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ABSTRACT
State estimation plays an essential role in the monitoring and con-
trol of power transmission systems. In modern, highly inter-connected
power systems the state estimation should be performed in a dis-
tributed fashion and requires information exchange between the
control centers of directly connected systems. Motivated by recent
reports on trojans targeting industrial control systems, in this paper
we investigate how a single compromised control center can affect
the outcome of distributed state estimation. We describe five attack
strategies, and evaluate their impact on the IEEE 118 benchmark
power system. We show that that even if the state estimation con-
verges despite the attack, the estimate can have up to 30% of error,
and bad data detection cannot locate the attack. We also show that
if powerful enough, the attack can impede the convergence of the
state estimation, and thus it can blind the system operators. Our
results show that it is important to provide confidentiality for the
measurement data in order to prevent the most powerful attacks.
Finally, we discuss a possible way to detect and to mitigate these
attacks.

Categories and Subject Descriptors
[Security and privacy]: Distributed systems security; [Power
and energy]: Smart grid

Keywords
SCADA/EMS, distributed state estimation, security, data integrity
attacks, inter-control center communication

1. INTRODUCTION
Power system operators rely on Supervisory Control and Data

Acquisition (SCADA) systems integrated with Energy Manage-
ment Systems (EMS) to efficiently and safely operate the power
grid. The SCADA system collects measurement data from the sub-
stations that belong to the operator into a control center. The mea-
surement data are processed at the control center by the EMS. A
core component of the EMS is the state estimator (SE), which al-
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lows the operator to get an accurate estimate of the state of the
power system despite noisy or faulty measurement data by using a
steady-state model of the power flows in the physical system [14,
1]. The state estimate is used by various EMS applications, such as
contingency analysis and security constrained economic dispatch,
and thus an accurate state estimate is crucial both for the safety and
for the efficiency of the power system’s operation.

In order to improve operational efficiency, modern power sys-
tems have become increasingly inter-connected and are managed
by several independent operators. Each operator has its own
SCADA/EMS system and control center, which it uses to manage
a region of the entire system. Examples of inter-connected systems
are the Western Interconnect (WECC) in the U.S., the ENTSO-E
in Europe, and some major European national transmission sys-
tems managed by various operators. In the future smart grid, inter-
connected systems are expected to become even more prevalent,
and it is expected that their control and supervision becomes fully
distributed, without any central coordinator. The safety of an inter-
connected power system depends on the safety of its constituent re-
gions, as demonstrated by recent cascading failures, e.g., the 2003
North-East blackout in the U.S. It is therefore important that the
regional operators exchange timely and accurate information about
each other’s networks state. Due to the sensitivity of the data, the
information exchange is in practice very limited. Nevertheless, the
exchanged information is used in the regional control centers as an
input to the SE. The resulting fully distributed SE [16, 2, 12] are
effectively extensions of the basic SE algorithm and aim to achieve
a consistent state estimate for the entire power system.

Motivated by recent reports on trojans targeting industrial con-
trol systems, such as Stuxnet and Duqu [17], in this work we ad-
dress the security of distributed state estimation in the presence of a
misbehaving control center. We consider an attacker that compro-
mises a single control center so that it can manipulate the data that
the control center exchanges with its neighbors. We define various
attack strategies that differ in the attacker’s knowledge about the
system. We show via simulations on an IEEE benchmark power
system that attacks can disturb the distributed state estimation in
two ways. First, the distributed state estimation could yield a highly
erroneous state estimate (up to 30% relative estimation error), and
second, the distributed state estimation could fail to provide any
state estimate. Moreover, our results show that it is important to
protect the confidentiality of measurement data, since the attacker
needs those data to perform the strongest kinds of attacks. Finally,
we show a possible way to detect convergence problems as a conse-
quence of an attack by relying on a contraction mapping interpreta-
tion of distributed state estimation. This detection is a complement
to traditional bad data detection (BDD) algorithms, which require
the SE to converge.



Several recent works focused on the security of standalone SEs
for the case of so called stealth attacks [13, 18, 3, 11, 6, 19, 10, 8].
Stealth attacks are false data injection attacks against SCADA mea-
surement data that bypass the model-based bad data detector used
in the SE. The possibility of such attacks was pointed out in [13],
and different mitigation schemes were proposed in [3] based on
protecting individual data, by changing the bad data detection algo-
rithm [11], and by protecting components of the SCADA network
infrastructure [6, 19]. The problem of maintaining operator privacy
for distributed state estimation was addressed recently in an infor-
mation theoretic framework in [15]. To the best of our knowledge
we are the first to consider the vulnerability of distributed state es-
timators to data integrity attacks.

The rest of the paper is organized as follows. In Section 2 we
describe the system model and give an outline of distributed state
estimation algorithms. In Section 3 we describe the attacker model
and define various strategies. Section 4 provides an impact analysis
of the attack strategies. In Section 5 we consider a possible detec-
tion and mitigation strategy, and Section 6 concludes the paper.

2. SYSTEM MODEL
We consider an inter-connected power system that spans several

administrative areas, called regions. We denote the set of buses by
B , |B| = B, and the set of regions by R . Each bus belongs to a
region, and we denote the set of buses that belong to region r ∈ R
by Br.

We say that a transmission line tb,b′ that connects b ∈ Br and
b′ ∈ Br′ is a tie line between two regions if r �= r′. We say that
b ∈ Br is a border bus to region r′ if there is a tie line tb,b′ for some
b′ ∈ Br′ . We denote the set of all tie lines connecting region r to
region r′ by Tr,r′ = {tb,b′ | b ∈ Br, b′ ∈ Br′ }. The set of all border
buses of region r to region r′ is denoted by Br,r′ = {b | ∃tb,b′ ∈ Tr,r′ }
(Br,r′ = |Br,r′ |). Similarly, the set of border buses from all regions
to region r′ is denoted by Bb,r′ = ∪rBr,r′ (Bb,r′ = |Bb,r′ |). Finally,
we say that two regions are neighbors if they share at least one tie
line. We denote the set of neighbors of region r by N (r) (N(r) =
|N (r)|).
2.1 State Estimation

We consider models of the active and reactive power injections
at every bus, and models of the active and reactive power flows be-
tween buses (over transmission lines) [14, 1]. The power flow and
injection measurement values are denoted by the vector z ∈ R

M ,
where M is the number of measurements. The value of a mea-
surement m equals to zm = Pm + em, where Pm is the actual power
flow or injection (active or reactive) and em is independent random
measurement noise. The noise is usually assumed to have a Gaus-
sian distribution of zero mean, e=(e1,e2, ...,eM)T ∈N(0;R) where
W = EeeT is the diagonal measurement covariance matrix.

The state-estimation problem consists of estimating B voltage
phasor vectors, Vb = Vbe jθb ∀b ∈ B , given the power flow and in-
jection measurement vector z. One (arbitrary) voltage phasor can
be selected as the reference phasor, for example VB = 1e j0, and
then only n = B− 1 phasors have to be estimated. We denote by
x, the state vector, which consists of the voltage phasor angles and
magnitudes, i.e., x = [θ1,V1,θ2,V2, ...,θn,Vn]

T , where θi and Vi are
phase angle and voltage magnitude on bus bi, respectively. We refer
to a component of the vector x as a state variable.

The most widely used approach to solve the estimation problem
is to minimize the squares of the weighted deviations of the esti-
mated variables from the actual measurements [1], which can be
formulated as

min
x

J(x) = min
x
[z− f (x)]T [W−1][z− f (x)], (1)

where f (x) is the vector of functions describing the measurements
as a function of the state vector x. Since f is non-linear, the esti-
mation is typically done using an iterative solution scheme known
as the Gauss-Newton algorithm [1]. The recurrence relation of this
iterative solution scheme is

x(k+1) = x(k) +Δx(k), (2)

and the increment Δx(k) can be calculated as

Δx(k) = [H(k)TW−1H(k)]−1H(k)TW−1Δz(k), (3)

where H(k) is the Jacobian of vector f (x(k)), Δz(k) is the measure-

ment residual vector defined as Δz(k) = z− f (x(k)), and x(k) is the
value of vector x at the kth iteration. The algorithm is said to con-
verge when for some k∗ the maximum update of the state variables
is smaller than the convergence threshold ε> 0, i.e., ||Δx(k

∗)||∞ < ε,
where || · ||∞ denotes the maximum norm of a vector. We refer to
the number of iterations k∗ required for convergence as the conver-
gence time.

Once the state estimator converges, a Bad Data Detection (BDD)
algorithm is used to detect and identify faulty measurement data.
The BDD algorithm analyses the measurement residual vector (Δz(k

∗)).
The most widely used BDD algorithm is the Largest Normalized
Residual Test (LNRT). The LNRT suspects the measurement with
highest normalized residual, i.e., the largest value of the measure-
ment residual vector divided by its Euclidean norm (Δz(k

∗)/||Δz(k
∗)||2),

as bad data, if the ratio is above a certain threshold. For a more
complete treatment of BDD we refer to [14, 1].

2.2 Distributed State Estimation (DSE)
In an inter-connected power system each regional control center

performs the state estimation based the topology and the parame-
ters of the region, and based on the measurements taken in the re-
gion. Therefore, the state estimation problem in region r becomes
a problem of estimating the voltage phasor vectors for the buses
b ∈ Br, i.e., the state vector xr. However, the power flow measure-
ments on the tie lines Tr,r′ (r′ ∈ N (r)), which we refer to as the
boundary measurements, are a function of the state variables of the
neighboring regions r′ as well. Hence, the control center of region
r needs to exchange a few state variables with the control centers
of its neighboring regions. These state variables correspond to the
buses at the two ends of the tie lines; the control center of region
r sends the state variables for the buses in Br,r′ to the control cen-
ter of region r′. In most of the recently proposed DSE algorithms,
e.g., [16, 2, 12], state variables are exchanged at the beginning of
every iteration. For the purpose of our study, we consider the algo-
rithm described in [16].

We denote the vector of state variables communicated by region

r to region r′ (r′ to r) at iteration k by x(k)r,r′ (x(k)r′,r), and define it as

x(k)r,r′ = [θ(k)i1 V (k)
i1 θ(k)i2 V (k)

i2 ... ]T , ∀bi j ∈ Br,r′ . (4)

We denote the vector of state variables that region r receives from
its neighbors at iteration k by

x(k)b,r = [x(k)Tr′i1 ,r
x(k)Tr′i2 ,r

... ]T , ∀r′i j
∈ N (r).

The state estimator of region r uses x(k)b,r to iteratively estimate

xr similar to (2) and (3), but the Jacobian and the measurement
residual vector are calculated as

H(k) =

[
∂ f (y(k)r )

∂x(k)r

]
Δz(k) = z− f (y(k)r ), (5)



where y(k)r = [x(k)Tr x(k)Tb,r ]T is the state vector extended with the

boundary state variables received at the beginning of the current
iteration, i.e., iteration k. The DSE is said to converge when all
regional state estimators converge. If we denote by k∗r the con-
vergence time of region r, then the total convergence time is c =
max

r
(k∗r ).

3. ATTACK SCENARIO
DSE requires that neighboring control centers periodically ex-

change data with each other. The most widely used protocol for
this purpose is the standardized Inter-Control Center Communica-
tions Protocol (ICCP or IEC 60870-6/TASE.2). ICCP defines data
structures and encodings, and allows control centers to establish so
called associations on a pairwise basis. An association allows bidi-
rectional data exchange between two control centers. Using ICCP
it is possible to implement access control, but ICCP provides no
means for key-based authentication of the data sent.

The standard way of providing authentication for ICCP associ-
ations is to rely on the authentication provided by standard trans-
port layer protocols, such as TLS and SSL [7], as mandated by IEC
62351. As an effect, ICCP messages might be passed in clear text to
the TCP/IP protocol stack or to standard libraries providing authen-
tication. An attacker that compromises the operating system and
the TCP/IP protocol stack in a control center, e.g., by installing a
trojan, can thus easily manipulate all incoming and outgoing ICCP
messages at the compromised control center. The vulnerability of
control systems to such an attack is aggravated by the fact that ICCP
associations are often established between hosts in demilitarized
zones.

3.1 Attack Model
We consider an attacker whose goal is to introduce disturbances

in DSE. In order to achieve its goal, the attacker corrupts the con-
trol center of a single region ra ∈ R so that it has access to the state
variables exchanged between region ra and its neighbors N (ra) at
the beginning of every DSE iteration. At iteration k, the state vari-

ables are elements of the vectors x(k)r,ra , ∀r ∈ N (ra), and the vectors

x(k)ra,r, ∀r ∈ N (ra). In principle, the attacker can tamper with the
entire vectors, but the relative differences in voltage magnitudes
between neighboring buses are rather small and their manipulation
may be easy to detect. Therefore, we focus on an attacker that tam-
pers with the exchanged state variables that correspond to the phase
angles. We describe the attack against the state variables sent from
regions r ∈ N (ra) to region ra (from ra to r) at the beginning of

iteration k by the attack vector a(k)r,ra (a(k)ra,r). We define the attack

vector a(k)r,ra as the vector of phase angles

a(k)r,ra = [θ̂(k)i1 θ̂(k)i2 ... ]T ∀bi j ∈ Br,ra , (6)

where element θ̂(k)i j
corresponds to the value that the attacker adds

to the phase angle θ(k)i j
that it wants to modify. The attack vector

a(k)r,ra can be defined in a similar way. In the rest of this Section, we
describe the attack against the state variables sent to region ra from
its neighbors r ∈ N (ra). The attack against the state variables sent
from region ra to its neighbors can be described in a similar way,
but we omit it for brevity.

Since the attack is additive and it concerns the phase angles of

the exchanged vector of state variables x(k)r,ra , it results in a corrupted
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Figure 1: Interconnected power system with three regions. The
attacker corrupts the control center of Region 1, and tampers
with the state variables x(k)1,2 and x(k)1,3 sent from Region 1, and the

state variables x(k)2,1 and x(k)3,1 received by Region 1. The symbol
(+) indicates that the components of the attack vector are added
to the corresponding components (phase angles) of the vector
of exchanged state variables. The attacker cannot tamper with
the state variables exchanged between Regions 2 and 3.

vector of state variables

x̃(k)r,ra = x(k)r,ra +Qr,ra ·a(k)r,ra , (7)

where Qr,ra = [qi, j]2·Br,ra×Br,ra is a matrix used to insert the compo-
nents that correspond to voltage magnitudes with values equal to 0.
The elements of matrix Qr,ra are defined as: qi, j = 1 if 	 j = i/2

and i mod 2 = 1, and qi, j = 0 otherwise. The resulting vector x̃(k)r,ra

is used as an input to the iteration k of DSE in region ra, instead of

the originally exchanged vector x(k)r,ra .

For convenience, we introduce the attack vector a(k)b,ra for the state

variables sent to region ra from all its neighboring regions

a(k)b,ra = [a(k)Tri1 ,r
a a(k)Tri2 ,r

a ... ]T ∀ri j ∈ N (ra), (8)

and the corresponding corrupted vector of state variables

x̃(k)b,ra = x(k)b,ra +Qra ·a(k)b,ra , (9)

where Qra = [qi, j]2·Bb,ra×Bb,ra is a matrix with the same structure
as Qr,ra . Fig. 1 illustrates an attack on a power system with three

regions. Observe that x̃(k)b,ra is the input to iteration k of DSE, and

thus, the attack a(k)b,ra leads to a corrupted state vector update Δx̃(k)ra .

We define the size of the attack as the Euclidean norm of the

attack vector, i.e., ||a(k)b,ra ||2. We consider that the goal of the at-

tacker is to find an attack vector with a small size but with a big
impact on the convergence time c of the distributed state estimator,
or formally

max
a(k)b,ra ,k=1,...

c s.t. ||a(k)b,ra ||2 ≤ β ∀k, (10)

where β > 0 is the desired bound on the attack size. By definition,
c = ∞ if the DSE does not converge.

3.2 Attack Strategies
Since the distributed state estimation problem is non-linear, solv-

ing (10) is non-trivial. In the following we describe five strategies

to construct the attack vector a(k)b,ra .



3.2.1 Maximal Update Vector Attack (MUV)
The MUV attack is an approximation of (10) done by maximiz-

ing the Euclidean norm of the corrupted state vector update in every
iteration,

max
a(k)b,ra

||Δx̃(k)r ||2 s.t. ||a(k)b,ra ||2 = β. (11)

Recall that Δx̃(k)r depends on a(k)b,ra through (3) and (5). The objec-

tive function and the constraints in (11) are quadratic functions, and

therefore the vector a(k)b,ra can be obtained by solving a quadratically

constrained quadratic program [4]. Observe that the attacker can-

not solve (11) without knowing the entire state vector x(k)r and the

measurement vector z, but the vectors x(k)r and z are not exchanged
between the regions. We therefore use the MUV attack as a base-
line for comparison.

3.2.2 First Singular Vector Attack (FSV)
The FSV attack also aims to solve (11) but in the cases when

the vectors x(k)r and z may be unknown to the attacker. We de-

note by xa(k)
r the attacker’s knowledge of the vector x(k)r at iteration

k. Correspondingly, we denote by xa(k)
b,r and by ya(k)

r the attacker’s

knowledge of the vectors x(k)b,r and y(k)r , respectively. In order to ap-

proximate (11), we linearize the function f (y(k)r ) at ya(k)
r so that for

the measurement residual vector Δz̃(k) we obtain

Δz̃(k) ≈ z− ( f (

[
xa(k)

r

xa(k)
b,r

]
)+ [Ha(k)Ha(k)

b ]

[
0

Qra ·a(k)b,ra

]
)

≈ Δz(k)− [Ha(k)Ha(k)
b ]

[
0

Qra ·a(k)b,ra

]
≈ Δz(k)−Ha(k)

b ·Qra ·a(k)b,ra ,

(12)
where Ha(k) and Ha(k)

b are the Jacobian matrices of f (y(k)r ) evalu-

ated at xa(k)
r and xa(k)

b,r , respectively. After substituting (12) into (3),

the corrupted vector Δx̃(k)r can be approximated as

Δx̃(k)r = Δx(k)r − [Ha(k) TW−1Ha(k)]−1Ha(k) TW−1Ha(k)
b ·Qra ·a(k)b,ra .

(13)
Observe that the subtrahend in (13) is a vector with the same num-

ber of elements as the vector Δx(k)r , and we refer to it as the subtra-
hend vector. The Euclidean norm of the subtrahend vector is maxi-
mized if the attack vector a(k)b,ra is aligned with the first right singular

vector of the matrix [Ha(k) TW−1Ha(k)]−1Ha(k) TW−1Ha(k)
b ·Qra ,

that is, with the singular vector with highest singular value. The
complexity of singular vector decomposition is O(mn2) [9], low
enough for the computation to be done on-line.

Observe in (13) that size of the corrupted vector Δx̃(k)r depends
on the direction of the subtrahend vector, and consequently, on
the direction of the first singular vector. Whether the attacker will
choose the correct direction of the first singular vector depends on

its knowledge of the state vector x(k)r , and on the measurement vec-
tor z. We consider two variants of the FSV attack.
FSV with State Information (FSV+ST): The FSV+ST attack as-

sumes that the attacker knows the state vector x(k)r , but it does not
know the measurement vector z and the correct direction. Conse-

quently, xa(k)
r = x(k)r and ya(k)

r = y(k)r in (12) and (13). Since the
attacker does not know the vector z, and thereby the update vector

Δx(k)r without attack, finding the correct direction is not trivial. In
order to estimate the direction, we assume that the estimates of the
active and reactive power flows on a tie line are closer to their actual

Figure 2: IEEE 118 bus system divided into six regions. Neigh-
boring regions are connected by a line, ||Tr,r′ || is the number of
tie-lines. The buses Br are shown for each region.

values when using the most recent exchanged state variables. The
attacker may tamper with the exchanged state variables such that
the introduced estimation errors take the estimates closer to the es-
timates from the previous round. The direction which satisfies this
for more tie line power flows is chosen by the attacker.
FSV with Measurement Information (FSV+MEAS): The FSV+MEAS

attack assumes that the attacker does not know the state vector x(k)r ,

but it knows the measurement vector z. Consequently, xa(k)
r = x(1)r

and ya(k)
r = y(1)r in (12) and (13). The update vector Δx(k)r , and

thereby the correct direction, is not known by the attacker. In
order to estimate the direction, we use a similar approach as for
the FSV+ST attack, but the attacker uses the actual measurements,
rather than two estimates, when choosing the direction.

3.2.3 Uniform Rotation Attack (UR)
The third strategy we consider is rather naive. The attack vector

rotates all voltage phasors by a constant φ, thus

a(k)b,ra = φ ·1, (14)

where 1 is the column vector of all ones of dimension Bb,ra . The

size of the attack is ||a(k)b,ra ||2 = φ ·√Bb,ra .

3.2.4 Sign Inversion Attack (SI)
The fourth strategy we consider is adaptive, similar to the FSV

attack. The attack only requires knowledge of the exchanged state
variables, and at every round it inverts the sign of exchanged phase
angles,

a(k)b,ra = [−2θ(k)i1 −2θ(k)i2 ... ] ∀bi j ∈ Bb,ra . (15)

The size of the attack depends on the system state.

3.2.5 Sign of Difference Inversion Attack (SDI)
The last strategy is based on the insight that the steady state ac-

tive power flow on a tie line is an odd function of the phase angle
difference between the border buses [1],

a(k)b,ra = [−2(θ(k)i1 −θ(k)
i′1

) ... ]∀bi j ∈ Bb,ra and tbi,b
′
i
∈ Tb,ra . (16)

The attack effectively inverts the sign of the phase angle differences
for every tie line, which corresponds to reverting the power flow on
every tie line of region ra. Again, the size of the attack depends on
the system state.

4. ATTACK IMPACT
In the following we evaluate the impact of the attack strategies

on the IEEE 118 bus power system. The power system is divided
into six regions as shown in Fig. 2. We consider that the attacker
corrupts the control center of region r1, and performs the attacks
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Figure 3: Total convergence time for cases when the DSE con-
verges as a function of the attack size.
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Figure 4: Relative estimation error (50th percentile) for the upper
50% utilized power flows and injections vs. total convergence time

100 120 140 160 180 200 220 240 260 280 300
0

0.05

0.1

0.15

0.2

0.25

0.3

Total convergence time (c)

R
el
a
ti
v
e
es
ti
m
a
ti
o
n

er
r
o
r

MUV

FSV+ST

FSV+MEAS

UR

Figure 5: Relative estimation error (maximum) for the upper
10% utilized power flows and injections vs. total convergence time
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Figure 6: Percentage of the border measurements around the at-
tacked region that are among top candidates for bad data vs. size
of the attack

against the state variables sent from and to region r1. Measure-
ments are taken at every power injection and power flow (both ac-
tive and reactive), and the convergence threshold is ε= 10−3. Fig. 3
shows the total convergence time c as a function of the attack size
for the DSE under the MUV, the FSV (both variants), and the UR
attacks. The total convergence time increases monotonically with
the attack size for all considered attacks. The MUV attack is the
most powerful among the considered attacks: the increase of the
convergence time is significantly higher for the same attack size,
and the DSE stops converging for a much lower attack size. The
results show that the FSV+MEAS attack is significantly more pow-
erful than the FSV+ST attack. Therefore, it is important to prevent
the attacker from obtaining the measurement data, e.g., by not ex-
changing the data between neighboring regions and by encrypting
the data when transmitting them from the substations to the control
center.

Although for small attacks the DSE converges, the estimated
state and thus the estimated power flows could be erroneous. Fig. 4
and Fig. 5 show the 50th percentile and the maximum of the relative
estimation error for the highest 50% and for the highest 10% of the
power flows, respectively as a function of total convergence time
(and thus the attack size). The relative estimation error increases
monotonically with the total convergence time, and thereby the at-
tack size, and can exceed 25% for some large power flows, which
is a significant estimation error that can affect the outcome of EMS
applications like contingency analysis.

In principle, the BDD algorithm should identify the measure-
ments whose estimates significantly differ from the measured val-
ues (e.g., due to the attack) as bad data, and should thus detect the

attack. In the following we use the centralized Largest Normalized
Residual Test algorithm [16] for BDD to evaluate the efficiency of
bad data detection under the considered attacks. We use a central-
ized BDD, because a centralized BDD is typically more efficient in
identifying bad data than the fully distributed algorithms, e.g., [5].
We thus consider the strongest BDD possible. We focus on attacks
that allow the DSE to converge, as the BDD cannot be performed
if the DSE does not converge.

Since the attack concerns the power flow estimates at the tie lines
connecting the attacked region with its neighbors, one would expect
that the border measurements around the attacked region get identi-
fied by the BDD algorithm as bad data. If this was the case then by
discarding those measurements, the BDD would isolate the rest of
the system from the attacked region. However, this is not the case.
Fig. 6 shows the percentage of the border measurements around the
attacked region that are identified by the BDD algorithm as the top
candidates for bad data as a function of the attack size for the MUV,
the FSV (both variants), and the UR attacks. The percentage does
not increase monotonically, and it is fairly constant even for strong
attacks that cause significant estimation errors. Moreover, the per-
centage is relatively low for all attacks. This implies that the BDD
algorithm may be misled: it can discard measurements in/between
non-attacked regions, and does not locate the source of the attack.

Fig. 7 shows the maximum state vector update ||Δx||∞ for the
FSV+ST, the UR, the SI, and the SDI attacks in each iteration k.
In order to make the results comparable, we scaled the FSV+ST
and the UR attacks such that their attack size equals to the attack
size of the SI attack in every iteration. Under the SI attack the
DSE almost converges, but all attack strategies prevent the DSE
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Figure 9: Evolution of the number of outlier state estimates based
on y(k)r′,r in region r′ = 2 vs. the number of rounds. No attack.
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Figure 10: Evolution of the number of outlier state estimates based
on y(k)r′,r in region r′ = 2 vs. the number of rounds. FSV+MEAS
attack at region ra = 1 that admits convergence.

to converge eventually. One may assume that the DSE does not
converge mainly due to the state vector updates in the corrupted
region (r1) and its neighbors, but Fig. 8 shows that this is not the
case. Fig. 8 shows the maximum state vector update ||Δxr6

||∞ in
the non-neighboring region r6. While ||Δxr6

||∞ decreases initially
for all attacks, it eventually starts increasing and diverges from the
convergence threshold due to the resulting disturbances in r1, r2,
and r3 that propagate to the rest of the system through the state
variables that are communicated. It is interesting that in the case of
the SI attack the state estimator in region r6 first converges, but not
the DSE since at least one of the other regions has not converged
yet, and as an effect ||Δxr6

||∞ starts increasing.

5. DETECTION AND MITIGATION
In the following we discuss a possible way for detecting an attack

against the DSE. For the detection, let us first consider the evolu-
tion of the state vector without the data integrity attack. Observe
that the evolution of the state vector in the DSE can be written as
a recurrence relation x(k+1) = g(x(k)) for some non-linear mapping
g : Rn → R

n. Furthermore, when the DSE converges after k∗ itera-
tions, it holds that x(k

∗) = g(x(k
∗−1))≈ x(k

∗−1). In order for the DSE
to converge, the mapping g has to satisfy certain conditions. One
example is the sufficient condition formulated in [16, Proposition
5.2., Theorem 7.5.], which provides some insight into the behavior
of the recurrence relation defined by g. The following proposition
summarizes the condition.

Proposition 1. If the iterative non-linear mapping function g :
R

n → R
n is non-expansive in the Euclidean norm, then the set X∗

of its fixed points is non-empty. If it satisfies

||g(x)− x∗||∞ ≤ ||x− x∗||∞,∀x ∈ R
n,∀x∗ ∈ X∗, (17)

then the solution sequence x(k) converges to a fixed point x∗.

The above result does not imply that the subsequent state vector
updates Δx(k) would form a non-increasing sequence in the max
norm, i.e., ||g(x(k+1))− g(x(k))||∞ �≤ ||g(x(k))− g(x(k−1))||∞. Fur-
thermore, the set of fixed points X∗ is not known. Nevertheless, for
large values of k we can use the approximation that the estimate
x(k) is close to a fixed point of g, and thus for large k and k′ < k we
have

||x(k′+1)− x(k)||∞ ≤ ||x(k′)− x(k)||∞ (18)

assuming that the state estimator converges. In other words, when
the state estimator is close to convergence to a fixed point, the dis-
tance of the points on the trajectory of convergence from the current
estimate is a non-increasing function of the iteration k′. In the case
of DSE the regional control centers only have access to their own

state vector x(k)r and to the last received state variables x(k)b,r from

their neighbors, i.e., to the vector y(k)r , and thus (18) has to be ver-
ified on these data. In the following we investigate how well (18)
indicates convergence problems based on this data.

Fig. 9 shows for every iteration k the number of previous itera-

tions j for which (18) does not hold for the vector y(k)r′,r = [x(k)Tr′ x(k)r,r′ ]
T
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Figure 11: Evolution of the number of outlier state estimates
based on y(k)r′,r in region r′ = 2 vs. the number of rounds.
FSV+MEAS attack at region ra = 1 that does not admit con-
vergence.

for region r′ = 2 for three of its neighbors. The results are for the
case without any attack. The results confirm that the number of out-
liers is small when the DSE converges, and also shows that the few
outliers occur during the early iterations of the DSE. Fig. 10 shows
results for a small FSV+MEAS attack that allows the DSE to con-
verge, though with an estimation error (c.f. Figs 4 and 5). Initially,
the number of outliers increases with the number of iterations, but
it decreases as the DSE gets closer to convergence. Surprisingly,

most outliers are detected based on y(k)2,6, although region 6 is not

a neighbor of the attacked region (ra = 1). Finally, Fig. 11 shows
results for a FSV+MEAS attack that does not allow the DSE to con-
verge. The number of outliers increases linearly with the number
of iterations, and indicates the convergence problem immediately.

Fig. 10 and Fig. 11 show that outliers can be used to detect con-
vergence problems due to, e.g., an attack. However, Fig. 11 also
shows that localizing the point of the attack is not possible. One
possible mitigation scheme could then be to disable the DSE, and
let every region perform a local state estimation. Although power
injections at border buses and the power flows on the tie lines can-
not be estimated in this case, the resulting estimate is not affected
by the attack.

6. CONCLUSION
We considered the vulnerability of distributed state estimation

to targeted attacks against the exchanged data between operators.
We described five attack strategies, and showed via simulations on
an IEEE benchmark power system the effects of the attacks. The
presented results led us to the following interesting conclusions.
First, already a single compromised control center can cause con-
vergence problems to the distributed state estimator. For small at-
tacks the estimator converges but with significant errors, and the
BDD algorithm cannot detect the attack location. For large attacks
the estimator fails to converge and to provide a consistent state esti-
mate. Second, it is important to protect the confidentiality of mea-
surement data, since the attacker can perform strong attacks only
if it knows the measurement data. Finally, the attacks could be de-
tected by observing the number of outlier state estimates. Based on
this detection scheme, we outlined a simple mitigation scheme. It
is subject of our future work to extend the detection scheme such
that it can localize the point of the attack, which could lead to an
improved mitigation scheme.
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