df}|

ωl,t
e MEC nodes of type t

// Placement
3 for f ∈ F do
4 i = argmini{pf,i|i ∈M,

∑
f x

p
f,i < ωi, df,i ≤ Df}

5 xpf,i = 1

6 Use Algorithm 3 to compute xsf,j∀ f ∈ Fn
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Figure 3: Cost vs. number of VSs |F| for |L|= 5

Furthermore, to show the cost of considering resilience, we
also consider a variant of the LRA algorithm that consider all
VSs F are non-critical stateless, referred to as the LRA-no
resilience algorithm. The results shown are the averages of 500
simulations.

A. Cost Performance

To evaluate the cost performance of LRA, we start with a
system with |L|= 5 locations. Besides the baselines above, we
also compute optimal solutions by solving the RDP problem
as an IP problem, and then compute an upper bound as the
product of the optimal cost and the approximation ratio 3H|F|.
Figure 3 shows the total energy cost of the algorithms as a
function of the number of VSs |F|. The error bars show the
5% and 95% percentiles. The results show that LRA performs
close to the optimal solution. For example, when |F|= 10 the
total cost of LRA is within a factor of two of the optimal
solution. It is also interesting to observe that the total cost
of the NJDP algorithm is much higher than that of the other
algorithms. For example, when |F|= 10 the total cost of the
NJDP algorithm is about fifteen times of the total cost of LRA.
This is because VS placement is not considered during MEC
resource dimensioning in NJDP, and thus the resource demand
of each VS has been redundantly addressed at multiple locations.
This observation shows that our joint approach is necessary for
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Figure 4: Cost vs. number of VSs |F| for |L|= 30

efficiently solving the dimensioning and placement problem.
In the following, we will focus on LRA, LRA-no resilience,
LEC and LOC, and evaluate them in larger systems to obtain
more insight.

Figure 4 shows the total energy cost of LRA, LRA-no
resilience, LEC and LOC as a function of the number of VSs
|F| for two scenarios. The two scenarios differ in the fraction of
the types of VSs, and allow to investigate the impact of different
types of VSs on the performance of the algorithms. In the first
scenario (distribution D1) VS types are uniformly distributed
among {non-critical stateless, stateful, critical}, while in the
second scenario (distribution D2) all the VSs are stateful. The
results for D1 and D2 are shown using solid and dashed lines,
respectively. It is interesting to observe that LRA, LEC and
LOC achieve higher costs in D1 than in D2. This is mainly
due to the critical VSs present in D1, as critical VSs require
more computational resources than stateful VSs, i.e., each
critical VS requires dedicated resources for its two primary
instances, while each stateful VS only requires one dedicated
resource for its primary instance and runs its secondary instance
on shared computational resources. Note that since LRA-
no resilience treats all VSs as non-critical stateless, LRA-no
resilience performs exactly the same in D1 and D2.

In what follows, let us first focus on the performance of
the algorithms in D1. Figure 4 shows that the LRA algorithm
outperforms the two greedy algorithms, and the performance
gap increases as |F| increases. For example, for |F|= 500
the energy consumption of the LRA algorithm is about 27%
and 20% less than that of LEC and LOC, respectively. This
is because the LEC and the LOC algorithms only focus on
minimizing the base energy consumption and the execution
energy consumption, respectively, while the LRA algorithm
considers both. Compared to LRA-no resilience, the energy
consumption of LRA increases up to 34% due to providing
resilience to the stateful and critical VSs. The increased cost
comes from opening extra MEC nodes and from the energy
consumption for executing the replicas of the critical VSs.
Furthermore, the reasoning above also explains the phenomenon
that in D2 the performance gaps of the four algorithms are
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similar to that in D1.
Besides the energy consumption, we also use the share of

idle computational resources (SICR) as a second performance
metric,

SICR = 1− |F|∑
i∈M ωici

. (37)

The SICR is a measure of how well the algorithms utilize the
computational resources of the opened MEC nodes. Figure 5
shows the SICR of the algorithms as a function of the number
of VSs |F| for the same scenario as Figure 4. The results show
that for all the algorithms the SICR decreases as |F| increases
under both VS type distributions D1 and D2. This is because
when |F| is small, the VSs are sparsely distributed within the
simulated area. Therefore, due to the delay requirement of the
VSs, it could be the case that a VS is opened to serve much
fewer VSs than its capacity allows. Among all the algorithms,
the LEC algorithm has the highest SICR, as it minimizes the
execution energy consumption of each VS individually without
coordinating the VSs. On the contrary, LOC has a lower SICR
than the LRA and LEC, as the LRA attempts to fill the opened
MEC nodes before opening new MEC nodes. Further, the
results show that the LRA-no resilience algorithm achieves
lower SICR than the LRA algorithm in both D1 and D2. This
is mainly because the LRA algorithm reserves idle resources
for the secondary instances of the stateful VSs. The need for
reserving idle resources for secondary instances also explains
the observation that LRA, LEC and LOC have higher SICR
under D2 than under D1, as there are more stateful VSs.

B. Efficiency

Figure 6 shows the execution time for the algorithms as a
function of the number of VSs |F| for the same scenario as
in Figure 4. The results show that the LEC algorithm has the
lowest execution time under both distributions D1 and D2, as
using this algorithm the number of iterations for placing the
primary instances is determined by |F|. The LRA-no resilience
algorithm consumes less time than the LRA algorithm, as the
LRA-no resilience algorithm does not consider replicas of
the critical VSs, and it also skips the placement of secondary
instances. Furthermore, the results show that LRA, LRA-no
resilience and LOC have a higher execution time in D1 than
in D2. This is because there are more primary instances to be
placed in D1 than under D2 due to the critical instances present
in D1, and using those algorithms the placement of primary
instances has a bigger impact on the execution time than that
of the secondary instances. It is worthwhile to note that the
execution time of the LRA algorithm is arguably negligible
compared to the timescale at which a MEC operator would in
practice update the deployment of MEC nodes and services.

C. Impact of backhaul topology

Next we evaluate the impact of the backhaul topology on
the cost and on the latency performance. For this we modified
the backhaul topology by adding extra links to the original
spanning tree using an iterative greedy algorithm: in each
iteration we add an extra link between the first and the last
nodes on the longest shortest path in the backhaul, thereby



reducing the diameter of the graph. Figure 7 shows the total
cost for |F|= 200 with 0, 20, 40, and 60 extra links added, the
error bars show the 5% and 95% percentiles. In simulations
we choose the types of VSs according to the distribution D1

considered in Figure 4, as D1 includes all VS types and thus
is more general than D2. Overall, the total cost decreases as
the number of extra links increases with a decreasing marginal
gain. For example, compared to the spanning tree topology (i.e.,
0 extra links) adding 20 extra links (i.e., about 2% increase in
number of links) reduces the total cost of the LRA algorithm
by about 20%. This is because adding extra links increases
the number of MEC nodes that a VS can be placed on, which
gives the algorithm more flexibility when solving the problem.
Another interesting observation is that adding extra links to
the network topology has a higher impact on the worst-case
energy cost than on the average cost or on the 5% cost, i.e., it
helps to make the energy consumption more predictable.

Second we consider number of network hops between the
BS serving the application and the locations of the primary
instances of the VSs as a performance metric for the backhaul
delay. We consider the number of hops only, as the propagation
delay in mobile backhaul networks is almost negligible (e.g.,
fiber), and thus the delay in the mobile backhaul mainly comes
from packet processing in each hop. Figure 8 shows the average
number of hops together with the 5% and 95% percentiles. The
results show that as the number of extra links increases, the
average number of hops decreases significantly for all the
algorithms. The results indicate that improving the backhaul
network is very important for MEC to serve VSs with stringent
delay requirements. The result also show that the LRA and
the LRA-no resilience algorithms perform close to the greedy
algorithms and even outperform the greedy algorithms when no
extra links are added. This shows that the LRA algorithm does
not sacrifice the backhaul delay performance while reducing
the energy consumption.

D. Experimental Results

To validate our resource consumption model for the primary
and secondary instances, we measured the CPU usage for two
different processes on a desktop computer with 4 CPU cores.
The first process implements model predictive control (MPC)
for balancing an inverted pendulum. MPC is an advanced
process control method that uses dynamic linear models, and
is widely used in the process industry in chemical plants and
oil refineries. We use the MPC process to simulate the main
activity of primary VS instances. The second process is a
UDP server that listens to and reads packets from a number
of UDP ports. Each UDP port receives about 60 packets per
second. We use this process to capture the main activity of
the secondary instances, which receive state update messages
from the primary instances periodically. Figure 9 shows the
average CPU usage of the UDP server with 100 and 200 UDP
ports, and the MPC process with a control frequency of 10 and
20 per second, respectively. The results show that compared
to the MPC process, the UDP server uses significantly less
computational resources. For example, when there are 200 ports

the CPU usage of the UDP server is about 5%. These results
justify our assumption that properly implemented secondary
instances can be hosted together on a shared computational
resource (e.g., together with the operating systems).

V I I . C O N C L U S I O N

We have proposed an approximation algorithm for solving
the joint problem of resource dimensioning and placement for
dependable virtualized services, for minimizing energy con-
sumption under resource and latency constraints. The proposed
approximation algorithm is based on Lagrangian relaxation and
solves the problem in two steps. Extensive simulations show
that our proposed algorithm significantly outperforms three
greedy baseline algorithms and is computationally efficient.
Overall our results indicate that service availability requirements
can effectively be incorporated into SLAs, and can be used
for making MEC dimensioning and service placement efficient.
An interesting extension of our work is to consider virtualized
services that have heterogeneous resource requirements, and the
case of shared computation resources subject to schedulability
constraints. A further extension of the model would be to
consider services that require data from devices connected to
multiple base stations.

A P P E N D I X : P R O O F O F L E M M A 3

Proof. Algorithm 1 was applied to the non-metric UFL problem
in [26]. Since the complete proof is missing in [26], we provide
the complete proof as follows, based on an approach similar
to Theorem 1.11 in [29]. Let us denote by Ω(n) the set of
clients that are not served at the beginning of iteration n, and
by U (n∗) the set of facilities that the optimal solution would
use to serve the clients in Ω(n). Let us denote by (b∗u, z

∗
k,u)

the optimal solution of the UFL-DC problem. Then,

v(u(n),K(n)) ≤
∑

u∈U(n∗) (b∗uqu +
∑

k z
∗
k,uqk,u)∑

u∈U(n∗)
∑

kz
∗
k,u

≤ Opt(UFL-DC)
|Ω(n)|

.

(38)

The first inequality holds as v(u(n),K(n)) is the minimal
cost efficiency at iteration n (line 4, Algorithm 1). The
second inequality holds as

∑
u∈U(n∗)(b∗uqu +

∑
k z
∗
k,uqk,u) ≤

Opt(UFL-DC) and
∑
u∈U(n∗)

∑
k z
∗
k,u ≥ |Ω(n)|.

Let us define the cost efficiency of serving client k as v(k) =
v(u(n),K(n)), where k ∈ K(n). Assume that the Algorithm 1
converges in N iterations, then
N∑

n=1

∑
k∈K(n)

v(k) ≤
N∑

n=1

∑
k∈K(n)

Opt(UFL-DC)
|Ω(n)|

(39)

≤
N−1∑
n=1

(
Opt(UFL-DC)
|Ω(n)|

+
Opt(UFL-DC)
|Ω(n)|−1

+ . . .+
Opt(UFL-DC)

|Ω(n)|−|Ω(n+1)|+1

)
+

(
Opt(UFL-DC)

Ω(N)
+

Opt(UFL-DC)
Ω(N) − 1

+ . . .+
Opt(UFL-DC)

1

)
= Opt(UFL-DC)

(
1

|K| + . . .
1

3
+

1

2
+

1

1

)
= H|K|Opt(UFL-DC),

where H|K| is the harmonic series and H|K| ≈ log(|K|).
Finally, the cost of the solution given by Algorithm 1 is



∑
u

buqu +
∑
u

∑
k∈K

zk,uqk,u ≤
N∑

n=1

∑
k∈K(n)

v(k)≤H|K|Opt(UFL-DC),

(40)

which proves the result.
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