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Abstract—Replacing hardware controllers with software-based
Virtual Process Control Functions (VPFs) is a promising ap-
proach for improving the operational efficiency and flexibility of
industrial control systems. VPFs can be executed in edge clouds
in 5G mobile networks or in the wireless backhaul, which can
further improve efficiency. Nonetheless, for the acceptance of vir-
tualization in industrial control systems, a fundamental challenge
is to ensure that the placement of VPFs be resilient to component
failures and cyber-attacks, besides being efficient. In this paper
we address this challenge by considering that VPF placement
costs are incurred by reserving MEC resources, executing VPF
instances, and by data communication. We formulate the VPF
placement problem as an integer programming (IP) problem,
considering resilience as a constraint. We propose a solution
based on generalized Benders decomposition and based on linear
relaxation of the resulting sub-problems, which effectively reduces
the number of integer variables to the number of MEC nodes.
We evaluate the proposed solution with respect to operational
cost, efficiency, and scalability in a simulated metropolitan area.
Our results show that the proposed solution reduces the total cost
significantly compared to a greedy baseline algorithm and a local
search heuristic, and can scale to moderate problem instances.

Index Terms—Mobile edge computing, Resilient facility loca-
tion, software controller, virtual function placement, IoT

I. INTRODUCTION

Legacy industrial control systems (ICS) consist of real-time
data collection from sensors, data processing in standalone
hardware controllers, and control command execution through
actuators. Softwarization of the hardware controllers is rapidly
emerging in ICS as a key enabler for improving operational
efficiency and flexibility, and for reducing capital expendi-
tures [1]–[3]. With softwarization, hardware controllers are
replaced by software instances, referred to as Virtual Process
Control Functions (VPFs). VPFs can be placed in commodity
servers, can be flexibly provisioned on demand, and are
easier to upgrade than legacy hardware controllers. Examples
include energy distribution, manufacturing, healthcare, and the
automotive industry.

The natural choice for placing VPFs in today’s industrial
network architectures would be self-managed servers on the
shop-floor or in a private cloud [4]. In the future, a promising
alternative could be Mobile Edge Computing (MEC), which is
expected to be a key enabler of 5G [5]. MEC brings distributed
computing and storage resources close to end-users in mobile
networks, with low latency and high bandwidth. Together
with low latency 5G wireless access, industries could further

reduce their operational cost and improve the flexibility of their
control processes by relying on MEC for VPF placement.

Resilience is a fundamental requirement for the adoption of
MEC for VPF placement. VPFs should be resilient to cyber
attacks (e.g., denial-of-service attacks and advanced persistent
threats) and to the potential failure of communication (wireless
access and the mobile backhaul) and computing resources
(virtual machines or servers in MEC nodes). Resilience can be
achieved by executing redundant copies of VPFs at multiple
MEC nodes, akin to 1+1 redundancy, but this approach requires
significant amount of redundant communication and computing
resources, and would thus lead to high operational cost. A more
cost efficient approach is to rely on shared redundancy, akin to
N+1 redundancy, and to restore a VPF instance on a different
MEC node in case of a failure, depending on the failure
scenario. Restoring a VPF instance on a different MEC node
may, however, be limited due to other VPF instances running
there already, and hence may require other VPF instances to
be migrated [6], which makes the problem of optimal resilient
VPF placement challenging.

In this paper, we address the problem of resilient VPF
placement with the objective of minimizing the expected
operational cost, due to making a MEC nodes available for
use, due to executing VPF instances on the MEC nodes that
are made available for use, and due to transmitting data from
the sensors to the VPFs and from the VPFs to the actuators.
The set of MEC nodes and communication links that are
suitable is determined by a given set of failure scenarios, and
the objective is to find the minimum cost VPF placement
subject to capacity and to resilience constraints, under all
possible scenarios. We formulate the resilient VPF placement
problem as an integer programming (IP) problem, and we
propose an efficient iterative algorithm based on generalized
Benders decomposition and linear relaxation. Through linear
relaxation the proposed Resilient VPF Placement (RVP) al-
gorithm converts the large scale IP problem into a mixed
integer linear programming (MILP) with as many integral
variables as MEC nodes. We prove convergence of the RVP
algorithm and provide a bound on the sensitivity of the solution
to the algorithm’s initialization. As an alternative to RVP,
we also propose a low-complexity heuristic based on local
search. Our numerical results show that the RVP algorithm can
reduce the expected cost significantly compared to a greedy
baseline algorithm and compared to the local search heuristic,



and scales significantly better than previous solutions to the
problem [7].

The rest of this paper is organized as follows. We review
related work in Section II and introduce the system model
in Section III. In Section IV we present our solution based
on Benders decomposition and provide analytical results. In
Section V we present the local search heuristic. We provide
numerical results in section VI, and we conclude the paper in
section VII.

II. RELATED WORK

There has been a significant interest in cloud computing
for industrial use cases, both concerning potential application
areas and security aspects [8], [9], but the focus of these works
is on architectures and requirements, rather than resource
management.

Related to our work are recent works on resource allocation
in MEC for sensor networks [10], [11]. Authors in [10]
considered the problem of allocating visual sensors with corre-
lated measurements to computing resources so as to maximize
system capacity, and proposed a 3-approximation. The problem
of allocating health sensors to health cloud servers to maximize
system utility is proposed in [11], and was solved by an
auction theory based approach. These papers consider resource
allocation, but do not capture resilience requirements.

Also closely related to ours are recent works on the Vir-
tual Network Function (VNF) placement problem [12]–[15].
These works consider the VNF placement problem in wireline
networks, and focus on individual functions or on function
chains. Authors in [12] modeled the individual VNF placement
problem as a generalized assignment problem, where the
network functions are assigned to different cloud servers to
minimize the total assignment cost, and provided an approx-
imation algorithm based on linear relaxation and rounding.
[13] formulated the on-demand individual VNF placement
problem as a simple lazy facility location (SLFL) problem, and
proposed two heuristic algorithms for on-line optimization.

The placement of chains of VNFs was modeled in [14]
as an Integer Linear Problem (ILP), and numerical solutions
were provided. [15] considered minimizing the number of
computing units that each function chain is distributed over,
and proposed a heuristic algorithm. The joint placement and
path selection problem for VNFs chains was addressed in [16]
to maximize the service capacity, and algorithms for estimating
link and processing capacity demands, and for allocating VNFs
were proposed.

Resilience under link and node failure for VNF placement
was considered in [17], the problem was formulated as an
ILP, and numerical results were provided. Unlike [17], in our
work we consider a set of failure scenarios caused by MEC
node failures and communication link failures. We compute
VPF placement for each failure scenario so as to minimize the
overall cost.

While the placement of VNFs is akin to that of VPFs, the
solutions for the VNF placement problem do not fit the VPF
placement problem well for three reasons. First, in the case
of VPF placement a VPF communicates with multiple sensors
and actuators, while the VNF placement usually assumes that a

VNF service request has a single entry and a single destination.
Second, due to the adoption of MEC for VPF placement,
sensors and actuators are associated with base stations (BSs)
via radio links, and the BSs are further connected to the MEC
nodes by a backhaul network. The heterogeneous network
architecture has to be captured by the communication cost
model. Third, the objective of VNF placement is usually to
maximize the throughput of the network, while in the case of
VPF placement, delay is arguably a more appropriate perfor-
mance metric due to the performance requirement of industrial
control processes. Our paper captures these properties of VPF
placement which makes it different from the existing works on
VNF placement.

Also related to ours are the works on Virtual Network
Embedding (VNE), which map components of virtual networks
to substrate networks. The VNE problem with the objective of
minimizing the cost of using the resources of substrate net-
works was addressed in [18], [19] . These works assumed that
all the resources of substrate networks are made available by
the infrastructure provider, while we also consider the problem
of making the resources of substrate networks available and
the associated cost. VNE with link failures was considered
in [20], where authors developed a heuristic to maximize the
long term profit. [20] modeled the impact of link failures as a
penalty to the profit, while we consider resilience to failures as
a constraint to guarantee the availability of critical industrial
applications.

Closest to our work in terms of the problem formulation
is the single source capacitated facility location (SSCFL)
problem, which opens a set of facilities to serve a set of clients,
with the objective of minimizing the overall cost. The SSCFL
problem corresponds to our problem with a single failure
scenario; in the SSCFL problem the set of opened facilities and
the client assignment depend on the cost and capacities of the
facilities only, while in our problem the MEC node availability
and the occurrence probability of each scenario should also be
considered. Furthermore, in our problem, since different failure
scenarios share the same set of available MEC nodes, different
failure scenarios should be jointly considered to minimize
the overall cost. Due to these differences, existing solution
approaches for the SSCFL problem are not directly applicable
to our problem. Techniques based on linear programming
and local search heuristics have been developed to solve the
SSCFL problem. The linear programming based techniques
usually solve the problem with exceeding the capacity limits
of the facilities [21], [22], which is not practical for the VPF
placement. The local search heuristics [23] solve the problem
of facility opening and client assignment iteratively in weakly
polynomial time, and thus do not scale well to large problem
instances. Furthermore, the performance bounds of local search
based heuristics are not applicable to the VPF placement
problem, since they usually require a metric space based cost
model to guarantee an approximation ratio, which does not
hold in general network topologies.

Closest to our work in terms of methodology is [24], where
the problem of capacitated facility location subject to facility
disruptions was addressed using Benders decomposition. Un-
like [24], we also use infeasibility cuts to handle the infeasible
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Figure 1. The communication and computing infrastructure consists of BSs,
MEC nodes and a backhaul network. A service orchestrator monitors the status
of the system and coordinates the allocation of communication and computing
resources.

region, which makes our algorithm more efficient. This paper
is an extension of our previous work [7], and improves it in
three important ways. First, this paper proposes an improved
initialization method for the Benders decomposition, two addi-
tional cuts, and per failure scenario based sub-problem solving.
The numerical results clearly show significant improvements
in terms of the convergence speed and scalability, compared to
the algorithm proposed in [7]. Second, in Section V we propose
a heuristic based on local search with low computational
complexity, and in the numerical results section we compare
its performance with that of RVP algorithm. Third, this pa-
per provides a significantly extended performance evaluation,
both in terms of problem instance sizes and the considered
solutions.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system that consists of a set B of BSs,
a set S of sensors, and a set A of actuators. A subset
M ⊆ B of the BSs is equipped with computational and
storage resources and serve as MEC nodes [4], [25]. We denote
by ωm the computing capacity of MEC node m ∈ M, and
assume it to be an integer. This assumption is reasonable, for
example, if capacity is the number of Virtual Machines (VMs),
as industrial applications have tight delay requirements and
require isolation for performance and security reasons; hence
a single VPF would be allocated per VM.

The BSs are interconnected by a backhaul network (e.g.,
software defined mobile backhaul network). Via BSs, sensors
and actuators can send and receive data wirelessly. Data
communication through the wireless links and the backhaul
network incurs cost, which we define in Section III-B. Our
focus is primarily on delay critical applications, and thus in our
model we do not consider rate requirements or link capacity
limits. Instead, the communication cost is intended to model
the communication delay, as we will discuss later.

Within the infrastructure above, we consider a set F of
VPFs that process the data from sensors and send commands
to actuators, and need to be allocated to MEC nodes for
execution. For each function f ∈ F there is a set of sensors that
capture data needed by f , and there is a set of actuators that
VPF f sends commands to. We use yf,s ∈ y and zf,a ∈ z to
indicate whether sensor s ∈ S and actuator a ∈ A are required
by VPF f . We consider that each VPF requires one unit of
computing resource, i.e., 1 VM. This model is reasonable,
among others, for smart grid control functions that share
similar control structures, e.g., Volt/Var Control (VVC) [26].

We assume that a service orchestrator monitors the status of
all system components and is able to coordinate the allocation
of communication and computing resources. The specification
of the required backhaul network and MEC APIs is outside of
the scope of our work, but it could be implemented by com-
bining the Openflow and the OpenStack APIs [27]. Figure 1
illustrates the components of the considered communication
and computing infrastructure.

A. Failure Scenarios

We consider that the communication and computing infras-
tructure is subject to the occasional failure of its components.
We use the term failure scenario to refer to the system when
a set of its components has failed, and we denote by L the
set of all failure scenarios. A failure scenario can include a
combination of communication and computing resources.

The failure of a wireless communication link, either due to
equipment failure, due to jamming, or due to a denial of service
attack, results in the failure of the communication between a
sensor or an actuator and its associated BS. To recover from
the failure, the sensor or actuator needs to be re-associated to
another BS. We consider that BS association is taken care of
by the mobile network, and we denote by bl,i the associated BS
for a sensor or actuator i ∈ A∪S in scenario l. Similarly, the
failure of a component of the backhaul network (e.g., an SDN
switch or an optical cable) is handled by the mobile network,
but it could result in increased delay.

The failure of MEC nodes, due to a communication failure,
hardware failure or a DoS attack, results in a MEC node to be
unsuitable for VPF placement. We use the binary variable rl,m
to indicate the suitability of MEC node m for VPF placement
in scenario l.

We assume that the system operator is able to estimate the
occurrence probability of each failure scenario, and we denote
the estimated occurrence probability of scenario l by πl. The
occurrence probabilities of failure scenarios can be estimated
by using the mean time between failures and the mean time
to repair, which can be obtained by the historical failure and
maintenance records of the components of the system [28]. By
definition

∑
l∈L πl = 1. Note that this model allows to capture

correlated failures, and is thus able to capture various link
layer, network layer and cloud failure recovery mechanisms.
As a remark, as the number of components in the system
increases the number of failure scenarios may increase. In
practice, scenarios with a low occurrence probability (e.g.,
scenarios with multiple component failures) can be ignored
to reduce the dimension of the problem.

B. Cost Model

Our cost model for VPF placement accounts for costs in
terms of computing and storage resources and in terms of the
communication between the MEC nodes and the sensors and
actuators. We denote by Fm the availability cost of MEC node
m, which has to be paid if the node is to be available for
VPF placement in any scenario. The availability cost Fm is
justified by the cost of storing the virtual machine images in
the MEC nodes (storage cost) and by the potential need for
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reserving computational power and memory for the eventual
execution of the VPFs (availability fee). We denote by pm,f
the placement cost of an instance of VPF f on node m. This
cost is justified by the computational and memory resources
needed for the execution of the VPF.

The cost of communication consists of the wireless trans-
mission cost and the backhaul network transmission cost. We
denote by ci,b the cost of wireless communication between a
sensor or an actuator i ∈ S ∪ A and a BS b. In general it is
reasonable to assume that ci,b is inverse proportional to the
achievable rate; this cost model is well suited for capturing
the delay introduced by communication and the usage of radio
resource blocks.

We denote by cl,b,b′ the communication cost over the back-
haul network between BSs b and b′ in scenario l. Note that
in different failure scenarios the routing between BSs b and b′

may be different, thus cl,b,b′ is scenario dependent.
The total communication cost ci,b,m between a sensor or

an actuator i ∈ A ∪ S and a MEC node m ∈ M if the
sensor or actuator is associated to BS b ∈ B is then the sum
of the wireless transmission cost and the backhaul network
communication cost, cl,m,i = ci,b+cl,b,m. Note that the amount
of traffic related to VPFs is relatively small and therefore it
does not affect the delay on a link. Thus, the delay on a specific
link mainly depends on its capacity and load, and therefore we
consider ci,b, cl,b,m and cl,m,i as input parameters.

We consider that the availability cost Fm, placement cost
pm,f , and communication cost cl,m,i can be normalized to
a common scale. Appropriate normalization factors could be
introduced in the system model without affecting the prob-
lem complexity, but they would adversely affect presentation
clarity, hence we decided to omit them.

C. Problem Formulation

We are now ready to formulate the resilient VPF placement
problem, which consists of deciding which MEC nodes to keep
available and on which MEC node to place each VPF, subject
to resilience and MEC resource capacity constraints. We use
the decision variable vm ∈ {0, 1} to denote whether MEC node
m is kept available, and let v = {v1, . . . , vm}. Furthermore,
we use the decision variable xl,f,m ∈ {0, 1} to denote whether
VPF f is placed in MEC node m in scenario l, and let x =
{x1,1,1, . . . , xl,f,m}.

VPF placement is subject to resilience and capacity con-
straints. For resilience we require that each VPF f should be
placed at a MEC node in each scenario l ∈ L,∑

m∈M
xl,f,m ≥ 1, ∀l ∈ L, ∀f ∈ F . (1)

Furthermore, we consider two MEC resource capacity con-
straints. First, a VPF f can only be placed on a MEC node
that is made available and is accessible in failure scenario l,

xl,f,m ≤ rl,mvm, ∀l ∈ L, ∀f ∈ F , ∀m ∈M. (2)

Second, the sum of the computing resource requirements of
the VPFs placed on MEC node m cannot exceed its computing

Table I
TABLE OF NOTATIONS

Sets
A Set of actuators
B Set of base stations
F Set of VPFs
L Set of failure scenarios
M Set of MEC nodes
S Set of sensors

Parameters
cl,m,i Communication cost between i ∈ A ∩ S

and m ∈M in scenario l ∈ L
Fm Availability cost of m ∈M
pm,f Placement cost of f ∈ F on m ∈M
rl,m Indicator, suitability of m ∈M in scenario l ∈ L
yf,s Indicator, if sensor s ∈ S is required by f ∈ F
zf,a Indicator, if actuator a ∈ A is required by f ∈ F
πl Occurrence probability of l ∈ L
ωm Capacity of MEC node m ∈M

Decision Variables

vm =

{
1, if m ∈M is made available
0, otherwise

xl,f,m =

{
1, if f ∈ F is placed on m ∈M in l ∈ L
0, otherwise

resource capacity,∑
f∈F

xl,f,m ≤ ωmvm, ∀l ∈ L, ∀m ∈M. (3)

The VPF placement problem is then to minimize the VPF
placement cost subject to resilience and capacity constraints,

minimize
x,v

O(v,x) =
∑
m∈M

vmFm︸ ︷︷ ︸
Availability cost

+
∑
l∈L

πl
∑
m∈M


∑
f∈F

xl,f,mpm,f︸ ︷︷ ︸
Placement cost

+

∑
s∈S

cl,m,s∑
f∈F

yf,sxl,f,m

+
∑
a∈A

cl,m,a∑
f∈F

zf,axl,f,m


︸ ︷︷ ︸

Communication cost


(4)

s.t. (1)− (3)
xl,f,m ∈ {0, 1}, ∀l ∈ L, ∀f ∈ F , ∀m ∈M (5)
vm ∈ {0, 1}, ∀m ∈M (6)

Our focus is on instances where the VPF placement problem
above is feasible. The most frequently used notations are
summarized in Table I.

IV. RESILIENT VPF PLACEMENT ALGORITHM

Observe that the resilient VPF placement problem (4) is
an IP problem, and in fact for |L| = 1 the VPF placement
problem is equivalent to an instance of the SSCFL problem,
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Figure 2. Flowchart of Resilient VPF Placement Algorithm

which is known to be NP-hard [23]. In what follows we
show that it is possible to leverage the structure of the VPF
placement problem to obtain an algorithm that is polynomial
in the number of scenarios and the number of VPFs.

We notice that the constraint matrix of the VPF placement
problem has a special block structure, known as block-ladder
structure, 

D1 G1

D2 G2

...
. . .

D|L| G|L|

 (7)

where nonzero elements only appear in matrices D1, . . . , D|L|,
which correspond to the variables v, and in G1, . . . , G|L|,
which correspond to the variables xl,f,m for each scenario,
respectively.

Constraint matrices with a block-ladder structure typically
arise in stochastic programming problems, for which an effi-
cient solution method is the Generalized Benders Decomposi-
tion (GBD) [29]. In what follows we leverage this insight to
propose a solution to the resilient VPF problem. The overall
structure of the proposed RVP algorithm is shown in Figure 2.

Following the idea of GBD, RVP partitions the variables of
the optimization problem into two sets, and decomposes the
original problem into a master problem and a sub-problem.
The master problem and the sub-problem are solved iteratively
over different partitions, and in each iteration they generate
an upper bound and a lower bound of the original problem’s
objective value, respectively. The iteration stops when the
upper bound and the lower bound approach each other and
match the termination condition. In what follows we formulate
the master problem, the sub-problem, introduce the feasibility
check and discuss how to initialize the algorithm. Finally, we
prove that the RVP algorithm terminates in a finite number of
iterations.

Throughout the section we use v̄(i) = {v̄(i)
1 , . . . , v̄

(i)
m } and

x̄(i) = {x̄(i)
1,1,1, . . . , x̄

(i)
l,f,m} to denote the optimal solution for

the master problem and for the sub-problem in iteration i,
respectively.

A. Master Problem: Availability Cost Minimization

The purpose of the master problem is to choose the MEC
nodes to be made available. The number of MEC nodes that
have to be made available can be lower bounded by

n̂ = max{n̂l|l ∈ L}, (8)

where n̂l is the lower bound on the number of MEC nodes
required by scenario l, and is the cardinality of the minimal set
of suitable MEC nodes that satisfies the capacity requirement
of the VPFs.

Given n̂, in iteration i we formulate the master problem by
fixing the variable x = x̄(i−1) and optimizing the expected
total cost over v,

min
v

g (9)

s.t. g ≥ P (j)(v), j = 1, . . . , J (10)

0 ≥ Q(k)(v), k = 1, . . . ,K (11)∑
m∈M

vm ≥ n̂ (12)∑
l∈L

∑
m∈M

vmrl,mωm ≥ |F| · |L| (13)

vm ∈ {0, 1}, ∀m ∈M (14)

The constraints (10) are so called feasibility cuts, and
P (j)(v) is a support function obtained in a previous iteration
by solving the dual of the sub-problem, which we will intro-
duce in section IV-C. Note that P (j)(v) provides a lower bound
on the total cost, and is a function of v. The constraints (11) are
so called infeasibility cuts. They are used to form a region of V
that satisfies constraints (2)-(3) of the VPF placement problem,
and will be introduced in Section IV-B. In each iteration the
algorithm adds either a feasibility cut or an infeasibility cut,
hence J +K = i.

Besides the usual infeasibility cuts (11) in GBD, we develop
the constraints (12) and (13). These new constraints are intro-
duced to ensure that constraints (2)-(3) are satisfied by each
set of MEC nodes given by the master problem, and to tighten
the solution of the master problem. Constraint (12) requires
that the number of MEC nodes that are made available is no
less than the lower bound n̂ on the number of MEC nodes.
Constraint (13) requires that the sum of the available capacity
(e.g, the sum of the capacities of the suitable MEC nodes that
are made available) over all the scenarios shall be sufficient
to host |F| · |L| VPFs, since the available capacity in each
scenario must be sufficient to accommodate the VPFs. As we
will show later, the proposed constraints (12) and (13) can
accelerate the convergence significantly.

In what follows we denote by LB(i) = ḡ(i) the optimal
objective function value of the master problem obtained in
iteration i. Observe that the master problem is an IP in |M|
binary variables.

B. Feasibility Check of Available MEC Nodes

As a next step, before we proceed with placing the VPFs
to the available MEC nodes, we need to check if the available
MEC nodes meet the capacity requirements (2) and (3).
Observe that the two constraints and the VPF placement x are
independent between scenarios, we can thus check feasibility
for each scenario in parallel by formulating the following
feasibility problem,
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min
ααα, σσσ, x

∑
f∈F

∑
m∈M

αl,f,m +
∑
m∈M

σl,m (15)

s.t. (1)

xl,f,m ≤ rl,mv̄(i)m + αl,f,m, ∀l, ∀f, ∀m (16)∑
f∈F

xl,f,m ≤ ωmv̄(i)m + σl,m, ∀l, ∀m (17)

xl,f,m ∈ [0, 1], ∀l, ∀f, ∀m (18)
αl,f,m, σl,m ≥ 0, ∀l, ∀f, ∀m (19)

Note that variables ααα = {α1,1,1, . . . , αl,f,m} and σσσ =

{σ1,1,1, . . . , σl,m} are added to the constraints involving v̄
(i)
m

to ensure that the constraints (2) and (3) can be satisfied, and
hence the problem has an optimal solution. Notice that the
feasibility check does not require xl,f,m to be binary; as we
will show in Lemma 1 linear relaxation does not change the
solution set (and hence it does not change feasibility either).

Let us denote by ᾱ(i) = {ᾱ(i)
1,1,1, . . . , ᾱ

(i)
l,f,m} and σ̄(i) =

{σ̄(i)
1,1, . . . , σ̄

(i)
l,m} the optimal solution of the feasibility prob-

lem. If the optimal value of the objective function (15) is zero
then the algorithm continues with the sub-problem described
in Section IV-C.

Otherwise, we continue with formulating the dual of the
feasibility problem for each failure scenario,

min
βββ, θθθ, ΩΩΩ

∑
f∈F

βl,f −
∑
m∈M

Ωl,mωmv̄
(i)
m

−
∑
f∈F

∑
m∈M

θl,f,mv̄
(i)
m rl,m (20)

s.t. Ωl,m + θl,f,m − βl,f ≥ 0, ∀l, ∀f, ∀m (21)
1− θl,f,m ≥ 0, ∀l, ∀f, ∀m (22)
1− Ωl,m ≥ 0, ∀l, ∀m (23)

Let us denote by β̄(i) = {β̄(i)
1,1, . . . , β̄

(i)
l,f}, θ̄(i) =

{θ̄(i)
1,1,1, . . . , θ̄

(i)
l,f,m} and Ω̄(i) = {Ω̄(i)

1,1, . . . , Ω̄
(i)
l,m} the set of

optimal multipliers of the duals of the feasibility problems.
We use these optimal multipliers to construct an infeasibility
cut

Q(k)(v) =
∑
l∈L

∑
f∈F

β̄
(i)
l,f

(
1−

∑
m∈M

x̄
(i)
l,f,m

)

+
∑
l∈L

∑
m∈M

Ω̄
(i)
l,m

∑
f∈F

x̄
(i)
l,f,m − ωmvm


+
∑
l∈L

∑
f∈F

∑
m∈M

θ̄
(i)
l,f,m

(
x̄
(i)
l,f,m − rl,mvm

)
, (24)

which we add to the master problem (Chapter 6.3.5, [30]).
After adding the infeasibility cut, the algorithm continues with
the master problem. Observe that the infeasibility cut tightens
the master problem, and ensures the feasibility of the sub-
problem in the next iteration.

C. Sub-problems: Placement cost minimization

While the master problem chooses the set of MEC nodes
that are made available to minimize the total cost, the sub-
problems minimize the placement cost and the communication
cost over x for v̄(i) computed by the master problem. Again,
by observing that constraints (1)-(3) and variables x for the
VPF placement are independent between scenarios, we can
formulate a sub-problem for each scenario,

min
x
πl
∑
m∈M

∑
s∈S

cl,m,s∑
f∈F

yf,sxl,f,m

+

∑
a∈A

cl,m,a∑
f∈F

zf,axl,f,m

+
∑
f∈F

xl,f,mpm,f


s.t. (1)− (3) and (5)

(25)

To avoid solving the sub-problems as IPs we use linear
relaxation and replace constraint (5) in each sub-problem by

xl,f,m ∈ [0, 1], ∀l ∈ L, ∀f ∈ F , ∀m ∈M. (26)

As we show next, linear relaxation does not affect the result
of the algorithm, while reducing its computational complexity.

Lemma 1. The coefficient matrix of constraints (1)-(3) for
each failure scenario l ∈ L is totally unimodular. Furthermore,
the linear relaxation of the sub-problem for each failure
scenario l ∈ L has integral optimal solutions, which are
optimal for the corresponding sub-problem.

Proof. First we prove that the coefficient matrix of constraints
(1)-(3) for each failure scenario l ∈ L is totally unimodular.
We write constraints (1)-(3) according to the failure scenarios
in matrix form,

Rlxl ≤ −1, (27)
Ixl ≤ sl, (28)
Tlxl ≤ tl, (29)

where

Rl,f,m =

{
−1, if (f − 1)|F|+ 1 ≤ m ≤ f |F|
0, otherwise (30)

xl = [xl,1,1, . . . , xl,1,m, . . . , xl,f,m]T , (31)
sl,f = [rl,1v1, . . . , rl,mvm]∀f ∈ F , (32)

sl = [sl,1 . . . sl,|F|︸ ︷︷ ︸
|F|

]T , (33)

Tl = [Im,m . . . Im,m︸ ︷︷ ︸
|F|

], (34)

tl = [ω1v1, . . . , ωmvm]T . (35)

We denote by Gl the coefficient matrix of scenario l and

Gl =

[
G′l
I

]
, and G′l =

[
Rl
Tl

]
. (36)

For convenience, let us define

Ḡ′l =

[
−Rl
Tl

]
. (37)
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According to the matrix formulation above, each column of
−Rl contains only one non-zero element with value 1, and
each column of Tl contains only one non-zero element with
value 1. Thus matrix Ḡ′l has two non-zero elements in each
column. To show that Ḡ′l is totally unimodular, it suffices to
show that the rows of Ḡ′l can be partitioned into two disjoint
sets such that if there are two non-zero entries in a column
of Ḡ′l then the two rows where the two entries are should be
in different sets of rows (Theorem 2.3.3 in [31]). This clearly
holds, if one set of the rows of Ḡ′l consists of the rows of
matrix −Rl and the other set of rows of Ḡ′l consists of the
rows of matrix Tl.

Now, since multiplying some rows of a totally unimodular
matrix by −1 preserves total unimodularity, G′1 is also a totally
unimodular matrix. Following Theorem 19.3 in [32], Gl is a
totally unimodular matrix.

Finally, since each element of sl and tl is an integer and
the coefficient matrix Gl is totally unimodular, according to
Corollary 19.2a in [32], the sub-problem (25) for each failure
scenario l ∈ L with linear relaxation has integral optimal
solutions, which are optimal for the original sub-problem
(25).

Given the optimal solution x̄(i) = {x̄(i)
1,1,1, . . . , x̄

(i)
l,f,m} of

the sub-problems, we can express the upper bound (UB) of
the total cost in iteration i as

UB(i) =
∑
m∈M

v̄(i)m Fm +
∑
l∈L

πl
∑
m∈M

∑
s∈S

cl,m,s∑
f∈F

yf,sx̄
(i)
l,f,m


+
∑
a∈A

cl,m,a∑
f∈F

zf,ax̄
(i)
l,f,m

+
∑
f∈F

x̄
(i)
l,f,mpm,f


(38)

The algorithm terminates here if UB(i) − LB(i) < ε, where
ε > 0 is the termination threshold. Otherwise the algorithm
continues with adding one more constraint to the master
problem. We obtain the constraint by formulating the duals
of the sub-problems,

max
λλλ,γγγ,µµµ

∑
f∈F

λl,f −
∑
l∈L

∑
m∈M

γl,mωm (39)

−
∑
f∈F

( ∑
m∈M

µl,f,mrl,mv̄
(i)
m

)

s.t. πl

(
cl,m,s

∑
s∈S

yf,s + cl,m,a
∑
a∈A

zf,a + pm,f

)
≥

λl,f − µl,f,m − γl,m, ∀l ∈ L, ∀f ∈ F , ∀m ∈M (40)
λl,f , µl,f,m, γl,m ≥ 0, ∀l ∈ L, ∀f ∈ F , ∀m ∈M (41)

where multiplier λl,f is the marginal revenue for a placed VPF
f in scenario l, γl,m is the penalty for violation of the capacity
of MEC node m in scenario l, and µl,f,m is the penalty for each
violated suitability constraint in scenario l for node m. Let us
denote the optimal multipliers obtained by solving the duals
in iteration i by λ̄λλ

(i)
= {λ̄(i)

1,1, . . . , λ̄
(i)
l,f}, γ̄γγ = {γ̄(i)

1,1, . . . , γ̄
(i)
l,m},

and µ̄µµ = {µ̄(i)
1,1, . . . , µ̄

(i)
l,f,m}.

Based on the solution of the sub-problems and of the duals
of the sub-problems, we build the support function P (j)(v).
In GBD the support function can be built in various ways.
Since the objective function and the constraints of the VPF
placement problem (4) are linearly separable in v and x, we
build the support function based on the Lagrange function
(Chapter 6.3.5, [30]),

P (j)(v) = O(v, x̄(i)) +
∑
l∈L

∑
f∈F

λ̄
(i)
l,f

(
1−

∑
m∈M

x̄
(i)
l,f,m

)

+
∑
l∈L

∑
m∈M

γ̄
(i)
l,m

∑
f∈F

x̄
(i)
l,f,m − ωmvm


+
∑
l∈L

∑
f∈F

∑
m∈M

µ̄
(i)
l,f,m

(
x̄
(i)
l,f,m − rl,mvm

)
. (42)

Finally, we add the support function P (j)(v) as a feasibility
cut to the master problem in the next iteration.

Remark 1. Since the feasibility problem (15)−(19) and
its dual (20)−(23), and the subproblem (25) and its dual
(39)−(41), are independent among the scenarios, they can be
solved in parallel in the corresponding steps to shorten the
running time of the RVP algorithm.

Remark 2. Observe that through linear relaxation of the sub-
problem RVP reduces the number of integer decision variables
from |M|(|L||F| + 1) to |M|. As we will see this allows us
to solve up to moderate instances of the VPF problem.

D. Initializing RVP

We initialize the algorithm with a feasible set of MEC nodes
v̄(0) and start with solving the sub-problems and their duals
to obtain UB(0) and the feasibility cut P (1)(v), which can
then be added to the master problem. A straightforward way
to initialize the algorithm is to set v̄(0) = e, which makes all
the MEC nodes available. However, the feasibility cut P (1)(v)
generated by v̄(0) = e can be very loose since all the MEC
nodes are made available.

We propose an alternative way for initializing v̄(0). Our
proposal is based on formulating and solving the linear re-
laxation of (4) for each scenario l, and rounding up the
element-wise maximum of the optimal solutions v̄ of each
scenario as v̄(0). Since the relaxed solution v̄ is feasible to the
corresponding sub-problem, so is v̄(0). The P (1)(v) generated
by this alternative approach is tighter, and can speed up the
convergence as we will show later.

E. Convergence of the RVP Algorithm

Since RVP is iterative, a fundamental question is whether
it is guaranteed to terminate. The following result shows that
this is the case.

Theorem 1. The RVP algorithm terminates in a finite number
of iterations for any ε > 0.

Proof. We prove the result by showing that the RVP algorithm
satisfies the following five properties:

1) The domain of x is a nonempty, convex set.
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2) The objective function (4), and constraints (1)-(3) are
convex for each fixed v. The constraints are convex real
functions on the domain of x for each fixed v.

3) x is bounded and closed, and the constraint functions
are continuous on the domain of x for each fixed v.

4) The sub-problem (25) has a finite solution.
5) The sub-problem (25) has optimal Lagrangian multipli-

ers for constraints (1)-(3).

Condition 1) holds due to Lemma 1, which showed that lin-
ear relaxation provides integral solutions to the sub-problems.
Thus, even if x are binary in the original problem formulation,
we can consider the domain of x as the domain of its linear
relaxation, which is a convex set. Since O(v,x) and constraints
(1)-(3) are linear functions, they are convex, and continuous
in x for each fixed v, therefore condition 2) is satisfied.
According to the problem formulation the domain of x is
bounded, and hence due to the linearity of constraints (1)-(3)
condition 3) is satisfied. Since all the parameters are finite and
the domain of x is bounded, condition 4) is satisfied as well.
Finally, since we assumed that there is at least one feasible
solution to problem (1)-(4), the sub-problems are feasible. As
a consequence, there exist optimal Lagrangian multipliers for
the constraints (1)-(3).

Since the RVP algorithm satisfies conditions 1) to 5), by
Theorem 6.4.3 in [30] it terminates in a finite number of
iterations for any ε > 0.

Theorem 1 indicates that the convergence of RVP does not
depend on the initialization, i.e., v(0). Furthermore, as the
following result shows, the difference of the total cost obtained
by RVP starting from two different initializations and using
different sets of constraints can be bounded by the sum of the
convergence thresholds.

Lemma 2. Consider a VPF placement problem instance. Let
O(v+,x+) and O(v′,x′) be the total cost given by RVP with
initialization v(0)+ and v(0)′ and convergence threshold ε+

and ε′, with constraints (12) and (13) and without, respectively.
Then |O(v′,x′)−O(v+,x+)| ≤ ε+ + ε′.

Proof. First, observe that the constraints (12) and (13) speed
up convergence by excluding sets of MEC nodes that make
the subproblem infeasible, but they do not have an impact
on set of feasible solutions considered by RVP. To prove the
result, let us denote by O(v?,x?) the optimal solution of the
VPF placement problem. At the iteration when RVP converges,
O(v?,x?) is also bounded by the upper bound and lower
bound generated by the RVP algorithm, thus

|O(v?,x?)−O(v+,x+)| ≤ ε+,

and |O(v′,x′)−O(v?,x?)| ≤ ε′.

Since

|O(v?,x?)−O(v+,x+)|+ |O(v′,x′)−O(v?,x?)|
≥
∣∣O(v?,x?)−O(v+,x+) +O(v′,x′)−O(v?,x?)

∣∣
=
∣∣O(v′,x′)−O(v+,x+)

∣∣ ,

Algorithm 1: Single Exchange VPF Placement Algo-
rithm

1 Let v = e.
2 Solve sub-problem (25) for each failure scenario to

obtain x.
3 Let vm = min(1,

∑
l∈L
∑
f∈F xl,f,m) ∀m ∈M

4 C = O(v,x)
5 do
6 C ′ = C
7 for ∀m with vm = 1 do
8 v′ = {v1, . . . , vm−1, 0, vm+1, . . . , v|M|}
9 (v,x, C)=Update(v′)

10 end
11 for ∀m with vm = 0 do
12 v′ = {v1, . . . , vm−1, 1, vm+1, . . . , v|M|}
13 (v,x, C)=Update(v′)
14 end
15 for ∀m with vm = 1 do
16 for ∀vm′ = 0 do
17 v′ = {v1, . . . , vm−1, 0, vm+1, . . . , vm′−1, 1,

vm′+1, . . . , v|M|}
18 (v,x, C)=Update(v′)
19 end
20 end
21 while C < C ′

Function Update(v′)
22 Solve sub-problem (25) for each failure scenario l to

obtain x′

23 if Sub-problem (25) is feasible for ∀l then
24 if C > O(v′,x′) then
25 C = O(v′,x′), v = v′, and x = x′

26 end
27 end
28 return (v,x, C)

we obtain ∣∣O(v′,x′)−O(v+,x+)
∣∣ ≤ ε+ + ε′,

which proves the lemma.

V. SINGLE EXCHANGE VPF PLACEMENT ALGORITHM

The RVP algorithm decomposes the VPF placement problem
into multiple subproblems, which can be solved in polynomial
time. However, the master problem is still an IP and may be
computationally intensive to solve for many MEC nodes. To
potentially overcome this computational issue, in this section
we propose a heuristic based on local search, which we
call the Single Exchange VPF Placement (SEVP) algorithm,
to solve the VPF placement problem. The proposed SEVP
algorithm, shown in Algorithm 1, is an extension of local
search algorithms [23] developed for the SSCFL problem to
multiple failure scenarios.

The algorithm starts with making all MEC nodes available,
and solves the sub-problem for each scenario to get a VPF

8



Figure 3. The simulated 50km× 50km metropolitan area, based on a map
of the city of Milan, Italy. Blue dots show the location of the MEC nodes.

allocation that minimizes the sub-problem cost. It then makes
available the MEC nodes that are used by any VPF in any
scenario (Lines 1-3). The cost of the obtained initial solution
is C = O(v,x) (Line 4).

Starting from this initial solution, the SEVP algorithm
improves the solution iteratively. In each iteration the SEVP
algorithm stores the cost of the previous iteration as C ′ (Line
6), attempts to find a new solution v′ by closing a MEC node
that is made available (Line 8), and then it calls the Update()
function (Line 9). The Update() function computes the optimal
VPF placement x′ with respect to v′ by solving sub-problem
(25) for each failure scenario (Line 22). If sub-problem (25)
is feasible for each scenario and the cost O(v′,x′) < C, the
new solution is adopted, otherwise, it is ignored (Lines 24-26).
The SEVP algorithm further attempts to find a new solution
by making an extra MEC node available, and by closing an
available MEC node and making an extra MEC node available
simultaneously in Lines 11-14 and Lines 15-20, respectively.
The SEVP algorithm terminates when C cannot be reduced
any more.

Operations like closing multiple available MEC nodes and
making multiple MEC nodes available simultaneously would
increase the complexity of local search significantly, and
therefore are not considered. Note that different from local
search algorithms developed for the SSCFL problem [23],
the SEVP algorithm assigns VPFs to MEC nodes by solving
Linear Programming (LP) problems instead of using local
search, and therefore it can scale to large systems. In what
follows we use the SEVP algorithm as a basis of comparison
for the RVP algorithm.

VI. NUMERICAL RESULTS

In what follows we evaluate the RVP and the SEVP algo-
rithms in terms of operational cost, efficiency, and scalability.
For the evaluation we simulated a 50km×50km metropolitan
area, based on a map of the city of Milan, Italy, including
locations of the BSs (http://opencellid.org/), and used the k-
means algorithm for selecting the subset of MEC nodes, as
shown by the blue dots in Figure 3.

Table II
SYSTEM PARAMETERS

Parameter Value
Number of BSs |B| = 15, 30

Number of MEC nodes |M| = 15, 30

Number of Sensors |S| = 100
Number of VPFs |F | = 8, 16, . . . , 80
Availability Cost Fm ∼ Unif(1, 100)
Placement Cost pm,f ∼ Unif(1, 10)
Termination Threshold ε = 2% of UB

Sensors and actuators were uniformly placed in the simula-
tion area. Each sensor and actuator sends and receives data
through the nearest BSs. Each VPF is associated with an
actuator and with 5 sensors chosen at random. The probability
that sensor s is associated with f is inversely proportional to
the square of the distance da,s between the sensor s and the
actuator a associated to f ,

P (yf,s = 1 | zf,a = 1) =
1/d2

a,s∑
s′∈S 1/d2

a,s′
. (43)

We model the wireless transmission cost ci,b between a sensor
or an actuator i ∈ A ∪ S and BS b ∈ B to be inversely
proportional to the maximum data rate of the link given by
its Shannon capacity,

ci,b =
n

log2

(
1 +

p0d
−h
i,b

N0

) ,
where n is a positive cost coefficient, p0 is the fixed transmit
power of the transmitter, di,b is the distance between i and b, h
is the path loss factor, and N0 is the Additive White Gaussian
Noise (AWGN). This cost model is reasonable since a radio
link with a lower unit capacity requires more radio resource
(e.g., radio spectrum) for the same bitrate.

In terms of failure scenarios, we include the single node fail-
ure of each MEC node and the scenario that all the MEC nodes
are suitable. We set the occurrence probability πl of the scenar-
ios by first choosing a failure rate ul ∼ Unif(1, 10), l ∈ L for
each scenario, and used the normalized failure rate as probabil-
ity, πl = ul/

∑
l ul. The failure rate is widely used to assess

hardware components in operating systems, network design,
and in the manufacturing industry [33]–[35]. As it only appears
in the objective function, the choice of πl has limited impact on
the running time of the algorithms. The results shown are the
averages of 100 simulations, the confidence intervals are at the
95% confidence level. The system parameters are summarized
in Table II.

A. Cost Performance

As baseline of comparison for the RVP and the SEVP
algorithms we use a greedy algorithm, which only executes
Lines 1-4 of Algorithm 1 to minimize the sub-problem cost.

We start with comparing the cost performance of the RVP,
the SEVP, and the greedy algorithm with respect to the number
of VPFs. Figure 4 shows the total cost and the sub-problem
cost of the RVP and the SEVP algorithm normalized by that
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Figure 4. Normalized total cost and sub-problem cost vs. the number of VPFs
for a system of 30 MEC nodes.

8 16 24 32 40 48 56 64 72 80
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  A
U

R
C

RVP

SEVP

Greedy

Figure 5. AURC vs. the number of VPFs for a system of 30 MEC nodes.
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Figure 6. Average number of MEC nodes that are made available vs. the
number of VPFs for a system of 30 MEC nodes.

of the greedy algorithm, for 30 MEC nodes as a function
of the number of VPFs. In terms of the total cost, the RVP
algorithm outperforms the SEVP algorithm, which outperforms
the baseline greedy algorithm. It is interesting to observe
that in terms of the sub-problem cost the greedy algorithm
performs better than the RVP and the SEVP algorithm. This is
because the greedy algorithm optimizes the sub-problem cost
at the price of increasing the availability cost, while the RVP
algorithm performs joint optimization over the availability cost
and the sub-problem cost to minimize total cost, and the SEVP
performs local search to lower the total cost. Furthermore,
the SEVP algorithm tends to perform close to the greedy
algorithm when the number of VPFs is high. This is because
as |F| increases more MEC nodes have to be made available
to accommodate the VPFs, and thus there are less feasible
solutions that the SEVP algorithm can find. Clearly, in practice
the performance gain of the RVP and the SEVP algorithm
compared to the greedy algorithm depends on the system
parameters, mainly Fm and pm,f .

Besides the total cost, we consider the average utilization
ratio of capacities (AURC) as a second performance metric,

AURC =
| F |∑

l∈L πl
∑
m∈M rl,mωmvm

. (44)

The AURC shows how well the algorithms utilize the available
MEC nodes. Figure 5 shows the AURC of the available MEC
nodes for the scenario shown in Figure 4. The results show that

both the RVP and the SEVP algorithm outperform the greedy
algorithm by up to 63% and 57%, respectively.

Figure 6 shows the average number of MEC nodes that are
made available for the scenarios shown in Figure 4. We observe
that on average the RVP and the SEVP algorithms make less
MEC nodes available than the greedy algorithm. Note that in
general making less MEC nodes available is not equivalent to
a high AURC. For example, an algorithm that makes a few
MEC nodes with high capacity available to host a few VPFs
would achieve a low AURC.

B. Convergence and Efficiency of the RVP algorithm

Figure 7 shows the convergence of the RVP algorithm for 40
VPFs and 30 MEC nodes. The solid line and the dotted line
show the lowest upper bound and the lower bound in each
iteration, respectively. During each of the iterations that the
UB is absence, the algorithm encountered an infeasible set of
MEC nodes made available by the master problem, and thus an
infeasibility cut has been added. In the example convergence
happens after 204 iterations, i.e., after considering 204 subsets
of M. As a comparison, using an exhaustive search over all
subsets of MECs nodes would have to consider 230 ≈ 1.07e9
subsets of M.

Figure 8 shows the average running time of the three algo-
rithms as a function of the number of VPFs for 15 and 30 MEC
nodes. First, we focus on the scenarios with |M| = 30. While
the running time of the greedy algorithm is in general lowest,
as expected, it is determined by the dimension of the sub-
problems, and thus it increases as |F| increases. Compared to
the greedy algorithm, the running time of the SEVP algorithm
is heavily influenced by local search, especially when the
number of VPF is low, as in this case local search can generate
many feasible solutions. Compared to these two algorithms,
the RVP algorithm needs to solve an IP problem and multiple
LP problems in each iteration, thus its running time is in
general higher. It is worth noting that the running time of RVP
decreases when |F| is increased beyond 40. This is because
increasing |F| increases the number of MEC nodes that are
needed to be made available, and therefore the feasible region
of variable vm decreases. As an effect, the RVP algorithm
needs fewer iterations to converge, and therefore its running
time decreases.
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Figure 7. The convergence performance of the RVP algorithm for solving a
sample VPF placement problem with 40 VPFs and 30 MEC nodes. The RVP
algorithm converges at iteration 204.
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Figure 8. Average running time for 15 and 30 MEC nodes vs. number of
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Figure 9. Distribution of the running time by the RVP algorithm and the
baseline RVP algorithm for a system with 30 MEC nodes and 16 VPFs.
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Figure 10. Distribution of the number of iterations by the RVP algorithm and
the baseline RVP algorithm for a system with 30 MEC nodes and 16 VPFs.

The results for |M| = 15 in Figure 8 show similar behavior
as those for |M| = 30. Comparing the running time of RVP
for |M| = 15 and |M| = 30 indicates that the running time of
RVP scales exponentially with |M|. This is because increasing
|M| increases the dimension of the master problem, of the
subproblems and their dual, and of the feasibility problems
and their dual. Also, the number of sets of MEC nodes that
make the VPF placement feasible increases as |M| increases.
Similarily, the SEVP and the greedy algorithm take more
time for 30 MEC nodes than for 15 MEC nodes due to the
increased dimension of the problem, but the difference in terms
of running time is significantly smaller than for RVP. It is
interesting to see that when |F| = 80, the SEVP algorithm
takes about the same time for 30 MEC nodes and for 15 MEC
nodes. This is because the SEVP algorithm has to make most
of the MEC nodes available to host 80 VPFs, and thus the
number of solutions that SEVP can explore is limited.

Finally, comparing Figures 4 and 8 we can obtain interesting
insight into the cost vs. running time trade-off. It is interesting
to see that for |F|=8 the running time of the RVP algorithm
is lower than that of the SEVP algorithm, and at the same
time this is when RVP provides the highest cost performance
improvement over SEVP. Thus, when the system is lightly
loaded, RVP is clearly superior to the SEVP algorithm. At the
same time, for moderate to high number of VPFs the SEVP
algorithm has significantly lower running time than RVP, at
the price of a somewhat higher total cost, and may provide a
good trade-off between cost and computational complexity.

In what follows we evaluate the benefit of including con-

straints (12) and (13) in the master problem (Section IV-A)
and of the proposed initialization (Section IV-D). For the eval-
uation, we implemented RVP without constraints (12) and (13)
and with initialization v̄(0) = e. We refer to this as baseline
RVP. Recall that by Lemma 2 the difference of cost obtained
by the two versions of RVP is negligible. Figure 9 shows the
distribution of the running time for a system with 30 MEC
nodes and 16 VPFs, while Figure 10 shows the distribution of
the number of iterations for the same scenario. The markers on
the curves in Figure 9 and 10 show the average values of the
corresponding quantities. Figure 9 shows that the percentiles
of the running time for the RVP algorithm are about one fourth
of those for the baseline RVP. This is because constraints (12)
and (13), and the alternative initialization effectively tighten
the feasible region of the variables. Therefore, in general RVP
requires less iterations to converge, as Figure 10 shows that the
percentiles of the number of iterations for RVP are also about
one fourth of those for the baseline RVP. Overall, constraints
(12) and (13), and the alternative initialization can speed up
the convergence for the RVP by up to 400% for the considered
problem instances.

Besides showing the importance of constraints (12) and (13)
and the proposed initialization, Figures 9 and 10 show that the
average running time and the average number of iterations for
the RVP algorithm are higher than the corresponding median
values. This is caused by a number of problem instances
that take a very long time to converge. In practice, a larger
convergence threshold ε at the price of relatively higher cost
can shorten the running time.
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Overall, our results show that joint optimization of the
available MEC nodes and the placement of VPFs can provide
a significant cost reduction compared to a greedy allocation
and a local search heuristic, and the proposed VPF algorithm
is a computationally efficient solution for moderate instances
of the resilient VPF placement problem.

VII. CONCLUSION

We have proposed a framework and an algorithm for solving
problem of the resilient placement of virtual process con-
trol functions with the objective to minimize the computing
and communication cost subject to capacity and resilience
constraints. The iterative algorithm we proposed makes use
of the special structure of the optimization problem, and
together with a linear relaxation, the Benders decomposition
based approach effectively reduces the search space. Extensive
numerical results show that the proposed algorithm reduces the
total cost significantly compared to a greedy baseline algorithm
and a local search heuristic. Furthermore, the numerical results
show that the proposed algorithm can scale to larger problem
instances, independent of the number of resilience scenarios,
and we note that its running time can be further reduced if the
feasibility and infeasibility cuts are computed in parallel on a
per scenario basis.

Our work is a first step towards the study of resilient
process control function placement in 5G mobile networks.
Interesting extensions of our work include the investigation
of column generation methods for solving the virtual process
control function placement problem, and on-line algorithms for
dynamic virtual process control function migration to support
mobility, e.g., for unmanned aerial vehicles.
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